1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2017
4 * Author: Amelie Delaunay <amelie.delaunay@st.com>
9 #include <linux/iopoll.h>
10 #include <linux/ioport.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_wakeirq.h>
15 #include <linux/regmap.h>
16 #include <linux/rtc.h>
18 #define DRIVER_NAME "stm32_rtc"
20 /* STM32_RTC_TR bit fields */
21 #define STM32_RTC_TR_SEC_SHIFT 0
22 #define STM32_RTC_TR_SEC GENMASK(6, 0)
23 #define STM32_RTC_TR_MIN_SHIFT 8
24 #define STM32_RTC_TR_MIN GENMASK(14, 8)
25 #define STM32_RTC_TR_HOUR_SHIFT 16
26 #define STM32_RTC_TR_HOUR GENMASK(21, 16)
28 /* STM32_RTC_DR bit fields */
29 #define STM32_RTC_DR_DATE_SHIFT 0
30 #define STM32_RTC_DR_DATE GENMASK(5, 0)
31 #define STM32_RTC_DR_MONTH_SHIFT 8
32 #define STM32_RTC_DR_MONTH GENMASK(12, 8)
33 #define STM32_RTC_DR_WDAY_SHIFT 13
34 #define STM32_RTC_DR_WDAY GENMASK(15, 13)
35 #define STM32_RTC_DR_YEAR_SHIFT 16
36 #define STM32_RTC_DR_YEAR GENMASK(23, 16)
38 /* STM32_RTC_CR bit fields */
39 #define STM32_RTC_CR_FMT BIT(6)
40 #define STM32_RTC_CR_ALRAE BIT(8)
41 #define STM32_RTC_CR_ALRAIE BIT(12)
43 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
44 #define STM32_RTC_ISR_ALRAWF BIT(0)
45 #define STM32_RTC_ISR_INITS BIT(4)
46 #define STM32_RTC_ISR_RSF BIT(5)
47 #define STM32_RTC_ISR_INITF BIT(6)
48 #define STM32_RTC_ISR_INIT BIT(7)
49 #define STM32_RTC_ISR_ALRAF BIT(8)
51 /* STM32_RTC_PRER bit fields */
52 #define STM32_RTC_PRER_PRED_S_SHIFT 0
53 #define STM32_RTC_PRER_PRED_S GENMASK(14, 0)
54 #define STM32_RTC_PRER_PRED_A_SHIFT 16
55 #define STM32_RTC_PRER_PRED_A GENMASK(22, 16)
57 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
58 #define STM32_RTC_ALRMXR_SEC_SHIFT 0
59 #define STM32_RTC_ALRMXR_SEC GENMASK(6, 0)
60 #define STM32_RTC_ALRMXR_SEC_MASK BIT(7)
61 #define STM32_RTC_ALRMXR_MIN_SHIFT 8
62 #define STM32_RTC_ALRMXR_MIN GENMASK(14, 8)
63 #define STM32_RTC_ALRMXR_MIN_MASK BIT(15)
64 #define STM32_RTC_ALRMXR_HOUR_SHIFT 16
65 #define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16)
66 #define STM32_RTC_ALRMXR_PM BIT(22)
67 #define STM32_RTC_ALRMXR_HOUR_MASK BIT(23)
68 #define STM32_RTC_ALRMXR_DATE_SHIFT 24
69 #define STM32_RTC_ALRMXR_DATE GENMASK(29, 24)
70 #define STM32_RTC_ALRMXR_WDSEL BIT(30)
71 #define STM32_RTC_ALRMXR_WDAY_SHIFT 24
72 #define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24)
73 #define STM32_RTC_ALRMXR_DATE_MASK BIT(31)
75 /* STM32_RTC_SR/_SCR bit fields */
76 #define STM32_RTC_SR_ALRA BIT(0)
78 /* STM32_RTC_VERR bit fields */
79 #define STM32_RTC_VERR_MINREV_SHIFT 0
80 #define STM32_RTC_VERR_MINREV GENMASK(3, 0)
81 #define STM32_RTC_VERR_MAJREV_SHIFT 4
82 #define STM32_RTC_VERR_MAJREV GENMASK(7, 4)
84 /* STM32_RTC_WPR key constants */
85 #define RTC_WPR_1ST_KEY 0xCA
86 #define RTC_WPR_2ND_KEY 0x53
87 #define RTC_WPR_WRONG_KEY 0xFF
89 /* Max STM32 RTC register offset is 0x3FC */
90 #define UNDEF_REG 0xFFFF
94 struct stm32_rtc_registers
{
107 struct stm32_rtc_events
{
111 struct stm32_rtc_data
{
112 const struct stm32_rtc_registers regs
;
113 const struct stm32_rtc_events events
