1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux Socket Filter - Kernel level socket filtering
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
38 #define BPF_R0 regs[BPF_REG_0]
39 #define BPF_R1 regs[BPF_REG_1]
40 #define BPF_R2 regs[BPF_REG_2]
41 #define BPF_R3 regs[BPF_REG_3]
42 #define BPF_R4 regs[BPF_REG_4]
43 #define BPF_R5 regs[BPF_REG_5]
44 #define BPF_R6 regs[BPF_REG_6]
45 #define BPF_R7 regs[BPF_REG_7]
46 #define BPF_R8 regs[BPF_REG_8]
47 #define BPF_R9 regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
51 #define DST regs[insn->dst_reg]
52 #define SRC regs[insn->src_reg]
53 #define FP regs[BPF_REG_FP]
54 #define AX regs[BPF_REG_AX]
55 #define ARG1 regs[BPF_REG_ARG1]
56 #define CTX regs[BPF_REG_CTX]
59 /* No hurry in this branch
61 * Exported for the bpf jit load helper.
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff
*skb
, int k
, unsigned int size
)
68 ptr
= skb_network_header(skb
) + k
- SKF_NET_OFF
;
69 else if (k
>= SKF_LL_OFF
)
70 ptr
= skb_mac_header(skb
) + k
- SKF_LL_OFF
;
72 if (ptr
>= skb
->head
&& ptr
+ size
<= skb_tail_pointer(skb
))
78 struct bpf_prog
*bpf_prog_alloc_no_stats(unsigned int size
, gfp_t gfp_extra_flags
)
80 gfp_t gfp_flags
= GFP_KERNEL_ACCOUNT
| __GFP_ZERO
| gfp_extra_flags
;
81 struct bpf_prog_aux
*aux
;
84 size
= round_up(size
, PAGE_SIZE
);
85 fp
= __vmalloc(size
, gfp_flags
);
89 aux
= kzalloc(sizeof(*aux
), GFP_KERNEL_ACCOUNT
| gfp_extra_flags
);
95 fp
->pages
= size
/ PAGE_SIZE
;
98 fp
->jit_requested
= ebpf_jit_enabled();
100 INIT_LIST_HEAD_RCU(&fp
->aux
->ksym
.lnode
);
101 mutex_init(&fp
->aux
->used_maps_mutex
);
102 mutex_init(&fp
->aux
->dst_mutex
);
107 struct bpf_prog
*bpf_prog_alloc(unsigned int size
, gfp_t gfp_extra_flags
)
109 gfp_t gfp_flags
= GFP_KERNEL_ACCOUNT
| __GFP_ZERO
| gfp_extra_flags
;
110 struct bpf_prog
*prog
;
113 prog
= bpf_prog_alloc_no_stats(size
, gfp_extra_flags
);
117 prog
->aux
->stats
= alloc_percpu_gfp(struct bpf_prog_stats
, gfp_flags
);
118 if (!prog
->aux
->stats
) {
124 for_each_possible_cpu(cpu
) {
125 struct bpf_prog_stats
*pstats
;
127 pstats
= per_cpu_ptr(prog
->aux
->stats
, cpu
);
128 u64_stats_init(&pstats
->syncp
);
132 EXPORT_SYMBOL_GPL(bpf_prog_alloc
);
134 int bpf_prog_alloc_jited_linfo(struct bpf_prog
*prog
)
136 if (!prog
->aux
->nr_linfo
|| !prog
->jit_requested
)
139 prog
->aux
->jited_linfo
= kcalloc(prog
->aux
->nr_linfo
,
140 sizeof(*prog
->aux
->jited_linfo
),
141 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
142 if (!prog
->aux
->jited_linfo
)
148 void bpf_prog_free_jited_linfo(struct bpf_prog
*prog
)
150 kfree(prog
->aux
->jited_linfo
);
151 prog
->aux
->jited_linfo
= NULL
;
154 void bpf_prog_free_unused_jited_linfo(struct bpf_prog
*prog
)
156 if (prog
->aux
->jited_linfo
&& !prog
->aux
->jited_linfo
[0])
157 bpf_prog_free_jited_linfo(prog
);
160 /* The jit engine is responsible to provide an array
161 * for insn_off to the jited_off mapping (insn_to_jit_off).
163 * The idx to this array is the insn_off. Hence, the insn_off
164 * here is relative to the prog itself instead of the main prog.
165 * This array has one entry for each xlated bpf insn.
167 * jited_off is the byte off to the last byte of the jited insn.
171 * The first bpf insn off of the prog. The insn off
172 * here is relative to the main prog.
173 * e.g. if prog is a subprog, insn_start > 0
175 * The prog's idx to prog->aux->linfo and jited_linfo
177 * jited_linfo[linfo_idx] = prog->bpf_func
181 * jited_linfo[i] = prog->bpf_func +
182 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
184 void bpf_prog_fill_jited_linfo(struct bpf_prog
*prog
,
185 const u32
*insn_to_jit_off
)
187 u32 linfo_idx
, insn_start
, insn_end
, nr_linfo
, i
;
188 const struct bpf_line_info
*linfo
;
191 if (!prog
->aux
->jited_linfo
)
192 /* Userspace did not provide linfo */
195 linfo_idx
= prog
->aux
->linfo_idx
;
196 linfo
= &prog
->aux
->linfo
[linfo_idx
];
197 insn_start
= linfo
[0].insn_off
;
198 insn_end
= insn_start
+ prog
->len
;
200 jited_linfo
= &prog
->aux
->jited_linfo
[linfo_idx
];
201 jited_linfo
[0] = prog
->bpf_func
;
203 nr_linfo
= prog
->aux
->nr_linfo
- linfo_idx
;
205 for (i
= 1; i
< nr_linfo
&& linfo
[i
].insn_off
< insn_end
; i
++)
206 /* The verifier ensures that linfo[i].insn_off is
207 * strictly increasing
209 jited_linfo
[i
] = prog
->bpf_func
+
210 insn_to_jit_off
[linfo
[i
].insn_off
- insn_start
- 1];
213 void bpf_prog_free_linfo(struct bpf_prog
*prog
)
215 bpf_prog_free_jited_linfo(prog
);
216 kvfree(prog
->aux
->linfo
);
219 struct bpf_prog
*bpf_prog_realloc(struct bpf_prog
*fp_old
, unsigned int size
,
220 gfp_t gfp_extra_flags
)
222 gfp_t gfp_flags
= GFP_KERNEL_ACCOUNT
| __GFP_ZERO
| gfp_extra_flags
;
226 size
= round_up(size
, PAGE_SIZE
);
227 pages
= size
/ PAGE_SIZE
;
228 if (pages
<= fp_old
->pages
)
231 fp
= __vmalloc(size
, gfp_flags
);
233 memcpy(fp
, fp_old
, fp_old
->pages
* PAGE_SIZE
);
237 /* We keep fp->aux from fp_old around in the new
238 * reallocated structure.
241 __bpf_prog_free(fp_old
);
247 void __bpf_prog_free(struct bpf_prog
*fp
)
250 mutex_destroy(&fp
->aux
->used_maps_mutex
);
251 mutex_destroy(&fp
->aux
->dst_mutex
);
252 free_percpu(fp
->aux
->stats
);
253 kfree(fp
->aux
->poke_tab
);
259 int bpf_prog_calc_tag(struct bpf_prog
*fp
)
261 const u32 bits_offset
= SHA1_BLOCK_SIZE
- sizeof(__be64
);
262 u32 raw_size
= bpf_prog_tag_scratch_size(fp
);
263 u32 digest
[SHA1_DIGEST_WORDS
];
264 u32 ws
[SHA1_WORKSPACE_WORDS
];
265 u32 i
, bsize
, psize
, blocks
;
266 struct bpf_insn
*dst
;
272 raw
= vmalloc(raw_size
);
277 memset(ws
, 0, sizeof(ws
));
279 /* We need to take out the map fd for the digest calculation
280 * since they are unstable from user space side.
