Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / bpf / verifier.c
blob17270b8404f173ff8e164fa542d11fa73b571cf9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
26 #include "disasm.h"
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225 bool poisoned = bpf_map_key_poisoned(aux);
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 struct btf *btf;
242 u32 btf_id;
243 struct btf *ret_btf;
244 u32 ret_btf_id;
247 struct btf *btf_vmlinux;
249 static DEFINE_MUTEX(bpf_verifier_lock);
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
254 const struct bpf_line_info *linfo;
255 const struct bpf_prog *prog;
256 u32 i, nr_linfo;
258 prog = env->prog;
259 nr_linfo = prog->aux->nr_linfo;
261 if (!nr_linfo || insn_off >= prog->len)
262 return NULL;
264 linfo = prog->aux->linfo;
265 for (i = 1; i < nr_linfo; i++)
266 if (insn_off < linfo[i].insn_off)
267 break;
269 return &linfo[i - 1];
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 va_list args)
275 unsigned int n;
277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 "verifier log line truncated - local buffer too short\n");
282 n = min(log->len_total - log->len_used - 1, n);
283 log->kbuf[n] = '\0';
285 if (log->level == BPF_LOG_KERNEL) {
286 pr_err("BPF:%s\n", log->kbuf);
287 return;
289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 log->len_used += n;
291 else
292 log->ubuf = NULL;
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
297 char zero = 0;
299 if (!bpf_verifier_log_needed(log))
300 return;
302 log->len_used = new_pos;
303 if (put_user(zero, log->ubuf + new_pos))
304 log->ubuf = NULL;
307 /* log_level controls verbosity level of eBPF verifier.
308 * bpf_verifier_log_write() is used to dump the verification trace to the log,
309 * so the user can figure out what's wrong with the program
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 const char *fmt, ...)
314 va_list args;
316 if (!bpf_verifier_log_needed(&env->log))
317 return;
319 va_start(args, fmt);
320 bpf_verifier_vlog(&env->log, fmt, args);
321 va_end(args);
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
327 struct bpf_verifier_env *env = private_data;
328 va_list args;
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
333 va_start(args, fmt);
334 bpf_verifier_vlog(&env->log, fmt, args);
335 va_end(args);
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 const char *fmt, ...)
341 va_list args;
343 if (!bpf_verifier_log_needed(log))
344 return;
346 va_start(args, fmt);
347 bpf_verifier_vlog(log, fmt, args);
348 va_end(args);
351 static const char *ltrim(const char *s)
353 while (isspace(*s))
354 s++;
356 return s;
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 u32 insn_off,
361 const char *prefix_fmt, ...)
363 const struct bpf_line_info *linfo;
365 if (!bpf_verifier_log_needed(&env->log))
366 return;
368 linfo = find_linfo(env, insn_off);
369 if (!linfo || linfo == env->prev_linfo)
370 return;
372 if (prefix_fmt) {
373 va_list args;
375 va_start(args, prefix_fmt);
376 bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 va_end(args);
380 verbose(env, "%s\n",
381 ltrim(btf_name_by_offset(env->prog->aux->btf,
382 linfo->line_off)));
384 env->prev_linfo = linfo;
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
389 return type == PTR_TO_PACKET ||
390 type == PTR_TO_PACKET_META;
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCK_COMMON ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_XDP_SOCK;
401 static bool reg_type_not_null(enum bpf_reg_type type)
403 return type == PTR_TO_SOCKET ||
404 type == PTR_TO_TCP_SOCK ||
405 type == PTR_TO_MAP_VALUE ||
406 type == PTR_TO_SOCK_COMMON;
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
411 return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 type == PTR_TO_SOCKET_OR_NULL ||
413 type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 type == PTR_TO_TCP_SOCK_OR_NULL ||
415 type == PTR_TO_BTF_ID_OR_NULL ||
416 type == PTR_TO_MEM_OR_NULL ||
417 type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 type == PTR_TO_RDWR_BUF_OR_NULL;
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
423 return reg->type == PTR_TO_MAP_VALUE &&
424 map_value_has_spin_lock(reg->map_ptr);
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
429 return type == PTR_TO_SOCKET ||
430 type == PTR_TO_SOCKET_OR_NULL ||
431 type == PTR_TO_TCP_SOCK ||
432 type == PTR_TO_TCP_SOCK_OR_NULL ||
433 type == PTR_TO_MEM ||
434 type == PTR_TO_MEM_OR_NULL;
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
439 return type == ARG_PTR_TO_SOCK_COMMON;
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 type == ARG_PTR_TO_MEM_OR_NULL ||
446 type == ARG_PTR_TO_CTX_OR_NULL ||
447 type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
451 /* Determine whether the function releases some resources allocated by another
452 * function call. The first reference type argument will be assumed to be
453 * released by release_reference().
455 static bool is_release_function(enum bpf_func_id func_id)
457 return func_id == BPF_FUNC_sk_release ||
458 func_id == BPF_FUNC_ringbuf_submit ||
459 func_id == BPF_FUNC_ringbuf_discard;
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
464 return func_id == BPF_FUNC_sk_lookup_tcp ||
465 func_id == BPF_FUNC_sk_lookup_udp ||
466 func_id == BPF_FUNC_skc_lookup_tcp ||
467 func_id == BPF_FUNC_map_lookup_elem ||
468 func_id == BPF_FUNC_ringbuf_reserve;
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 const struct bpf_map *map)
474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
476 if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 func_id == BPF_FUNC_sk_lookup_udp ||
478 func_id == BPF_FUNC_skc_lookup_tcp ||
479 func_id == BPF_FUNC_ringbuf_reserve)
480 return true;
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
487 return false;
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
492 return func_id == BPF_FUNC_tcp_sock ||
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 func_id == BPF_FUNC_skc_to_tcp_request_sock;
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 [NOT_INIT] = "?",
504 [SCALAR_VALUE] = "inv",
505 [PTR_TO_CTX] = "ctx",
506 [CONST_PTR_TO_MAP] = "map_ptr",
507 [PTR_TO_MAP_VALUE] = "map_value",
508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 [PTR_TO_STACK] = "fp",
510 [PTR_TO_PACKET] = "pkt",
511 [PTR_TO_PACKET_META] = "pkt_meta",
512 [PTR_TO_PACKET_END] = "pkt_end",
513 [PTR_TO_FLOW_KEYS] = "flow_keys",
514 [PTR_TO_SOCKET] = "sock",
515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 [PTR_TO_SOCK_COMMON] = "sock_common",
517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 [PTR_TO_TCP_SOCK] = "tcp_sock",
519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 [PTR_TO_TP_BUFFER] = "tp_buffer",
521 [PTR_TO_XDP_SOCK] = "xdp_sock",
522 [PTR_TO_BTF_ID] = "ptr_",
523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
525 [PTR_TO_MEM] = "mem",
526 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
527 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 [PTR_TO_RDWR_BUF] = "rdwr_buf",
530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
533 static char slot_type_char[] = {
534 [STACK_INVALID] = '?',
535 [STACK_SPILL] = 'r',
536 [STACK_MISC] = 'm',
537 [STACK_ZERO] = '0',
540 static void print_liveness(struct bpf_verifier_env *env,
541 enum bpf_reg_liveness live)
543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 verbose(env, "_");
545 if (live & REG_LIVE_READ)
546 verbose(env, "r");
547 if (live & REG_LIVE_WRITTEN)
548 verbose(env, "w");
549 if (live & REG_LIVE_DONE)
550 verbose(env, "D");
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 const struct bpf_reg_state *reg)
556 struct bpf_verifier_state *cur = env->cur_state;
558 return cur->frame[reg->frameno];
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 const struct bpf_func_state *state)
569 const struct bpf_reg_state *reg;
570 enum bpf_reg_type t;
571 int i;
573 if (state->frameno)
574 verbose(env, " frame%d:", state->frameno);
575 for (i = 0; i < MAX_BPF_REG; i++) {
576 reg = &state->regs[i];
577 t = reg->type;
578 if (t == NOT_INIT)
579 continue;
580 verbose(env, " R%d", i);
581 print_liveness(env, reg->live);
582 verbose(env, "=%s", reg_type_str[t]);
583 if (t == SCALAR_VALUE && reg->precise)
584 verbose(env, "P");
585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 tnum_is_const(reg->var_off)) {
587 /* reg->off should be 0 for SCALAR_VALUE */
588 verbose(env, "%lld", reg->var_off.value + reg->off);
589 } else {
590 if (t == PTR_TO_BTF_ID ||
591 t == PTR_TO_BTF_ID_OR_NULL ||
592 t == PTR_TO_PERCPU_BTF_ID)
593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 verbose(env, "(id=%d", reg->id);
595 if (reg_type_may_be_refcounted_or_null(t))
596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 if (t != SCALAR_VALUE)
598 verbose(env, ",off=%d", reg->off);
599 if (type_is_pkt_pointer(t))
600 verbose(env, ",r=%d", reg->range);
601 else if (t == CONST_PTR_TO_MAP ||
602 t == PTR_TO_MAP_VALUE ||
603 t == PTR_TO_MAP_VALUE_OR_NULL)
604 verbose(env, ",ks=%d,vs=%d",
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
612 verbose(env, ",imm=%llx", reg->var_off.value);
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
616 verbose(env, ",smin_value=%lld",
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
620 verbose(env, ",smax_value=%lld",
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
623 verbose(env, ",umin_value=%llu",
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
626 verbose(env, ",umax_value=%llu",
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 verbose(env, ",var_off=%s", tn_buf);
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
651 verbose(env, ")");
654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str[t]);
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
679 verbose(env, "=%s", types_buf);
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
688 verbose(env, "\n");
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692 static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
728 return 0; \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
754 * the program calls into realloc_func_state() to grow the stack size.
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
768 /* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
786 return id;
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
792 int i, last_idx;
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
802 return 0;
805 return -EINVAL;
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
817 return 0;
820 static void free_func_state(struct bpf_func_state *state)
822 if (!state)
823 return;
824 kfree(state->refs);
825 kfree(state->stack);
826 kfree(state);
829 static void clear_jmp_history(struct bpf_verifier_state *state)
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
839 int i;
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
845 clear_jmp_history(state);
846 if (free_self)
847 kfree(state);
850 /* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
853 static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
856 int err;
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
866 return copy_stack_state(dst, src);
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
872 struct bpf_func_state *dst;
873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 int i, err;
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
890 dst_state->speculative = src->speculative;
891 dst_state->curframe = src->curframe;
892 dst_state->active_spin_lock = src->active_spin_lock;
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
909 return 0;
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
914 while (st) {
915 u32 br = --st->branches;
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 int *insn_idx, bool pop_log)
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
936 if (env->head == NULL)
937 return -ENOENT;
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
948 if (prev_insn_idx)
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
951 free_verifier_state(&head->st, false);
952 kfree(head);
953 env->head = elem;
954 env->stack_size--;
955 return 0;
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
962 struct bpf_verifier_state *cur = env->cur_state;
963 struct bpf_verifier_stack_elem *elem;
964 int err;
966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 if (!elem)
968 goto err;
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
973 elem->log_pos = env->log.len_used;
974 env->head = elem;
975 env->stack_size++;
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979 elem->st.speculative |= speculative;
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
983 goto err;
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
997 return &elem->st;
998 err:
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
1001 /* pop all elements and return */
1002 while (!pop_stack(env, NULL, NULL, false));
1003 return NULL;
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
1049 /* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1054 __mark_reg_known(reg, 0);
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1059 __mark_reg_known(reg, 0);
1060 reg->type = SCALAR_VALUE;
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 __mark_reg_not_init(env, regs + regno);
1071 return;
1073 __mark_reg_known_zero(regs + regno);
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1078 return type_is_pkt_pointer(reg->type);
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1255 reg->umin_value = reg->u32_min_value;
1256 reg->umax_value = reg->u32_max_value;
1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 * but must be positive otherwise set to worse case bounds
1259 * and refine later from tnum.
1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 reg->smax_value = reg->s32_max_value;
1263 else
1264 reg->smax_value = U32_MAX;
1265 if (reg->s32_min_value >= 0)
1266 reg->smin_value = reg->s32_min_value;
1267 else
1268 reg->smin_value = 0;
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1273 /* special case when 64-bit register has upper 32-bit register
1274 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 * allowing us to use 32-bit bounds directly,
1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 __reg_assign_32_into_64(reg);
1279 } else {
1280 /* Otherwise the best we can do is push lower 32bit known and
1281 * unknown bits into register (var_off set from jmp logic)
1282 * then learn as much as possible from the 64-bit tnum
1283 * known and unknown bits. The previous smin/smax bounds are
1284 * invalid here because of jmp32 compare so mark them unknown
1285 * so they do not impact tnum bounds calculation.
1287 __mark_reg64_unbounded(reg);
1288 __update_reg_bounds(reg);
1291 /* Intersecting with the old var_off might have improved our bounds
1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 * then new var_off is (0; 0x7f...fc) which improves our umax.
1295 __reg_deduce_bounds(reg);
1296 __reg_bound_offset(reg);
1297 __update_reg_bounds(reg);
1300 static bool __reg64_bound_s32(s64 a)
1302 return a > S32_MIN && a < S32_MAX;
1305 static bool __reg64_bound_u32(u64 a)
1307 if (a > U32_MIN && a < U32_MAX)
1308 return true;
1309 return false;
1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1314 __mark_reg32_unbounded(reg);
1316 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1317 reg->s32_min_value = (s32)reg->smin_value;
1318 reg->s32_max_value = (s32)reg->smax_value;
1320 if (__reg64_bound_u32(reg->umin_value))
1321 reg->u32_min_value = (u32)reg->umin_value;
1322 if (__reg64_bound_u32(reg->umax_value))
1323 reg->u32_max_value = (u32)reg->umax_value;
1325 /* Intersecting with the old var_off might have improved our bounds
1326 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 * then new var_off is (0; 0x7f...fc) which improves our umax.
1329 __reg_deduce_bounds(reg);
1330 __reg_bound_offset(reg);
1331 __update_reg_bounds(reg);
1334 /* Mark a register as having a completely unknown (scalar) value. */
1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 struct bpf_reg_state *reg)
1339 * Clear type, id, off, and union(map_ptr, range) and
1340 * padding between 'type' and union
1342 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1343 reg->type = SCALAR_VALUE;
1344 reg->var_off = tnum_unknown;
1345 reg->frameno = 0;
1346 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1347 __mark_reg_unbounded(reg);
1350 static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 struct bpf_reg_state *regs, u32 regno)
1353 if (WARN_ON(regno >= MAX_BPF_REG)) {
1354 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1355 /* Something bad happened, let's kill all regs except FP */
1356 for (regno = 0; regno < BPF_REG_FP; regno++)
1357 __mark_reg_not_init(env, regs + regno);
1358 return;
1360 __mark_reg_unknown(env, regs + regno);
1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 struct bpf_reg_state *reg)
1366 __mark_reg_unknown(env, reg);
1367 reg->type = NOT_INIT;
1370 static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 struct bpf_reg_state *regs, u32 regno)
1373 if (WARN_ON(regno >= MAX_BPF_REG)) {
1374 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1375 /* Something bad happened, let's kill all regs except FP */
1376 for (regno = 0; regno < BPF_REG_FP; regno++)
1377 __mark_reg_not_init(env, regs + regno);
1378 return;
1380 __mark_reg_not_init(env, regs + regno);
1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 struct bpf_reg_state *regs, u32 regno,
1385 enum bpf_reg_type reg_type,
1386 struct btf *btf, u32 btf_id)
1388 if (reg_type == SCALAR_VALUE) {
1389 mark_reg_unknown(env, regs, regno);
1390 return;
1392 mark_reg_known_zero(env, regs, regno);
1393 regs[regno].type = PTR_TO_BTF_ID;
1394 regs[regno].btf = btf;
1395 regs[regno].btf_id = btf_id;
1398 #define DEF_NOT_SUBREG (0)
1399 static void init_reg_state(struct bpf_verifier_env *env,
1400 struct bpf_func_state *state)
1402 struct bpf_reg_state *regs = state->regs;
1403 int i;
1405 for (i = 0; i < MAX_BPF_REG; i++) {
1406 mark_reg_not_init(env, regs, i);
1407 regs[i].live = REG_LIVE_NONE;
1408 regs[i].parent = NULL;
1409 regs[i].subreg_def = DEF_NOT_SUBREG;
1412 /* frame pointer */
1413 regs[BPF_REG_FP].type = PTR_TO_STACK;
1414 mark_reg_known_zero(env, regs, BPF_REG_FP);
1415 regs[BPF_REG_FP].frameno = state->frameno;
1418 #define BPF_MAIN_FUNC (-1)
1419 static void init_func_state(struct bpf_verifier_env *env,
1420 struct bpf_func_state *state,
1421 int callsite, int frameno, int subprogno)
1423 state->callsite = callsite;
1424 state->frameno = frameno;
1425 state->subprogno = subprogno;
1426 init_reg_state(env, state);
1429 enum reg_arg_type {
1430 SRC_OP, /* register is used as source operand */
1431 DST_OP, /* register is used as destination operand */
1432 DST_OP_NO_MARK /* same as above, check only, don't mark */
1435 static int cmp_subprogs(const void *a, const void *b)
1437 return ((struct bpf_subprog_info *)a)->start -
1438 ((struct bpf_subprog_info *)b)->start;
1441 static int find_subprog(struct bpf_verifier_env *env, int off)
1443 struct bpf_subprog_info *p;
1445 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 sizeof(env->subprog_info[0]), cmp_subprogs);
1447 if (!p)
1448 return -ENOENT;
1449 return p - env->subprog_info;
1453 static int add_subprog(struct bpf_verifier_env *env, int off)
1455 int insn_cnt = env->prog->len;
1456 int ret;
1458 if (off >= insn_cnt || off < 0) {
1459 verbose(env, "call to invalid destination\n");
1460 return -EINVAL;
1462 ret = find_subprog(env, off);
1463 if (ret >= 0)
1464 return 0;
1465 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1466 verbose(env, "too many subprograms\n");
1467 return -E2BIG;
1469 env->subprog_info[env->subprog_cnt++].start = off;
1470 sort(env->subprog_info, env->subprog_cnt,
1471 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1472 return 0;
1475 static int check_subprogs(struct bpf_verifier_env *env)
1477 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1478 struct bpf_subprog_info *subprog = env->subprog_info;
1479 struct bpf_insn *insn = env->prog->insnsi;
1480 int insn_cnt = env->prog->len;
1482 /* Add entry function. */
1483 ret = add_subprog(env, 0);
1484 if (ret < 0)
1485 return ret;
1487 /* determine subprog starts. The end is one before the next starts */
1488 for (i = 0; i < insn_cnt; i++) {
1489 if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 continue;
1491 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 continue;
1493 if (!env->bpf_capable) {
1494 verbose(env,
1495 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1496 return -EPERM;
1498 ret = add_subprog(env, i + insn[i].imm + 1);
1499 if (ret < 0)
1500 return ret;
1503 /* Add a fake 'exit' subprog which could simplify subprog iteration
1504 * logic. 'subprog_cnt' should not be increased.
