Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / include / uapi / misc / habanalabs.h
blobdba3827c43ca474a1ca07ec84dbbbf5206e9f494
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
3 * Copyright 2016-2020 HabanaLabs, Ltd.
4 * All Rights Reserved.
6 */
8 #ifndef HABANALABS_H_
9 #define HABANALABS_H_
11 #include <linux/types.h>
12 #include <linux/ioctl.h>
15 * Defines that are asic-specific but constitutes as ABI between kernel driver
16 * and userspace
18 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
19 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */
22 * 128 SOBs reserved for collective wait
23 * 16 SOBs reserved for sync stream
25 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144
28 * 64 monitors reserved for collective wait
29 * 8 monitors reserved for sync stream
31 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
34 * Goya queue Numbering
36 * The external queues (PCI DMA channels) MUST be before the internal queues
37 * and each group (PCI DMA channels and internal) must be contiguous inside
38 * itself but there can be a gap between the two groups (although not
39 * recommended)
42 enum goya_queue_id {
43 GOYA_QUEUE_ID_DMA_0 = 0,
44 GOYA_QUEUE_ID_DMA_1 = 1,
45 GOYA_QUEUE_ID_DMA_2 = 2,
46 GOYA_QUEUE_ID_DMA_3 = 3,
47 GOYA_QUEUE_ID_DMA_4 = 4,
48 GOYA_QUEUE_ID_CPU_PQ = 5,
49 GOYA_QUEUE_ID_MME = 6, /* Internal queues start here */
50 GOYA_QUEUE_ID_TPC0 = 7,
51 GOYA_QUEUE_ID_TPC1 = 8,
52 GOYA_QUEUE_ID_TPC2 = 9,
53 GOYA_QUEUE_ID_TPC3 = 10,
54 GOYA_QUEUE_ID_TPC4 = 11,
55 GOYA_QUEUE_ID_TPC5 = 12,
56 GOYA_QUEUE_ID_TPC6 = 13,
57 GOYA_QUEUE_ID_TPC7 = 14,
58 GOYA_QUEUE_ID_SIZE
62 * Gaudi queue Numbering
63 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
64 * Except one CPU queue, all the rest are internal queues.
67 enum gaudi_queue_id {
68 GAUDI_QUEUE_ID_DMA_0_0 = 0, /* external */
69 GAUDI_QUEUE_ID_DMA_0_1 = 1, /* external */
70 GAUDI_QUEUE_ID_DMA_0_2 = 2, /* external */
71 GAUDI_QUEUE_ID_DMA_0_3 = 3, /* external */
72 GAUDI_QUEUE_ID_DMA_1_0 = 4, /* external */
73 GAUDI_QUEUE_ID_DMA_1_1 = 5, /* external */
74 GAUDI_QUEUE_ID_DMA_1_2 = 6, /* external */
75 GAUDI_QUEUE_ID_DMA_1_3 = 7, /* external */
76 GAUDI_QUEUE_ID_CPU_PQ = 8, /* CPU */
77 GAUDI_QUEUE_ID_DMA_2_0 = 9, /* internal */
78 GAUDI_QUEUE_ID_DMA_2_1 = 10, /* internal */
79 GAUDI_QUEUE_ID_DMA_2_2 = 11, /* internal */
80 GAUDI_QUEUE_ID_DMA_2_3 = 12, /* internal */
81 GAUDI_QUEUE_ID_DMA_3_0 = 13, /* internal */
82 GAUDI_QUEUE_ID_DMA_3_1 = 14, /* internal */
83 GAUDI_QUEUE_ID_DMA_3_2 = 15, /* internal */
84 GAUDI_QUEUE_ID_DMA_3_3 = 16, /* internal */
85 GAUDI_QUEUE_ID_DMA_4_0 = 17, /* internal */
86 GAUDI_QUEUE_ID_DMA_4_1 = 18, /* internal */
87 GAUDI_QUEUE_ID_DMA_4_2 = 19, /* internal */
88 GAUDI_QUEUE_ID_DMA_4_3 = 20, /* internal */
89 GAUDI_QUEUE_ID_DMA_5_0 = 21, /* internal */
90 GAUDI_QUEUE_ID_DMA_5_1 = 22, /* internal */
91 GAUDI_QUEUE_ID_DMA_5_2 = 23, /* internal */
92 GAUDI_QUEUE_ID_DMA_5_3 = 24, /* internal */
93 GAUDI_QUEUE_ID_DMA_6_0 = 25, /* internal */
94 GAUDI_QUEUE_ID_DMA_6_1 = 26, /* internal */
95 GAUDI_QUEUE_ID_DMA_6_2 = 27, /* internal */