283 for (i
= 0, was_ld_map
= false; i
< fp
->len
; i
++) {
284 dst
[i
] = fp
->insnsi
[i
];
286 dst
[i
].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
287 (dst
[i
].src_reg
== BPF_PSEUDO_MAP_FD
||
288 dst
[i
].src_reg
== BPF_PSEUDO_MAP_VALUE
)) {
291 } else if (was_ld_map
&&
293 dst
[i
].dst_reg
== 0 &&
294 dst
[i
].src_reg
== 0 &&
303 psize
= bpf_prog_insn_size(fp
);
304 memset(&raw
[psize
], 0, raw_size
- psize
);
307 bsize
= round_up(psize
, SHA1_BLOCK_SIZE
);
308 blocks
= bsize
/ SHA1_BLOCK_SIZE
;
310 if (bsize
- psize
>= sizeof(__be64
)) {
311 bits
= (__be64
*)(todo
+ bsize
- sizeof(__be64
));
313 bits
= (__be64
*)(todo
+ bsize
+ bits_offset
);
316 *bits
= cpu_to_be64((psize
- 1) << 3);
319 sha1_transform(digest
, todo
, ws
);
320 todo
+= SHA1_BLOCK_SIZE
;
323 result
= (__force __be32
*)digest
;
324 for (i
= 0; i
< SHA1_DIGEST_WORDS
; i
++)
325 result
[i
] = cpu_to_be32(digest
[i
]);
326 memcpy(fp
->tag
, result
, sizeof(fp
->tag
));
332 static int bpf_adj_delta_to_imm(struct bpf_insn
*insn
, u32 pos
, s32 end_old
,
333 s32 end_new
, s32 curr
, const bool probe_pass
)
335 const s64 imm_min
= S32_MIN
, imm_max
= S32_MAX
;
336 s32 delta
= end_new
- end_old
;
339 if (curr
< pos
&& curr
+ imm
+ 1 >= end_old
)
341 else if (curr
>= end_new
&& curr
+ imm
+ 1 < end_new
)
343 if (imm
< imm_min
|| imm
> imm_max
)
350 static int bpf_adj_delta_to_off(struct bpf_insn
*insn
, u32 pos
, s32 end_old
,
351 s32 end_new
, s32 curr
, const bool probe_pass
)
353 const s32 off_min
= S16_MIN
, off_max
= S16_MAX
;
354 s32 delta
= end_new
- end_old
;
357 if (curr
< pos
&& curr
+ off
+ 1 >= end_old
)
359 else if (curr
>= end_new
&& curr
+ off
+ 1 < end_new
)
361 if (off
< off_min
|| off
> off_max
)
368 static int bpf_adj_branches(struct bpf_prog
*prog
, u32 pos
, s32 end_old
,
369 s32 end_new
, const bool probe_pass
)
371 u32 i
, insn_cnt
= prog
->len
+ (probe_pass
? end_new
- end_old
: 0);
372 struct bpf_insn
*insn
= prog
->insnsi
;
375 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
378 /* In the probing pass we still operate on the original,
379 * unpatched image in order to check overflows before we
380 * do any other adjustments. Therefore skip the patchlet.
382 if (probe_pass
&& i
== pos
) {
384 insn
= prog
->insnsi
+ end_old
;
387 if ((BPF_CLASS(code
) != BPF_JMP
&&
388 BPF_CLASS(code
) != BPF_JMP32
) ||
389 BPF_OP(code
) == BPF_EXIT
)
391 /* Adjust offset of jmps if we cross patch boundaries. */
392 if (BPF_OP(code
) == BPF_CALL
) {
393 if (insn
->src_reg
!= BPF_PSEUDO_CALL
)
395 ret
= bpf_adj_delta_to_imm(insn
, pos
, end_old
,
396 end_new
, i
, probe_pass
);
398 ret
= bpf_adj_delta_to_off(insn
, pos
, end_old
,
399 end_new
, i
, probe_pass
);
408 static void bpf_adj_linfo(struct bpf_prog
*prog
, u32 off
, u32 delta
)
410 struct bpf_line_info
*linfo
;
413 nr_linfo
= prog
->aux
->nr_linfo
;
414 if (!nr_linfo
|| !delta
)
417 linfo
= prog
->aux
->linfo
;
419 for (i
= 0; i
< nr_linfo
; i
++)
420 if (off
< linfo
[i
].insn_off
)
423 /* Push all off < linfo[i].insn_off by delta */
424 for (; i
< nr_linfo
; i
++)
425 linfo
[i
].insn_off
+= delta
;
428 struct bpf_prog
*bpf_patch_insn_single(struct bpf_prog
*prog
, u32 off
,
429 const struct bpf_insn
*patch
, u32 len
)
431 u32 insn_adj_cnt
, insn_rest
, insn_delta
= len
- 1;
432 const u32 cnt_max
= S16_MAX
;
433 struct bpf_prog
*prog_adj
;
436 /* Since our patchlet doesn't expand the image, we're done. */
437 if (insn_delta
== 0) {
438 memcpy(prog
->insnsi
+ off
, patch
, sizeof(*patch
));
442 insn_adj_cnt
= prog
->len
+ insn_delta
;
444 /* Reject anything that would potentially let the insn->off
445 * target overflow when we have excessive program expansions.
446 * We need to probe here before we do any reallocation where
447 * we afterwards may not fail anymore.
449 if (insn_adj_cnt
> cnt_max
&&
450 (err
= bpf_adj_branches(prog
, off
, off
+ 1, off
+ len
, true)))
453 /* Several new instructions need to be inserted. Make room
454 * for them. Likely, there's no need for a new allocation as
455 * last page could have large enough tailroom.
457 prog_adj
= bpf_prog_realloc(prog
, bpf_prog_size(insn_adj_cnt
),
460 return ERR_PTR(-ENOMEM
);
462 prog_adj
->len
= insn_adj_cnt
;
464 /* Patching happens in 3 steps:
466 * 1) Move over tail of insnsi from next instruction onwards,
467 * so we can patch the single target insn with one or more
468 * new ones (patching is always from 1 to n insns, n > 0).
469 * 2) Inject new instructions at the target location.
470 * 3) Adjust branch offsets if necessary.
472 insn_rest
= insn_adj_cnt
- off
- len
;
474 memmove(prog_adj
->insnsi
+ off
+ len
, prog_adj
->insnsi
+ off
+ 1,
475 sizeof(*patch
) * insn_rest
);
476 memcpy(prog_adj
->insnsi
+ off
, patch
, sizeof(*patch
) * len
);
478 /* We are guaranteed to not fail at this point, otherwise
479 * the ship has sailed to reverse to the original state. An
480 * overflow cannot happen at this point.
482 BUG_ON(bpf_adj_branches(prog_adj
, off
, off
+ 1, off
+ len
, false));
484 bpf_adj_linfo(prog_adj
, off
, insn_delta
);
489 int bpf_remove_insns(struct bpf_prog
*prog
, u32 off
, u32 cnt
)
491 /* Branch offsets can't overflow when program is shrinking, no need
492 * to call bpf_adj_branches(..., true) here
494 memmove(prog
->insnsi
+ off
, prog
->insnsi
+ off
+ cnt
,
495 sizeof(struct bpf_insn
) * (prog
->len
- off
- cnt
));
498 return WARN_ON_ONCE(bpf_adj_branches(prog
, off
, off
+ cnt
, off
, false));
501 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog
*fp
)
505 for (i
= 0; i
< fp
->aux
->func_cnt
; i
++)
506 bpf_prog_kallsyms_del(fp
->aux
->func
[i
]);
509 void bpf_prog_kallsyms_del_all(struct bpf_prog
*fp
)
511 bpf_prog_kallsyms_del_subprogs(fp
);
512 bpf_prog_kallsyms_del(fp
);
515 #ifdef CONFIG_BPF_JIT
516 /* All BPF JIT sysctl knobs here. */
517 int bpf_jit_enable __read_mostly
= IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON
);
518 int bpf_jit_kallsyms __read_mostly
= IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON
);
519 int bpf_jit_harden __read_mostly
;
520 long bpf_jit_limit __read_mostly
;
523 bpf_prog_ksym_set_addr(struct bpf_prog
*prog
)
525 const struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(prog
);
526 unsigned long addr
= (unsigned long)hdr
;
528 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog
));
530 prog
->aux
->ksym
.start
= (unsigned long) prog
->bpf_func
;
531 prog
->aux
->ksym
.end
= addr
+ hdr
->pages
* PAGE_SIZE
;
535 bpf_prog_ksym_set_name(struct bpf_prog
*prog
)
537 char *sym
= prog
->aux
->ksym
.name
;
538 const char *end
= sym
+ KSYM_NAME_LEN
;
539 const struct btf_type
*type
;
540 const char *func_name
;
542 BUILD_BUG_ON(sizeof("bpf_prog_") +
543 sizeof(prog
->tag
) * 2 +
544 /* name has been null terminated.