;
114 void (*clear_events
)(struct stm32_rtc
*rtc
, unsigned int flags
);
121 struct rtc_device
*rtc_dev
;
124 unsigned int dbp_reg
;
125 unsigned int dbp_mask
;
128 const struct stm32_rtc_data
*data
;
133 static void stm32_rtc_wpr_unlock(struct stm32_rtc
*rtc
)
135 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
137 writel_relaxed(RTC_WPR_1ST_KEY
, rtc
->base
+ regs
->wpr
);
138 writel_relaxed(RTC_WPR_2ND_KEY
, rtc
->base
+ regs
->wpr
);
141 static void stm32_rtc_wpr_lock(struct stm32_rtc
*rtc
)
143 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
145 writel_relaxed(RTC_WPR_WRONG_KEY
, rtc
->base
+ regs
->wpr
);
148 static int stm32_rtc_enter_init_mode(struct stm32_rtc
*rtc
)
150 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
151 unsigned int isr
= readl_relaxed(rtc
->base
+ regs
->isr
);
153 if (!(isr
& STM32_RTC_ISR_INITF
)) {
154 isr
|= STM32_RTC_ISR_INIT
;
155 writel_relaxed(isr
, rtc
->base
+ regs
->isr
);
158 * It takes around 2 rtc_ck clock cycles to enter in
159 * initialization phase mode (and have INITF flag set). As
160 * slowest rtc_ck frequency may be 32kHz and highest should be
161 * 1MHz, we poll every 10 us with a timeout of 100ms.
163 return readl_relaxed_poll_timeout_atomic(
164 rtc
->base
+ regs
->isr
,
165 isr
, (isr
& STM32_RTC_ISR_INITF
),
172 static void stm32_rtc_exit_init_mode(struct stm32_rtc
*rtc
)
174 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
175 unsigned int isr
= readl_relaxed(rtc
->base
+ regs
->isr
);
177 isr
&= ~STM32_RTC_ISR_INIT
;
178 writel_relaxed(isr
, rtc
->base
+ regs
->isr
);
181 static int stm32_rtc_wait_sync(struct stm32_rtc
*rtc
)
183 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
184 unsigned int isr
= readl_relaxed(rtc
->base
+ regs
->isr
);
186 isr
&= ~STM32_RTC_ISR_RSF
;
187 writel_relaxed(isr
, rtc
->base
+ regs
->isr
);
190 * Wait for RSF to be set to ensure the calendar registers are
191 * synchronised, it takes around 2 rtc_ck clock cycles
193 return readl_relaxed_poll_timeout_atomic(rtc
->base
+ regs
->isr
,
195 (isr
& STM32_RTC_ISR_RSF
),
199 static void stm32_rtc_clear_event_flags(struct stm32_rtc
*rtc
,
202 rtc
->data
->clear_events(rtc
, flags
);
205 static irqreturn_t
stm32_rtc_alarm_irq(int irq
, void *dev_id
)
207 struct stm32_rtc
*rtc
= (struct stm32_rtc
*)dev_id
;
208 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
209 const struct stm32_rtc_events
*evts
= &rtc
->data
->events
;
210 unsigned int status
, cr
;
212 mutex_lock(&rtc
->rtc_dev
->ops_lock
);
214 status
= readl_relaxed(rtc
->base
+ regs
->sr
);
215 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
217 if ((status
& evts
->alra
) &&
218 (cr
& STM32_RTC_CR_ALRAIE
)) {
219 /* Alarm A flag - Alarm interrupt */
220 dev_dbg(&rtc
->rtc_dev
->dev
, "Alarm occurred\n");
222 /* Pass event to the kernel */
223 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_IRQF
| RTC_AF
);
225 /* Clear event flags, otherwise new events won't be received */
226 stm32_rtc_clear_event_flags(rtc
, evts
->alra
);
229 mutex_unlock(&rtc
->rtc_dev
->ops_lock
);