96 GAUDI_QUEUE_ID_DMA_6_3 = 28, /* internal */
97 GAUDI_QUEUE_ID_DMA_7_0 = 29, /* internal */
98 GAUDI_QUEUE_ID_DMA_7_1 = 30, /* internal */
99 GAUDI_QUEUE_ID_DMA_7_2 = 31, /* internal */
100 GAUDI_QUEUE_ID_DMA_7_3 = 32, /* internal */
101 GAUDI_QUEUE_ID_MME_0_0 = 33, /* internal */
102 GAUDI_QUEUE_ID_MME_0_1 = 34, /* internal */
103 GAUDI_QUEUE_ID_MME_0_2 = 35, /* internal */
104 GAUDI_QUEUE_ID_MME_0_3 = 36, /* internal */
105 GAUDI_QUEUE_ID_MME_1_0 = 37, /* internal */
106 GAUDI_QUEUE_ID_MME_1_1 = 38, /* internal */
107 GAUDI_QUEUE_ID_MME_1_2 = 39, /* internal */
108 GAUDI_QUEUE_ID_MME_1_3 = 40, /* internal */
109 GAUDI_QUEUE_ID_TPC_0_0 = 41, /* internal */
110 GAUDI_QUEUE_ID_TPC_0_1 = 42, /* internal */
111 GAUDI_QUEUE_ID_TPC_0_2 = 43, /* internal */
112 GAUDI_QUEUE_ID_TPC_0_3 = 44, /* internal */
113 GAUDI_QUEUE_ID_TPC_1_0 = 45, /* internal */
114 GAUDI_QUEUE_ID_TPC_1_1 = 46, /* internal */
115 GAUDI_QUEUE_ID_TPC_1_2 = 47, /* internal */
116 GAUDI_QUEUE_ID_TPC_1_3 = 48, /* internal */
117 GAUDI_QUEUE_ID_TPC_2_0 = 49, /* internal */
118 GAUDI_QUEUE_ID_TPC_2_1 = 50, /* internal */
119 GAUDI_QUEUE_ID_TPC_2_2 = 51, /* internal */
120 GAUDI_QUEUE_ID_TPC_2_3 = 52, /* internal */
121 GAUDI_QUEUE_ID_TPC_3_0 = 53, /* internal */
122 GAUDI_QUEUE_ID_TPC_3_1 = 54, /* internal */
123 GAUDI_QUEUE_ID_TPC_3_2 = 55, /* internal */
124 GAUDI_QUEUE_ID_TPC_3_3 = 56, /* internal */
125 GAUDI_QUEUE_ID_TPC_4_0 = 57, /* internal */
126 GAUDI_QUEUE_ID_TPC_4_1 = 58, /* internal */
127 GAUDI_QUEUE_ID_TPC_4_2 = 59, /* internal */
128 GAUDI_QUEUE_ID_TPC_4_3 = 60, /* internal */
129 GAUDI_QUEUE_ID_TPC_5_0 = 61, /* internal */
130 GAUDI_QUEUE_ID_TPC_5_1 = 62, /* internal */
131 GAUDI_QUEUE_ID_TPC_5_2 = 63, /* internal */
132 GAUDI_QUEUE_ID_TPC_5_3 = 64, /* internal */
133 GAUDI_QUEUE_ID_TPC_6_0 = 65, /* internal */
134 GAUDI_QUEUE_ID_TPC_6_1 = 66, /* internal */
135 GAUDI_QUEUE_ID_TPC_6_2 = 67, /* internal */
136 GAUDI_QUEUE_ID_TPC_6_3 = 68, /* internal */
137 GAUDI_QUEUE_ID_TPC_7_0 = 69, /* internal */
138 GAUDI_QUEUE_ID_TPC_7_1 = 70, /* internal */
139 GAUDI_QUEUE_ID_TPC_7_2 = 71, /* internal */
140 GAUDI_QUEUE_ID_TPC_7_3 = 72, /* internal */
141 GAUDI_QUEUE_ID_NIC_0_0 = 73, /* internal */
142 GAUDI_QUEUE_ID_NIC_0_1 = 74, /* internal */
143 GAUDI_QUEUE_ID_NIC_0_2 = 75, /* internal */
144 GAUDI_QUEUE_ID_NIC_0_3 = 76, /* internal */
145 GAUDI_QUEUE_ID_NIC_1_0 = 77, /* internal */
146 GAUDI_QUEUE_ID_NIC_1_1 = 78, /* internal */
147 GAUDI_QUEUE_ID_NIC_1_2 = 79, /* internal */
148 GAUDI_QUEUE_ID_NIC_1_3 = 80, /* internal */
149 GAUDI_QUEUE_ID_NIC_2_0 = 81, /* internal */
150 GAUDI_QUEUE_ID_NIC_2_1 = 82, /* internal */
151 GAUDI_QUEUE_ID_NIC_2_2 = 83, /* internal */
152 GAUDI_QUEUE_ID_NIC_2_3 = 84, /* internal */
153 GAUDI_QUEUE_ID_NIC_3_0 = 85, /* internal */
154 GAUDI_QUEUE_ID_NIC_3_1 = 86, /* internal */
155 GAUDI_QUEUE_ID_NIC_3_2 = 87, /* internal */
156 GAUDI_QUEUE_ID_NIC_3_3 = 88, /* internal */
157 GAUDI_QUEUE_ID_NIC_4_0 = 89, /* internal */
158 GAUDI_QUEUE_ID_NIC_4_1 = 90, /* internal */
159 GAUDI_QUEUE_ID_NIC_4_2 = 91, /* internal */