1506 subprog[env->subprog_cnt].start = insn_cnt;
1508 if (env->log.level & BPF_LOG_LEVEL2)
1509 for (i = 0; i < env->subprog_cnt; i++)
1510 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1512 /* now check that all jumps are within the same subprog */
1513 subprog_start = subprog[cur_subprog].start;
1514 subprog_end = subprog[cur_subprog + 1].start;
1515 for (i = 0; i < insn_cnt; i++) {
1516 u8 code = insn[i].code;
1518 if (code == (BPF_JMP | BPF_CALL) &&
1519 insn[i].imm == BPF_FUNC_tail_call &&
1520 insn[i].src_reg != BPF_PSEUDO_CALL)
1521 subprog[cur_subprog].has_tail_call = true;
1522 if (BPF_CLASS(code) == BPF_LD &&
1523 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 subprog[cur_subprog].has_ld_abs = true;
1525 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1526 goto next;
1527 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 goto next;
1529 off = i + insn[i].off + 1;
1530 if (off < subprog_start || off >= subprog_end) {
1531 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 return -EINVAL;
1534 next:
1535 if (i == subprog_end - 1) {
1536 /* to avoid fall-through from one subprog into another
1537 * the last insn of the subprog should be either exit
1538 * or unconditional jump back
1540 if (code != (BPF_JMP | BPF_EXIT) &&
1541 code != (BPF_JMP | BPF_JA)) {
1542 verbose(env, "last insn is not an exit or jmp\n");
1543 return -EINVAL;
1545 subprog_start = subprog_end;
1546 cur_subprog++;
1547 if (cur_subprog < env->subprog_cnt)
1548 subprog_end = subprog[cur_subprog + 1].start;
1551 return 0;
1554 /* Parentage chain of this register (or stack slot) should take care of all
1555 * issues like callee-saved registers, stack slot allocation time, etc.
1557 static int mark_reg_read(struct bpf_verifier_env *env,
1558 const struct bpf_reg_state *state,
1559 struct bpf_reg_state *parent, u8 flag)
1561 bool writes = parent == state->parent; /* Observe write marks */
1562 int cnt = 0;
1564 while (parent) {
1565 /* if read wasn't screened by an earlier write ... */
1566 if (writes && state->live & REG_LIVE_WRITTEN)
1567 break;
1568 if (parent->live & REG_LIVE_DONE) {
1569 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 reg_type_str[parent->type],
1571 parent->var_off.value, parent->off);
1572 return -EFAULT;
1574 /* The first condition is more likely to be true than the
1575 * second, checked it first.
1577 if ((parent->live & REG_LIVE_READ) == flag ||
1578 parent->live & REG_LIVE_READ64)
1579 /* The parentage chain never changes and
1580 * this parent was already marked as LIVE_READ.
1581 * There is no need to keep walking the chain again and
1582 * keep re-marking all parents as LIVE_READ.
1583 * This case happens when the same register is read
1584 * multiple times without writes into it in-between.
1585 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 * then no need to set the weak REG_LIVE_READ32.
1588 break;
1589 /* ... then we depend on parent's value */
1590 parent->live |= flag;
1591 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 if (flag == REG_LIVE_READ64)
1593 parent->live &= ~REG_LIVE_READ32;
1594 state = parent;
1595 parent = state->parent;
1596 writes = true;
1597 cnt++;
1600 if (env->longest_mark_read_walk < cnt)
1601 env->longest_mark_read_walk = cnt;
1602 return 0;
1605 /* This function is supposed to be used by the following 32-bit optimization
1606 * code only. It returns TRUE if the source or destination register operates
1607 * on 64-bit, otherwise return FALSE.
1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1612 u8 code, class, op;
1614 code = insn->code;
1615 class = BPF_CLASS(code);
1616 op = BPF_OP(code);
1617 if (class == BPF_JMP) {
1618 /* BPF_EXIT for "main" will reach here. Return TRUE
1619 * conservatively.
1621 if (op == BPF_EXIT)
1622 return true;
1623 if (op == BPF_CALL) {
1624 /* BPF to BPF call will reach here because of marking
1625 * caller saved clobber with DST_OP_NO_MARK for which we
1626 * don't care the register def because they are anyway
1627 * marked as NOT_INIT already.
1629 if (insn->src_reg == BPF_PSEUDO_CALL)
1630 return false;
1631 /* Helper call will reach here because of arg type
1632 * check, conservatively return TRUE.
1634 if (t == SRC_OP)
1635 return true;
1637 return false;
1641 if (class == BPF_ALU64 || class == BPF_JMP ||
1642 /* BPF_END always use BPF_ALU class. */
1643 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 return true;
1646 if (class == BPF_ALU || class == BPF_JMP32)
1647 return false;
1649 if (class == BPF_LDX) {
1650 if (t != SRC_OP)
1651 return BPF_SIZE(code) == BPF_DW;
1652 /* LDX source must be ptr. */
1653 return true;
1656 if (class == BPF_STX) {
1657 if (reg->type != SCALAR_VALUE)
1658 return true;
1659 return BPF_SIZE(code) == BPF_DW;
1662 if (class == BPF_LD) {
1663 u8 mode = BPF_MODE(code);
1665 /* LD_IMM64 */
1666 if (mode == BPF_IMM)
1667 return true;
1669 /* Both LD_IND and LD_ABS return 32-bit data. */
1670 if (t != SRC_OP)
1671 return false;
1673 /* Implicit ctx ptr. */
1674 if (regno == BPF_REG_6)
1675 return true;
1677 /* Explicit source could be any width. */
1678 return true;
1681 if (class == BPF_ST)
1682 /* The only source register for BPF_ST is a ptr. */
1683 return true;
1685 /* Conservatively return true at default. */
1686 return true;
1689 /* Return TRUE if INSN doesn't have explicit value define. */
1690 static bool insn_no_def(struct bpf_insn *insn)
1692 u8 class = BPF_CLASS(insn->code);
1694 return (class == BPF_JMP || class == BPF_JMP32 ||
1695 class == BPF_STX || class == BPF_ST);
1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1701 if (insn_no_def(insn))
1702 return false;
1704 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1707 static void mark_insn_zext(struct bpf_verifier_env *env,
1708 struct bpf_reg_state *reg)
1710 s32 def_idx = reg->subreg_def;
1712 if (def_idx == DEF_NOT_SUBREG)
1713 return;
1715 env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 /* The dst will be zero extended, so won't be sub-register anymore. */
1717 reg->subreg_def = DEF_NOT_SUBREG;
1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1721 enum reg_arg_type t)
1723 struct bpf_verifier_state *vstate = env->cur_state;
1724 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1725 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1726 struct bpf_reg_state *reg, *regs = state->regs;
1727 bool rw64;
1729 if (regno >= MAX_BPF_REG) {
1730 verbose(env, "R%d is invalid\n", regno);
1731 return -EINVAL;
1734 reg = &regs[regno];
1735 rw64 = is_reg64(env, insn, regno, reg, t);
1736 if (t == SRC_OP) {
1737 /* check whether register used as source operand can be read */
1738 if (reg->type == NOT_INIT) {
1739 verbose(env, "R%d !read_ok\n", regno);
1740 return -EACCES;
1742 /* We don't need to worry about FP liveness because it's read-only */
1743 if (regno == BPF_REG_FP)
1744 return 0;
1746 if (rw64)
1747 mark_insn_zext(env, reg);
1749 return mark_reg_read(env, reg, reg->parent,
1750 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1751 } else {
1752 /* check whether register used as dest operand can be written to */
1753 if (regno == BPF_REG_FP) {
1754 verbose(env, "frame pointer is read only\n");
1755 return -EACCES;
1757 reg->live |= REG_LIVE_WRITTEN;
1758 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1759 if (t == DST_OP)
1760 mark_reg_unknown(env, regs, regno);
1762 return 0;
1765 /* for any branch, call, exit record the history of jmps in the given state */
1766 static int push_jmp_history(struct bpf_verifier_env *env,
1767 struct bpf_verifier_state *cur)
1769 u32 cnt = cur->jmp_history_cnt;
1770 struct bpf_idx_pair *p;
1772 cnt++;
1773 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 if (!p)
1775 return -ENOMEM;
1776 p[cnt - 1].idx = env->insn_idx;
1777 p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 cur->jmp_history = p;
1779 cur->jmp_history_cnt = cnt;
1780 return 0;
1783 /* Backtrack one insn at a time. If idx is not at the top of recorded
1784 * history then previous instruction came from straight line execution.
1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 u32 *history)
1789 u32 cnt = *history;
1791 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 i = st->jmp_history[cnt - 1].prev_idx;
1793 (*history)--;
1794 } else {
1795 i--;
1797 return i;
1800 /* For given verifier state backtrack_insn() is called from the last insn to
1801 * the first insn. Its purpose is to compute a bitmask of registers and
1802 * stack slots that needs precision in the parent verifier state.
1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 u32 *reg_mask, u64 *stack_mask)
1807 const struct bpf_insn_cbs cbs = {
1808 .cb_print = verbose,
1809 .private_data = env,
1811 struct bpf_insn *insn = env->prog->insnsi + idx;
1812 u8 class = BPF_CLASS(insn->code);
1813 u8 opcode = BPF_OP(insn->code);
1814 u8 mode = BPF_MODE(insn->code);
1815 u32 dreg = 1u << insn->dst_reg;
1816 u32 sreg = 1u << insn->src_reg;
1817 u32 spi;
1819 if (insn->code == 0)
1820 return 0;
1821 if (env->log.level & BPF_LOG_LEVEL) {
1822 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 verbose(env, "%d: ", idx);
1824 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1827 if (class == BPF_ALU || class == BPF_ALU64) {
1828 if (!(*reg_mask & dreg))
1829 return 0;
1830 if (opcode == BPF_MOV) {
1831 if (BPF_SRC(insn->code) == BPF_X) {
1832 /* dreg = sreg
1833 * dreg needs precision after this insn
1834 * sreg needs precision before this insn
1836 *reg_mask &= ~dreg;
1837 *reg_mask |= sreg;
1838 } else {
1839 /* dreg = K
1840 * dreg needs precision after this insn.
1841 * Corresponding register is already marked
1842 * as precise=true in this verifier state.
1843 * No further markings in parent are necessary
1845 *reg_mask &= ~dreg;
1847 } else {
1848 if (BPF_SRC(insn->code) == BPF_X) {
1849 /* dreg += sreg
1850 * both dreg and sreg need precision
1851 * before this insn
1853 *reg_mask |= sreg;
1854 } /* else dreg += K
1855 * dreg still needs precision before this insn
1858 } else if (class == BPF_LDX) {
1859 if (!(*reg_mask & dreg))
1860 return 0;
1861 *reg_mask &= ~dreg;
1863 /* scalars can only be spilled into stack w/o losing precision.
1864 * Load from any other memory can be zero extended.
1865 * The desire to keep that precision is already indicated
1866 * by 'precise' mark in corresponding register of this state.
1867 * No further tracking necessary.
1869 if (insn->src_reg != BPF_REG_FP)
1870 return 0;
1871 if (BPF_SIZE(insn->code) != BPF_DW)
1872 return 0;
1874 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 * that [fp - off] slot contains scalar that needs to be
1876 * tracked with precision
1878 spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 if (spi >= 64) {
1880 verbose(env, "BUG spi %d\n", spi);
1881 WARN_ONCE(1, "verifier backtracking bug");
1882 return -EFAULT;
1884 *stack_mask |= 1ull << spi;
1885 } else if (class == BPF_STX || class == BPF_ST) {
1886 if (*reg_mask & dreg)
1887 /* stx & st shouldn't be using _scalar_ dst_reg
1888 * to access memory. It means backtracking
1889 * encountered a case of pointer subtraction.
1891 return -ENOTSUPP;
1892 /* scalars can only be spilled into stack */
1893 if (insn->dst_reg != BPF_REG_FP)
1894 return 0;
1895 if (BPF_SIZE(insn->code) != BPF_DW)
1896 return 0;
1897 spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 if (spi >= 64) {
1899 verbose(env, "BUG spi %d\n", spi);
1900 WARN_ONCE(1, "verifier backtracking bug");
1901 return -EFAULT;
1903 if (!(*stack_mask & (1ull << spi)))
1904 return 0;
1905 *stack_mask &= ~(1ull << spi);
1906 if (class == BPF_STX)
1907 *reg_mask |= sreg;
1908 } else if (class == BPF_JMP || class == BPF_JMP32) {
1909 if (opcode == BPF_CALL) {
1910 if (insn->src_reg == BPF_PSEUDO_CALL)
1911 return -ENOTSUPP;
1912 /* regular helper call sets R0 */
1913 *reg_mask &= ~1;
1914 if (*reg_mask & 0x3f) {
1915 /* if backtracing was looking for registers R1-R5
1916 * they should have been found already.
1918 verbose(env, "BUG regs %x\n", *reg_mask);
1919 WARN_ONCE(1, "verifier backtracking bug");
1920 return -EFAULT;
1922 } else if (opcode == BPF_EXIT) {
1923 return -ENOTSUPP;
1925 } else if (class == BPF_LD) {
1926 if (!(*reg_mask & dreg))
1927 return 0;
1928 *reg_mask &= ~dreg;
1929 /* It's ld_imm64 or ld_abs or ld_ind.
1930 * For ld_imm64 no further tracking of precision
1931 * into parent is necessary
1933 if (mode == BPF_IND || mode == BPF_ABS)
1934 /* to be analyzed */
1935 return -ENOTSUPP;
1937 return 0;
1940 /* the scalar precision tracking algorithm:
1941 * . at the start all registers have precise=false.
1942 * . scalar ranges are tracked as normal through alu and jmp insns.
1943 * . once precise value of the scalar register is used in:
1944 * . ptr + scalar alu
1945 * . if (scalar cond K|scalar)
1946 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1947 * backtrack through the verifier states and mark all registers and
1948 * stack slots with spilled constants that these scalar regisers
1949 * should be precise.
1950 * . during state pruning two registers (or spilled stack slots)
1951 * are equivalent if both are not precise.
1953 * Note the verifier cannot simply walk register parentage chain,
1954 * since many different registers and stack slots could have been
1955 * used to compute single precise scalar.
1957 * The approach of starting with precise=true for all registers and then
1958 * backtrack to mark a register as not precise when the verifier detects
1959 * that program doesn't care about specific value (e.g., when helper
1960 * takes register as ARG_ANYTHING parameter) is not safe.
1962 * It's ok to walk single parentage chain of the verifier states.
1963 * It's possible that this backtracking will go all the way till 1st insn.
1964 * All other branches will be explored for needing precision later.
1966 * The backtracking needs to deal with cases like:
1967 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968 * r9 -= r8
1969 * r5 = r9
1970 * if r5 > 0x79f goto pc+7
1971 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972 * r5 += 1
1973 * ...
1974 * call bpf_perf_event_output#25
1975 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1977 * and this case:
1978 * r6 = 1
1979 * call foo // uses callee's r6 inside to compute r0
1980 * r0 += r6
1981 * if r0 == 0 goto
1983 * to track above reg_mask/stack_mask needs to be independent for each frame.
1985 * Also if parent's curframe > frame where backtracking started,
1986 * the verifier need to mark registers in both frames, otherwise callees
1987 * may incorrectly prune callers. This is similar to
1988 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1990 * For now backtracking falls back into conservative marking.