234 /* Convert rtc_time structure from bin to bcd format */
235 static void tm2bcd(struct rtc_time
*tm
)
237 tm
->tm_sec
= bin2bcd(tm
->tm_sec
);
238 tm
->tm_min
= bin2bcd(tm
->tm_min
);
239 tm
->tm_hour
= bin2bcd(tm
->tm_hour
);
241 tm
->tm_mday
= bin2bcd(tm
->tm_mday
);
242 tm
->tm_mon
= bin2bcd(tm
->tm_mon
+ 1);
243 tm
->tm_year
= bin2bcd(tm
->tm_year
- 100);
245 * Number of days since Sunday
246 * - on kernel side, 0=Sunday...6=Saturday
247 * - on rtc side, 0=invalid,1=Monday...7=Sunday
249 tm
->tm_wday
= (!tm
->tm_wday
) ? 7 : tm
->tm_wday
;
252 /* Convert rtc_time structure from bcd to bin format */
253 static void bcd2tm(struct rtc_time
*tm
)
255 tm
->tm_sec
= bcd2bin(tm
->tm_sec
);
256 tm
->tm_min
= bcd2bin(tm
->tm_min
);
257 tm
->tm_hour
= bcd2bin(tm
->tm_hour
);
259 tm
->tm_mday
= bcd2bin(tm
->tm_mday
);
260 tm
->tm_mon
= bcd2bin(tm
->tm_mon
) - 1;
261 tm
->tm_year
= bcd2bin(tm
->tm_year
) + 100;
263 * Number of days since Sunday
264 * - on kernel side, 0=Sunday...6=Saturday
265 * - on rtc side, 0=invalid,1=Monday...7=Sunday
270 static int stm32_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
272 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
273 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
276 /* Time and Date in BCD format */
277 tr
= readl_relaxed(rtc
->base
+ regs
->tr
);
278 dr
= readl_relaxed(rtc
->base
+ regs
->dr
);
280 tm
->tm_sec
= (tr
& STM32_RTC_TR_SEC
) >> STM32_RTC_TR_SEC_SHIFT
;
281 tm
->tm_min
= (tr
& STM32_RTC_TR_MIN
) >> STM32_RTC_TR_MIN_SHIFT
;
282 tm
->tm_hour
= (tr
& STM32_RTC_TR_HOUR
) >> STM32_RTC_TR_HOUR_SHIFT
;
284 tm
->tm_mday
= (dr
& STM32_RTC_DR_DATE
) >> STM32_RTC_DR_DATE_SHIFT
;
285 tm
->tm_mon
= (dr
& STM32_RTC_DR_MONTH
) >> STM32_RTC_DR_MONTH_SHIFT
;
286 tm
->tm_year
= (dr
& STM32_RTC_DR_YEAR
) >> STM32_RTC_DR_YEAR_SHIFT
;
287 tm
->tm_wday
= (dr
& STM32_RTC_DR_WDAY
) >> STM32_RTC_DR_WDAY_SHIFT
;
289 /* We don't report tm_yday and tm_isdst */
296 static int stm32_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
298 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
299 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
305 /* Time in BCD format */
306 tr
= ((tm
->tm_sec
<< STM32_RTC_TR_SEC_SHIFT
) & STM32_RTC_TR_SEC
) |
307 ((tm
->tm_min
<< STM32_RTC_TR_MIN_SHIFT
) & STM32_RTC_TR_MIN
) |
308 ((tm
->tm_hour
<< STM32_RTC_TR_HOUR_SHIFT
) & STM32_RTC_TR_HOUR
);
310 /* Date in BCD format */
311 dr
= ((tm
->tm_mday
<< STM32_RTC_DR_DATE_SHIFT
) & STM32_RTC_DR_DATE
) |
312 ((tm
->tm_mon
<< STM32_RTC_DR_MONTH_SHIFT
) & STM32_RTC_DR_MONTH
) |
313 ((tm
->tm_year
<< STM32_RTC_DR_YEAR_SHIFT
) & STM32_RTC_DR_YEAR
) |
314 ((tm
->tm_wday
<< STM32_RTC_DR_WDAY_SHIFT
) & STM32_RTC_DR_WDAY
);
316 stm32_rtc_wpr_unlock(rtc
);
318 ret
= stm32_rtc_enter_init_mode(rtc
);
320 dev_err(dev
, "Can't enter in init mode. Set time aborted.\n");
324 writel_relaxed(tr
, rtc
->base
+ regs
->tr
);
325 writel_relaxed(dr
, rtc
->base
+ regs
->dr
);
327 stm32_rtc_exit_init_mode(rtc
);
329 ret
= stm32_rtc_wait_sync(rtc
);
331 stm32_rtc_wpr_lock(rtc
);
336 static int stm32_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