160 GAUDI_QUEUE_ID_NIC_4_3 = 92, /* internal */
161 GAUDI_QUEUE_ID_NIC_5_0 = 93, /* internal */
162 GAUDI_QUEUE_ID_NIC_5_1 = 94, /* internal */
163 GAUDI_QUEUE_ID_NIC_5_2 = 95, /* internal */
164 GAUDI_QUEUE_ID_NIC_5_3 = 96, /* internal */
165 GAUDI_QUEUE_ID_NIC_6_0 = 97, /* internal */
166 GAUDI_QUEUE_ID_NIC_6_1 = 98, /* internal */
167 GAUDI_QUEUE_ID_NIC_6_2 = 99, /* internal */
168 GAUDI_QUEUE_ID_NIC_6_3 = 100, /* internal */
169 GAUDI_QUEUE_ID_NIC_7_0 = 101, /* internal */
170 GAUDI_QUEUE_ID_NIC_7_1 = 102, /* internal */
171 GAUDI_QUEUE_ID_NIC_7_2 = 103, /* internal */
172 GAUDI_QUEUE_ID_NIC_7_3 = 104, /* internal */
173 GAUDI_QUEUE_ID_NIC_8_0 = 105, /* internal */
174 GAUDI_QUEUE_ID_NIC_8_1 = 106, /* internal */
175 GAUDI_QUEUE_ID_NIC_8_2 = 107, /* internal */
176 GAUDI_QUEUE_ID_NIC_8_3 = 108, /* internal */
177 GAUDI_QUEUE_ID_NIC_9_0 = 109, /* internal */
178 GAUDI_QUEUE_ID_NIC_9_1 = 110, /* internal */
179 GAUDI_QUEUE_ID_NIC_9_2 = 111, /* internal */
180 GAUDI_QUEUE_ID_NIC_9_3 = 112, /* internal */
181 GAUDI_QUEUE_ID_SIZE
185 * Engine Numbering
187 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
190 enum goya_engine_id {
191 GOYA_ENGINE_ID_DMA_0 = 0,
192 GOYA_ENGINE_ID_DMA_1,
193 GOYA_ENGINE_ID_DMA_2,
194 GOYA_ENGINE_ID_DMA_3,
195 GOYA_ENGINE_ID_DMA_4,
196 GOYA_ENGINE_ID_MME_0,
197 GOYA_ENGINE_ID_TPC_0,
198 GOYA_ENGINE_ID_TPC_1,
199 GOYA_ENGINE_ID_TPC_2,
200 GOYA_ENGINE_ID_TPC_3,
201 GOYA_ENGINE_ID_TPC_4,
202 GOYA_ENGINE_ID_TPC_5,
203 GOYA_ENGINE_ID_TPC_6,
204 GOYA_ENGINE_ID_TPC_7,
205 GOYA_ENGINE_ID_SIZE
208 enum gaudi_engine_id {
209 GAUDI_ENGINE_ID_DMA_0 = 0,
210 GAUDI_ENGINE_ID_DMA_1,
211 GAUDI_ENGINE_ID_DMA_2,
212 GAUDI_ENGINE_ID_DMA_3,
213 GAUDI_ENGINE_ID_DMA_4,
214 GAUDI_ENGINE_ID_DMA_5,
215 GAUDI_ENGINE_ID_DMA_6,
216 GAUDI_ENGINE_ID_DMA_7,
217 GAUDI_ENGINE_ID_MME_0,
218 GAUDI_ENGINE_ID_MME_1,
219 GAUDI_ENGINE_ID_MME_2,
220 GAUDI_ENGINE_ID_MME_3,
221 GAUDI_ENGINE_ID_TPC_0,
222 GAUDI_ENGINE_ID_TPC_1,
223 GAUDI_ENGINE_ID_TPC_2,
224 GAUDI_ENGINE_ID_TPC_3,
225 GAUDI_ENGINE_ID_TPC_4,
226 GAUDI_ENGINE_ID_TPC_5,
227 GAUDI_ENGINE_ID_TPC_6,
228 GAUDI_ENGINE_ID_TPC_7,
229 GAUDI_ENGINE_ID_NIC_0,
230 GAUDI_ENGINE_ID_NIC_1,
231 GAUDI_ENGINE_ID_NIC_2,
232 GAUDI_ENGINE_ID_NIC_3,
233 GAUDI_ENGINE_ID_NIC_4,
234 GAUDI_ENGINE_ID_NIC_5,
235 GAUDI_ENGINE_ID_NIC_6,
236 GAUDI_ENGINE_ID_NIC_7,
237 GAUDI_ENGINE_ID_NIC_8,
238 GAUDI_ENGINE_ID_NIC_9,
239 GAUDI_ENGINE_ID_SIZE
242 enum hl_device_status {
243 HL_DEVICE_STATUS_OPERATIONAL,
244 HL_DEVICE_STATUS_IN_RESET,
245 HL_DEVICE_STATUS_MALFUNCTION,
246 HL_DEVICE_STATUS_NEEDS_RESET
249 /* Opcode for management ioctl
251 * HW_IP_INFO - Receive information about different IP blocks in the
252 * device.
253 * HL_INFO_HW_EVENTS - Receive an array describing how many times each event
254 * occurred since the last hard reset.
255 * HL_INFO_DRAM_USAGE - Retrieve the dram usage inside the device and of the
256 * specific context. This is relevant only for devices
257 * where the dram is managed by the kernel driver
258 * HL_INFO_HW_IDLE - Retrieve information about the idle status of each
259 * internal engine.