1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 struct bpf_verifier_state *st)
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
1997 int i, j;
1999 /* big hammer: mark all scalars precise in this path.
2000 * pop_stack may still get !precise scalars.
2002 for (; st; st = st->parent)
2003 for (i = 0; i <= st->curframe; i++) {
2004 func = st->frame[i];
2005 for (j = 0; j < BPF_REG_FP; j++) {
2006 reg = &func->regs[j];
2007 if (reg->type != SCALAR_VALUE)
2008 continue;
2009 reg->precise = true;
2011 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 continue;
2014 reg = &func->stack[j].spilled_ptr;
2015 if (reg->type != SCALAR_VALUE)
2016 continue;
2017 reg->precise = true;
2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 int spi)
2025 struct bpf_verifier_state *st = env->cur_state;
2026 int first_idx = st->first_insn_idx;
2027 int last_idx = env->insn_idx;
2028 struct bpf_func_state *func;
2029 struct bpf_reg_state *reg;
2030 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2032 bool skip_first = true;
2033 bool new_marks = false;
2034 int i, err;
2036 if (!env->bpf_capable)
2037 return 0;
2039 func = st->frame[st->curframe];
2040 if (regno >= 0) {
2041 reg = &func->regs[regno];
2042 if (reg->type != SCALAR_VALUE) {
2043 WARN_ONCE(1, "backtracing misuse");
2044 return -EFAULT;
2046 if (!reg->precise)
2047 new_marks = true;
2048 else
2049 reg_mask = 0;
2050 reg->precise = true;
2053 while (spi >= 0) {
2054 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 stack_mask = 0;
2056 break;
2058 reg = &func->stack[spi].spilled_ptr;
2059 if (reg->type != SCALAR_VALUE) {
2060 stack_mask = 0;
2061 break;
2063 if (!reg->precise)
2064 new_marks = true;
2065 else
2066 stack_mask = 0;
2067 reg->precise = true;
2068 break;
2071 if (!new_marks)
2072 return 0;
2073 if (!reg_mask && !stack_mask)
2074 return 0;
2075 for (;;) {
2076 DECLARE_BITMAP(mask, 64);
2077 u32 history = st->jmp_history_cnt;
2079 if (env->log.level & BPF_LOG_LEVEL)
2080 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 for (i = last_idx;;) {
2082 if (skip_first) {
2083 err = 0;
2084 skip_first = false;
2085 } else {
2086 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2088 if (err == -ENOTSUPP) {
2089 mark_all_scalars_precise(env, st);
2090 return 0;
2091 } else if (err) {
2092 return err;
2094 if (!reg_mask && !stack_mask)
2095 /* Found assignment(s) into tracked register in this state.
2096 * Since this state is already marked, just return.
2097 * Nothing to be tracked further in the parent state.
2099 return 0;
2100 if (i == first_idx)
2101 break;
2102 i = get_prev_insn_idx(st, i, &history);
2103 if (i >= env->prog->len) {
2104 /* This can happen if backtracking reached insn 0
2105 * and there are still reg_mask or stack_mask
2106 * to backtrack.
2107 * It means the backtracking missed the spot where
2108 * particular register was initialized with a constant.
2110 verbose(env, "BUG backtracking idx %d\n", i);
2111 WARN_ONCE(1, "verifier backtracking bug");
2112 return -EFAULT;
2115 st = st->parent;
2116 if (!st)
2117 break;
2119 new_marks = false;
2120 func = st->frame[st->curframe];
2121 bitmap_from_u64(mask, reg_mask);
2122 for_each_set_bit(i, mask, 32) {
2123 reg = &func->regs[i];
2124 if (reg->type != SCALAR_VALUE) {
2125 reg_mask &= ~(1u << i);
2126 continue;
2128 if (!reg->precise)
2129 new_marks = true;
2130 reg->precise = true;
2133 bitmap_from_u64(mask, stack_mask);
2134 for_each_set_bit(i, mask, 64) {
2135 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2136 /* the sequence of instructions:
2137 * 2: (bf) r3 = r10
2138 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 * doesn't contain jmps. It's backtracked
2141 * as a single block.
2142 * During backtracking insn 3 is not recognized as
2143 * stack access, so at the end of backtracking
2144 * stack slot fp-8 is still marked in stack_mask.
2145 * However the parent state may not have accessed
2146 * fp-8 and it's "unallocated" stack space.
2147 * In such case fallback to conservative.
2149 mark_all_scalars_precise(env, st);
2150 return 0;
2153 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 stack_mask &= ~(1ull << i);
2155 continue;
2157 reg = &func->stack[i].spilled_ptr;
2158 if (reg->type != SCALAR_VALUE) {
2159 stack_mask &= ~(1ull << i);
2160 continue;
2162 if (!reg->precise)
2163 new_marks = true;
2164 reg->precise = true;
2166 if (env->log.level & BPF_LOG_LEVEL) {
2167 print_verifier_state(env, func);
2168 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 new_marks ? "didn't have" : "already had",
2170 reg_mask, stack_mask);
2173 if (!reg_mask && !stack_mask)
2174 break;
2175 if (!new_marks)
2176 break;
2178 last_idx = st->last_insn_idx;
2179 first_idx = st->first_insn_idx;
2181 return 0;
2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2186 return __mark_chain_precision(env, regno, -1);
2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2191 return __mark_chain_precision(env, -1, spi);
2194 static bool is_spillable_regtype(enum bpf_reg_type type)
2196 switch (type) {
2197 case PTR_TO_MAP_VALUE:
2198 case PTR_TO_MAP_VALUE_OR_NULL:
2199 case PTR_TO_STACK:
2200 case PTR_TO_CTX:
2201 case PTR_TO_PACKET:
2202 case PTR_TO_PACKET_META:
2203 case PTR_TO_PACKET_END:
2204 case PTR_TO_FLOW_KEYS:
2205 case CONST_PTR_TO_MAP:
2206 case PTR_TO_SOCKET:
2207 case PTR_TO_SOCKET_OR_NULL:
2208 case PTR_TO_SOCK_COMMON:
2209 case PTR_TO_SOCK_COMMON_OR_NULL:
2210 case PTR_TO_TCP_SOCK:
2211 case PTR_TO_TCP_SOCK_OR_NULL:
2212 case PTR_TO_XDP_SOCK:
2213 case PTR_TO_BTF_ID:
2214 case PTR_TO_BTF_ID_OR_NULL:
2215 case PTR_TO_RDONLY_BUF:
2216 case PTR_TO_RDONLY_BUF_OR_NULL:
2217 case PTR_TO_RDWR_BUF:
2218 case PTR_TO_RDWR_BUF_OR_NULL:
2219 case PTR_TO_PERCPU_BTF_ID:
2220 return true;
2221 default:
2222 return false;
2226 /* Does this register contain a constant zero? */
2227 static bool register_is_null(struct bpf_reg_state *reg)
2229 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2232 static bool register_is_const(struct bpf_reg_state *reg)
2234 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2237 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2239 return tnum_is_unknown(reg->var_off) &&
2240 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2241 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2242 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2243 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2246 static bool register_is_bounded(struct bpf_reg_state *reg)
2248 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2251 static bool __is_pointer_value(bool allow_ptr_leaks,
2252 const struct bpf_reg_state *reg)
2254 if (allow_ptr_leaks)
2255 return false;
2257 return reg->type != SCALAR_VALUE;
2260 static void save_register_state(struct bpf_func_state *state,
2261 int spi, struct bpf_reg_state *reg)
2263 int i;
2265 state->stack[spi].spilled_ptr = *reg;
2266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2268 for (i = 0; i < BPF_REG_SIZE; i++)
2269 state->stack[spi].slot_type[i] = STACK_SPILL;
2272 /* check_stack_read/write functions track spill/fill of registers,
2273 * stack boundary and alignment are checked in check_mem_access()
2275 static int check_stack_write(struct bpf_verifier_env *env,
2276 struct bpf_func_state *state, /* func where register points to */
2277 int off, int size, int value_regno, int insn_idx)
2279 struct bpf_func_state *cur; /* state of the current function */
2280 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2281 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2282 struct bpf_reg_state *reg = NULL;
2284 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2285 state->acquired_refs, true);
2286 if (err)
2287 return err;
2288 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2289 * so it's aligned access and [off, off + size) are within stack limits
2291 if (!env->allow_ptr_leaks &&
2292 state->stack[spi].slot_type[0] == STACK_SPILL &&
2293 size != BPF_REG_SIZE) {
2294 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2295 return -EACCES;
2298 cur = env->cur_state->frame[env->cur_state->curframe];
2299 if (value_regno >= 0)
2300 reg = &cur->regs[value_regno];
2302 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2303 !register_is_null(reg) && env->bpf_capable) {
2304 if (dst_reg != BPF_REG_FP) {
2305 /* The backtracking logic can only recognize explicit
2306 * stack slot address like [fp - 8]. Other spill of
2307 * scalar via different register has to be conervative.
2308 * Backtrack from here and mark all registers as precise
2309 * that contributed into 'reg' being a constant.
2311 err = mark_chain_precision(env, value_regno);
2312 if (err)
2313 return err;
2315 save_register_state(state, spi, reg);
2316 } else if (reg && is_spillable_regtype(reg->type)) {
2317 /* register containing pointer is being spilled into stack */
2318 if (size != BPF_REG_SIZE) {
2319 verbose_linfo(env, insn_idx, "; ");
2320 verbose(env, "invalid size of register spill\n");
2321 return -EACCES;
2324 if (state != cur && reg->type == PTR_TO_STACK) {
2325 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2326 return -EINVAL;
2329 if (!env->bypass_spec_v4) {
2330 bool sanitize = false;
2332 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2333 register_is_const(&state->stack[spi].spilled_ptr))
2334 sanitize = true;
2335 for (i = 0; i < BPF_REG_SIZE; i++)
2336 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2337 sanitize = true;
2338 break;
2340 if (sanitize) {
2341 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2342 int soff = (-spi - 1) * BPF_REG_SIZE;
2344 /* detected reuse of integer stack slot with a pointer
2345 * which means either llvm is reusing stack slot or
2346 * an attacker is trying to exploit CVE-2018-3639
2347 * (speculative store bypass)
2348 * Have to sanitize that slot with preemptive
2349 * store of zero.
2351 if (*poff && *poff != soff) {
2352 /* disallow programs where single insn stores
2353 * into two different stack slots, since verifier
2354 * cannot sanitize them
2356 verbose(env,
2357 "insn %d cannot access two stack slots fp%d and fp%d",
2358 insn_idx, *poff, soff);
2359 return -EINVAL;
2361 *poff = soff;
2364 save_register_state(state, spi, reg);
2365 } else {
2366 u8 type = STACK_MISC;
2368 /* regular write of data into stack destroys any spilled ptr */
2369 state->stack[spi].spilled_ptr.type = NOT_INIT;
2370 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2371 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2372 for (i = 0; i < BPF_REG_SIZE; i++)
2373 state->stack[spi].slot_type[i] = STACK_MISC;
2375 /* only mark the slot as written if all 8 bytes were written
2376 * otherwise read propagation may incorrectly stop too soon
2377 * when stack slots are partially written.
2378 * This heuristic means that read propagation will be
2379 * conservative, since it will add reg_live_read marks
2380 * to stack slots all the way to first state when programs
2381 * writes+reads less than 8 bytes
2383 if (size == BPF_REG_SIZE)
2384 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2386 /* when we zero initialize stack slots mark them as such */
2387 if (reg && register_is_null(reg)) {
2388 /* backtracking doesn't work for STACK_ZERO yet. */
2389 err = mark_chain_precision(env, value_regno);
2390 if (err)
2391 return err;
2392 type = STACK_ZERO;
2395 /* Mark slots affected by this stack write. */
2396 for (i = 0; i < size; i++)
2397 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2398 type;
2400 return 0;
2403 static int check_stack_read(struct bpf_verifier_env *env,
2404 struct bpf_func_state *reg_state /* func where register points to */,
2405 int off, int size, int value_regno)
2407 struct bpf_verifier_state *vstate = env->cur_state;
2408 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2409 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2410 struct bpf_reg_state *reg;
2411 u8 *stype;
2413 if (reg_state->allocated_stack <= slot) {
2414 verbose(env, "invalid read from stack off %d+0 size %d\n",
2415 off, size);
2416 return -EACCES;
2418 stype = reg_state->stack[spi].slot_type;
2419 reg = &reg_state->stack[spi].spilled_ptr;
2421 if (stype[0] == STACK_SPILL) {
2422 if (size != BPF_REG_SIZE) {
2423 if (reg->type != SCALAR_VALUE) {
2424 verbose_linfo(env, env->insn_idx, "; ");
2425 verbose(env, "invalid size of register fill\n");
2426 return -EACCES;
2428 if (value_regno >= 0) {
2429 mark_reg_unknown(env, state->regs, value_regno);
2430 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2432 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2433 return 0;
2435 for (i = 1; i < BPF_REG_SIZE; i++) {
2436 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2437 verbose(env, "corrupted spill memory\n");
2438 return -EACCES;
2442 if (value_regno >= 0) {
2443 /* restore register state from stack */
2444 state->regs[value_regno] = *reg;
2445 /* mark reg as written since spilled pointer state likely
2446 * has its liveness marks cleared by is_state_visited()
2447 * which resets stack/reg liveness for state transitions
2449 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2450 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2451 /* If value_regno==-1, the caller is asking us whether
2452 * it is acceptable to use this value as a SCALAR_VALUE
2453 * (e.g. for XADD).
2454 * We must not allow unprivileged callers to do that
2455 * with spilled pointers.
2457 verbose(env, "leaking pointer from stack off %d\n",
2458 off);
2459 return -EACCES;
2461 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2462 } else {
2463 int zeros = 0;
2465 for (i = 0; i < size; i++) {
2466 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2467 continue;
2468 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2469 zeros++;
2470 continue;
2472 verbose(env, "invalid read from stack off %d+%d size %d\n",
2473 off, i, size);
2474 return -EACCES;
2476 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2477 if (value_regno >= 0) {
2478 if (zeros == size) {
2479 /* any size read into register is zero extended,
2480 * so the whole register == const_zero
2482 __mark_reg_const_zero(&state->regs[value_regno]);
2483 /* backtracking doesn't support STACK_ZERO yet,
2484 * so mark it precise here, so that later
2485 * backtracking can stop here.
2486 * Backtracking may not need this if this register
2487 * doesn't participate in pointer adjustment.
2488 * Forward propagation of precise flag is not
2489 * necessary either. This mark is only to stop
2490 * backtracking. Any register that contributed
2491 * to const 0 was marked precise before spill.
2493 state->regs[value_regno].precise = true;
2494 } else {
2495 /* have read misc data from the stack */
2496 mark_reg_unknown(env, state->regs, value_regno);
2498 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2501 return 0;
2504 static int check_stack_access(struct bpf_verifier_env *env,
2505 const struct bpf_reg_state *reg,
2506 int off, int size)
2508 /* Stack accesses must be at a fixed offset, so that we
2509 * can determine what type of data were returned. See
2510 * check_stack_read().
2512 if (!tnum_is_const(reg->var_off)) {
2513 char tn_buf[48];
2515 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2516 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2517 tn_buf, off, size);
2518 return -EACCES;
2521 if (off >= 0 || off < -MAX_BPF_STACK) {
2522 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2523 return -EACCES;
2526 return 0;
2529 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2530 int off, int size, enum bpf_access_type type)
2532 struct bpf_reg_state *regs = cur_regs(env);
2533 struct bpf_map *map = regs[regno].map_ptr;
2534 u32 cap = bpf_map_flags_to_cap(map);
2536 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2537 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2538 map->value_size, off, size);
2539 return -EACCES;
2542 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2543 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2544 map->value_size, off, size);
2545 return -EACCES;
2548 return 0;
2551 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2552 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2553 int off, int size, u32 mem_size,
2554 bool zero_size_allowed)
2556 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2557 struct bpf_reg_state *reg;
2559 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2560 return 0;
2562 reg = &cur_regs(env)[regno];
2563 switch (reg->type) {
2564 case PTR_TO_MAP_VALUE:
2565 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2566 mem_size, off, size);
2567 break;
2568 case PTR_TO_PACKET:
2569 case PTR_TO_PACKET_META:
2570 case PTR_TO_PACKET_END:
2571 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2572 off, size, regno, reg->id, off, mem_size);
2573 break;
2574 case PTR_TO_MEM:
2575 default:
2576 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2577 mem_size, off, size);
2580 return -EACCES;
2583 /* check read/write into a memory region with possible variable offset */
2584 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2585 int off, int size, u32 mem_size,
2586 bool zero_size_allowed)
2588 struct bpf_verifier_state *vstate = env->cur_state;
2589 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2590 struct bpf_reg_state *reg = &state->regs[regno];
2591 int err;
2593 /* We may have adjusted the register pointing to memory region, so we
2594 * need to try adding each of min_value and max_value to off
2595 * to make sure our theoretical access will be safe.
2597 if (env->log.level & BPF_LOG_LEVEL)
2598 print_verifier_state(env, state);
2600 /* The minimum value is only important with signed
2601 * comparisons where we can't assume the floor of a
2602 * value is 0. If we are using signed variables for our
2603 * index'es we need to make sure that whatever we use
2604 * will have a set floor within our range.