338 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
339 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
340 const struct stm32_rtc_events
*evts
= &rtc
->data
->events
;
341 struct rtc_time
*tm
= &alrm
->time
;
342 unsigned int alrmar
, cr
, status
;
344 alrmar
= readl_relaxed(rtc
->base
+ regs
->alrmar
);
345 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
346 status
= readl_relaxed(rtc
->base
+ regs
->sr
);
348 if (alrmar
& STM32_RTC_ALRMXR_DATE_MASK
) {
350 * Date/day doesn't matter in Alarm comparison so alarm
356 if (alrmar
& STM32_RTC_ALRMXR_WDSEL
) {
357 /* Alarm is set to a day of week */
359 tm
->tm_wday
= (alrmar
& STM32_RTC_ALRMXR_WDAY
) >>
360 STM32_RTC_ALRMXR_WDAY_SHIFT
;
363 /* Alarm is set to a day of month */
365 tm
->tm_mday
= (alrmar
& STM32_RTC_ALRMXR_DATE
) >>
366 STM32_RTC_ALRMXR_DATE_SHIFT
;
370 if (alrmar
& STM32_RTC_ALRMXR_HOUR_MASK
) {
371 /* Hours don't matter in Alarm comparison */
374 tm
->tm_hour
= (alrmar
& STM32_RTC_ALRMXR_HOUR
) >>
375 STM32_RTC_ALRMXR_HOUR_SHIFT
;
376 if (alrmar
& STM32_RTC_ALRMXR_PM
)
380 if (alrmar
& STM32_RTC_ALRMXR_MIN_MASK
) {
381 /* Minutes don't matter in Alarm comparison */
384 tm
->tm_min
= (alrmar
& STM32_RTC_ALRMXR_MIN
) >>
385 STM32_RTC_ALRMXR_MIN_SHIFT
;
388 if (alrmar
& STM32_RTC_ALRMXR_SEC_MASK
) {
389 /* Seconds don't matter in Alarm comparison */
392 tm
->tm_sec
= (alrmar
& STM32_RTC_ALRMXR_SEC
) >>
393 STM32_RTC_ALRMXR_SEC_SHIFT
;
398 alrm
->enabled
= (cr
& STM32_RTC_CR_ALRAE
) ? 1 : 0;
399 alrm
->pending
= (status
& evts
->alra
) ? 1 : 0;
404 static int stm32_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
406 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
407 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
408 const struct stm32_rtc_events
*evts
= &rtc
->data
->events
;
411 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
413 stm32_rtc_wpr_unlock(rtc
);
415 /* We expose Alarm A to the kernel */
417 cr
|= (STM32_RTC_CR_ALRAIE
| STM32_RTC_CR_ALRAE
);
419 cr
&= ~(STM32_RTC_CR_ALRAIE
| STM32_RTC_CR_ALRAE
);
420 writel_relaxed(cr
, rtc
->base
+ regs
->cr
);
422 /* Clear event flags, otherwise new events won't be received */
423 stm32_rtc_clear_event_flags(rtc
, evts
->alra
);
425 stm32_rtc_wpr_lock(rtc
);
430 static int stm32_rtc_valid_alrm(struct stm32_rtc
*rtc
, struct rtc_time
*tm
)
432 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
433 int cur_day
, cur_mon
, cur_year
, cur_hour
, cur_min
, cur_sec
;
434 unsigned int dr
= readl_relaxed(rtc
->base
+ regs
->dr
);
435 unsigned int tr
= readl_relaxed(rtc
->base
+ regs
->tr
);
437 cur_day
= (dr
& STM32_RTC_DR_DATE
) >> STM32_RTC_DR_DATE_SHIFT
;
438 cur_mon
= (dr
& STM32_RTC_DR_MONTH
) >> STM32_RTC_DR_MONTH_SHIFT
;
439 cur_year
= (dr
& STM32_RTC_DR_YEAR
) >> STM32_RTC_DR_YEAR_SHIFT
;
440 cur_sec
= (tr
& STM32_RTC_TR_SEC
) >> STM32_RTC_TR_SEC_SHIFT
;
441 cur_min
= (tr
& STM32_RTC_TR_MIN
) >> STM32_RTC_TR_MIN_SHIFT
;
442 cur_hour
= (tr
& STM32_RTC_TR_HOUR
) >> STM32_RTC_TR_HOUR_SHIFT
;
445 * Assuming current date is M-D-Y H:M:S.