260 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
261 * require an open context.
262 * HL_INFO_DEVICE_UTILIZATION - Retrieve the total utilization of the device
263 * over the last period specified by the user.
264 * The period can be between 100ms to 1s, in
265 * resolution of 100ms. The return value is a
266 * percentage of the utilization rate.
267 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
268 * event occurred since the driver was loaded.
269 * HL_INFO_CLK_RATE - Retrieve the current and maximum clock rate
270 * of the device in MHz. The maximum clock rate is
271 * configurable via sysfs parameter
272 * HL_INFO_RESET_COUNT - Retrieve the counts of the soft and hard reset
273 * operations performed on the device since the last
274 * time the driver was loaded.
275 * HL_INFO_TIME_SYNC - Retrieve the device's time alongside the host's time
276 * for synchronization.
277 * HL_INFO_CS_COUNTERS - Retrieve command submission counters
278 * HL_INFO_PCI_COUNTERS - Retrieve PCI counters
279 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
280 * HL_INFO_SYNC_MANAGER - Retrieve sync manager info per dcore
281 * HL_INFO_TOTAL_ENERGY - Retrieve total energy consumption
282 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
284 #define HL_INFO_HW_IP_INFO 0
285 #define HL_INFO_HW_EVENTS 1
286 #define HL_INFO_DRAM_USAGE 2
287 #define HL_INFO_HW_IDLE 3
288 #define HL_INFO_DEVICE_STATUS 4
289 #define HL_INFO_DEVICE_UTILIZATION 6
290 #define HL_INFO_HW_EVENTS_AGGREGATE 7
291 #define HL_INFO_CLK_RATE 8
292 #define HL_INFO_RESET_COUNT 9
293 #define HL_INFO_TIME_SYNC 10
294 #define HL_INFO_CS_COUNTERS 11
295 #define HL_INFO_PCI_COUNTERS 12
296 #define HL_INFO_CLK_THROTTLE_REASON 13
297 #define HL_INFO_SYNC_MANAGER 14
298 #define HL_INFO_TOTAL_ENERGY 15
299 #define HL_INFO_PLL_FREQUENCY 16
301 #define HL_INFO_VERSION_MAX_LEN 128
302 #define HL_INFO_CARD_NAME_MAX_LEN 16
304 struct hl_info_hw_ip_info {
305 __u64 sram_base_address;
306 __u64 dram_base_address;
307 __u64 dram_size;
308 __u32 sram_size;
309 __u32 num_of_events;
310 __u32 device_id; /* PCI Device ID */
311 __u32 module_id; /* For mezzanine cards in servers (From OCP spec.) */
312 __u32 reserved[2];
313 __u32 cpld_version;
314 __u32 psoc_pci_pll_nr;
315 __u32 psoc_pci_pll_nf;
316 __u32 psoc_pci_pll_od;
317 __u32 psoc_pci_pll_div_factor;
318 __u8 tpc_enabled_mask;
319 __u8 dram_enabled;
320 __u8 pad[2];
321 __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
322 __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
325 struct hl_info_dram_usage {
326 __u64 dram_free_mem;
327 __u64 ctx_dram_mem;
330 struct hl_info_hw_idle {
331 __u32 is_idle;
333 * Bitmask of busy engines.
334 * Bits definition is according to `enum <chip>_enging_id'.
336 __u32 busy_engines_mask;
339 * Extended Bitmask of busy engines.
340 * Bits definition is according to `enum <chip>_enging_id'.
342 __u64 busy_engines_mask_ext;
345 struct hl_info_device_status {
346 __u32 status;
347 __u32 pad;
350 struct hl_info_device_utilization {
351 __u32 utilization;
352 __u32 pad;
355 struct hl_info_clk_rate {
356 __u32 cur_clk_rate_mhz;
357 __u32 max_clk_rate_mhz;
360 struct hl_info_reset_count {
361 __u32 hard_reset_cnt;
362 __u32 soft_reset_cnt;
365 struct hl_info_time_sync {
366 __u64 device_time;
367 __u64 host_time;
371 * struct hl_info_pci_counters - pci counters
372 * @rx_throughput: PCI rx throughput KBps
373 * @tx_throughput: PCI tx throughput KBps
374 * @replay_cnt: PCI replay counter
376 struct hl_info_pci_counters {
377 __u64 rx_throughput;
378 __u64 tx_throughput;
379 __u64 replay_cnt;
382 #define HL_CLK_THROTTLE_POWER 0x1
383 #define HL_CLK_THROTTLE_THERMAL 0x2
386 * struct hl_info_clk_throttle - clock throttling reason
387 * @clk_throttling_reason: each bit represents a clk throttling reason
389 struct hl_info_clk_throttle {
390 __u32 clk_throttling_reason;
394 * struct hl_info_energy - device energy information
395 * @total_energy_consumption: total device energy consumption
397 struct hl_info_energy {
398 __u64 total_energy_consumption;
401 #define HL_PLL_NUM_OUTPUTS 4
403 struct hl_pll_frequency_info {
404 __u16 output[HL_PLL_NUM_OUTPUTS];
408 * struct hl_info_sync_manager - sync manager information
409 * @first_available_sync_object: first available sob
410 * @first_available_monitor: first available monitor
412 struct hl_info_sync_manager {
413 __u32 first_available_sync_object;
414 __u32 first_available_monitor;
418 * struct hl_info_cs_counters - command submission counters