2606 if (reg->smin_value < 0 &&
2607 (reg->smin_value == S64_MIN ||
2608 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2609 reg->smin_value + off < 0)) {
2610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2611 regno);
2612 return -EACCES;
2614 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2615 mem_size, zero_size_allowed);
2616 if (err) {
2617 verbose(env, "R%d min value is outside of the allowed memory range\n",
2618 regno);
2619 return err;
2622 /* If we haven't set a max value then we need to bail since we can't be
2623 * sure we won't do bad things.
2624 * If reg->umax_value + off could overflow, treat that as unbounded too.
2626 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2627 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2628 regno);
2629 return -EACCES;
2631 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2632 mem_size, zero_size_allowed);
2633 if (err) {
2634 verbose(env, "R%d max value is outside of the allowed memory range\n",
2635 regno);
2636 return err;
2639 return 0;
2642 /* check read/write into a map element with possible variable offset */
2643 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2644 int off, int size, bool zero_size_allowed)
2646 struct bpf_verifier_state *vstate = env->cur_state;
2647 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2648 struct bpf_reg_state *reg = &state->regs[regno];
2649 struct bpf_map *map = reg->map_ptr;
2650 int err;
2652 err = check_mem_region_access(env, regno, off, size, map->value_size,
2653 zero_size_allowed);
2654 if (err)
2655 return err;
2657 if (map_value_has_spin_lock(map)) {
2658 u32 lock = map->spin_lock_off;
2660 /* if any part of struct bpf_spin_lock can be touched by
2661 * load/store reject this program.
2662 * To check that [x1, x2) overlaps with [y1, y2)
2663 * it is sufficient to check x1 < y2 && y1 < x2.
2665 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2666 lock < reg->umax_value + off + size) {
2667 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2668 return -EACCES;
2671 return err;
2674 #define MAX_PACKET_OFF 0xffff
2676 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2678 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2681 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2682 const struct bpf_call_arg_meta *meta,
2683 enum bpf_access_type t)
2685 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2687 switch (prog_type) {
2688 /* Program types only with direct read access go here! */
2689 case BPF_PROG_TYPE_LWT_IN:
2690 case BPF_PROG_TYPE_LWT_OUT:
2691 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2692 case BPF_PROG_TYPE_SK_REUSEPORT:
2693 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2694 case BPF_PROG_TYPE_CGROUP_SKB:
2695 if (t == BPF_WRITE)
2696 return false;
2697 fallthrough;
2699 /* Program types with direct read + write access go here! */
2700 case BPF_PROG_TYPE_SCHED_CLS:
2701 case BPF_PROG_TYPE_SCHED_ACT:
2702 case BPF_PROG_TYPE_XDP:
2703 case BPF_PROG_TYPE_LWT_XMIT:
2704 case BPF_PROG_TYPE_SK_SKB:
2705 case BPF_PROG_TYPE_SK_MSG:
2706 if (meta)
2707 return meta->pkt_access;
2709 env->seen_direct_write = true;
2710 return true;
2712 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2713 if (t == BPF_WRITE)
2714 env->seen_direct_write = true;
2716 return true;
2718 default:
2719 return false;
2723 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2724 int size, bool zero_size_allowed)
2726 struct bpf_reg_state *regs = cur_regs(env);
2727 struct bpf_reg_state *reg = &regs[regno];
2728 int err;
2730 /* We may have added a variable offset to the packet pointer; but any
2731 * reg->range we have comes after that. We are only checking the fixed
2732 * offset.
2735 /* We don't allow negative numbers, because we aren't tracking enough
2736 * detail to prove they're safe.
2738 if (reg->smin_value < 0) {
2739 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2740 regno);
2741 return -EACCES;
2744 err = reg->range < 0 ? -EINVAL :
2745 __check_mem_access(env, regno, off, size, reg->range,
2746 zero_size_allowed);
2747 if (err) {
2748 verbose(env, "R%d offset is outside of the packet\n", regno);
2749 return err;
2752 /* __check_mem_access has made sure "off + size - 1" is within u16.
2753 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2754 * otherwise find_good_pkt_pointers would have refused to set range info
2755 * that __check_mem_access would have rejected this pkt access.
2756 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2758 env->prog->aux->max_pkt_offset =
2759 max_t(u32, env->prog->aux->max_pkt_offset,
2760 off + reg->umax_value + size - 1);
2762 return err;
2765 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
2766 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2767 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2768 struct btf **btf, u32 *btf_id)
2770 struct bpf_insn_access_aux info = {
2771 .reg_type = *reg_type,
2772 .log = &env->log,
2775 if (env->ops->is_valid_access &&
2776 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2777 /* A non zero info.ctx_field_size indicates that this field is a
2778 * candidate for later verifier transformation to load the whole
2779 * field and then apply a mask when accessed with a narrower
2780 * access than actual ctx access size. A zero info.ctx_field_size
2781 * will only allow for whole field access and rejects any other
2782 * type of narrower access.
2784 *reg_type = info.reg_type;
2786 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2787 *btf = info.btf;
2788 *btf_id = info.btf_id;
2789 } else {
2790 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2792 /* remember the offset of last byte accessed in ctx */
2793 if (env->prog->aux->max_ctx_offset < off + size)
2794 env->prog->aux->max_ctx_offset = off + size;
2795 return 0;
2798 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2799 return -EACCES;
2802 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2803 int size)
2805 if (size < 0 || off < 0 ||
2806 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2807 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2808 off, size);
2809 return -EACCES;
2811 return 0;
2814 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2815 u32 regno, int off, int size,
2816 enum bpf_access_type t)
2818 struct bpf_reg_state *regs = cur_regs(env);
2819 struct bpf_reg_state *reg = &regs[regno];
2820 struct bpf_insn_access_aux info = {};
2821 bool valid;
2823 if (reg->smin_value < 0) {
2824 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2825 regno);
2826 return -EACCES;
2829 switch (reg->type) {
2830 case PTR_TO_SOCK_COMMON:
2831 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2832 break;
2833 case PTR_TO_SOCKET:
2834 valid = bpf_sock_is_valid_access(off, size, t, &info);
2835 break;
2836 case PTR_TO_TCP_SOCK:
2837 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2838 break;
2839 case PTR_TO_XDP_SOCK:
2840 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2841 break;
2842 default:
2843 valid = false;
2847 if (valid) {
2848 env->insn_aux_data[insn_idx].ctx_field_size =
2849 info.ctx_field_size;
2850 return 0;
2853 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2854 regno, reg_type_str[reg->type], off, size);
2856 return -EACCES;
2859 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2861 return cur_regs(env) + regno;
2864 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2866 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2869 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2871 const struct bpf_reg_state *reg = reg_state(env, regno);
2873 return reg->type == PTR_TO_CTX;
2876 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2878 const struct bpf_reg_state *reg = reg_state(env, regno);
2880 return type_is_sk_pointer(reg->type);
2883 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2885 const struct bpf_reg_state *reg = reg_state(env, regno);
2887 return type_is_pkt_pointer(reg->type);
2890 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2892 const struct bpf_reg_state *reg = reg_state(env, regno);
2894 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2895 return reg->type == PTR_TO_FLOW_KEYS;
2898 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2899 const struct bpf_reg_state *reg,
2900 int off, int size, bool strict)
2902 struct tnum reg_off;
2903 int ip_align;
2905 /* Byte size accesses are always allowed. */
2906 if (!strict || size == 1)
2907 return 0;
2909 /* For platforms that do not have a Kconfig enabling
2910 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2911 * NET_IP_ALIGN is universally set to '2'. And on platforms
2912 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2913 * to this code only in strict mode where we want to emulate
2914 * the NET_IP_ALIGN==2 checking. Therefore use an
2915 * unconditional IP align value of '2'.
2917 ip_align = 2;
2919 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2920 if (!tnum_is_aligned(reg_off, size)) {
2921 char tn_buf[48];
2923 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2924 verbose(env,
2925 "misaligned packet access off %d+%s+%d+%d size %d\n",
2926 ip_align, tn_buf, reg->off, off, size);
2927 return -EACCES;
2930 return 0;
2933 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2934 const struct bpf_reg_state *reg,
2935 const char *pointer_desc,
2936 int off, int size, bool strict)
2938 struct tnum reg_off;
2940 /* Byte size accesses are always allowed. */
2941 if (!strict || size == 1)
2942 return 0;
2944 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2945 if (!tnum_is_aligned(reg_off, size)) {
2946 char tn_buf[48];
2948 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2949 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2950 pointer_desc, tn_buf, reg->off, off, size);
2951 return -EACCES;
2954 return 0;
2957 static int check_ptr_alignment(struct bpf_verifier_env *env,
2958 const struct bpf_reg_state *reg, int off,
2959 int size, bool strict_alignment_once)
2961 bool strict = env->strict_alignment || strict_alignment_once;
2962 const char *pointer_desc = "";
2964 switch (reg->type) {
2965 case PTR_TO_PACKET:
2966 case PTR_TO_PACKET_META:
2967 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2968 * right in front, treat it the very same way.
2970 return check_pkt_ptr_alignment(env, reg, off, size, strict);
2971 case PTR_TO_FLOW_KEYS:
2972 pointer_desc = "flow keys ";
2973 break;
2974 case PTR_TO_MAP_VALUE:
2975 pointer_desc = "value ";
2976 break;
2977 case PTR_TO_CTX:
2978 pointer_desc = "context ";
2979 break;
2980 case PTR_TO_STACK:
2981 pointer_desc = "stack ";
2982 /* The stack spill tracking logic in check_stack_write()
2983 * and check_stack_read() relies on stack accesses being
2984 * aligned.
2986 strict = true;
2987 break;
2988 case PTR_TO_SOCKET:
2989 pointer_desc = "sock ";
2990 break;
2991 case PTR_TO_SOCK_COMMON:
2992 pointer_desc = "sock_common ";
2993 break;
2994 case PTR_TO_TCP_SOCK:
2995 pointer_desc = "tcp_sock ";
2996 break;
2997 case PTR_TO_XDP_SOCK:
2998 pointer_desc = "xdp_sock ";
2999 break;
3000 default:
3001 break;
3003 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3004 strict);
3007 static int update_stack_depth(struct bpf_verifier_env *env,
3008 const struct bpf_func_state *func,
3009 int off)
3011 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3013 if (stack >= -off)
3014 return 0;
3016 /* update known max for given subprogram */
3017 env->subprog_info[func->subprogno].stack_depth = -off;
3018 return 0;
3021 /* starting from main bpf function walk all instructions of the function
3022 * and recursively walk all callees that given function can call.
3023 * Ignore jump and exit insns.
3024 * Since recursion is prevented by check_cfg() this algorithm
3025 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3027 static int check_max_stack_depth(struct bpf_verifier_env *env)
3029 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3030 struct bpf_subprog_info *subprog = env->subprog_info;
3031 struct bpf_insn *insn = env->prog->insnsi;
3032 bool tail_call_reachable = false;
3033 int ret_insn[MAX_CALL_FRAMES];
3034 int ret_prog[MAX_CALL_FRAMES];
3035 int j;
3037 process_func:
3038 /* protect against potential stack overflow that might happen when
3039 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3040 * depth for such case down to 256 so that the worst case scenario
3041 * would result in 8k stack size (32 which is tailcall limit * 256 =
3042 * 8k).
3044 * To get the idea what might happen, see an example:
3045 * func1 -> sub rsp, 128
3046 * subfunc1 -> sub rsp, 256
3047 * tailcall1 -> add rsp, 256
3048 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3049 * subfunc2 -> sub rsp, 64
3050 * subfunc22 -> sub rsp, 128
3051 * tailcall2 -> add rsp, 128
3052 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3054 * tailcall will unwind the current stack frame but it will not get rid
3055 * of caller's stack as shown on the example above.
3057 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3058 verbose(env,
3059 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3060 depth);
3061 return -EACCES;
3063 /* round up to 32-bytes, since this is granularity
3064 * of interpreter stack size
3066 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3067 if (depth > MAX_BPF_STACK) {
3068 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3069 frame + 1, depth);
3070 return -EACCES;
3072 continue_func:
3073 subprog_end = subprog[idx + 1].start;
3074 for (; i < subprog_end; i++) {
3075 if (insn[i].code != (BPF_JMP | BPF_CALL))
3076 continue;
3077 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3078 continue;
3079 /* remember insn and function to return to */
3080 ret_insn[frame] = i + 1;
3081 ret_prog[frame] = idx;
3083 /* find the callee */
3084 i = i + insn[i].imm + 1;
3085 idx = find_subprog(env, i);
3086 if (idx < 0) {
3087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3089 return -EFAULT;
3092 if (subprog[idx].has_tail_call)
3093 tail_call_reachable = true;
3095 frame++;
3096 if (frame >= MAX_CALL_FRAMES) {
3097 verbose(env, "the call stack of %d frames is too deep !\n",
3098 frame);
3099 return -E2BIG;
3101 goto process_func;
3103 /* if tail call got detected across bpf2bpf calls then mark each of the
3104 * currently present subprog frames as tail call reachable subprogs;
3105 * this info will be utilized by JIT so that we will be preserving the
3106 * tail call counter throughout bpf2bpf calls combined with tailcalls
3108 if (tail_call_reachable)
3109 for (j = 0; j < frame; j++)
3110 subprog[ret_prog[j]].tail_call_reachable = true;
3112 /* end of for() loop means the last insn of the 'subprog'
3113 * was reached. Doesn't matter whether it was JA or EXIT
3115 if (frame == 0)
3116 return 0;
3117 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3118 frame--;
3119 i = ret_insn[frame];
3120 idx = ret_prog[frame];
3121 goto continue_func;
3124 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3125 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3126 const struct bpf_insn *insn, int idx)
3128 int start = idx + insn->imm + 1, subprog;
3130 subprog = find_subprog(env, start);
3131 if (subprog < 0) {
3132 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3133 start);
3134 return -EFAULT;
3136 return env->subprog_info[subprog].stack_depth;
3138 #endif
3140 int check_ctx_reg(struct bpf_verifier_env *env,
3141 const struct bpf_reg_state *reg, int regno)
3143 /* Access to ctx or passing it to a helper is only allowed in
3144 * its original, unmodified form.
3147 if (reg->off) {
3148 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3149 regno, reg->off);
3150 return -EACCES;
3153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3154 char tn_buf[48];
3156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3157 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3158 return -EACCES;
3161 return 0;
3164 static int __check_buffer_access(struct bpf_verifier_env *env,
3165 const char *buf_info,
3166 const struct bpf_reg_state *reg,
3167 int regno, int off, int size)
3169 if (off < 0) {
3170 verbose(env,
3171 "R%d invalid %s buffer access: off=%d, size=%d\n",
3172 regno, buf_info, off, size);
3173 return -EACCES;
3175 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3176 char tn_buf[48];
3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 verbose(env,
3180 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3181 regno, off, tn_buf);
3182 return -EACCES;
3185 return 0;
3188 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3189 const struct bpf_reg_state *reg,
3190 int regno, int off, int size)
3192 int err;
3194 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3195 if (err)
3196 return err;
3198 if (off + size > env->prog->aux->max_tp_access)
3199 env->prog->aux->max_tp_access = off + size;
3201 return 0;
3204 static int check_buffer_access(struct bpf_verifier_env *env,
3205 const struct bpf_reg_state *reg,
3206 int regno, int off, int size,
3207 bool zero_size_allowed,
3208 const char *buf_info,
3209 u32 *max_access)
3211 int err;
3213 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3214 if (err)
3215 return err;
3217 if (off + size > *max_access)
3218 *max_access = off + size;
3220 return 0;
3223 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3224 static void zext_32_to_64(struct bpf_reg_state *reg)
3226 reg->var_off = tnum_subreg(reg->var_off);
3227 __reg_assign_32_into_64(reg);
3230 /* truncate register to smaller size (in bytes)
3231 * must be called with size < BPF_REG_SIZE
3233 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3235 u64 mask;
3237 /* clear high bits in bit representation */
3238 reg->var_off = tnum_cast(reg->var_off, size);
3240 /* fix arithmetic bounds */
3241 mask = ((u64)1 << (size * 8)) - 1;
3242 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3243 reg->umin_value &= mask;
3244 reg->umax_value &= mask;
3245 } else {
3246 reg->umin_value = 0;
3247 reg->umax_value = mask;
3249 reg->smin_value = reg->umin_value;
3250 reg->smax_value = reg->umax_value;
3252 /* If size is smaller than 32bit register the 32bit register
3253 * values are also truncated so we push 64-bit bounds into
3254 * 32-bit bounds. Above were truncated < 32-bits already.