545 * We should need +1 for the '_' preceding
546 * the name. However, the null character
547 * is double counted between the name and the
548 * sizeof("bpf_prog_") above, so we omit
551 sizeof(prog
->aux
->name
) > KSYM_NAME_LEN
);
553 sym
+= snprintf(sym
, KSYM_NAME_LEN
, "bpf_prog_");
554 sym
= bin2hex(sym
, prog
->tag
, sizeof(prog
->tag
));
556 /* prog->aux->name will be ignored if full btf name is available */
557 if (prog
->aux
->func_info_cnt
) {
558 type
= btf_type_by_id(prog
->aux
->btf
,
559 prog
->aux
->func_info
[prog
->aux
->func_idx
].type_id
);
560 func_name
= btf_name_by_offset(prog
->aux
->btf
, type
->name_off
);
561 snprintf(sym
, (size_t)(end
- sym
), "_%s", func_name
);
565 if (prog
->aux
->name
[0])
566 snprintf(sym
, (size_t)(end
- sym
), "_%s", prog
->aux
->name
);
571 static unsigned long bpf_get_ksym_start(struct latch_tree_node
*n
)
573 return container_of(n
, struct bpf_ksym
, tnode
)->start
;
576 static __always_inline
bool bpf_tree_less(struct latch_tree_node
*a
,
577 struct latch_tree_node
*b
)
579 return bpf_get_ksym_start(a
) < bpf_get_ksym_start(b
);
582 static __always_inline
int bpf_tree_comp(void *key
, struct latch_tree_node
*n
)
584 unsigned long val
= (unsigned long)key
;
585 const struct bpf_ksym
*ksym
;
587 ksym
= container_of(n
, struct bpf_ksym
, tnode
);
589 if (val
< ksym
->start
)
591 if (val
>= ksym
->end
)
597 static const struct latch_tree_ops bpf_tree_ops
= {
598 .less
= bpf_tree_less
,
599 .comp
= bpf_tree_comp
,
602 static DEFINE_SPINLOCK(bpf_lock
);
603 static LIST_HEAD(bpf_kallsyms
);
604 static struct latch_tree_root bpf_tree __cacheline_aligned
;
606 void bpf_ksym_add(struct bpf_ksym
*ksym
)
608 spin_lock_bh(&bpf_lock
);
609 WARN_ON_ONCE(!list_empty(&ksym
->lnode
));
610 list_add_tail_rcu(&ksym
->lnode
, &bpf_kallsyms
);
611 latch_tree_insert(&ksym
->tnode
, &bpf_tree
, &bpf_tree_ops
);
612 spin_unlock_bh(&bpf_lock
);
615 static void __bpf_ksym_del(struct bpf_ksym
*ksym
)
617 if (list_empty(&ksym
->lnode
))
620 latch_tree_erase(&ksym
->tnode
, &bpf_tree
, &bpf_tree_ops
);
621 list_del_rcu(&ksym
->lnode
);
624 void bpf_ksym_del(struct bpf_ksym
*ksym
)
626 spin_lock_bh(&bpf_lock
);
627 __bpf_ksym_del(ksym
);
628 spin_unlock_bh(&bpf_lock
);
631 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog
*fp
)
633 return fp
->jited
&& !bpf_prog_was_classic(fp
);
636 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog
*fp
)
638 return list_empty(&fp
->aux
->ksym
.lnode
) ||
639 fp
->aux
->ksym
.lnode
.prev
== LIST_POISON2
;
642 void bpf_prog_kallsyms_add(struct bpf_prog
*fp
)
644 if (!bpf_prog_kallsyms_candidate(fp
) ||
648 bpf_prog_ksym_set_addr(fp
);
649 bpf_prog_ksym_set_name(fp
);
650 fp
->aux
->ksym
.prog
= true;
652 bpf_ksym_add(&fp
->aux
->ksym
);
655 void bpf_prog_kallsyms_del(struct bpf_prog
*fp
)
657 if (!bpf_prog_kallsyms_candidate(fp
))
660 bpf_ksym_del(&fp
->aux
->ksym
);
663 static struct bpf_ksym
*bpf_ksym_find(unsigned long addr
)
665 struct latch_tree_node
*n
;
667 n
= latch_tree_find((void *)addr
, &bpf_tree
, &bpf_tree_ops
);
668 return n
? container_of(n
, struct bpf_ksym
, tnode
) : NULL
;
671 const char *__bpf_address_lookup(unsigned long addr
, unsigned long *size
,
672 unsigned long *off
, char *sym
)
674 struct bpf_ksym
*ksym
;
678 ksym
= bpf_ksym_find(addr
);
680 unsigned long symbol_start
= ksym
->start
;
681 unsigned long symbol_end
= ksym
->end
;
683 strncpy(sym
, ksym
->name
, KSYM_NAME_LEN
);
687 *size
= symbol_end
- symbol_start
;
689 *off
= addr
- symbol_start
;
696 bool is_bpf_text_address(unsigned long addr
)
701 ret
= bpf_ksym_find(addr
) != NULL
;
707 static struct bpf_prog
*bpf_prog_ksym_find(unsigned long addr
)
709 struct bpf_ksym
*ksym
= bpf_ksym_find(addr
);
711 return ksym
&& ksym
->prog
?
712 container_of(ksym
, struct bpf_prog_aux
, ksym
)->prog
:
716 const struct exception_table_entry
*search_bpf_extables(unsigned long addr
)
718 const struct exception_table_entry
*e
= NULL
;
719 struct bpf_prog
*prog
;
722 prog
= bpf_prog_ksym_find(addr
);
725 if (!prog
->aux
->num_exentries
)
728 e
= search_extable(prog
->aux
->extable
, prog
->aux
->num_exentries
, addr
);
734 int bpf_get_kallsym(unsigned int symnum
, unsigned long *value
, char *type
,
737 struct bpf_ksym
*ksym
;
741 if (!bpf_jit_kallsyms_enabled())
745 list_for_each_entry_rcu(ksym
, &bpf_kallsyms
, lnode
) {
749 strncpy(sym
, ksym
->name
, KSYM_NAME_LEN
);
751 *value
= ksym
->start
;
752 *type
= BPF_SYM_ELF_TYPE
;
762 int bpf_jit_add_poke_descriptor(struct bpf_prog
*prog
,
763 struct bpf_jit_poke_descriptor
*poke
)
765 struct bpf_jit_poke_descriptor
*tab
= prog
->aux
->poke_tab
;
766 static const u32 poke_tab_max
= 1024;
767 u32 slot
= prog
->aux
->size_poke_tab
;
770 if (size
> poke_tab_max
)
772 if (poke
->tailcall_target
|| poke
->tailcall_target_stable
||
773 poke
->tailcall_bypass
|| poke
->adj_off
|| poke
->bypass_addr
)
776 switch (poke
->reason
) {
777 case BPF_POKE_REASON_TAIL_CALL
:
778 if (!poke
->tail_call
.map
)
785 tab
= krealloc(tab
, size
* sizeof(*poke
), GFP_KERNEL
);
789 memcpy(&tab
[slot
], poke
, sizeof(*poke
));
790 prog
->aux
->size_poke_tab
= size
;
791 prog
->aux
->poke_tab
= tab
;
796 static atomic_long_t bpf_jit_current
;
798 /* Can be overridden by an arch's JIT compiler if it has a custom,
799 * dedicated BPF backend memory area, or if neither of the two
802 u64 __weak
bpf_jit_alloc_exec_limit(void)
804 #if defined(MODULES_VADDR)
805 return MODULES_END
- MODULES_VADDR
;
807 return VMALLOC_END
- VMALLOC_START
;
811 static int __init
bpf_jit_charge_init(void)
813 /* Only used as heuristic here to derive limit. */
814 bpf_jit_limit
= min_t(u64
, round_up(bpf_jit_alloc_exec_limit() >> 2,
815 PAGE_SIZE
), LONG_MAX
);
818 pure_initcall(bpf_jit_charge_init
);
820 static int bpf_jit_charge_modmem(u32 pages
)
822 if (atomic_long_add_return(pages
, &bpf_jit_current
) >
823 (bpf_jit_limit
>> PAGE_SHIFT
)) {
824 if (!capable(CAP_SYS_ADMIN
)) {
825 atomic_long_sub(pages
, &bpf_jit_current
);
833 static void bpf_jit_uncharge_modmem(u32 pages
)
835 atomic_long_sub(pages
, &bpf_jit_current
);
838 void *__weak
bpf_jit_alloc_exec(unsigned long size
)
840 return module_alloc(size
);
843 void __weak
bpf_jit_free_exec(void *addr
)
845 module_memfree(addr
);
848 struct bpf_binary_header
*
849 bpf_jit_binary_alloc(unsigned int proglen
, u8
**image_ptr
,
850 unsigned int alignment
,
851 bpf_jit_fill_hole_t bpf_fill_ill_insns
)
853 struct bpf_binary_header
*hdr
;
854 u32 size
, hole
, start
, pages
;
856 WARN_ON_ONCE(!is_power_of_2(alignment
) ||
857 alignment
> BPF_IMAGE_ALIGNMENT
);
859 /* Most of BPF filters are really small, but if some of them
860 * fill a page, allow at least 128 extra bytes to insert a
861 * random section of illegal instructions.