419 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
420 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
421 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
422 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
423 * @total_queue_full_drop_cnt: total dropped due to queue full
424 * @ctx_queue_full_drop_cnt: context dropped due to queue full
425 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
426 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
427 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
428 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
429 * @total_validation_drop_cnt: total dropped due to validation error
430 * @ctx_validation_drop_cnt: context dropped due to validation error
432 struct hl_info_cs_counters {
433 __u64 total_out_of_mem_drop_cnt;
434 __u64 ctx_out_of_mem_drop_cnt;
435 __u64 total_parsing_drop_cnt;
436 __u64 ctx_parsing_drop_cnt;
437 __u64 total_queue_full_drop_cnt;
438 __u64 ctx_queue_full_drop_cnt;
439 __u64 total_device_in_reset_drop_cnt;
440 __u64 ctx_device_in_reset_drop_cnt;
441 __u64 total_max_cs_in_flight_drop_cnt;
442 __u64 ctx_max_cs_in_flight_drop_cnt;
443 __u64 total_validation_drop_cnt;
444 __u64 ctx_validation_drop_cnt;
447 enum gaudi_dcores {
448 HL_GAUDI_WS_DCORE,
449 HL_GAUDI_WN_DCORE,
450 HL_GAUDI_EN_DCORE,
451 HL_GAUDI_ES_DCORE
454 struct hl_info_args {
455 /* Location of relevant struct in userspace */
456 __u64 return_pointer;
458 * The size of the return value. Just like "size" in "snprintf",
459 * it limits how many bytes the kernel can write
461 * For hw_events array, the size should be
462 * hl_info_hw_ip_info.num_of_events * sizeof(__u32)
464 __u32 return_size;
466 /* HL_INFO_* */
467 __u32 op;
469 union {
470 /* Dcore id for which the information is relevant.
471 * For Gaudi refer to 'enum gaudi_dcores'
473 __u32 dcore_id;
474 /* Context ID - Currently not in use */
475 __u32 ctx_id;
476 /* Period value for utilization rate (100ms - 1000ms, in 100ms
477 * resolution.
479 __u32 period_ms;
480 /* PLL frequency retrieval */
481 __u32 pll_index;
484 __u32 pad;
487 /* Opcode to create a new command buffer */
488 #define HL_CB_OP_CREATE 0
489 /* Opcode to destroy previously created command buffer */
490 #define HL_CB_OP_DESTROY 1
491 /* Opcode to retrieve information about a command buffer */
492 #define HL_CB_OP_INFO 2
494 /* 2MB minus 32 bytes for 2xMSG_PROT */
495 #define HL_MAX_CB_SIZE (0x200000 - 32)
497 /* Indicates whether the command buffer should be mapped to the device's MMU */
498 #define HL_CB_FLAGS_MAP 0x1
500 struct hl_cb_in {
501 /* Handle of CB or 0 if we want to create one */
502 __u64 cb_handle;
503 /* HL_CB_OP_* */
504 __u32 op;
505 /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
506 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
508 __u32 cb_size;
509 /* Context ID - Currently not in use */
510 __u32 ctx_id;
511 /* HL_CB_FLAGS_* */
512 __u32 flags;
515 struct hl_cb_out {
516 union {
517 /* Handle of CB */
518 __u64 cb_handle;
520 /* Information about CB */
521 struct {
522 /* Usage count of CB */
523 __u32 usage_cnt;
524 __u32 pad;
529 union hl_cb_args {
530 struct hl_cb_in in;
531 struct hl_cb_out out;
534 /* HL_CS_CHUNK_FLAGS_ values
536 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
537 * Indicates if the CB was allocated and mapped by userspace.
538 * User allocated CB is a command buffer allocated by the user, via malloc
539 * (or similar). After allocating the CB, the user invokes “memory ioctl”
540 * to map the user memory into a device virtual address. The user provides
541 * this address via the cb_handle field. The interface provides the
542 * ability to create a large CBs, Which aren’t limited to
543 * “HL_MAX_CB_SIZE”. Therefore, it increases the PCI-DMA queues
544 * throughput. This CB allocation method also reduces the use of Linux
545 * DMA-able memory pool. Which are limited and used by other Linux
546 * sub-systems.
548 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
551 * This structure size must always be fixed to 64-bytes for backward
552 * compatibility
554 struct hl_cs_chunk {
555 union {
556 /* For external queue, this represents a Handle of CB on the
557 * Host.
558 * For internal queue in Goya, this represents an SRAM or
559 * a DRAM address of the internal CB. In Gaudi, this might also
560 * represent a mapped host address of the CB.
562 * A mapped host address is in the device address space, after
563 * a host address was mapped by the device MMU.