3256 if (size >= 4)
3257 return;
3258 __reg_combine_64_into_32(reg);
3261 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3263 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3266 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3268 void *ptr;
3269 u64 addr;
3270 int err;
3272 err = map->ops->map_direct_value_addr(map, &addr, off);
3273 if (err)
3274 return err;
3275 ptr = (void *)(long)addr + off;
3277 switch (size) {
3278 case sizeof(u8):
3279 *val = (u64)*(u8 *)ptr;
3280 break;
3281 case sizeof(u16):
3282 *val = (u64)*(u16 *)ptr;
3283 break;
3284 case sizeof(u32):
3285 *val = (u64)*(u32 *)ptr;
3286 break;
3287 case sizeof(u64):
3288 *val = *(u64 *)ptr;
3289 break;
3290 default:
3291 return -EINVAL;
3293 return 0;
3296 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3297 struct bpf_reg_state *regs,
3298 int regno, int off, int size,
3299 enum bpf_access_type atype,
3300 int value_regno)
3302 struct bpf_reg_state *reg = regs + regno;
3303 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3304 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3305 u32 btf_id;
3306 int ret;
3308 if (off < 0) {
3309 verbose(env,
3310 "R%d is ptr_%s invalid negative access: off=%d\n",
3311 regno, tname, off);
3312 return -EACCES;
3314 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3315 char tn_buf[48];
3317 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3318 verbose(env,
3319 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3320 regno, tname, off, tn_buf);
3321 return -EACCES;
3324 if (env->ops->btf_struct_access) {
3325 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3326 off, size, atype, &btf_id);
3327 } else {
3328 if (atype != BPF_READ) {
3329 verbose(env, "only read is supported\n");
3330 return -EACCES;
3333 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3334 atype, &btf_id);
3337 if (ret < 0)
3338 return ret;
3340 if (atype == BPF_READ && value_regno >= 0)
3341 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3343 return 0;
3346 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3347 struct bpf_reg_state *regs,
3348 int regno, int off, int size,
3349 enum bpf_access_type atype,
3350 int value_regno)
3352 struct bpf_reg_state *reg = regs + regno;
3353 struct bpf_map *map = reg->map_ptr;
3354 const struct btf_type *t;
3355 const char *tname;
3356 u32 btf_id;
3357 int ret;
3359 if (!btf_vmlinux) {
3360 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3361 return -ENOTSUPP;
3364 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3365 verbose(env, "map_ptr access not supported for map type %d\n",
3366 map->map_type);
3367 return -ENOTSUPP;
3370 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3371 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3373 if (!env->allow_ptr_to_map_access) {
3374 verbose(env,
3375 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3376 tname);
3377 return -EPERM;
3380 if (off < 0) {
3381 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3382 regno, tname, off);
3383 return -EACCES;
3386 if (atype != BPF_READ) {
3387 verbose(env, "only read from %s is supported\n", tname);
3388 return -EACCES;
3391 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3392 if (ret < 0)
3393 return ret;
3395 if (value_regno >= 0)
3396 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3398 return 0;
3402 /* check whether memory at (regno + off) is accessible for t = (read | write)
3403 * if t==write, value_regno is a register which value is stored into memory
3404 * if t==read, value_regno is a register which will receive the value from memory
3405 * if t==write && value_regno==-1, some unknown value is stored into memory
3406 * if t==read && value_regno==-1, don't care what we read from memory
3408 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3409 int off, int bpf_size, enum bpf_access_type t,
3410 int value_regno, bool strict_alignment_once)
3412 struct bpf_reg_state *regs = cur_regs(env);
3413 struct bpf_reg_state *reg = regs + regno;
3414 struct bpf_func_state *state;
3415 int size, err = 0;
3417 size = bpf_size_to_bytes(bpf_size);
3418 if (size < 0)
3419 return size;
3421 /* alignment checks will add in reg->off themselves */
3422 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3423 if (err)
3424 return err;
3426 /* for access checks, reg->off is just part of off */
3427 off += reg->off;
3429 if (reg->type == PTR_TO_MAP_VALUE) {
3430 if (t == BPF_WRITE && value_regno >= 0 &&
3431 is_pointer_value(env, value_regno)) {
3432 verbose(env, "R%d leaks addr into map\n", value_regno);
3433 return -EACCES;
3435 err = check_map_access_type(env, regno, off, size, t);
3436 if (err)
3437 return err;
3438 err = check_map_access(env, regno, off, size, false);
3439 if (!err && t == BPF_READ && value_regno >= 0) {
3440 struct bpf_map *map = reg->map_ptr;
3442 /* if map is read-only, track its contents as scalars */
3443 if (tnum_is_const(reg->var_off) &&
3444 bpf_map_is_rdonly(map) &&
3445 map->ops->map_direct_value_addr) {
3446 int map_off = off + reg->var_off.value;
3447 u64 val = 0;
3449 err = bpf_map_direct_read(map, map_off, size,
3450 &val);
3451 if (err)
3452 return err;
3454 regs[value_regno].type = SCALAR_VALUE;
3455 __mark_reg_known(&regs[value_regno], val);
3456 } else {
3457 mark_reg_unknown(env, regs, value_regno);
3460 } else if (reg->type == PTR_TO_MEM) {
3461 if (t == BPF_WRITE && value_regno >= 0 &&
3462 is_pointer_value(env, value_regno)) {
3463 verbose(env, "R%d leaks addr into mem\n", value_regno);
3464 return -EACCES;
3466 err = check_mem_region_access(env, regno, off, size,
3467 reg->mem_size, false);
3468 if (!err && t == BPF_READ && value_regno >= 0)
3469 mark_reg_unknown(env, regs, value_regno);
3470 } else if (reg->type == PTR_TO_CTX) {
3471 enum bpf_reg_type reg_type = SCALAR_VALUE;
3472 struct btf *btf = NULL;
3473 u32 btf_id = 0;
3475 if (t == BPF_WRITE && value_regno >= 0 &&
3476 is_pointer_value(env, value_regno)) {
3477 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3478 return -EACCES;
3481 err = check_ctx_reg(env, reg, regno);
3482 if (err < 0)
3483 return err;
3485 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3486 if (err)
3487 verbose_linfo(env, insn_idx, "; ");
3488 if (!err && t == BPF_READ && value_regno >= 0) {
3489 /* ctx access returns either a scalar, or a
3490 * PTR_TO_PACKET[_META,_END]. In the latter
3491 * case, we know the offset is zero.
3493 if (reg_type == SCALAR_VALUE) {
3494 mark_reg_unknown(env, regs, value_regno);
3495 } else {
3496 mark_reg_known_zero(env, regs,
3497 value_regno);
3498 if (reg_type_may_be_null(reg_type))
3499 regs[value_regno].id = ++env->id_gen;
3500 /* A load of ctx field could have different
3501 * actual load size with the one encoded in the
3502 * insn. When the dst is PTR, it is for sure not
3503 * a sub-register.
3505 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3506 if (reg_type == PTR_TO_BTF_ID ||
3507 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3508 regs[value_regno].btf = btf;
3509 regs[value_regno].btf_id = btf_id;
3512 regs[value_regno].type = reg_type;
3515 } else if (reg->type == PTR_TO_STACK) {
3516 off += reg->var_off.value;
3517 err = check_stack_access(env, reg, off, size);
3518 if (err)
3519 return err;
3521 state = func(env, reg);
3522 err = update_stack_depth(env, state, off);
3523 if (err)
3524 return err;
3526 if (t == BPF_WRITE)
3527 err = check_stack_write(env, state, off, size,
3528 value_regno, insn_idx);
3529 else
3530 err = check_stack_read(env, state, off, size,
3531 value_regno);
3532 } else if (reg_is_pkt_pointer(reg)) {
3533 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3534 verbose(env, "cannot write into packet\n");
3535 return -EACCES;
3537 if (t == BPF_WRITE && value_regno >= 0 &&
3538 is_pointer_value(env, value_regno)) {
3539 verbose(env, "R%d leaks addr into packet\n",
3540 value_regno);
3541 return -EACCES;
3543 err = check_packet_access(env, regno, off, size, false);
3544 if (!err && t == BPF_READ && value_regno >= 0)
3545 mark_reg_unknown(env, regs, value_regno);
3546 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3547 if (t == BPF_WRITE && value_regno >= 0 &&
3548 is_pointer_value(env, value_regno)) {
3549 verbose(env, "R%d leaks addr into flow keys\n",
3550 value_regno);
3551 return -EACCES;
3554 err = check_flow_keys_access(env, off, size);
3555 if (!err && t == BPF_READ && value_regno >= 0)
3556 mark_reg_unknown(env, regs, value_regno);
3557 } else if (type_is_sk_pointer(reg->type)) {
3558 if (t == BPF_WRITE) {
3559 verbose(env, "R%d cannot write into %s\n",
3560 regno, reg_type_str[reg->type]);
3561 return -EACCES;
3563 err = check_sock_access(env, insn_idx, regno, off, size, t);
3564 if (!err && value_regno >= 0)
3565 mark_reg_unknown(env, regs, value_regno);
3566 } else if (reg->type == PTR_TO_TP_BUFFER) {
3567 err = check_tp_buffer_access(env, reg, regno, off, size);
3568 if (!err && t == BPF_READ && value_regno >= 0)
3569 mark_reg_unknown(env, regs, value_regno);
3570 } else if (reg->type == PTR_TO_BTF_ID) {
3571 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3572 value_regno);
3573 } else if (reg->type == CONST_PTR_TO_MAP) {
3574 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3575 value_regno);
3576 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3577 if (t == BPF_WRITE) {
3578 verbose(env, "R%d cannot write into %s\n",
3579 regno, reg_type_str[reg->type]);
3580 return -EACCES;
3582 err = check_buffer_access(env, reg, regno, off, size, false,
3583 "rdonly",
3584 &env->prog->aux->max_rdonly_access);
3585 if (!err && value_regno >= 0)
3586 mark_reg_unknown(env, regs, value_regno);
3587 } else if (reg->type == PTR_TO_RDWR_BUF) {
3588 err = check_buffer_access(env, reg, regno, off, size, false,
3589 "rdwr",
3590 &env->prog->aux->max_rdwr_access);
3591 if (!err && t == BPF_READ && value_regno >= 0)
3592 mark_reg_unknown(env, regs, value_regno);
3593 } else {
3594 verbose(env, "R%d invalid mem access '%s'\n", regno,
3595 reg_type_str[reg->type]);
3596 return -EACCES;
3599 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3600 regs[value_regno].type == SCALAR_VALUE) {
3601 /* b/h/w load zero-extends, mark upper bits as known 0 */
3602 coerce_reg_to_size(&regs[value_regno], size);
3604 return err;
3607 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3609 int err;
3611 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3612 insn->imm != 0) {
3613 verbose(env, "BPF_XADD uses reserved fields\n");
3614 return -EINVAL;
3617 /* check src1 operand */
3618 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3619 if (err)
3620 return err;
3622 /* check src2 operand */
3623 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3624 if (err)
3625 return err;
3627 if (is_pointer_value(env, insn->src_reg)) {
3628 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3629 return -EACCES;
3632 if (is_ctx_reg(env, insn->dst_reg) ||
3633 is_pkt_reg(env, insn->dst_reg) ||
3634 is_flow_key_reg(env, insn->dst_reg) ||
3635 is_sk_reg(env, insn->dst_reg)) {
3636 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3637 insn->dst_reg,
3638 reg_type_str[reg_state(env, insn->dst_reg)->type]);
3639 return -EACCES;
3642 /* check whether atomic_add can read the memory */
3643 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3644 BPF_SIZE(insn->code), BPF_READ, -1, true);
3645 if (err)
3646 return err;
3648 /* check whether atomic_add can write into the same memory */
3649 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3650 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3653 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3654 int off, int access_size,
3655 bool zero_size_allowed)
3657 struct bpf_reg_state *reg = reg_state(env, regno);
3659 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3660 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3661 if (tnum_is_const(reg->var_off)) {
3662 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3663 regno, off, access_size);
3664 } else {
3665 char tn_buf[48];
3667 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3668 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3669 regno, tn_buf, access_size);
3671 return -EACCES;
3673 return 0;
3676 /* when register 'regno' is passed into function that will read 'access_size'
3677 * bytes from that pointer, make sure that it's within stack boundary
3678 * and all elements of stack are initialized.
3679 * Unlike most pointer bounds-checking functions, this one doesn't take an
3680 * 'off' argument, so it has to add in reg->off itself.
3682 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3683 int access_size, bool zero_size_allowed,
3684 struct bpf_call_arg_meta *meta)
3686 struct bpf_reg_state *reg = reg_state(env, regno);
3687 struct bpf_func_state *state = func(env, reg);
3688 int err, min_off, max_off, i, j, slot, spi;
3690 if (tnum_is_const(reg->var_off)) {
3691 min_off = max_off = reg->var_off.value + reg->off;
3692 err = __check_stack_boundary(env, regno, min_off, access_size,
3693 zero_size_allowed);
3694 if (err)
3695 return err;
3696 } else {
3697 /* Variable offset is prohibited for unprivileged mode for
3698 * simplicity since it requires corresponding support in
3699 * Spectre masking for stack ALU.
3700 * See also retrieve_ptr_limit().
3702 if (!env->bypass_spec_v1) {
3703 char tn_buf[48];
3705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3706 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3707 regno, tn_buf);
3708 return -EACCES;
3710 /* Only initialized buffer on stack is allowed to be accessed
3711 * with variable offset. With uninitialized buffer it's hard to
3712 * guarantee that whole memory is marked as initialized on
3713 * helper return since specific bounds are unknown what may
3714 * cause uninitialized stack leaking.
3716 if (meta && meta->raw_mode)
3717 meta = NULL;
3719 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3720 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3721 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3722 regno);
3723 return -EACCES;
3725 min_off = reg->smin_value + reg->off;
3726 max_off = reg->smax_value + reg->off;
3727 err = __check_stack_boundary(env, regno, min_off, access_size,
3728 zero_size_allowed);
3729 if (err) {
3730 verbose(env, "R%d min value is outside of stack bound\n",
3731 regno);
3732 return err;
3734 err = __check_stack_boundary(env, regno, max_off, access_size,
3735 zero_size_allowed);
3736 if (err) {
3737 verbose(env, "R%d max value is outside of stack bound\n",
3738 regno);
3739 return err;
3743 if (meta && meta->raw_mode) {
3744 meta->access_size = access_size;
3745 meta->regno = regno;
3746 return 0;
3749 for (i = min_off; i < max_off + access_size; i++) {
3750 u8 *stype;
3752 slot = -i - 1;
3753 spi = slot / BPF_REG_SIZE;
3754 if (state->allocated_stack <= slot)
3755 goto err;
3756 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3757 if (*stype == STACK_MISC)
3758 goto mark;
3759 if (*stype == STACK_ZERO) {
3760 /* helper can write anything into the stack */
3761 *stype = STACK_MISC;
3762 goto mark;
3765 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3766 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3767 goto mark;
3769 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3770 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3771 env->allow_ptr_leaks)) {
3772 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3773 for (j = 0; j < BPF_REG_SIZE; j++)
3774 state->stack[spi].slot_type[j] = STACK_MISC;
3775 goto mark;
3778 err:
3779 if (tnum_is_const(reg->var_off)) {
3780 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3781 min_off, i - min_off, access_size);
3782 } else {
3783 char tn_buf[48];
3785 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3786 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3787 tn_buf, i - min_off, access_size);
3789 return -EACCES;
3790 mark:
3791 /* reading any byte out of 8-byte 'spill_slot' will cause
3792 * the whole slot to be marked as 'read'
3794 mark_reg_read(env, &state->stack[spi].spilled_ptr,
3795 state->stack[spi].spilled_ptr.parent,
3796 REG_LIVE_READ64);
3798 return update_stack_depth(env, state, min_off);
3801 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3802 int access_size, bool zero_size_allowed,
3803 struct bpf_call_arg_meta *meta)
3805 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3807 switch (reg->type) {
3808 case PTR_TO_PACKET:
3809 case PTR_TO_PACKET_META:
3810 return check_packet_access(env, regno, reg->off, access_size,
3811 zero_size_allowed);
3812 case PTR_TO_MAP_VALUE:
3813 if (check_map_access_type(env, regno, reg->off, access_size,
3814 meta && meta->raw_mode ? BPF_WRITE :
3815 BPF_READ))
3816 return -EACCES;
3817 return check_map_access(env, regno, reg->off, access_size,
3818 zero_size_allowed);
3819 case PTR_TO_MEM:
3820 return check_mem_region_access(env, regno, reg->off,
3821 access_size, reg->mem_size,
3822 zero_size_allowed);
3823 case PTR_TO_RDONLY_BUF:
3824 if (meta && meta->raw_mode)
3825 return -EACCES;
3826 return check_buffer_access(env, reg, regno, reg->off,
3827 access_size, zero_size_allowed,
3828 "rdonly",
3829 &env->prog->aux->max_rdonly_access);
3830 case PTR_TO_RDWR_BUF:
3831 return check_buffer_access(env, reg, regno, reg->off,
3832 access_size, zero_size_allowed,
3833 "rdwr",
3834 &env->prog->aux->max_rdwr_access);
3835 case PTR_TO_STACK:
3836 return check_stack_boundary(env, regno, access_size,
3837 zero_size_allowed, meta);
3838 default: /* scalar_value or invalid ptr */
3839 /* Allow zero-byte read from NULL, regardless of pointer type */
3840 if (zero_size_allowed && access_size == 0 &&
3841 register_is_null(reg))
3842 return 0;
3844 verbose(env, "R%d type=%s expected=%s\n", regno,
3845 reg_type_str[reg->type],
3846 reg_type_str[PTR_TO_STACK]);
3847 return -EACCES;
3851 /* Implementation details:
3852 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3853 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3854 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3855 * value_or_null->value transition, since the verifier only cares about
3856 * the range of access to valid map value pointer and doesn't care about actual
3857 * address of the map element.