863 size
= round_up(proglen
+ sizeof(*hdr
) + 128, PAGE_SIZE
);
864 pages
= size
/ PAGE_SIZE
;
866 if (bpf_jit_charge_modmem(pages
))
868 hdr
= bpf_jit_alloc_exec(size
);
870 bpf_jit_uncharge_modmem(pages
);
874 /* Fill space with illegal/arch-dep instructions. */
875 bpf_fill_ill_insns(hdr
, size
);
878 hole
= min_t(unsigned int, size
- (proglen
+ sizeof(*hdr
)),
879 PAGE_SIZE
- sizeof(*hdr
));
880 start
= (get_random_int() % hole
) & ~(alignment
- 1);
882 /* Leave a random number of instructions before BPF code. */
883 *image_ptr
= &hdr
->image
[start
];
888 void bpf_jit_binary_free(struct bpf_binary_header
*hdr
)
890 u32 pages
= hdr
->pages
;
892 bpf_jit_free_exec(hdr
);
893 bpf_jit_uncharge_modmem(pages
);
896 /* This symbol is only overridden by archs that have different
897 * requirements than the usual eBPF JITs, f.e. when they only
898 * implement cBPF JIT, do not set images read-only, etc.
900 void __weak
bpf_jit_free(struct bpf_prog
*fp
)
903 struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(fp
);
905 bpf_jit_binary_free(hdr
);
907 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp
));
910 bpf_prog_unlock_free(fp
);
913 int bpf_jit_get_func_addr(const struct bpf_prog
*prog
,
914 const struct bpf_insn
*insn
, bool extra_pass
,
915 u64
*func_addr
, bool *func_addr_fixed
)
921 *func_addr_fixed
= insn
->src_reg
!= BPF_PSEUDO_CALL
;
922 if (!*func_addr_fixed
) {
923 /* Place-holder address till the last pass has collected
924 * all addresses for JITed subprograms in which case we
925 * can pick them up from prog->aux.
929 else if (prog
->aux
->func
&&
930 off
>= 0 && off
< prog
->aux
->func_cnt
)
931 addr
= (u8
*)prog
->aux
->func
[off
]->bpf_func
;
935 /* Address of a BPF helper call. Since part of the core
936 * kernel, it's always at a fixed location. __bpf_call_base
937 * and the helper with imm relative to it are both in core
940 addr
= (u8
*)__bpf_call_base
+ imm
;
943 *func_addr
= (unsigned long)addr
;
947 static int bpf_jit_blind_insn(const struct bpf_insn
*from
,
948 const struct bpf_insn
*aux
,
949 struct bpf_insn
*to_buff
,
952 struct bpf_insn
*to
= to_buff
;
953 u32 imm_rnd
= get_random_int();
956 BUILD_BUG_ON(BPF_REG_AX
+ 1 != MAX_BPF_JIT_REG
);
957 BUILD_BUG_ON(MAX_BPF_REG
+ 1 != MAX_BPF_JIT_REG
);
959 /* Constraints on AX register:
961 * AX register is inaccessible from user space. It is mapped in
962 * all JITs, and used here for constant blinding rewrites. It is
963 * typically "stateless" meaning its contents are only valid within
964 * the executed instruction, but not across several instructions.
965 * There are a few exceptions however which are further detailed
968 * Constant blinding is only used by JITs, not in the interpreter.
969 * The interpreter uses AX in some occasions as a local temporary
970 * register e.g. in DIV or MOD instructions.
972 * In restricted circumstances, the verifier can also use the AX
973 * register for rewrites as long as they do not interfere with
976 if (from
->dst_reg
== BPF_REG_AX
|| from
->src_reg
== BPF_REG_AX
)
979 if (from
->imm
== 0 &&
980 (from
->code
== (BPF_ALU
| BPF_MOV
| BPF_K
) ||
981 from
->code
== (BPF_ALU64
| BPF_MOV
| BPF_K
))) {
982 *to
++ = BPF_ALU64_REG(BPF_XOR
, from
->dst_reg
, from
->dst_reg
);
986 switch (from
->code
) {
987 case BPF_ALU
| BPF_ADD
| BPF_K
:
988 case BPF_ALU
| BPF_SUB
| BPF_K
:
989 case BPF_ALU
| BPF_AND
| BPF_K
:
990 case BPF_ALU
| BPF_OR
| BPF_K
:
991 case BPF_ALU
| BPF_XOR
| BPF_K
:
992 case BPF_ALU
| BPF_MUL
| BPF_K
:
993 case BPF_ALU
| BPF_MOV
| BPF_K
:
994 case BPF_ALU
| BPF_DIV
| BPF_K
:
995 case BPF_ALU
| BPF_MOD
| BPF_K
:
996 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
997 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
998 *to
++ = BPF_ALU32_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
1001 case BPF_ALU64
| BPF_ADD
| BPF_K
:
1002 case BPF_ALU64
| BPF_SUB
| BPF_K
:
1003 case BPF_ALU64
| BPF_AND
| BPF_K
:
1004 case BPF_ALU64
| BPF_OR
| BPF_K
:
1005 case BPF_ALU64
| BPF_XOR
| BPF_K
:
1006 case BPF_ALU64
| BPF_MUL
| BPF_K
:
1007 case BPF_ALU64
| BPF_MOV
| BPF_K
:
1008 case BPF_ALU64
| BPF_DIV
| BPF_K
:
1009 case BPF_ALU64
| BPF_MOD
| BPF_K
:
1010 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
1011 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1012 *to
++ = BPF_ALU64_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
1015 case BPF_JMP
| BPF_JEQ
| BPF_K
:
1016 case BPF_JMP
| BPF_JNE
| BPF_K
:
1017 case BPF_JMP
| BPF_JGT
| BPF_K
:
1018 case BPF_JMP
| BPF_JLT
| BPF_K
:
1019 case BPF_JMP
| BPF_JGE
| BPF_K
:
1020 case BPF_JMP
| BPF_JLE
| BPF_K
:
1021 case BPF_JMP
| BPF_JSGT
| BPF_K
:
1022 case BPF_JMP
| BPF_JSLT
| BPF_K
:
1023 case BPF_JMP
| BPF_JSGE
| BPF_K
:
1024 case BPF_JMP
| BPF_JSLE
| BPF_K
:
1025 case BPF_JMP
| BPF_JSET
| BPF_K
:
1026 /* Accommodate for extra offset in case of a backjump. */
1030 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
1031 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1032 *to
++ = BPF_JMP_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
, off
);
1035 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
1036 case BPF_JMP32
| BPF_JNE
| BPF_K
:
1037 case BPF_JMP32
| BPF_JGT
| BPF_K
:
1038 case BPF_JMP32
| BPF_JLT
| BPF_K
:
1039 case BPF_JMP32
| BPF_JGE
| BPF_K
:
1040 case BPF_JMP32
| BPF_JLE
| BPF_K
:
1041 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
1042 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
1043 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
1044 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
1045 case BPF_JMP32
| BPF_JSET
| BPF_K
:
1046 /* Accommodate for extra offset in case of a backjump. */
1050 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
1051 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1052 *to
++ = BPF_JMP32_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
,
1056 case BPF_LD
| BPF_IMM
| BPF_DW
:
1057 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[1].imm
);
1058 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1059 *to
++ = BPF_ALU64_IMM(BPF_LSH
, BPF_REG_AX
, 32);
1060 *to
++ = BPF_ALU64_REG(BPF_MOV
, aux
[0].dst_reg
, BPF_REG_AX
);
1062 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1063 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[0].imm
);
1064 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1066 *to
++ = BPF_ZEXT_REG(BPF_REG_AX
);
1067 *to
++ = BPF_ALU64_REG(BPF_OR
, aux
[0].dst_reg
, BPF_REG_AX
);
1070 case BPF_ST
| BPF_MEM
| BPF_DW
:
1071 case BPF_ST
| BPF_MEM
| BPF_W
:
1072 case BPF_ST
| BPF_MEM
| BPF_H
:
1073 case BPF_ST
| BPF_MEM
| BPF_B
:
1074 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
1075 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1076 *to
++ = BPF_STX_MEM(from
->code
, from
->dst_reg
, BPF_REG_AX
, from
->off
);
1080 return to
- to_buff
;
1083 static struct bpf_prog
*bpf_prog_clone_create(struct bpf_prog
*fp_other
,
1084 gfp_t gfp_extra_flags
)
1086 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
1087 struct bpf_prog
*fp
;
1089 fp
= __vmalloc(fp_other
->pages
* PAGE_SIZE
, gfp_flags
);
1091 /* aux->prog still points to the fp_other one, so
1092 * when promoting the clone to the real program,
1093 * this still needs to be adapted.
1095 memcpy(fp
, fp_other
, fp_other
->pages
* PAGE_SIZE
);
1101 static void bpf_prog_clone_free(struct bpf_prog
*fp
)
1103 /* aux was stolen by the other clone, so we cannot free
1104 * it from this path! It will be freed eventually by the
1105 * other program on release.
1107 * At this point, we don't need a deferred release since
1108 * clone is guaranteed to not be locked.