565 __u64 cb_handle;
567 /* Relevant only when HL_CS_FLAGS_WAIT or
568 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
569 * This holds address of array of u64 values that contain
570 * signal CS sequence numbers. The wait described by this job
571 * will listen on all those signals (wait event per signal)
573 __u64 signal_seq_arr;
576 /* Index of queue to put the CB on */
577 __u32 queue_index;
579 union {
581 * Size of command buffer with valid packets
582 * Can be smaller then actual CB size
584 __u32 cb_size;
586 /* Relevant only when HL_CS_FLAGS_WAIT or
587 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
588 * Number of entries in signal_seq_arr
590 __u32 num_signal_seq_arr;
593 /* HL_CS_CHUNK_FLAGS_* */
594 __u32 cs_chunk_flags;
596 /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
597 * This holds the collective engine ID. The wait described by this job
598 * will sync with this engine and with all NICs before completion.
600 __u32 collective_engine_id;
602 /* Align structure to 64 bytes */
603 __u32 pad[10];
606 /* SIGNAL and WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
607 #define HL_CS_FLAGS_FORCE_RESTORE 0x1
608 #define HL_CS_FLAGS_SIGNAL 0x2
609 #define HL_CS_FLAGS_WAIT 0x4
610 #define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8
611 #define HL_CS_FLAGS_TIMESTAMP 0x20
613 #define HL_CS_STATUS_SUCCESS 0
615 #define HL_MAX_JOBS_PER_CS 512
617 struct hl_cs_in {
619 /* this holds address of array of hl_cs_chunk for restore phase */
620 __u64 chunks_restore;
622 /* holds address of array of hl_cs_chunk for execution phase */
623 __u64 chunks_execute;
625 /* this holds address of array of hl_cs_chunk for store phase -
626 * Currently not in use
628 __u64 chunks_store;
630 /* Number of chunks in restore phase array. Maximum number is
631 * HL_MAX_JOBS_PER_CS
633 __u32 num_chunks_restore;
635 /* Number of chunks in execution array. Maximum number is
636 * HL_MAX_JOBS_PER_CS
638 __u32 num_chunks_execute;
640 /* Number of chunks in restore phase array - Currently not in use */
641 __u32 num_chunks_store;
643 /* HL_CS_FLAGS_* */
644 __u32 cs_flags;
646 /* Context ID - Currently not in use */
647 __u32 ctx_id;
650 struct hl_cs_out {
652 * seq holds the sequence number of the CS to pass to wait ioctl. All
653 * values are valid except for 0 and ULLONG_MAX
655 __u64 seq;
656 /* HL_CS_STATUS_* */
657 __u32 status;
658 __u32 pad;
661 union hl_cs_args {
662 struct hl_cs_in in;
663 struct hl_cs_out out;
666 struct hl_wait_cs_in {
667 /* Command submission sequence number */
668 __u64 seq;
669 /* Absolute timeout to wait in microseconds */
670 __u64 timeout_us;
671 /* Context ID - Currently not in use */
672 __u32 ctx_id;
673 __u32 pad;
676 #define HL_WAIT_CS_STATUS_COMPLETED 0
677 #define HL_WAIT_CS_STATUS_BUSY 1
678 #define HL_WAIT_CS_STATUS_TIMEDOUT 2
679 #define HL_WAIT_CS_STATUS_ABORTED 3
680 #define HL_WAIT_CS_STATUS_INTERRUPTED 4
682 #define HL_WAIT_CS_STATUS_FLAG_GONE 0x1
683 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD 0x2
685 struct hl_wait_cs_out {
686 /* HL_WAIT_CS_STATUS_* */
687 __u32 status;
688 /* HL_WAIT_CS_STATUS_FLAG* */
689 __u32 flags;
690 /* valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set */
691 __s64 timestamp_nsec;
694 union hl_wait_cs_args {
695 struct hl_wait_cs_in in;
696 struct hl_wait_cs_out out;
699 /* Opcode to allocate device memory */
700 #define HL_MEM_OP_ALLOC 0
701 /* Opcode to free previously allocated device memory */
702 #define HL_MEM_OP_FREE 1
703 /* Opcode to map host and device memory */
704 #define HL_MEM_OP_MAP 2
705 /* Opcode to unmap previously mapped host and device memory */
706 #define HL_MEM_OP_UNMAP 3
708 /* Memory flags */
709 #define HL_MEM_CONTIGUOUS 0x1
710 #define HL_MEM_SHARED 0x2
711 #define HL_MEM_USERPTR 0x4
713 struct hl_mem_in {
714 union {
715 /* HL_MEM_OP_ALLOC- allocate device memory */
716 struct {
717 /* Size to alloc */
718 __u64 mem_size;
719 } alloc;
721 /* HL_MEM_OP_FREE - free device memory */
722 struct {
723 /* Handle returned from HL_MEM_OP_ALLOC */
724 __u64 handle;
725 } free;
727 /* HL_MEM_OP_MAP - map device memory */
728 struct {
730 * Requested virtual address of mapped memory.
731 * The driver will try to map the requested region to
732 * this hint address, as long as the address is valid
733 * and not already mapped. The user should check the
734 * returned address of the IOCTL to make sure he got
735 * the hint address. Passing 0 here means that the
736 * driver will choose the address itself.
738 __u64 hint_addr;
739 /* Handle returned from HL_MEM_OP_ALLOC */
740 __u64 handle;
741 } map_device;
743 /* HL_MEM_OP_MAP - map host memory */
744 struct {
745 /* Address of allocated host memory */
746 __u64 host_virt_addr;
748 * Requested virtual address of mapped memory.