3858 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3859 * reg->id > 0 after value_or_null->value transition. By doing so
3860 * two bpf_map_lookups will be considered two different pointers that
3861 * point to different bpf_spin_locks.
3862 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3863 * dead-locks.
3864 * Since only one bpf_spin_lock is allowed the checks are simpler than
3865 * reg_is_refcounted() logic. The verifier needs to remember only
3866 * one spin_lock instead of array of acquired_refs.
3867 * cur_state->active_spin_lock remembers which map value element got locked
3868 * and clears it after bpf_spin_unlock.
3870 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3871 bool is_lock)
3873 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3874 struct bpf_verifier_state *cur = env->cur_state;
3875 bool is_const = tnum_is_const(reg->var_off);
3876 struct bpf_map *map = reg->map_ptr;
3877 u64 val = reg->var_off.value;
3879 if (!is_const) {
3880 verbose(env,
3881 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3882 regno);
3883 return -EINVAL;
3885 if (!map->btf) {
3886 verbose(env,
3887 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3888 map->name);
3889 return -EINVAL;
3891 if (!map_value_has_spin_lock(map)) {
3892 if (map->spin_lock_off == -E2BIG)
3893 verbose(env,
3894 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3895 map->name);
3896 else if (map->spin_lock_off == -ENOENT)
3897 verbose(env,
3898 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3899 map->name);
3900 else
3901 verbose(env,
3902 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3903 map->name);
3904 return -EINVAL;
3906 if (map->spin_lock_off != val + reg->off) {
3907 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3908 val + reg->off);
3909 return -EINVAL;
3911 if (is_lock) {
3912 if (cur->active_spin_lock) {
3913 verbose(env,
3914 "Locking two bpf_spin_locks are not allowed\n");
3915 return -EINVAL;
3917 cur->active_spin_lock = reg->id;
3918 } else {
3919 if (!cur->active_spin_lock) {
3920 verbose(env, "bpf_spin_unlock without taking a lock\n");
3921 return -EINVAL;
3923 if (cur->active_spin_lock != reg->id) {
3924 verbose(env, "bpf_spin_unlock of different lock\n");
3925 return -EINVAL;
3927 cur->active_spin_lock = 0;
3929 return 0;
3932 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3934 return type == ARG_PTR_TO_MEM ||
3935 type == ARG_PTR_TO_MEM_OR_NULL ||
3936 type == ARG_PTR_TO_UNINIT_MEM;
3939 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3941 return type == ARG_CONST_SIZE ||
3942 type == ARG_CONST_SIZE_OR_ZERO;
3945 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3947 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3950 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3952 return type == ARG_PTR_TO_INT ||
3953 type == ARG_PTR_TO_LONG;
3956 static int int_ptr_type_to_size(enum bpf_arg_type type)
3958 if (type == ARG_PTR_TO_INT)
3959 return sizeof(u32);
3960 else if (type == ARG_PTR_TO_LONG)
3961 return sizeof(u64);
3963 return -EINVAL;
3966 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3967 const struct bpf_call_arg_meta *meta,
3968 enum bpf_arg_type *arg_type)
3970 if (!meta->map_ptr) {
3971 /* kernel subsystem misconfigured verifier */
3972 verbose(env, "invalid map_ptr to access map->type\n");
3973 return -EACCES;
3976 switch (meta->map_ptr->map_type) {
3977 case BPF_MAP_TYPE_SOCKMAP:
3978 case BPF_MAP_TYPE_SOCKHASH:
3979 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3980 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3981 } else {
3982 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3983 return -EINVAL;
3985 break;
3987 default:
3988 break;
3990 return 0;
3993 struct bpf_reg_types {
3994 const enum bpf_reg_type types[10];
3995 u32 *btf_id;
3998 static const struct bpf_reg_types map_key_value_types = {
3999 .types = {
4000 PTR_TO_STACK,
4001 PTR_TO_PACKET,
4002 PTR_TO_PACKET_META,
4003 PTR_TO_MAP_VALUE,
4007 static const struct bpf_reg_types sock_types = {
4008 .types = {
4009 PTR_TO_SOCK_COMMON,
4010 PTR_TO_SOCKET,
4011 PTR_TO_TCP_SOCK,
4012 PTR_TO_XDP_SOCK,
4016 #ifdef CONFIG_NET
4017 static const struct bpf_reg_types btf_id_sock_common_types = {
4018 .types = {
4019 PTR_TO_SOCK_COMMON,
4020 PTR_TO_SOCKET,
4021 PTR_TO_TCP_SOCK,
4022 PTR_TO_XDP_SOCK,
4023 PTR_TO_BTF_ID,
4025 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4027 #endif
4029 static const struct bpf_reg_types mem_types = {
4030 .types = {
4031 PTR_TO_STACK,
4032 PTR_TO_PACKET,
4033 PTR_TO_PACKET_META,
4034 PTR_TO_MAP_VALUE,
4035 PTR_TO_MEM,
4036 PTR_TO_RDONLY_BUF,
4037 PTR_TO_RDWR_BUF,
4041 static const struct bpf_reg_types int_ptr_types = {
4042 .types = {
4043 PTR_TO_STACK,
4044 PTR_TO_PACKET,
4045 PTR_TO_PACKET_META,
4046 PTR_TO_MAP_VALUE,
4050 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4051 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4052 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4053 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4054 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4055 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4056 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4057 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4059 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4060 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4061 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4062 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4063 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4064 [ARG_CONST_SIZE] = &scalar_types,
4065 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4066 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4067 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4068 [ARG_PTR_TO_CTX] = &context_types,
4069 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4070 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4071 #ifdef CONFIG_NET
4072 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4073 #endif
4074 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4075 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4076 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4077 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4078 [ARG_PTR_TO_MEM] = &mem_types,
4079 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4080 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4081 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4082 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4083 [ARG_PTR_TO_INT] = &int_ptr_types,
4084 [ARG_PTR_TO_LONG] = &int_ptr_types,
4085 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4088 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4089 enum bpf_arg_type arg_type,
4090 const u32 *arg_btf_id)
4092 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4093 enum bpf_reg_type expected, type = reg->type;
4094 const struct bpf_reg_types *compatible;
4095 int i, j;
4097 compatible = compatible_reg_types[arg_type];
4098 if (!compatible) {
4099 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4100 return -EFAULT;
4103 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4104 expected = compatible->types[i];
4105 if (expected == NOT_INIT)
4106 break;
4108 if (type == expected)
4109 goto found;
4112 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4113 for (j = 0; j + 1 < i; j++)
4114 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4115 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4116 return -EACCES;
4118 found:
4119 if (type == PTR_TO_BTF_ID) {
4120 if (!arg_btf_id) {
4121 if (!compatible->btf_id) {
4122 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4123 return -EFAULT;
4125 arg_btf_id = compatible->btf_id;
4128 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4129 btf_vmlinux, *arg_btf_id)) {
4130 verbose(env, "R%d is of type %s but %s is expected\n",
4131 regno, kernel_type_name(reg->btf, reg->btf_id),
4132 kernel_type_name(btf_vmlinux, *arg_btf_id));
4133 return -EACCES;
4136 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4137 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4138 regno);
4139 return -EACCES;
4143 return 0;
4146 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4147 struct bpf_call_arg_meta *meta,
4148 const struct bpf_func_proto *fn)
4150 u32 regno = BPF_REG_1 + arg;
4151 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4152 enum bpf_arg_type arg_type = fn->arg_type[arg];
4153 enum bpf_reg_type type = reg->type;
4154 int err = 0;
4156 if (arg_type == ARG_DONTCARE)
4157 return 0;
4159 err = check_reg_arg(env, regno, SRC_OP);
4160 if (err)
4161 return err;
4163 if (arg_type == ARG_ANYTHING) {
4164 if (is_pointer_value(env, regno)) {
4165 verbose(env, "R%d leaks addr into helper function\n",
4166 regno);
4167 return -EACCES;
4169 return 0;
4172 if (type_is_pkt_pointer(type) &&
4173 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4174 verbose(env, "helper access to the packet is not allowed\n");
4175 return -EACCES;
4178 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4179 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4180 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4181 err = resolve_map_arg_type(env, meta, &arg_type);
4182 if (err)
4183 return err;
4186 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4187 /* A NULL register has a SCALAR_VALUE type, so skip
4188 * type checking.
4190 goto skip_type_check;
4192 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4193 if (err)
4194 return err;
4196 if (type == PTR_TO_CTX) {
4197 err = check_ctx_reg(env, reg, regno);
4198 if (err < 0)
4199 return err;
4202 skip_type_check:
4203 if (reg->ref_obj_id) {
4204 if (meta->ref_obj_id) {
4205 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4206 regno, reg->ref_obj_id,
4207 meta->ref_obj_id);
4208 return -EFAULT;
4210 meta->ref_obj_id = reg->ref_obj_id;
4213 if (arg_type == ARG_CONST_MAP_PTR) {
4214 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4215 meta->map_ptr = reg->map_ptr;
4216 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4217 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4218 * check that [key, key + map->key_size) are within
4219 * stack limits and initialized
4221 if (!meta->map_ptr) {
4222 /* in function declaration map_ptr must come before
4223 * map_key, so that it's verified and known before
4224 * we have to check map_key here. Otherwise it means
4225 * that kernel subsystem misconfigured verifier
4227 verbose(env, "invalid map_ptr to access map->key\n");
4228 return -EACCES;
4230 err = check_helper_mem_access(env, regno,
4231 meta->map_ptr->key_size, false,
4232 NULL);
4233 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4234 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4235 !register_is_null(reg)) ||
4236 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4237 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4238 * check [value, value + map->value_size) validity
4240 if (!meta->map_ptr) {
4241 /* kernel subsystem misconfigured verifier */
4242 verbose(env, "invalid map_ptr to access map->value\n");
4243 return -EACCES;
4245 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4246 err = check_helper_mem_access(env, regno,
4247 meta->map_ptr->value_size, false,
4248 meta);
4249 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4250 if (!reg->btf_id) {
4251 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4252 return -EACCES;
4254 meta->ret_btf = reg->btf;
4255 meta->ret_btf_id = reg->btf_id;
4256 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4257 if (meta->func_id == BPF_FUNC_spin_lock) {
4258 if (process_spin_lock(env, regno, true))
4259 return -EACCES;
4260 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4261 if (process_spin_lock(env, regno, false))
4262 return -EACCES;
4263 } else {
4264 verbose(env, "verifier internal error\n");
4265 return -EFAULT;
4267 } else if (arg_type_is_mem_ptr(arg_type)) {
4268 /* The access to this pointer is only checked when we hit the
4269 * next is_mem_size argument below.
4271 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4272 } else if (arg_type_is_mem_size(arg_type)) {
4273 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4275 /* This is used to refine r0 return value bounds for helpers
4276 * that enforce this value as an upper bound on return values.
4277 * See do_refine_retval_range() for helpers that can refine
4278 * the return value. C type of helper is u32 so we pull register
4279 * bound from umax_value however, if negative verifier errors
4280 * out. Only upper bounds can be learned because retval is an
4281 * int type and negative retvals are allowed.
4283 meta->msize_max_value = reg->umax_value;
4285 /* The register is SCALAR_VALUE; the access check
4286 * happens using its boundaries.
4288 if (!tnum_is_const(reg->var_off))
4289 /* For unprivileged variable accesses, disable raw
4290 * mode so that the program is required to
4291 * initialize all the memory that the helper could
4292 * just partially fill up.
4294 meta = NULL;
4296 if (reg->smin_value < 0) {
4297 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4298 regno);
4299 return -EACCES;
4302 if (reg->umin_value == 0) {
4303 err = check_helper_mem_access(env, regno - 1, 0,
4304 zero_size_allowed,
4305 meta);
4306 if (err)
4307 return err;
4310 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4311 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4312 regno);
4313 return -EACCES;
4315 err = check_helper_mem_access(env, regno - 1,
4316 reg->umax_value,
4317 zero_size_allowed, meta);
4318 if (!err)
4319 err = mark_chain_precision(env, regno);
4320 } else if (arg_type_is_alloc_size(arg_type)) {
4321 if (!tnum_is_const(reg->var_off)) {
4322 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4323 regno);
4324 return -EACCES;
4326 meta->mem_size = reg->var_off.value;
4327 } else if (arg_type_is_int_ptr(arg_type)) {
4328 int size = int_ptr_type_to_size(arg_type);
4330 err = check_helper_mem_access(env, regno, size, false, meta);
4331 if (err)
4332 return err;
4333 err = check_ptr_alignment(env, reg, 0, size, true);
4336 return err;
4339 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4341 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4342 enum bpf_prog_type type = resolve_prog_type(env->prog);
4344 if (func_id != BPF_FUNC_map_update_elem)
4345 return false;
4347 /* It's not possible to get access to a locked struct sock in these
4348 * contexts, so updating is safe.
4350 switch (type) {
4351 case BPF_PROG_TYPE_TRACING:
4352 if (eatype == BPF_TRACE_ITER)
4353 return true;
4354 break;
4355 case BPF_PROG_TYPE_SOCKET_FILTER:
4356 case BPF_PROG_TYPE_SCHED_CLS:
4357 case BPF_PROG_TYPE_SCHED_ACT:
4358 case BPF_PROG_TYPE_XDP:
4359 case BPF_PROG_TYPE_SK_REUSEPORT:
4360 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4361 case BPF_PROG_TYPE_SK_LOOKUP:
4362 return true;
4363 default:
4364 break;
4367 verbose(env, "cannot update sockmap in this context\n");
4368 return false;
4371 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4373 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4376 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4377 struct bpf_map *map, int func_id)
4379 if (!map)
4380 return 0;
4382 /* We need a two way check, first is from map perspective ... */
4383 switch (map->map_type) {
4384 case BPF_MAP_TYPE_PROG_ARRAY:
4385 if (func_id != BPF_FUNC_tail_call)
4386 goto error;
4387 break;
4388 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4389 if (func_id != BPF_FUNC_perf_event_read &&
4390 func_id != BPF_FUNC_perf_event_output &&
4391 func_id != BPF_FUNC_skb_output &&
4392 func_id != BPF_FUNC_perf_event_read_value &&
4393 func_id != BPF_FUNC_xdp_output)
4394 goto error;
4395 break;
4396 case BPF_MAP_TYPE_RINGBUF:
4397 if (func_id != BPF_FUNC_ringbuf_output &&
4398 func_id != BPF_FUNC_ringbuf_reserve &&
4399 func_id != BPF_FUNC_ringbuf_submit &&
4400 func_id != BPF_FUNC_ringbuf_discard &&
4401 func_id != BPF_FUNC_ringbuf_query)
4402 goto error;
4403 break;
4404 case BPF_MAP_TYPE_STACK_TRACE:
4405 if (func_id != BPF_FUNC_get_stackid)
4406 goto error;
4407 break;
4408 case BPF_MAP_TYPE_CGROUP_ARRAY:
4409 if (func_id != BPF_FUNC_skb_under_cgroup &&
4410 func_id != BPF_FUNC_current_task_under_cgroup)
4411 goto error;
4412 break;
4413 case BPF_MAP_TYPE_CGROUP_STORAGE:
4414 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4415 if (func_id != BPF_FUNC_get_local_storage)
4416 goto error;
4417 break;
4418 case BPF_MAP_TYPE_DEVMAP:
4419 case BPF_MAP_TYPE_DEVMAP_HASH:
4420 if (func_id != BPF_FUNC_redirect_map &&
4421 func_id != BPF_FUNC_map_lookup_elem)
4422 goto error;
4423 break;
4424 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4425 * appear.