1111 __bpf_prog_free(fp
);
1114 void bpf_jit_prog_release_other(struct bpf_prog
*fp
, struct bpf_prog
*fp_other
)
1116 /* We have to repoint aux->prog to self, as we don't
1117 * know whether fp here is the clone or the original.
1120 bpf_prog_clone_free(fp_other
);
1123 struct bpf_prog
*bpf_jit_blind_constants(struct bpf_prog
*prog
)
1125 struct bpf_insn insn_buff
[16], aux
[2];
1126 struct bpf_prog
*clone
, *tmp
;
1127 int insn_delta
, insn_cnt
;
1128 struct bpf_insn
*insn
;
1131 if (!bpf_jit_blinding_enabled(prog
) || prog
->blinded
)
1134 clone
= bpf_prog_clone_create(prog
, GFP_USER
);
1136 return ERR_PTR(-ENOMEM
);
1138 insn_cnt
= clone
->len
;
1139 insn
= clone
->insnsi
;
1141 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
1142 /* We temporarily need to hold the original ld64 insn
1143 * so that we can still access the first part in the
1144 * second blinding run.
1146 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
1148 memcpy(aux
, insn
, sizeof(aux
));
1150 rewritten
= bpf_jit_blind_insn(insn
, aux
, insn_buff
,
1151 clone
->aux
->verifier_zext
);
1155 tmp
= bpf_patch_insn_single(clone
, i
, insn_buff
, rewritten
);
1157 /* Patching may have repointed aux->prog during
1158 * realloc from the original one, so we need to
1159 * fix it up here on error.
1161 bpf_jit_prog_release_other(prog
, clone
);
1166 insn_delta
= rewritten
- 1;
1168 /* Walk new program and skip insns we just inserted. */
1169 insn
= clone
->insnsi
+ i
+ insn_delta
;
1170 insn_cnt
+= insn_delta
;
1177 #endif /* CONFIG_BPF_JIT */
1179 /* Base function for offset calculation. Needs to go into .text section,
1180 * therefore keeping it non-static as well; will also be used by JITs
1181 * anyway later on, so do not let the compiler omit it. This also needs
1182 * to go into kallsyms for correlation from e.g. bpftool, so naming
1185 noinline u64
__bpf_call_base(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
)
1189 EXPORT_SYMBOL_GPL(__bpf_call_base
);
1191 /* All UAPI available opcodes. */
1192 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1193 /* 32 bit ALU operations. */ \
1194 /* Register based. */ \
1195 INSN_3(ALU, ADD, X), \
1196 INSN_3(ALU, SUB, X), \
1197 INSN_3(ALU, AND, X), \
1198 INSN_3(ALU, OR, X), \
1199 INSN_3(ALU, LSH, X), \
1200 INSN_3(ALU, RSH, X), \
1201 INSN_3(ALU, XOR, X), \
1202 INSN_3(ALU, MUL, X), \
1203 INSN_3(ALU, MOV, X), \
1204 INSN_3(ALU, ARSH, X), \
1205 INSN_3(ALU, DIV, X), \
1206 INSN_3(ALU, MOD, X), \
1208 INSN_3(ALU, END, TO_BE), \
1209 INSN_3(ALU, END, TO_LE), \
1210 /* Immediate based. */ \
1211 INSN_3(ALU, ADD, K), \
1212 INSN_3(ALU, SUB, K), \
1213 INSN_3(ALU, AND, K), \
1214 INSN_3(ALU, OR, K), \
1215 INSN_3(ALU, LSH, K), \
1216 INSN_3(ALU, RSH, K), \
1217 INSN_3(ALU, XOR, K), \
1218 INSN_3(ALU, MUL, K), \
1219 INSN_3(ALU, MOV, K), \
1220 INSN_3(ALU, ARSH, K), \
1221 INSN_3(ALU, DIV, K), \
1222 INSN_3(ALU, MOD, K), \
1223 /* 64 bit ALU operations. */ \
1224 /* Register based. */ \
1225 INSN_3(ALU64, ADD, X), \
1226 INSN_3(ALU64, SUB, X), \
1227 INSN_3(ALU64, AND, X), \
1228 INSN_3(ALU64, OR, X), \
1229 INSN_3(ALU64, LSH, X), \
1230 INSN_3(ALU64, RSH, X), \
1231 INSN_3(ALU64, XOR, X), \
1232 INSN_3(ALU64, MUL, X), \
1233 INSN_3(ALU64, MOV, X), \
1234 INSN_3(ALU64, ARSH, X), \
1235 INSN_3(ALU64, DIV, X), \
1236 INSN_3(ALU64, MOD, X), \
1237 INSN_2(ALU64, NEG), \
1238 /* Immediate based. */ \
1239 INSN_3(ALU64, ADD, K), \
1240 INSN_3(ALU64, SUB, K), \
1241 INSN_3(ALU64, AND, K), \
1242 INSN_3(ALU64, OR, K), \
1243 INSN_3(ALU64, LSH, K), \
1244 INSN_3(ALU64, RSH, K), \
1245 INSN_3(ALU64, XOR, K), \
1246 INSN_3(ALU64, MUL, K), \
1247 INSN_3(ALU64, MOV, K), \
1248 INSN_3(ALU64, ARSH, K), \
1249 INSN_3(ALU64, DIV, K), \
1250 INSN_3(ALU64, MOD, K), \
1251 /* Call instruction. */ \
1252 INSN_2(JMP, CALL), \
1253 /* Exit instruction. */ \
1254 INSN_2(JMP, EXIT), \
1255 /* 32-bit Jump instructions. */ \
1256 /* Register based. */ \
1257 INSN_3(JMP32, JEQ, X), \
1258 INSN_3(JMP32, JNE, X), \
1259 INSN_3(JMP32, JGT, X), \
1260 INSN_3(JMP32, JLT, X), \
1261 INSN_3(JMP32, JGE, X), \
1262 INSN_3(JMP32, JLE, X), \
1263 INSN_3(JMP32, JSGT, X), \
1264 INSN_3(JMP32, JSLT, X), \
1265 INSN_3(JMP32, JSGE, X), \
1266 INSN_3(JMP32, JSLE, X), \
1267 INSN_3(JMP32, JSET, X), \
1268 /* Immediate based. */ \
1269 INSN_3(JMP32, JEQ, K), \
1270 INSN_3(JMP32, JNE, K), \
1271 INSN_3(JMP32, JGT, K), \
1272 INSN_3(JMP32, JLT, K), \
1273 INSN_3(JMP32, JGE, K), \
1274 INSN_3(JMP32, JLE, K), \
1275 INSN_3(JMP32, JSGT, K), \
1276 INSN_3(JMP32, JSLT, K), \
1277 INSN_3(JMP32, JSGE, K), \
1278 INSN_3(JMP32, JSLE, K), \
1279 INSN_3(JMP32, JSET, K), \
1280 /* Jump instructions. */ \
1281 /* Register based. */ \
1282 INSN_3(JMP, JEQ, X), \
1283 INSN_3(JMP, JNE, X), \
1284 INSN_3(JMP, JGT, X), \
1285 INSN_3(JMP, JLT, X), \
1286 INSN_3(JMP, JGE, X), \
1287 INSN_3(JMP, JLE, X), \
1288 INSN_3(JMP, JSGT, X), \
1289 INSN_3(JMP, JSLT, X), \
1290 INSN_3(JMP, JSGE, X), \
1291 INSN_3(JMP, JSLE, X), \
1292 INSN_3(JMP, JSET, X), \
1293 /* Immediate based. */ \
1294 INSN_3(JMP, JEQ, K), \
1295 INSN_3(JMP, JNE, K), \
1296 INSN_3(JMP, JGT, K), \
1297 INSN_3(JMP, JLT, K), \
1298 INSN_3(JMP, JGE, K), \
1299 INSN_3(JMP, JLE, K), \
1300 INSN_3(JMP, JSGT, K), \
1301 INSN_3(JMP, JSLT, K), \
1302 INSN_3(JMP, JSGE, K), \
1303 INSN_3(JMP, JSLE, K), \
1304 INSN_3(JMP, JSET, K), \
1306 /* Store instructions. */ \
1307 /* Register based. */ \
1308 INSN_3(STX, MEM, B), \
1309 INSN_3(STX, MEM, H), \
1310 INSN_3(STX, MEM, W), \
1311 INSN_3(STX, MEM, DW), \
1312 INSN_3(STX, XADD, W), \
1313 INSN_3(STX, XADD, DW), \
1314 /* Immediate based. */ \
1315 INSN_3(ST, MEM, B), \
1316 INSN_3(ST, MEM, H), \
1317 INSN_3(ST, MEM, W), \
1318 INSN_3(ST, MEM, DW), \
1319 /* Load instructions. */ \
1320 /* Register based. */ \
1321 INSN_3(LDX, MEM, B), \
1322 INSN_3(LDX, MEM, H), \
1323 INSN_3(LDX, MEM, W), \
1324 INSN_3(LDX, MEM, DW), \
1325 /* Immediate based. */ \
1328 bool bpf_opcode_in_insntable(u8 code
)
1330 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1331 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1332 static const bool public_insntable
[256] = {
1333 [0 ... 255] = false,
1334 /* Now overwrite non-defaults ... */
1335 BPF_INSN_MAP(BPF_INSN_2_TBL
, BPF_INSN_3_TBL
),
1336 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1337 [BPF_LD
| BPF_ABS
| BPF_B
] = true,
1338 [BPF_LD
| BPF_ABS
| BPF_H
] = true,
1339 [BPF_LD
| BPF_ABS
| BPF_W
] = true,
1340 [BPF_LD
| BPF_IND
| BPF_B
] = true,
1341 [BPF_LD
| BPF_IND
| BPF_H
] = true,
1342 [BPF_LD
| BPF_IND
| BPF_W
] = true,
1344 #undef BPF_INSN_3_TBL
1345 #undef BPF_INSN_2_TBL
1346 return public_insntable
[code
];
1349 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1350 u64 __weak
bpf_probe_read_kernel(void *dst
, u32 size
, const void *unsafe_ptr
)
1352 memset(dst
, 0, size
);
1357 * __bpf_prog_run - run eBPF program on a given context
1358 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1359 * @insn: is the array of eBPF instructions
1360 * @stack: is the eBPF storage stack
1362 * Decode and execute eBPF instructions.