446 * RTC alarm can't be set on a specific month and year.
447 * So the valid alarm range is:
448 * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
449 * with a specific case for December...
451 if ((((tm
->tm_year
> cur_year
) &&
452 (tm
->tm_mon
== 0x1) && (cur_mon
== 0x12)) ||
453 ((tm
->tm_year
== cur_year
) &&
454 (tm
->tm_mon
<= cur_mon
+ 1))) &&
455 ((tm
->tm_mday
> cur_day
) ||
456 ((tm
->tm_mday
== cur_day
) &&
457 ((tm
->tm_hour
> cur_hour
) ||
458 ((tm
->tm_hour
== cur_hour
) && (tm
->tm_min
> cur_min
)) ||
459 ((tm
->tm_hour
== cur_hour
) && (tm
->tm_min
== cur_min
) &&
460 (tm
->tm_sec
>= cur_sec
))))))
466 static int stm32_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
468 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
469 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
470 struct rtc_time
*tm
= &alrm
->time
;
471 unsigned int cr
, isr
, alrmar
;
477 * RTC alarm can't be set on a specific date, unless this date is
478 * up to the same day of month next month.
480 if (stm32_rtc_valid_alrm(rtc
, tm
) < 0) {
481 dev_err(dev
, "Alarm can be set only on upcoming month.\n");
486 /* tm_year and tm_mon are not used because not supported by RTC */
487 alrmar
|= (tm
->tm_mday
<< STM32_RTC_ALRMXR_DATE_SHIFT
) &
488 STM32_RTC_ALRMXR_DATE
;
490 alrmar
&= ~STM32_RTC_ALRMXR_PM
;
491 alrmar
|= (tm
->tm_hour
<< STM32_RTC_ALRMXR_HOUR_SHIFT
) &
492 STM32_RTC_ALRMXR_HOUR
;
493 alrmar
|= (tm
->tm_min
<< STM32_RTC_ALRMXR_MIN_SHIFT
) &
494 STM32_RTC_ALRMXR_MIN
;
495 alrmar
|= (tm
->tm_sec
<< STM32_RTC_ALRMXR_SEC_SHIFT
) &
496 STM32_RTC_ALRMXR_SEC
;
498 stm32_rtc_wpr_unlock(rtc
);
501 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
502 cr
&= ~STM32_RTC_CR_ALRAE
;
503 writel_relaxed(cr
, rtc
->base
+ regs
->cr
);
506 * Poll Alarm write flag to be sure that Alarm update is allowed: it
507 * takes around 2 rtc_ck clock cycles
509 ret
= readl_relaxed_poll_timeout_atomic(rtc
->base
+ regs
->isr
,
511 (isr
& STM32_RTC_ISR_ALRAWF
),
515 dev_err(dev
, "Alarm update not allowed\n");
519 /* Write to Alarm register */
520 writel_relaxed(alrmar
, rtc
->base
+ regs
->alrmar
);
522 stm32_rtc_alarm_irq_enable(dev
, alrm
->enabled
);
524 stm32_rtc_wpr_lock(rtc
);
529 static const struct rtc_class_ops stm32_rtc_ops
= {
530 .read_time
= stm32_rtc_read_time
,
531 .set_time
= stm32_rtc_set_time
,
532 .read_alarm
= stm32_rtc_read_alarm
,
533 .set_alarm
= stm32_rtc_set_alarm
,