749 * The driver will try to map the requested region to
750 * this hint address, as long as the address is valid
751 * and not already mapped. The user should check the
752 * returned address of the IOCTL to make sure he got
753 * the hint address. Passing 0 here means that the
754 * driver will choose the address itself.
756 __u64 hint_addr;
757 /* Size of allocated host memory */
758 __u64 mem_size;
759 } map_host;
761 /* HL_MEM_OP_UNMAP - unmap host memory */
762 struct {
763 /* Virtual address returned from HL_MEM_OP_MAP */
764 __u64 device_virt_addr;
765 } unmap;
768 /* HL_MEM_OP_* */
769 __u32 op;
770 /* HL_MEM_* flags */
771 __u32 flags;
772 /* Context ID - Currently not in use */
773 __u32 ctx_id;
774 __u32 pad;
777 struct hl_mem_out {
778 union {
780 * Used for HL_MEM_OP_MAP as the virtual address that was
781 * assigned in the device VA space.
782 * A value of 0 means the requested operation failed.
784 __u64 device_virt_addr;
787 * Used for HL_MEM_OP_ALLOC. This is the assigned
788 * handle for the allocated memory
790 __u64 handle;
794 union hl_mem_args {
795 struct hl_mem_in in;
796 struct hl_mem_out out;
799 #define HL_DEBUG_MAX_AUX_VALUES 10
801 struct hl_debug_params_etr {
802 /* Address in memory to allocate buffer */
803 __u64 buffer_address;
805 /* Size of buffer to allocate */
806 __u64 buffer_size;
808 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
809 __u32 sink_mode;
810 __u32 pad;
813 struct hl_debug_params_etf {
814 /* Address in memory to allocate buffer */
815 __u64 buffer_address;
817 /* Size of buffer to allocate */
818 __u64 buffer_size;
820 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
821 __u32 sink_mode;
822 __u32 pad;
825 struct hl_debug_params_stm {
826 /* Two bit masks for HW event and Stimulus Port */
827 __u64 he_mask;
828 __u64 sp_mask;
830 /* Trace source ID */
831 __u32 id;
833 /* Frequency for the timestamp register */
834 __u32 frequency;
837 struct hl_debug_params_bmon {
838 /* Two address ranges that the user can request to filter */
839 __u64 start_addr0;
840 __u64 addr_mask0;
842 __u64 start_addr1;
843 __u64 addr_mask1;
845 /* Capture window configuration */
846 __u32 bw_win;
847 __u32 win_capture;
849 /* Trace source ID */
850 __u32 id;
851 __u32 pad;
854 struct hl_debug_params_spmu {
855 /* Event types selection */
856 __u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
858 /* Number of event types selection */
859 __u32 event_types_num;
860 __u32 pad;
863 /* Opcode for ETR component */
864 #define HL_DEBUG_OP_ETR 0
865 /* Opcode for ETF component */
866 #define HL_DEBUG_OP_ETF 1
867 /* Opcode for STM component */
868 #define HL_DEBUG_OP_STM 2
869 /* Opcode for FUNNEL component */
870 #define HL_DEBUG_OP_FUNNEL 3
871 /* Opcode for BMON component */
872 #define HL_DEBUG_OP_BMON 4
873 /* Opcode for SPMU component */
874 #define HL_DEBUG_OP_SPMU 5
875 /* Opcode for timestamp (deprecated) */
876 #define HL_DEBUG_OP_TIMESTAMP 6
877 /* Opcode for setting the device into or out of debug mode. The enable
878 * variable should be 1 for enabling debug mode and 0 for disabling it
880 #define HL_DEBUG_OP_SET_MODE 7
882 struct hl_debug_args {
884 * Pointer to user input structure.
885 * This field is relevant to specific opcodes.
887 __u64 input_ptr;
888 /* Pointer to user output structure */
889 __u64 output_ptr;
890 /* Size of user input structure */
891 __u32 input_size;
892 /* Size of user output structure */
893 __u32 output_size;
894 /* HL_DEBUG_OP_* */
895 __u32 op;
897 * Register index in the component, taken from the debug_regs_index enum
898 * in the various ASIC header files
900 __u32 reg_idx;
901 /* Enable/disable */
902 __u32 enable;
903 /* Context ID - Currently not in use */
904 __u32 ctx_id;
908 * Various information operations such as:
909 * - H/W IP information
910 * - Current dram usage
912 * The user calls this IOCTL with an opcode that describes the required
913 * information. The user should supply a pointer to a user-allocated memory
914 * chunk, which will be filled by the driver with the requested information.
916 * The user supplies the maximum amount of size to copy into the user's memory,
917 * in order to prevent data corruption in case of differences between the
918 * definitions of structures in kernel and userspace, e.g. in case of old
919 * userspace and new kernel driver
921 #define HL_IOCTL_INFO \
922 _IOWR('H', 0x01, struct hl_info_args)
925 * Command Buffer
926 * - Request a Command Buffer
927 * - Destroy a Command Buffer
929 * The command buffers are memory blocks that reside in DMA-able address
930 * space and are physically contiguous so they can be accessed by the device
931 * directly. They are allocated using the coherent DMA API.