1364 static u64
___bpf_prog_run(u64
*regs
, const struct bpf_insn
*insn
, u64
*stack
)
1366 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1367 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1368 static const void * const jumptable
[256] __annotate_jump_table
= {
1369 [0 ... 255] = &&default_label
,
1370 /* Now overwrite non-defaults ... */
1371 BPF_INSN_MAP(BPF_INSN_2_LBL
, BPF_INSN_3_LBL
),
1372 /* Non-UAPI available opcodes. */
1373 [BPF_JMP
| BPF_CALL_ARGS
] = &&JMP_CALL_ARGS
,
1374 [BPF_JMP
| BPF_TAIL_CALL
] = &&JMP_TAIL_CALL
,
1375 [BPF_LDX
| BPF_PROBE_MEM
| BPF_B
] = &&LDX_PROBE_MEM_B
,
1376 [BPF_LDX
| BPF_PROBE_MEM
| BPF_H
] = &&LDX_PROBE_MEM_H
,
1377 [BPF_LDX
| BPF_PROBE_MEM
| BPF_W
] = &&LDX_PROBE_MEM_W
,
1378 [BPF_LDX
| BPF_PROBE_MEM
| BPF_DW
] = &&LDX_PROBE_MEM_DW
,
1380 #undef BPF_INSN_3_LBL
1381 #undef BPF_INSN_2_LBL
1382 u32 tail_call_cnt
= 0;
1384 #define CONT ({ insn++; goto select_insn; })
1385 #define CONT_JMP ({ insn++; goto select_insn; })
1388 goto *jumptable
[insn
->code
];
1391 #define ALU(OPCODE, OP) \
1392 ALU64_##OPCODE##_X: \
1396 DST = (u32) DST OP (u32) SRC; \
1398 ALU64_##OPCODE##_K: \
1402 DST = (u32) DST OP (u32) IMM; \
1433 DST
= (u64
) (u32
) insn
[0].imm
| ((u64
) (u32
) insn
[1].imm
) << 32;
1437 DST
= (u64
) (u32
) (((s32
) DST
) >> SRC
);
1440 DST
= (u64
) (u32
) (((s32
) DST
) >> IMM
);
1443 (*(s64
*) &DST
) >>= SRC
;
1446 (*(s64
*) &DST
) >>= IMM
;
1449 div64_u64_rem(DST
, SRC
, &AX
);
1454 DST
= do_div(AX
, (u32
) SRC
);
1457 div64_u64_rem(DST
, IMM
, &AX
);
1462 DST
= do_div(AX
, (u32
) IMM
);
1465 DST
= div64_u64(DST
, SRC
);
1469 do_div(AX
, (u32
) SRC
);
1473 DST
= div64_u64(DST
, IMM
);
1477 do_div(AX
, (u32
) IMM
);
1483 DST
= (__force u16
) cpu_to_be16(DST
);
1486 DST
= (__force u32
) cpu_to_be32(DST
);
1489 DST
= (__force u64
) cpu_to_be64(DST
);
1496 DST
= (__force u16
) cpu_to_le16(DST
);
1499 DST
= (__force u32
) cpu_to_le32(DST
);
1502 DST
= (__force u64
) cpu_to_le64(DST
);
1509 /* Function call scratches BPF_R1-BPF_R5 registers,
1510 * preserves BPF_R6-BPF_R9, and stores return value
1513 BPF_R0
= (__bpf_call_base
+ insn
->imm
)(BPF_R1
, BPF_R2
, BPF_R3
,
1518 BPF_R0
= (__bpf_call_base_args
+ insn
->imm
)(BPF_R1
, BPF_R2
,
1521 insn
+ insn
->off
+ 1);
1525 struct bpf_map
*map
= (struct bpf_map
*) (unsigned long) BPF_R2
;
1526 struct bpf_array
*array
= container_of(map
, struct bpf_array
, map
);
1527 struct bpf_prog
*prog
;
1530 if (unlikely(index
>= array
->map
.max_entries
))
1532 if (unlikely(tail_call_cnt
> MAX_TAIL_CALL_CNT
))
1537 prog
= READ_ONCE(array
->ptrs
[index
]);
1541 /* ARG1 at this point is guaranteed to point to CTX from
1542 * the verifier side due to the fact that the tail call is
1543 * handled like a helper, that is, bpf_tail_call_proto,
1544 * where arg1_type is ARG_PTR_TO_CTX.
1546 insn
= prog
->insnsi
;
1557 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1559 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1560 insn += insn->off; \
1564 JMP32_##OPCODE##_X: \
1565 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1566 insn += insn->off; \
1571 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1572 insn += insn->off; \
1576 JMP32_##OPCODE##_K: \
1577 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1578 insn += insn->off; \
1582 COND_JMP(u
, JEQ
, ==)
1583 COND_JMP(u
, JNE
, !=)
1586 COND_JMP(u
, JGE
, >=)
1587 COND_JMP(u
, JLE
, <=)
1588 COND_JMP(u
, JSET
, &)
1589 COND_JMP(s
, JSGT
, >)
1590 COND_JMP(s
, JSLT
, <)
1591 COND_JMP(s
, JSGE
, >=)
1592 COND_JMP(s
, JSLE
, <=)
1594 /* STX and ST and LDX*/
1595 #define LDST(SIZEOP, SIZE) \
1597 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1600 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1603 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1611 #define LDX_PROBE(SIZEOP, SIZE) \
1612 LDX_PROBE_MEM_##SIZEOP: \
1613 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
1621 STX_XADD_W
: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1622 atomic_add((u32
) SRC
, (atomic_t
*)(unsigned long)
1625 STX_XADD_DW
: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1626 atomic64_add((u64
) SRC
, (atomic64_t
*)(unsigned long)
1631 /* If we ever reach this, we have a bug somewhere. Die hard here
1632 * instead of just returning 0; we could be somewhere in a subprog,
1633 * so execution could continue otherwise which we do /not/ want.