534 .alarm_irq_enable
= stm32_rtc_alarm_irq_enable
,
537 static void stm32_rtc_clear_events(struct stm32_rtc
*rtc
,
540 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
542 /* Flags are cleared by writing 0 in RTC_ISR */
543 writel_relaxed(readl_relaxed(rtc
->base
+ regs
->isr
) & ~flags
,
544 rtc
->base
+ regs
->isr
);
547 static const struct stm32_rtc_data stm32_rtc_data
= {
550 .has_wakeirq
= false,
559 .sr
= 0x0C, /* set to ISR offset to ease alarm management */
564 .alra
= STM32_RTC_ISR_ALRAF
,
566 .clear_events
= stm32_rtc_clear_events
,
569 static const struct stm32_rtc_data stm32h7_rtc_data
= {
572 .has_wakeirq
= false,
581 .sr
= 0x0C, /* set to ISR offset to ease alarm management */
586 .alra
= STM32_RTC_ISR_ALRAF
,
588 .clear_events
= stm32_rtc_clear_events
,
591 static void stm32mp1_rtc_clear_events(struct stm32_rtc
*rtc
,
594 struct stm32_rtc_registers regs
= rtc
->data
->regs
;
596 /* Flags are cleared by writing 1 in RTC_SCR */
597 writel_relaxed(flags
, rtc
->base
+ regs
.scr
);
600 static const struct stm32_rtc_data stm32mp1_data
= {
608 .isr
= 0x0C, /* named RTC_ICSR on stm32mp1 */
617 .alra
= STM32_RTC_SR_ALRA
,
619 .clear_events
= stm32mp1_rtc_clear_events
,
622 static const struct of_device_id stm32_rtc_of_match
[] = {
623 { .compatible
= "st,stm32-rtc", .data
= &stm32_rtc_data
},
624 { .compatible
= "st,stm32h7-rtc", .data
= &stm32h7_rtc_data
},
625 { .compatible
= "st,stm32mp1-rtc", .data
= &stm32mp1_data
},
628 MODULE_DEVICE_TABLE(of
, stm32_rtc_of_match
);
630 static int stm32_rtc_init(struct platform_device
*pdev
,
631 struct stm32_rtc
*rtc
)
633 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
634 unsigned int prer
, pred_a
, pred_s
, pred_a_max
, pred_s_max
, cr
;
638 rate
= clk_get_rate(rtc
->rtc_ck
);
640 /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
641 pred_a_max
= STM32_RTC_PRER_PRED_A
>> STM32_RTC_PRER_PRED_A_SHIFT
;
642 pred_s_max
= STM32_RTC_PRER_PRED_S
>> STM32_RTC_PRER_PRED_S_SHIFT
;
644 for (pred_a
= pred_a_max
; pred_a
+ 1 > 0; pred_a
--) {
645 pred_s
= (rate
/ (pred_a
+ 1)) - 1;
647 if (((pred_s
+ 1) * (pred_a
+ 1)) == rate
)
652 * Can't find a 1Hz, so give priority to RTC power consumption
653 * by choosing the higher possible value for prediv_a
655 if ((pred_s
> pred_s_max
) || (pred_a
> pred_a_max
)) {
657 pred_s
= (rate
/ (pred_a
+ 1)) - 1;
659 dev_warn(&pdev
->dev
, "rtc_ck is %s\n",
660 (rate
< ((pred_a
+ 1) * (pred_s
+ 1))) ?