4427 case BPF_MAP_TYPE_CPUMAP:
4428 if (func_id != BPF_FUNC_redirect_map)
4429 goto error;
4430 break;
4431 case BPF_MAP_TYPE_XSKMAP:
4432 if (func_id != BPF_FUNC_redirect_map &&
4433 func_id != BPF_FUNC_map_lookup_elem)
4434 goto error;
4435 break;
4436 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4437 case BPF_MAP_TYPE_HASH_OF_MAPS:
4438 if (func_id != BPF_FUNC_map_lookup_elem)
4439 goto error;
4440 break;
4441 case BPF_MAP_TYPE_SOCKMAP:
4442 if (func_id != BPF_FUNC_sk_redirect_map &&
4443 func_id != BPF_FUNC_sock_map_update &&
4444 func_id != BPF_FUNC_map_delete_elem &&
4445 func_id != BPF_FUNC_msg_redirect_map &&
4446 func_id != BPF_FUNC_sk_select_reuseport &&
4447 func_id != BPF_FUNC_map_lookup_elem &&
4448 !may_update_sockmap(env, func_id))
4449 goto error;
4450 break;
4451 case BPF_MAP_TYPE_SOCKHASH:
4452 if (func_id != BPF_FUNC_sk_redirect_hash &&
4453 func_id != BPF_FUNC_sock_hash_update &&
4454 func_id != BPF_FUNC_map_delete_elem &&
4455 func_id != BPF_FUNC_msg_redirect_hash &&
4456 func_id != BPF_FUNC_sk_select_reuseport &&
4457 func_id != BPF_FUNC_map_lookup_elem &&
4458 !may_update_sockmap(env, func_id))
4459 goto error;
4460 break;
4461 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4462 if (func_id != BPF_FUNC_sk_select_reuseport)
4463 goto error;
4464 break;
4465 case BPF_MAP_TYPE_QUEUE:
4466 case BPF_MAP_TYPE_STACK:
4467 if (func_id != BPF_FUNC_map_peek_elem &&
4468 func_id != BPF_FUNC_map_pop_elem &&
4469 func_id != BPF_FUNC_map_push_elem)
4470 goto error;
4471 break;
4472 case BPF_MAP_TYPE_SK_STORAGE:
4473 if (func_id != BPF_FUNC_sk_storage_get &&
4474 func_id != BPF_FUNC_sk_storage_delete)
4475 goto error;
4476 break;
4477 case BPF_MAP_TYPE_INODE_STORAGE:
4478 if (func_id != BPF_FUNC_inode_storage_get &&
4479 func_id != BPF_FUNC_inode_storage_delete)
4480 goto error;
4481 break;
4482 case BPF_MAP_TYPE_TASK_STORAGE:
4483 if (func_id != BPF_FUNC_task_storage_get &&
4484 func_id != BPF_FUNC_task_storage_delete)
4485 goto error;
4486 break;
4487 default:
4488 break;
4491 /* ... and second from the function itself. */
4492 switch (func_id) {
4493 case BPF_FUNC_tail_call:
4494 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4495 goto error;
4496 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4497 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4498 return -EINVAL;
4500 break;
4501 case BPF_FUNC_perf_event_read:
4502 case BPF_FUNC_perf_event_output:
4503 case BPF_FUNC_perf_event_read_value:
4504 case BPF_FUNC_skb_output:
4505 case BPF_FUNC_xdp_output:
4506 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4507 goto error;
4508 break;
4509 case BPF_FUNC_get_stackid:
4510 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4511 goto error;
4512 break;
4513 case BPF_FUNC_current_task_under_cgroup:
4514 case BPF_FUNC_skb_under_cgroup:
4515 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4516 goto error;
4517 break;
4518 case BPF_FUNC_redirect_map:
4519 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4520 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4521 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4522 map->map_type != BPF_MAP_TYPE_XSKMAP)
4523 goto error;
4524 break;
4525 case BPF_FUNC_sk_redirect_map:
4526 case BPF_FUNC_msg_redirect_map:
4527 case BPF_FUNC_sock_map_update:
4528 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4529 goto error;
4530 break;
4531 case BPF_FUNC_sk_redirect_hash:
4532 case BPF_FUNC_msg_redirect_hash:
4533 case BPF_FUNC_sock_hash_update:
4534 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4535 goto error;
4536 break;
4537 case BPF_FUNC_get_local_storage:
4538 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4539 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4540 goto error;
4541 break;
4542 case BPF_FUNC_sk_select_reuseport:
4543 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4544 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4545 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4546 goto error;
4547 break;
4548 case BPF_FUNC_map_peek_elem:
4549 case BPF_FUNC_map_pop_elem:
4550 case BPF_FUNC_map_push_elem:
4551 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4552 map->map_type != BPF_MAP_TYPE_STACK)
4553 goto error;
4554 break;
4555 case BPF_FUNC_sk_storage_get:
4556 case BPF_FUNC_sk_storage_delete:
4557 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4558 goto error;
4559 break;
4560 case BPF_FUNC_inode_storage_get:
4561 case BPF_FUNC_inode_storage_delete:
4562 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4563 goto error;
4564 break;
4565 case BPF_FUNC_task_storage_get:
4566 case BPF_FUNC_task_storage_delete:
4567 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4568 goto error;
4569 break;
4570 default:
4571 break;
4574 return 0;
4575 error:
4576 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4577 map->map_type, func_id_name(func_id), func_id);
4578 return -EINVAL;
4581 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4583 int count = 0;
4585 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4586 count++;
4587 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4588 count++;
4589 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4590 count++;
4591 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4592 count++;
4593 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4594 count++;
4596 /* We only support one arg being in raw mode at the moment,
4597 * which is sufficient for the helper functions we have
4598 * right now.
4600 return count <= 1;
4603 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4604 enum bpf_arg_type arg_next)
4606 return (arg_type_is_mem_ptr(arg_curr) &&
4607 !arg_type_is_mem_size(arg_next)) ||
4608 (!arg_type_is_mem_ptr(arg_curr) &&
4609 arg_type_is_mem_size(arg_next));
4612 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4614 /* bpf_xxx(..., buf, len) call will access 'len'
4615 * bytes from memory 'buf'. Both arg types need
4616 * to be paired, so make sure there's no buggy
4617 * helper function specification.
4619 if (arg_type_is_mem_size(fn->arg1_type) ||
4620 arg_type_is_mem_ptr(fn->arg5_type) ||
4621 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4622 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4623 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4624 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4625 return false;
4627 return true;
4630 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4632 int count = 0;
4634 if (arg_type_may_be_refcounted(fn->arg1_type))
4635 count++;
4636 if (arg_type_may_be_refcounted(fn->arg2_type))
4637 count++;
4638 if (arg_type_may_be_refcounted(fn->arg3_type))
4639 count++;
4640 if (arg_type_may_be_refcounted(fn->arg4_type))
4641 count++;
4642 if (arg_type_may_be_refcounted(fn->arg5_type))
4643 count++;
4645 /* A reference acquiring function cannot acquire
4646 * another refcounted ptr.
4648 if (may_be_acquire_function(func_id) && count)
4649 return false;
4651 /* We only support one arg being unreferenced at the moment,
4652 * which is sufficient for the helper functions we have right now.
4654 return count <= 1;
4657 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4659 int i;
4661 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4662 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4663 return false;
4665 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4666 return false;
4669 return true;
4672 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4674 return check_raw_mode_ok(fn) &&
4675 check_arg_pair_ok(fn) &&
4676 check_btf_id_ok(fn) &&
4677 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4680 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4681 * are now invalid, so turn them into unknown SCALAR_VALUE.
4683 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4684 struct bpf_func_state *state)
4686 struct bpf_reg_state *regs = state->regs, *reg;
4687 int i;
4689 for (i = 0; i < MAX_BPF_REG; i++)
4690 if (reg_is_pkt_pointer_any(&regs[i]))
4691 mark_reg_unknown(env, regs, i);
4693 bpf_for_each_spilled_reg(i, state, reg) {
4694 if (!reg)
4695 continue;
4696 if (reg_is_pkt_pointer_any(reg))
4697 __mark_reg_unknown(env, reg);
4701 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4703 struct bpf_verifier_state *vstate = env->cur_state;
4704 int i;
4706 for (i = 0; i <= vstate->curframe; i++)
4707 __clear_all_pkt_pointers(env, vstate->frame[i]);
4710 enum {
4711 AT_PKT_END = -1,
4712 BEYOND_PKT_END = -2,
4715 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4717 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4718 struct bpf_reg_state *reg = &state->regs[regn];
4720 if (reg->type != PTR_TO_PACKET)
4721 /* PTR_TO_PACKET_META is not supported yet */
4722 return;
4724 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4725 * How far beyond pkt_end it goes is unknown.
4726 * if (!range_open) it's the case of pkt >= pkt_end
4727 * if (range_open) it's the case of pkt > pkt_end
4728 * hence this pointer is at least 1 byte bigger than pkt_end
4730 if (range_open)
4731 reg->range = BEYOND_PKT_END;
4732 else
4733 reg->range = AT_PKT_END;
4736 static void release_reg_references(struct bpf_verifier_env *env,
4737 struct bpf_func_state *state,
4738 int ref_obj_id)
4740 struct bpf_reg_state *regs = state->regs, *reg;
4741 int i;
4743 for (i = 0; i < MAX_BPF_REG; i++)
4744 if (regs[i].ref_obj_id == ref_obj_id)
4745 mark_reg_unknown(env, regs, i);
4747 bpf_for_each_spilled_reg(i, state, reg) {
4748 if (!reg)
4749 continue;
4750 if (reg->ref_obj_id == ref_obj_id)
4751 __mark_reg_unknown(env, reg);
4755 /* The pointer with the specified id has released its reference to kernel
4756 * resources. Identify all copies of the same pointer and clear the reference.
4758 static int release_reference(struct bpf_verifier_env *env,
4759 int ref_obj_id)
4761 struct bpf_verifier_state *vstate = env->cur_state;
4762 int err;
4763 int i;
4765 err = release_reference_state(cur_func(env), ref_obj_id);
4766 if (err)
4767 return err;
4769 for (i = 0; i <= vstate->curframe; i++)
4770 release_reg_references(env, vstate->frame[i], ref_obj_id);
4772 return 0;
4775 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4776 struct bpf_reg_state *regs)
4778 int i;
4780 /* after the call registers r0 - r5 were scratched */
4781 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4782 mark_reg_not_init(env, regs, caller_saved[i]);
4783 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4787 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4788 int *insn_idx)
4790 struct bpf_verifier_state *state = env->cur_state;
4791 struct bpf_func_info_aux *func_info_aux;
4792 struct bpf_func_state *caller, *callee;
4793 int i, err, subprog, target_insn;
4794 bool is_global = false;
4796 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4797 verbose(env, "the call stack of %d frames is too deep\n",
4798 state->curframe + 2);
4799 return -E2BIG;
4802 target_insn = *insn_idx + insn->imm;
4803 subprog = find_subprog(env, target_insn + 1);
4804 if (subprog < 0) {
4805 verbose(env, "verifier bug. No program starts at insn %d\n",
4806 target_insn + 1);
4807 return -EFAULT;
4810 caller = state->frame[state->curframe];
4811 if (state->frame[state->curframe + 1]) {
4812 verbose(env, "verifier bug. Frame %d already allocated\n",
4813 state->curframe + 1);
4814 return -EFAULT;
4817 func_info_aux = env->prog->aux->func_info_aux;
4818 if (func_info_aux)
4819 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4820 err = btf_check_func_arg_match(env, subprog, caller->regs);
4821 if (err == -EFAULT)
4822 return err;
4823 if (is_global) {
4824 if (err) {
4825 verbose(env, "Caller passes invalid args into func#%d\n",
4826 subprog);
4827 return err;
4828 } else {
4829 if (env->log.level & BPF_LOG_LEVEL)
4830 verbose(env,
4831 "Func#%d is global and valid. Skipping.\n",
4832 subprog);
4833 clear_caller_saved_regs(env, caller->regs);
4835 /* All global functions return SCALAR_VALUE */
4836 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4838 /* continue with next insn after call */
4839 return 0;
4843 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4844 if (!callee)
4845 return -ENOMEM;
4846 state->frame[state->curframe + 1] = callee;
4848 /* callee cannot access r0, r6 - r9 for reading and has to write
4849 * into its own stack before reading from it.
4850 * callee can read/write into caller's stack
4852 init_func_state(env, callee,
4853 /* remember the callsite, it will be used by bpf_exit */
4854 *insn_idx /* callsite */,
4855 state->curframe + 1 /* frameno within this callchain */,
4856 subprog /* subprog number within this prog */);
4858 /* Transfer references to the callee */
4859 err = transfer_reference_state(callee, caller);
4860 if (err)
4861 return err;
4863 /* copy r1 - r5 args that callee can access. The copy includes parent
4864 * pointers, which connects us up to the liveness chain
4866 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4867 callee->regs[i] = caller->regs[i];
4869 clear_caller_saved_regs(env, caller->regs);
4871 /* only increment it after check_reg_arg() finished */
4872 state->curframe++;
4874 /* and go analyze first insn of the callee */
4875 *insn_idx = target_insn;
4877 if (env->log.level & BPF_LOG_LEVEL) {
4878 verbose(env, "caller:\n");
4879 print_verifier_state(env, caller);
4880 verbose(env, "callee:\n");
4881 print_verifier_state(env, callee);
4883 return 0;
4886 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4888 struct bpf_verifier_state *state = env->cur_state;
4889 struct bpf_func_state *caller, *callee;
4890 struct bpf_reg_state *r0;
4891 int err;
4893 callee = state->frame[state->curframe];
4894 r0 = &callee->regs[BPF_REG_0];
4895 if (r0->type == PTR_TO_STACK) {
4896 /* technically it's ok to return caller's stack pointer
4897 * (or caller's caller's pointer) back to the caller,
4898 * since these pointers are valid. Only current stack
4899 * pointer will be invalid as soon as function exits,
4900 * but let's be conservative
4902 verbose(env, "cannot return stack pointer to the caller\n");
4903 return -EINVAL;
4906 state->curframe--;
4907 caller = state->frame[state->curframe];
4908 /* return to the caller whatever r0 had in the callee */
4909 caller->regs[BPF_REG_0] = *r0;
4911 /* Transfer references to the caller */
4912 err = transfer_reference_state(caller, callee);
4913 if (err)
4914 return err;
4916 *insn_idx = callee->callsite + 1;
4917 if (env->log.level & BPF_LOG_LEVEL) {
4918 verbose(env, "returning from callee:\n");
4919 print_verifier_state(env, callee);
4920 verbose(env, "to caller at %d:\n", *insn_idx);
4921 print_verifier_state(env, caller);
4923 /* clear everything in the callee */
4924 free_func_state(callee);
4925 state->frame[state->curframe + 1] = NULL;
4926 return 0;
4929 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4930 int func_id,
4931 struct bpf_call_arg_meta *meta)
4933 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4935 if (ret_type != RET_INTEGER ||
4936 (func_id != BPF_FUNC_get_stack &&
4937 func_id != BPF_FUNC_probe_read_str &&
4938 func_id != BPF_FUNC_probe_read_kernel_str &&
4939 func_id != BPF_FUNC_probe_read_user_str))
4940 return;
4942 ret_reg->smax_value = meta->msize_max_value;
4943 ret_reg->s32_max_value = meta->msize_max_value;
4944 ret_reg->smin_value = -MAX_ERRNO;
4945 ret_reg->s32_min_value = -MAX_ERRNO;
4946 __reg_deduce_bounds(ret_reg);
4947 __reg_bound_offset(ret_reg);
4948 __update_reg_bounds(ret_reg);
4951 static int
4952 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4953 int func_id, int insn_idx)
4955 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4956 struct bpf_map *map = meta->map_ptr;
4958 if (func_id != BPF_FUNC_tail_call &&
4959 func_id != BPF_FUNC_map_lookup_elem &&
4960 func_id != BPF_FUNC_map_update_elem &&
4961 func_id != BPF_FUNC_map_delete_elem &&
4962 func_id != BPF_FUNC_map_push_elem &&
4963 func_id != BPF_FUNC_map_pop_elem &&
4964 func_id != BPF_FUNC_map_peek_elem)
4965 return 0;
4967 if (map == NULL) {
4968 verbose(env, "kernel subsystem misconfigured verifier\n");
4969 return -EINVAL;
4972 /* In case of read-only, some additional restrictions
4973 * need to be applied in order to prevent altering the
4974 * state of the map from program side.
4976 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4977 (func_id == BPF_FUNC_map_delete_elem ||
4978 func_id == BPF_FUNC_map_update_elem ||
4979 func_id == BPF_FUNC_map_push_elem ||
4980 func_id == BPF_FUNC_map_pop_elem)) {
4981 verbose(env, "write into map forbidden\n");
4982 return -EACCES;
4985 if (!BPF_MAP_PTR(aux->map_ptr_state))
4986 bpf_map_ptr_store(aux, meta->map_ptr,
4987 !meta->map_ptr->bypass_spec_v1);
4988 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4989 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4990 !meta->map_ptr->bypass_spec_v1);
4991 return 0;
4994 static int
4995 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4996 int func_id, int insn_idx)
4998 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4999 struct bpf_reg_state *regs = cur_regs(env), *reg;
5000 struct bpf_map *map = meta->map_ptr;
5001 struct tnum range;
5002 u64 val;
5003 int err;
5005 if (func_id != BPF_FUNC_tail_call)
5006 return 0;
5007 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5008 verbose(env, "kernel subsystem misconfigured verifier\n");
5009 return -EINVAL;
5012 range = tnum_range(0, map->max_entries - 1);
5013 reg = &regs[BPF_REG_3];
5015 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5016 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5017 return 0;
5020 err = mark_chain_precision(env, BPF_REG_3);
5021 if (err)
5022 return err;
5024 val = reg->var_off.value;
5025 if (bpf_map_key_unseen(aux))
5026 bpf_map_key_store(aux, val);
5027 else if (!bpf_map_key_poisoned(aux) &&
5028 bpf_map_key_immediate(aux) != val)
5029 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5030 return 0;
5033 static int check_reference_leak(struct bpf_verifier_env *env)
5035 struct bpf_func_state *state = cur_func(env);
5036 int i;
5038 for (i = 0; i < state->acquired_refs; i++) {
5039 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5040 state->refs[i].id, state->refs[i].insn_idx);
5042 return state->acquired_refs ? -EINVAL : 0;
5045 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5047 const struct bpf_func_proto *fn = NULL;
5048 struct bpf_reg_state *regs;
5049 struct bpf_call_arg_meta meta;
5050 bool changes_data;
5051 int i, err;
5053 /* find function prototype */
5054 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5055 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5056 func_id);
5057 return -EINVAL;
5060 if (env->ops->get_func_proto)
5061 fn = env->ops->get_func_proto(func_id, env->prog);
5062 if (!fn) {
5063 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5064 func_id);
5065 return -EINVAL;
5068 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5069 if (!env->prog->gpl_compatible && fn->gpl_only) {
5070 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5071 return -EINVAL;
5074 if (fn->allowed && !fn->allowed(env->prog)) {
5075 verbose(env, "helper call is not allowed in probe\n");
5076 return -EINVAL;
5079 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5080 changes_data = bpf_helper_changes_pkt_data(fn->func);
5081 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5082 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5083 func_id_name(func_id), func_id);
5084 return -EINVAL;
5087 memset(&meta, 0, sizeof(meta));
5088 meta.pkt_access = fn->pkt_access;
5090 err = check_func_proto(fn, func_id);
5091 if (err) {
5092 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5093 func_id_name(func_id), func_id);
5094 return err;
5097 meta.func_id = func_id;
5098 /* check args */
5099 for (i = 0; i < 5; i++) {
5100 err = check_func_arg(env, i, &meta, fn);
5101 if (err)
5102 return err;
5105 err = record_func_map(env, &meta, func_id, insn_idx);
5106 if (err)
5107 return err;
5109 err = record_func_key(env, &meta, func_id, insn_idx);
5110 if (err)
5111 return err;
5113 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5114 * is inferred from register state.