1635 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1637 pr_warn("BPF interpreter: unknown opcode %02x\n", insn
->code
);
1642 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1643 #define DEFINE_BPF_PROG_RUN(stack_size) \
1644 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1646 u64 stack[stack_size / sizeof(u64)]; \
1647 u64 regs[MAX_BPF_EXT_REG]; \
1649 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1650 ARG1 = (u64) (unsigned long) ctx; \
1651 return ___bpf_prog_run(regs, insn, stack); \
1654 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1655 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1656 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1657 const struct bpf_insn *insn) \
1659 u64 stack[stack_size / sizeof(u64)]; \
1660 u64 regs[MAX_BPF_EXT_REG]; \
1662 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1668 return ___bpf_prog_run(regs, insn, stack); \
1671 #define EVAL1(FN, X) FN(X)
1672 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1673 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1674 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1675 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1676 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1678 EVAL6(DEFINE_BPF_PROG_RUN
, 32, 64, 96, 128, 160, 192);
1679 EVAL6(DEFINE_BPF_PROG_RUN
, 224, 256, 288, 320, 352, 384);
1680 EVAL4(DEFINE_BPF_PROG_RUN
, 416, 448, 480, 512);
1682 EVAL6(DEFINE_BPF_PROG_RUN_ARGS
, 32, 64, 96, 128, 160, 192);
1683 EVAL6(DEFINE_BPF_PROG_RUN_ARGS
, 224, 256, 288, 320, 352, 384);
1684 EVAL4(DEFINE_BPF_PROG_RUN_ARGS
, 416, 448, 480, 512);
1686 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1688 static unsigned int (*interpreters
[])(const void *ctx
,
1689 const struct bpf_insn
*insn
) = {
1690 EVAL6(PROG_NAME_LIST
, 32, 64, 96, 128, 160, 192)
1691 EVAL6(PROG_NAME_LIST
, 224, 256, 288, 320, 352, 384)
1692 EVAL4(PROG_NAME_LIST
, 416, 448, 480, 512)
1694 #undef PROG_NAME_LIST
1695 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1696 static u64 (*interpreters_args
[])(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
,
1697 const struct bpf_insn
*insn
) = {
1698 EVAL6(PROG_NAME_LIST
, 32, 64, 96, 128, 160, 192)
1699 EVAL6(PROG_NAME_LIST
, 224, 256, 288, 320, 352, 384)
1700 EVAL4(PROG_NAME_LIST
, 416, 448, 480, 512)
1702 #undef PROG_NAME_LIST
1704 void bpf_patch_call_args(struct bpf_insn
*insn
, u32 stack_depth
)
1706 stack_depth
= max_t(u32
, stack_depth
, 1);
1707 insn
->off
= (s16
) insn
->imm
;
1708 insn
->imm
= interpreters_args
[(round_up(stack_depth
, 32) / 32) - 1] -
1709 __bpf_call_base_args
;
1710 insn
->code
= BPF_JMP
| BPF_CALL_ARGS
;
1714 static unsigned int __bpf_prog_ret0_warn(const void *ctx
,
1715 const struct bpf_insn
*insn
)
1717 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1718 * is not working properly, so warn about it!
1725 bool bpf_prog_array_compatible(struct bpf_array
*array
,
1726 const struct bpf_prog
*fp
)
1728 if (fp
->kprobe_override
)
1731 if (!array
->aux
->type
) {
1732 /* There's no owner yet where we could check for
1735 array
->aux
->type
= fp
->type
;
1736 array
->aux
->jited
= fp
->jited
;
1740 return array
->aux
->type
== fp
->type
&&
1741 array
->aux
->jited
== fp
->jited
;
1744 static int bpf_check_tail_call(const struct bpf_prog
*fp
)
1746 struct bpf_prog_aux
*aux
= fp
->aux
;
1749 mutex_lock(&aux
->used_maps_mutex
);
1750 for (i
= 0; i
< aux
->used_map_cnt
; i
++) {
1751 struct bpf_map
*map
= aux
->used_maps
[i
];
1752 struct bpf_array
*array
;
1754 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
1757 array
= container_of(map
, struct bpf_array
, map
);
1758 if (!bpf_prog_array_compatible(array
, fp
)) {
1765 mutex_unlock(&aux
->used_maps_mutex
);
1769 static void bpf_prog_select_func(struct bpf_prog
*fp
)
1771 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1772 u32 stack_depth
= max_t(u32
, fp
->aux
->stack_depth
, 1);
1774 fp
->bpf_func
= interpreters
[(round_up(stack_depth
, 32) / 32) - 1];
1776 fp
->bpf_func
= __bpf_prog_ret0_warn
;
1781 * bpf_prog_select_runtime - select exec runtime for BPF program
1782 * @fp: bpf_prog populated with internal BPF program
1783 * @err: pointer to error variable
1785 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1786 * The BPF program will be executed via BPF_PROG_RUN() macro.
1788 struct bpf_prog
*bpf_prog_select_runtime(struct bpf_prog
*fp
, int *err
)
1790 /* In case of BPF to BPF calls, verifier did all the prep
1791 * work with regards to JITing, etc.
1796 bpf_prog_select_func(fp
);
1798 /* eBPF JITs can rewrite the program in case constant
1799 * blinding is active. However, in case of error during
1800 * blinding, bpf_int_jit_compile() must always return a
1801 * valid program, which in this case would simply not
1802 * be JITed, but falls back to the interpreter.
1804 if (!bpf_prog_is_dev_bound(fp
->aux
)) {
1805 *err
= bpf_prog_alloc_jited_linfo(fp
);
1809 fp
= bpf_int_jit_compile(fp
);
1811 bpf_prog_free_jited_linfo(fp
);
1812 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1817 bpf_prog_free_unused_jited_linfo(fp
);
1820 *err
= bpf_prog_offload_compile(fp
);
1826 bpf_prog_lock_ro(fp
);
1828 /* The tail call compatibility check can only be done at
1829 * this late stage as we need to determine, if we deal
1830 * with JITed or non JITed program concatenations and not
1831 * all eBPF JITs might immediately support all features.
1833 *err
= bpf_check_tail_call(fp
);
1837 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime
);
1839 static unsigned int __bpf_prog_ret1(const void *ctx
,
1840 const struct bpf_insn
*insn
)
1845 static struct bpf_prog_dummy
{
1846 struct bpf_prog prog
;
1847 } dummy_bpf_prog
= {
1849 .bpf_func
= __bpf_prog_ret1
,
1853 /* to avoid allocating empty bpf_prog_array for cgroups that
1854 * don't have bpf program attached use one global 'empty_prog_array'
1855 * It will not be modified the caller of bpf_prog_array_alloc()
1856 * (since caller requested prog_cnt == 0)
1857 * that pointer should be 'freed' by bpf_prog_array_free()
1860 struct bpf_prog_array hdr
;
1861 struct bpf_prog
*null_prog
;
1862 } empty_prog_array
= {
1866 struct bpf_prog_array
*bpf_prog_array_alloc(u32 prog_cnt
, gfp_t flags
)
1869 return kzalloc(sizeof(struct bpf_prog_array
) +
1870 sizeof(struct bpf_prog_array_item
) *
1874 return &empty_prog_array
.hdr
;
1877 void bpf_prog_array_free(struct bpf_prog_array
*progs
)
1879 if (!progs
|| progs
== &empty_prog_array
.hdr
)
1881 kfree_rcu(progs
, rcu
);
1884 int bpf_prog_array_length(struct bpf_prog_array
*array
)
1886 struct bpf_prog_array_item
*item
;
1889 for (item
= array
->items
; item
->prog
; item
++)
1890 if (item
->prog
!= &dummy_bpf_prog
.prog
)
1895 bool bpf_prog_array_is_empty(struct bpf_prog_array
*array
)
1897 struct bpf_prog_array_item
*item
;
1899 for (item
= array
->items
; item
->prog
; item
++)
1900 if (item
->prog
!= &dummy_bpf_prog
.prog
)
1905 static bool bpf_prog_array_copy_core(struct bpf_prog_array
*array
,
1909 struct bpf_prog_array_item
*item
;
1912 for (item
= array
->items
; item
->prog
; item
++) {
1913 if (item
->prog
== &dummy_bpf_prog
.prog
)
1915 prog_ids
[i
] = item
->prog
->aux
->id
;
1916 if (++i
== request_cnt
) {
1922 return !!(item
->prog
);
1925 int bpf_prog_array_copy_to_user(struct bpf_prog_array
*array
,
1926 __u32 __user
*prog_ids
, u32 cnt
)
1928 unsigned long err
= 0;
1932 /* users of this function are doing:
1933 * cnt = bpf_prog_array_length();
1935 * bpf_prog_array_copy_to_user(..., cnt);
1936 * so below kcalloc doesn't need extra cnt > 0 check.
1938 ids
= kcalloc(cnt
, sizeof(u32
), GFP_USER
| __GFP_NOWARN
);
1941 nospc
= bpf_prog_array_copy_core(array
, ids
, cnt
);
1942 err
= copy_to_user(prog_ids
, ids
, cnt
* sizeof(u32
));
1951 void bpf_prog_array_delete_safe(struct bpf_prog_array
*array
,
1952 struct bpf_prog
*old_prog
)
1954 struct bpf_prog_array_item
*item
;
1956 for (item
= array
->items
; item
->prog
; item
++)
1957 if (item
->prog
== old_prog
) {
1958 WRITE_ONCE(item
->prog
, &dummy_bpf_prog
.prog
);
1964 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1965 * index into the program array with
1966 * a dummy no-op program.
1967 * @array: a bpf_prog_array
1968 * @index: the index of the program to replace
1970 * Skips over dummy programs, by not counting them, when calculating
1971 * the position of the program to replace.
1975 * * -EINVAL - Invalid index value. Must be a non-negative integer.
1976 * * -ENOENT - Index out of range
1978 int bpf_prog_array_delete_safe_at(struct bpf_prog_array
*array
, int index
)
1980 return bpf_prog_array_update_at(array
, index
, &dummy_bpf_prog
.prog
);
1984 * bpf_prog_array_update_at() - Updates the program at the given index
1985 * into the program array.