664 stm32_rtc_wpr_unlock(rtc
);
666 ret
= stm32_rtc_enter_init_mode(rtc
);
669 "Can't enter in init mode. Prescaler config failed.\n");
673 prer
= (pred_s
<< STM32_RTC_PRER_PRED_S_SHIFT
) & STM32_RTC_PRER_PRED_S
;
674 writel_relaxed(prer
, rtc
->base
+ regs
->prer
);
675 prer
|= (pred_a
<< STM32_RTC_PRER_PRED_A_SHIFT
) & STM32_RTC_PRER_PRED_A
;
676 writel_relaxed(prer
, rtc
->base
+ regs
->prer
);
678 /* Force 24h time format */
679 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
680 cr
&= ~STM32_RTC_CR_FMT
;
681 writel_relaxed(cr
, rtc
->base
+ regs
->cr
);
683 stm32_rtc_exit_init_mode(rtc
);
685 ret
= stm32_rtc_wait_sync(rtc
);
687 stm32_rtc_wpr_lock(rtc
);
692 static int stm32_rtc_probe(struct platform_device
*pdev
)
694 struct stm32_rtc
*rtc
;
695 const struct stm32_rtc_registers
*regs
;
698 rtc
= devm_kzalloc(&pdev
->dev
, sizeof(*rtc
), GFP_KERNEL
);
702 rtc
->base
= devm_platform_ioremap_resource(pdev
, 0);
703 if (IS_ERR(rtc
->base
))
704 return PTR_ERR(rtc
->base
);
706 rtc
->data
= (struct stm32_rtc_data
*)
707 of_device_get_match_data(&pdev
->dev
);
708 regs
= &rtc
->data
->regs
;
710 if (rtc
->data
->need_dbp
) {
711 rtc
->dbp
= syscon_regmap_lookup_by_phandle(pdev
->dev
.of_node
,
713 if (IS_ERR(rtc
->dbp
)) {
714 dev_err(&pdev
->dev
, "no st,syscfg\n");
715 return PTR_ERR(rtc
->dbp
);
718 ret
= of_property_read_u32_index(pdev
->dev
.of_node
, "st,syscfg",
721 dev_err(&pdev
->dev
, "can't read DBP register offset\n");
725 ret
= of_property_read_u32_index(pdev
->dev
.of_node
, "st,syscfg",
728 dev_err(&pdev
->dev
, "can't read DBP register mask\n");
733 if (!rtc
->data
->has_pclk
) {
735 rtc
->rtc_ck
= devm_clk_get(&pdev
->dev
, NULL
);
737 rtc
->pclk
= devm_clk_get(&pdev
->dev
, "pclk");
738 if (IS_ERR(rtc
->pclk
)) {
739 dev_err(&pdev
->dev
, "no pclk clock");
740 return PTR_ERR(rtc
->pclk
);
742 rtc
->rtc_ck
= devm_clk_get(&pdev
->dev
, "rtc_ck");
744 if (IS_ERR(rtc
->rtc_ck
)) {
745 dev_err(&pdev
->dev
, "no rtc_ck clock");
746 return PTR_ERR(rtc
->rtc_ck
);
749 if (rtc
->data
->has_pclk
) {
750 ret
= clk_prepare_enable(rtc
->pclk
);
755 ret
= clk_prepare_enable(rtc
->rtc_ck
);
759 if (rtc
->data
->need_dbp
)
760 regmap_update_bits(rtc
->dbp
, rtc
->dbp_reg
,
761 rtc
->dbp_mask
, rtc
->dbp_mask
);
764 * After a system reset, RTC_ISR.INITS flag can be read to check if
765 * the calendar has been initialized or not. INITS flag is reset by a
766 * power-on reset (no vbat, no power-supply). It is not reset if
767 * rtc_ck parent clock has changed (so RTC prescalers need to be
768 * changed). That's why we cannot rely on this flag to know if RTC
769 * init has to be done.
771 ret
= stm32_rtc_init(pdev
, rtc
);
775 rtc
->irq_alarm
= platform_get_irq(pdev
, 0);
776 if (rtc
->irq_alarm
<= 0) {
777 ret
= rtc
->irq_alarm
;
781 ret
= device_init_wakeup(&pdev
->dev
, true);
782 if (rtc
->data
->has_wakeirq
) {
783 rtc
->wakeirq_alarm
= platform_get_irq(pdev
, 1);
784 if (rtc
->wakeirq_alarm
> 0) {
785 ret
= dev_pm_set_dedicated_wake_irq(&pdev
->dev
,
788 ret
= rtc
->wakeirq_alarm
;
789 if (rtc
->wakeirq_alarm
== -EPROBE_DEFER
)
794 dev_warn(&pdev
->dev
, "alarm can't wake up the system: %d", ret
);
796 platform_set_drvdata(pdev
, rtc
);
798 rtc