933 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
934 * process needs to use that handle to mmap the buffer so it can access them.
936 * In some instances, the device must access the command buffer through the
937 * device's MMU, and thus its memory should be mapped. In these cases, user can
938 * indicate the driver that such a mapping is required.
939 * The resulting device virtual address will be used internally by the driver,
940 * and won't be returned to user.
943 #define HL_IOCTL_CB \
944 _IOWR('H', 0x02, union hl_cb_args)
947 * Command Submission
949 * To submit work to the device, the user need to call this IOCTL with a set
950 * of JOBS. That set of JOBS constitutes a CS object.
951 * Each JOB will be enqueued on a specific queue, according to the user's input.
952 * There can be more then one JOB per queue.
954 * The CS IOCTL will receive three sets of JOBS. One set is for "restore" phase,
955 * a second set is for "execution" phase and a third set is for "store" phase.
956 * The JOBS on the "restore" phase are enqueued only after context-switch
957 * (or if its the first CS for this context). The user can also order the
958 * driver to run the "restore" phase explicitly
960 * There are two types of queues - external and internal. External queues
961 * are DMA queues which transfer data from/to the Host. All other queues are
962 * internal. The driver will get completion notifications from the device only
963 * on JOBS which are enqueued in the external queues.
965 * For jobs on external queues, the user needs to create command buffers
966 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
967 * internal queues, the user needs to prepare a "command buffer" with packets
968 * on either the device SRAM/DRAM or the host, and give the device address of
969 * that buffer to the CS ioctl.
971 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
972 * means it returns immediately after ALL the JOBS were enqueued on their
973 * relevant queues. Therefore, the user mustn't assume the CS has been completed
974 * or has even started to execute.
976 * Upon successful enqueue, the IOCTL returns a sequence number which the user
977 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
978 * external JOBS have been completed. Note that if the CS has internal JOBS
979 * which can execute AFTER the external JOBS have finished, the driver might
980 * report that the CS has finished executing BEFORE the internal JOBS have
981 * actually finished executing.
983 * Even though the sequence number increments per CS, the user can NOT
984 * automatically assume that if CS with sequence number N finished, then CS
985 * with sequence number N-1 also finished. The user can make this assumption if
986 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
987 * queues).
989 #define HL_IOCTL_CS \
990 _IOWR('H', 0x03, union hl_cs_args)
993 * Wait for Command Submission
995 * The user can call this IOCTL with a handle it received from the CS IOCTL
996 * to wait until the handle's CS has finished executing. The user will wait
997 * inside the kernel until the CS has finished or until the user-requested
998 * timeout has expired.
1000 * If the timeout value is 0, the driver won't sleep at all. It will check
1001 * the status of the CS and return immediately
1003 * The return value of the IOCTL is a standard Linux error code. The possible
1004 * values are:
1006 * EINTR - Kernel waiting has been interrupted, e.g. due to OS signal
1007 * that the user process received
1008 * ETIMEDOUT - The CS has caused a timeout on the device
1009 * EIO - The CS was aborted (usually because the device was reset)
1010 * ENODEV - The device wants to do hard-reset (so user need to close FD)
1012 * The driver also returns a custom define inside the IOCTL which can be:
1014 * HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0)
1015 * HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0)
1016 * HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device
1017 * (ETIMEDOUT)
1018 * HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the
1019 * device was reset (EIO)
1020 * HL_WAIT_CS_STATUS_INTERRUPTED - Waiting for the CS was interrupted (EINTR)
1024 #define HL_IOCTL_WAIT_CS \
1025 _IOWR('H', 0x04, union hl_wait_cs_args)
1028 * Memory
1029 * - Map host memory to device MMU
1030 * - Unmap host memory from device MMU
1032 * This IOCTL allows the user to map host memory to the device MMU
1034 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
1035 * to allocate the memory in user-space (malloc/new). The driver pins the
1036 * physical pages (up to the allowed limit by the OS), assigns a virtual
1037 * address in the device VA space and initializes the device MMU.
1039 * There is an option for the user to specify the requested virtual address.
1042 #define HL_IOCTL_MEMORY \
1043 _IOWR('H', 0x05, union hl_mem_args)
1046 * Debug
1047 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
1049 * This IOCTL allows the user to get debug traces from the chip.
1051 * Before the user can send configuration requests of the various
1052 * debug/profile engines, it needs to set the device into debug mode.
1053 * This is because the debug/profile infrastructure is shared component in the
1054 * device and we can't allow multiple users to access it at the same time.
1056 * Once a user set the device into debug mode, the driver won't allow other
1057 * users to "work" with the device, i.e. open a FD. If there are multiple users
1058 * opened on the device, the driver won't allow any user to debug the device.
1060 * For each configuration request, the user needs to provide the register index
1061 * and essential data such as buffer address and size.
1063 * Once the user has finished using the debug/profile engines, he should
1064 * set the device into non-debug mode, i.e. disable debug mode.
1066 * The driver can decide to "kick out" the user if he abuses this interface.
1069 #define HL_IOCTL_DEBUG \
1070 _IOWR('H', 0x06, struct hl_debug_args)
1072 #define HL_COMMAND_START 0x01
1073 #define HL_COMMAND_END 0x07
1075 #endif /* HABANALABS_H_ */