1986 * @array: a bpf_prog_array
1987 * @index: the index of the program to update
1988 * @prog: the program to insert into the array
1990 * Skips over dummy programs, by not counting them, when calculating
1991 * the position of the program to update.
1995 * * -EINVAL - Invalid index value. Must be a non-negative integer.
1996 * * -ENOENT - Index out of range
1998 int bpf_prog_array_update_at(struct bpf_prog_array
*array
, int index
,
1999 struct bpf_prog
*prog
)
2001 struct bpf_prog_array_item
*item
;
2003 if (unlikely(index
< 0))
2006 for (item
= array
->items
; item
->prog
; item
++) {
2007 if (item
->prog
== &dummy_bpf_prog
.prog
)
2010 WRITE_ONCE(item
->prog
, prog
);
2018 int bpf_prog_array_copy(struct bpf_prog_array
*old_array
,
2019 struct bpf_prog
*exclude_prog
,
2020 struct bpf_prog
*include_prog
,
2021 struct bpf_prog_array
**new_array
)
2023 int new_prog_cnt
, carry_prog_cnt
= 0;
2024 struct bpf_prog_array_item
*existing
;
2025 struct bpf_prog_array
*array
;
2026 bool found_exclude
= false;
2027 int new_prog_idx
= 0;
2029 /* Figure out how many existing progs we need to carry over to
2033 existing
= old_array
->items
;
2034 for (; existing
->prog
; existing
++) {
2035 if (existing
->prog
== exclude_prog
) {
2036 found_exclude
= true;
2039 if (existing
->prog
!= &dummy_bpf_prog
.prog
)
2041 if (existing
->prog
== include_prog
)
2046 if (exclude_prog
&& !found_exclude
)
2049 /* How many progs (not NULL) will be in the new array? */
2050 new_prog_cnt
= carry_prog_cnt
;
2054 /* Do we have any prog (not NULL) in the new array? */
2055 if (!new_prog_cnt
) {
2060 /* +1 as the end of prog_array is marked with NULL */
2061 array
= bpf_prog_array_alloc(new_prog_cnt
+ 1, GFP_KERNEL
);
2065 /* Fill in the new prog array */
2066 if (carry_prog_cnt
) {
2067 existing
= old_array
->items
;
2068 for (; existing
->prog
; existing
++)
2069 if (existing
->prog
!= exclude_prog
&&
2070 existing
->prog
!= &dummy_bpf_prog
.prog
) {
2071 array
->items
[new_prog_idx
++].prog
=
2076 array
->items
[new_prog_idx
++].prog
= include_prog
;
2077 array
->items
[new_prog_idx
].prog
= NULL
;
2082 int bpf_prog_array_copy_info(struct bpf_prog_array
*array
,
2083 u32
*prog_ids
, u32 request_cnt
,
2089 cnt
= bpf_prog_array_length(array
);
2093 /* return early if user requested only program count or nothing to copy */
2094 if (!request_cnt
|| !cnt
)
2097 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2098 return bpf_prog_array_copy_core(array
, prog_ids
, request_cnt
) ? -ENOSPC
2102 void __bpf_free_used_maps(struct bpf_prog_aux
*aux
,
2103 struct bpf_map
**used_maps
, u32 len
)
2105 struct bpf_map
*map
;
2108 for (i
= 0; i
< len
; i
++) {
2110 if (map
->ops
->map_poke_untrack
)
2111 map
->ops
->map_poke_untrack(map
, aux
);
2116 static void bpf_free_used_maps(struct bpf_prog_aux
*aux
)
2118 __bpf_free_used_maps(aux
, aux
->used_maps
, aux
->used_map_cnt
);
2119 kfree(aux
->used_maps
);
2122 static void bpf_prog_free_deferred(struct work_struct
*work
)
2124 struct bpf_prog_aux
*aux
;
2127 aux
= container_of(work
, struct bpf_prog_aux
, work
);
2128 bpf_free_used_maps(aux
);
2129 if (bpf_prog_is_dev_bound(aux
))
2130 bpf_prog_offload_destroy(aux
->prog
);
2131 #ifdef CONFIG_PERF_EVENTS
2132 if (aux
->prog
->has_callchain_buf
)
2133 put_callchain_buffers();
2135 if (aux
->dst_trampoline
)
2136 bpf_trampoline_put(aux
->dst_trampoline
);
2137 for (i
= 0; i
< aux
->func_cnt
; i
++)
2138 bpf_jit_free(aux
->func
[i
]);
2139 if (aux
->func_cnt
) {
2141 bpf_prog_unlock_free(aux
->prog
);
2143 bpf_jit_free(aux
->prog
);
2147 /* Free internal BPF program */
2148 void bpf_prog_free(struct bpf_prog
*fp
)
2150 struct bpf_prog_aux
*aux
= fp
->aux
;
2153 bpf_prog_put(aux
->dst_prog
);
2154 INIT_WORK(&aux
->work
, bpf_prog_free_deferred
);
2155 schedule_work(&aux
->work
);
2157 EXPORT_SYMBOL_GPL(bpf_prog_free
);
2159 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2160 static DEFINE_PER_CPU(struct rnd_state
, bpf_user_rnd_state
);
2162 void bpf_user_rnd_init_once(void)
2164 prandom_init_once(&bpf_user_rnd_state
);
2167 BPF_CALL_0(bpf_user_rnd_u32
)
2169 /* Should someone ever have the rather unwise idea to use some
2170 * of the registers passed into this function, then note that
2171 * this function is called from native eBPF and classic-to-eBPF
2172 * transformations. Register assignments from both sides are
2173 * different, f.e. classic always sets fn(ctx, A, X) here.
2175 struct rnd_state
*state
;
2178 state
= &get_cpu_var(bpf_user_rnd_state
);
2179 res
= prandom_u32_state(state
);
2180 put_cpu_var(bpf_user_rnd_state
);
2185 BPF_CALL_0(bpf_get_raw_cpu_id
)
2187 return raw_smp_processor_id();
2190 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2191 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak
;
2192 const struct bpf_func_proto bpf_map_update_elem_proto __weak
;
2193 const struct bpf_func_proto bpf_map_delete_elem_proto __weak
;
2194 const struct bpf_func_proto bpf_map_push_elem_proto __weak
;
2195 const struct bpf_func_proto bpf_map_pop_elem_proto __weak
;
2196 const struct bpf_func_proto bpf_map_peek_elem_proto __weak
;
2197 const struct bpf_func_proto bpf_spin_lock_proto __weak
;
2198 const struct bpf_func_proto bpf_spin_unlock_proto __weak
;
2199 const struct bpf_func_proto bpf_jiffies64_proto __weak
;
2201 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak
;
2202 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak
;
2203 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak
;
2204 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak
;
2205 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak
;
2206 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak
;
2208 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak
;
2209 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak
;
2210 const struct bpf_func_proto bpf_get_current_comm_proto __weak
;
2211 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak
;
2212 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak
;
2213 const struct bpf_func_proto bpf_get_local_storage_proto __weak
;
2214 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak
;
2215 const struct bpf_func_proto bpf_snprintf_btf_proto __weak
;
2216 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak
;
2218 const struct bpf_func_proto
* __weak
bpf_get_trace_printk_proto(void)
2224 bpf_event_output(struct bpf_map
*map
, u64 flags
, void *meta
, u64 meta_size
,
2225 void *ctx
, u64 ctx_size
, bpf_ctx_copy_t ctx_copy
)
2229 EXPORT_SYMBOL_GPL(bpf_event_output
);
2231 /* Always built-in helper functions. */
2232 const struct bpf_func_proto bpf_tail_call_proto
= {
2235 .ret_type
= RET_VOID
,
2236 .arg1_type
= ARG_PTR_TO_CTX
,
2237 .arg2_type
= ARG_CONST_MAP_PTR
,
2238 .arg3_type
= ARG_ANYTHING
,
2241 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2242 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2243 * eBPF and implicitly also cBPF can get JITed!
2245 struct bpf_prog
* __weak
bpf_int_jit_compile(struct bpf_prog
*prog
)
2250 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2251 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2253 void __weak
bpf_jit_compile(struct bpf_prog
*prog
)
2257 bool __weak
bpf_helper_changes_pkt_data(void *func
)
2262 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2263 * analysis code and wants explicit zero extension inserted by verifier.
2264 * Otherwise, return FALSE.
2266 bool __weak
bpf_jit_needs_zext(void)
2271 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2272 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2274 int __weak
skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
,
2280 int __weak
bpf_arch_text_poke(void *ip
, enum bpf_text_poke_type t
,
2281 void *addr1
, void *addr2
)
2286 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key
);
2287 EXPORT_SYMBOL(bpf_stats_enabled_key
);
2289 /* All definitions of tracepoints related to BPF. */
2290 #define CREATE_TRACE_POINTS
2291 #include <linux/bpf_trace.h>
2293 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception
);
2294 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx
);