->rtc_dev
= devm_rtc_device_register(&pdev
->dev
, pdev
->name
,
799 &stm32_rtc_ops
, THIS_MODULE
);
800 if (IS_ERR(rtc
->rtc_dev
)) {
801 ret
= PTR_ERR(rtc
->rtc_dev
);
802 dev_err(&pdev
->dev
, "rtc device registration failed, err=%d\n",
807 /* Handle RTC alarm interrupts */
808 ret
= devm_request_threaded_irq(&pdev
->dev
, rtc
->irq_alarm
, NULL
,
809 stm32_rtc_alarm_irq
, IRQF_ONESHOT
,
812 dev_err(&pdev
->dev
, "IRQ%d (alarm interrupt) already claimed\n",
818 * If INITS flag is reset (calendar year field set to 0x00), calendar
819 * must be initialized
821 if (!(readl_relaxed(rtc
->base
+ regs
->isr
) & STM32_RTC_ISR_INITS
))
822 dev_warn(&pdev
->dev
, "Date/Time must be initialized\n");
824 if (regs
->verr
!= UNDEF_REG
) {
825 u32 ver
= readl_relaxed(rtc
->base
+ regs
->verr
);
827 dev_info(&pdev
->dev
, "registered rev:%d.%d\n",
828 (ver
>> STM32_RTC_VERR_MAJREV_SHIFT
) & 0xF,
829 (ver
>> STM32_RTC_VERR_MINREV_SHIFT
) & 0xF);
834 if (rtc
->data
->has_pclk
)
835 clk_disable_unprepare(rtc
->pclk
);
836 clk_disable_unprepare(rtc
->rtc_ck
);
838 if (rtc
->data
->need_dbp
)
839 regmap_update_bits(rtc
->dbp
, rtc
->dbp_reg
, rtc
->dbp_mask
, 0);
841 dev_pm_clear_wake_irq(&pdev
->dev
);
842 device_init_wakeup(&pdev
->dev
, false);
847 static int stm32_rtc_remove(struct platform_device
*pdev
)
849 struct stm32_rtc
*rtc
= platform_get_drvdata(pdev
);
850 const struct stm32_rtc_registers
*regs
= &rtc
->data
->regs
;
853 /* Disable interrupts */
854 stm32_rtc_wpr_unlock(rtc
);
855 cr
= readl_relaxed(rtc
->base
+ regs
->cr
);
856 cr
&= ~STM32_RTC_CR_ALRAIE
;
857 writel_relaxed(cr
, rtc
->base
+ regs
->cr
);
858 stm32_rtc_wpr_lock(rtc
);
860 clk_disable_unprepare(rtc
->rtc_ck
);
861 if (rtc
->data
->has_pclk
)
862 clk_disable_unprepare(rtc
->pclk
);
864 /* Enable backup domain write protection if needed */
865 if (rtc
->data
->need_dbp
)
866 regmap_update_bits(rtc
->dbp
, rtc
->dbp_reg
, rtc
->dbp_mask
, 0);
868 dev_pm_clear_wake_irq(&pdev
->dev
);
869 device_init_wakeup(&pdev
->dev
, false);
874 #ifdef CONFIG_PM_SLEEP
875 static int stm32_rtc_suspend(struct device
*dev
)
877 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
879 if (rtc
->data
->has_pclk
)
880 clk_disable_unprepare(rtc
->pclk
);
882 if (device_may_wakeup(dev
))
883 return enable_irq_wake(rtc
->irq_alarm
);
888 static int stm32_rtc_resume(struct device
*dev
)
890 struct stm32_rtc
*rtc
= dev_get_drvdata(dev
);
893 if (rtc
->data
->has_pclk
) {
894 ret
= clk_prepare_enable(rtc
->pclk
);
899 ret
= stm32_rtc_wait_sync(rtc
);
901 if (rtc
->data
->has_pclk
)
902 clk_disable_unprepare(rtc
->pclk
);
906 if (device_may_wakeup(dev
))
907 return disable_irq_wake(rtc
->irq_alarm
);
913 static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops
,
914 stm32_rtc_suspend
, stm32_rtc_resume
);
916 static struct platform_driver stm32_rtc_driver
= {
917 .probe
= stm32_rtc_probe
,
918 .remove
= stm32_rtc_remove
,
921 .pm
= &stm32_rtc_pm_ops
,
922 .of_match_table
= stm32_rtc_of_match
,
926 module_platform_driver(stm32_rtc_driver
);
928 MODULE_ALIAS("platform:" DRIVER_NAME
);
929 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
930 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
931 MODULE_LICENSE("GPL v2");