5116 for (i = 0; i < meta.access_size; i++) {
5117 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5118 BPF_WRITE, -1, false);
5119 if (err)
5120 return err;
5123 if (func_id == BPF_FUNC_tail_call) {
5124 err = check_reference_leak(env);
5125 if (err) {
5126 verbose(env, "tail_call would lead to reference leak\n");
5127 return err;
5129 } else if (is_release_function(func_id)) {
5130 err = release_reference(env, meta.ref_obj_id);
5131 if (err) {
5132 verbose(env, "func %s#%d reference has not been acquired before\n",
5133 func_id_name(func_id), func_id);
5134 return err;
5138 regs = cur_regs(env);
5140 /* check that flags argument in get_local_storage(map, flags) is 0,
5141 * this is required because get_local_storage() can't return an error.
5143 if (func_id == BPF_FUNC_get_local_storage &&
5144 !register_is_null(&regs[BPF_REG_2])) {
5145 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5146 return -EINVAL;
5149 /* reset caller saved regs */
5150 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5151 mark_reg_not_init(env, regs, caller_saved[i]);
5152 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5155 /* helper call returns 64-bit value. */
5156 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5158 /* update return register (already marked as written above) */
5159 if (fn->ret_type == RET_INTEGER) {
5160 /* sets type to SCALAR_VALUE */
5161 mark_reg_unknown(env, regs, BPF_REG_0);
5162 } else if (fn->ret_type == RET_VOID) {
5163 regs[BPF_REG_0].type = NOT_INIT;
5164 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5165 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5166 /* There is no offset yet applied, variable or fixed */
5167 mark_reg_known_zero(env, regs, BPF_REG_0);
5168 /* remember map_ptr, so that check_map_access()
5169 * can check 'value_size' boundary of memory access
5170 * to map element returned from bpf_map_lookup_elem()
5172 if (meta.map_ptr == NULL) {
5173 verbose(env,
5174 "kernel subsystem misconfigured verifier\n");
5175 return -EINVAL;
5177 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5178 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5179 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5180 if (map_value_has_spin_lock(meta.map_ptr))
5181 regs[BPF_REG_0].id = ++env->id_gen;
5182 } else {
5183 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5185 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5186 mark_reg_known_zero(env, regs, BPF_REG_0);
5187 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5188 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5189 mark_reg_known_zero(env, regs, BPF_REG_0);
5190 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5191 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5192 mark_reg_known_zero(env, regs, BPF_REG_0);
5193 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5194 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5195 mark_reg_known_zero(env, regs, BPF_REG_0);
5196 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5197 regs[BPF_REG_0].mem_size = meta.mem_size;
5198 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5199 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5200 const struct btf_type *t;
5202 mark_reg_known_zero(env, regs, BPF_REG_0);
5203 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5204 if (!btf_type_is_struct(t)) {
5205 u32 tsize;
5206 const struct btf_type *ret;
5207 const char *tname;
5209 /* resolve the type size of ksym. */
5210 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5211 if (IS_ERR(ret)) {
5212 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5213 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5214 tname, PTR_ERR(ret));
5215 return -EINVAL;
5217 regs[BPF_REG_0].type =
5218 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5219 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5220 regs[BPF_REG_0].mem_size = tsize;
5221 } else {
5222 regs[BPF_REG_0].type =
5223 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5224 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5225 regs[BPF_REG_0].btf = meta.ret_btf;
5226 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5228 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5229 fn->ret_type == RET_PTR_TO_BTF_ID) {
5230 int ret_btf_id;
5232 mark_reg_known_zero(env, regs, BPF_REG_0);
5233 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5234 PTR_TO_BTF_ID :
5235 PTR_TO_BTF_ID_OR_NULL;
5236 ret_btf_id = *fn->ret_btf_id;
5237 if (ret_btf_id == 0) {
5238 verbose(env, "invalid return type %d of func %s#%d\n",
5239 fn->ret_type, func_id_name(func_id), func_id);
5240 return -EINVAL;
5242 /* current BPF helper definitions are only coming from
5243 * built-in code with type IDs from vmlinux BTF
5245 regs[BPF_REG_0].btf = btf_vmlinux;
5246 regs[BPF_REG_0].btf_id = ret_btf_id;
5247 } else {
5248 verbose(env, "unknown return type %d of func %s#%d\n",
5249 fn->ret_type, func_id_name(func_id), func_id);
5250 return -EINVAL;
5253 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5254 regs[BPF_REG_0].id = ++env->id_gen;
5256 if (is_ptr_cast_function(func_id)) {
5257 /* For release_reference() */
5258 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5259 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5260 int id = acquire_reference_state(env, insn_idx);
5262 if (id < 0)
5263 return id;
5264 /* For mark_ptr_or_null_reg() */
5265 regs[BPF_REG_0].id = id;
5266 /* For release_reference() */
5267 regs[BPF_REG_0].ref_obj_id = id;
5270 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5272 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5273 if (err)
5274 return err;
5276 if ((func_id == BPF_FUNC_get_stack ||
5277 func_id == BPF_FUNC_get_task_stack) &&
5278 !env->prog->has_callchain_buf) {
5279 const char *err_str;
5281 #ifdef CONFIG_PERF_EVENTS
5282 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5283 err_str = "cannot get callchain buffer for func %s#%d\n";
5284 #else
5285 err = -ENOTSUPP;
5286 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5287 #endif
5288 if (err) {
5289 verbose(env, err_str, func_id_name(func_id), func_id);
5290 return err;
5293 env->prog->has_callchain_buf = true;
5296 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5297 env->prog->call_get_stack = true;
5299 if (changes_data)
5300 clear_all_pkt_pointers(env);
5301 return 0;
5304 static bool signed_add_overflows(s64 a, s64 b)
5306 /* Do the add in u64, where overflow is well-defined */
5307 s64 res = (s64)((u64)a + (u64)b);
5309 if (b < 0)
5310 return res > a;
5311 return res < a;
5314 static bool signed_add32_overflows(s64 a, s64 b)
5316 /* Do the add in u32, where overflow is well-defined */
5317 s32 res = (s32)((u32)a + (u32)b);
5319 if (b < 0)
5320 return res > a;
5321 return res < a;
5324 static bool signed_sub_overflows(s32 a, s32 b)
5326 /* Do the sub in u64, where overflow is well-defined */
5327 s64 res = (s64)((u64)a - (u64)b);
5329 if (b < 0)
5330 return res < a;
5331 return res > a;
5334 static bool signed_sub32_overflows(s32 a, s32 b)
5336 /* Do the sub in u64, where overflow is well-defined */
5337 s32 res = (s32)((u32)a - (u32)b);
5339 if (b < 0)
5340 return res < a;
5341 return res > a;
5344 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5345 const struct bpf_reg_state *reg,
5346 enum bpf_reg_type type)
5348 bool known = tnum_is_const(reg->var_off);
5349 s64 val = reg->var_off.value;
5350 s64 smin = reg->smin_value;
5352 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5353 verbose(env, "math between %s pointer and %lld is not allowed\n",
5354 reg_type_str[type], val);
5355 return false;
5358 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5359 verbose(env, "%s pointer offset %d is not allowed\n",
5360 reg_type_str[type], reg->off);
5361 return false;
5364 if (smin == S64_MIN) {
5365 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5366 reg_type_str[type]);
5367 return false;
5370 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5371 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5372 smin, reg_type_str[type]);
5373 return false;
5376 return true;
5379 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5381 return &env->insn_aux_data[env->insn_idx];
5384 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5385 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5387 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5388 (opcode == BPF_SUB && !off_is_neg);
5389 u32 off;
5391 switch (ptr_reg->type) {
5392 case PTR_TO_STACK:
5393 /* Indirect variable offset stack access is prohibited in
5394 * unprivileged mode so it's not handled here.
5396 off = ptr_reg->off + ptr_reg->var_off.value;
5397 if (mask_to_left)
5398 *ptr_limit = MAX_BPF_STACK + off;
5399 else
5400 *ptr_limit = -off;
5401 return 0;
5402 case PTR_TO_MAP_VALUE:
5403 if (mask_to_left) {
5404 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5405 } else {
5406 off = ptr_reg->smin_value + ptr_reg->off;
5407 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5409 return 0;
5410 default:
5411 return -EINVAL;
5415 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5416 const struct bpf_insn *insn)
5418 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5421 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5422 u32 alu_state, u32 alu_limit)
5424 /* If we arrived here from different branches with different
5425 * state or limits to sanitize, then this won't work.
5427 if (aux->alu_state &&
5428 (aux->alu_state != alu_state ||
5429 aux->alu_limit != alu_limit))
5430 return -EACCES;
5432 /* Corresponding fixup done in fixup_bpf_calls(). */
5433 aux->alu_state = alu_state;
5434 aux->alu_limit = alu_limit;
5435 return 0;
5438 static int sanitize_val_alu(struct bpf_verifier_env *env,
5439 struct bpf_insn *insn)
5441 struct bpf_insn_aux_data *aux = cur_aux(env);
5443 if (can_skip_alu_sanitation(env, insn))
5444 return 0;
5446 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5449 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5450 struct bpf_insn *insn,
5451 const struct bpf_reg_state *ptr_reg,
5452 struct bpf_reg_state *dst_reg,
5453 bool off_is_neg)
5455 struct bpf_verifier_state *vstate = env->cur_state;
5456 struct bpf_insn_aux_data *aux = cur_aux(env);
5457 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5458 u8 opcode = BPF_OP(insn->code);
5459 u32 alu_state, alu_limit;
5460 struct bpf_reg_state tmp;
5461 bool ret;
5463 if (can_skip_alu_sanitation(env, insn))
5464 return 0;
5466 /* We already marked aux for masking from non-speculative
5467 * paths, thus we got here in the first place. We only care
5468 * to explore bad access from here.
5470 if (vstate->speculative)
5471 goto do_sim;
5473 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5474 alu_state |= ptr_is_dst_reg ?
5475 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5477 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5478 return 0;
5479 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5480 return -EACCES;
5481 do_sim:
5482 /* Simulate and find potential out-of-bounds access under
5483 * speculative execution from truncation as a result of
5484 * masking when off was not within expected range. If off
5485 * sits in dst, then we temporarily need to move ptr there
5486 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5487 * for cases where we use K-based arithmetic in one direction
5488 * and truncated reg-based in the other in order to explore
5489 * bad access.
5491 if (!ptr_is_dst_reg) {
5492 tmp = *dst_reg;
5493 *dst_reg = *ptr_reg;
5495 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5496 if (!ptr_is_dst_reg && ret)
5497 *dst_reg = tmp;
5498 return !ret ? -EFAULT : 0;
5501 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5502 * Caller should also handle BPF_MOV case separately.
5503 * If we return -EACCES, caller may want to try again treating pointer as a
5504 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5506 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5507 struct bpf_insn *insn,
5508 const struct bpf_reg_state *ptr_reg,
5509 const struct bpf_reg_state *off_reg)
5511 struct bpf_verifier_state *vstate = env->cur_state;
5512 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5513 struct bpf_reg_state *regs = state->regs, *dst_reg;
5514 bool known = tnum_is_const(off_reg->var_off);
5515 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5516 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5517 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5518 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5519 u32 dst = insn->dst_reg, src = insn->src_reg;
5520 u8 opcode = BPF_OP(insn->code);
5521 int ret;
5523 dst_reg = &regs[dst];
5525 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5526 smin_val > smax_val || umin_val > umax_val) {
5527 /* Taint dst register if offset had invalid bounds derived from
5528 * e.g. dead branches.
5530 __mark_reg_unknown(env, dst_reg);
5531 return 0;
5534 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5535 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
5536 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5537 __mark_reg_unknown(env, dst_reg);
5538 return 0;
5541 verbose(env,
5542 "R%d 32-bit pointer arithmetic prohibited\n",
5543 dst);
5544 return -EACCES;
5547 switch (ptr_reg->type) {
5548 case PTR_TO_MAP_VALUE_OR_NULL:
5549 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5550 dst, reg_type_str[ptr_reg->type]);
5551 return -EACCES;
5552 case CONST_PTR_TO_MAP:
5553 /* smin_val represents the known value */
5554 if (known && smin_val == 0 && opcode == BPF_ADD)
5555 break;
5556 fallthrough;
5557 case PTR_TO_PACKET_END:
5558 case PTR_TO_SOCKET:
5559 case PTR_TO_SOCKET_OR_NULL:
5560 case PTR_TO_SOCK_COMMON:
5561 case PTR_TO_SOCK_COMMON_OR_NULL:
5562 case PTR_TO_TCP_SOCK:
5563 case PTR_TO_TCP_SOCK_OR_NULL:
5564 case PTR_TO_XDP_SOCK:
5565 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5566 dst, reg_type_str[ptr_reg->type]);
5567 return -EACCES;
5568 case PTR_TO_MAP_VALUE:
5569 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5570 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5571 off_reg == dst_reg ? dst : src);
5572 return -EACCES;
5574 fallthrough;
5575 default:
5576 break;
5579 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5580 * The id may be overwritten later if we create a new variable offset.
5582 dst_reg->type = ptr_reg->type;
5583 dst_reg->id = ptr_reg->id;
5585 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5586 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5587 return -EINVAL;
5589 /* pointer types do not carry 32-bit bounds at the moment. */
5590 __mark_reg32_unbounded(dst_reg);
5592 switch (opcode) {
5593 case BPF_ADD:
5594 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5595 if (ret < 0) {
5596 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5597 return ret;
5599 /* We can take a fixed offset as long as it doesn't overflow
5600 * the s32 'off' field
5602 if (known && (ptr_reg->off + smin_val ==
5603 (s64)(s32)(ptr_reg->off + smin_val))) {
5604 /* pointer += K. Accumulate it into fixed offset */
5605 dst_reg->smin_value = smin_ptr;
5606 dst_reg->smax_value = smax_ptr;
5607 dst_reg->umin_value = umin_ptr;
5608 dst_reg->umax_value = umax_ptr;
5609 dst_reg->var_off = ptr_reg->var_off;
5610 dst_reg->off = ptr_reg->off + smin_val;
5611 dst_reg->raw = ptr_reg->raw;
5612 break;
5614 /* A new variable offset is created. Note that off_reg->off
5615 * == 0, since it's a scalar.
5616 * dst_reg gets the pointer type and since some positive
5617 * integer value was added to the pointer, give it a new 'id'
5618 * if it's a PTR_TO_PACKET.
5619 * this creates a new 'base' pointer, off_reg (variable) gets
5620 * added into the variable offset, and we copy the fixed offset
5621 * from ptr_reg.
5623 if (signed_add_overflows(smin_ptr, smin_val) ||
5624 signed_add_overflows(smax_ptr, smax_val)) {
5625 dst_reg->smin_value = S64_MIN;
5626 dst_reg->smax_value = S64_MAX;
5627 } else {
5628 dst_reg->smin_value = smin_ptr + smin_val;
5629 dst_reg->smax_value = smax_ptr + smax_val;
5631 if (umin_ptr + umin_val < umin_ptr ||
5632 umax_ptr + umax_val < umax_ptr) {
5633 dst_reg->umin_value = 0;
5634 dst_reg->umax_value = U64_MAX;
5635 } else {
5636 dst_reg->umin_value = umin_ptr + umin_val;
5637 dst_reg->umax_value = umax_ptr + umax_val;
5639 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5640 dst_reg->off = ptr_reg->off;
5641 dst_reg->raw = ptr_reg->raw;
5642 if (reg_is_pkt_pointer(ptr_reg)) {
5643 dst_reg->id = ++env->id_gen;
5644 /* something was added to pkt_ptr, set range to zero */
5645 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5647 break;
5648 case BPF_SUB:
5649 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5650 if (ret < 0) {
5651 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5652 return ret;
5654 if (dst_reg == off_reg) {
5655 /* scalar -= pointer. Creates an unknown scalar */
5656 verbose(env, "R%d tried to subtract pointer from scalar\n",
5657 dst);
5658 return -EACCES;
5660 /* We don't allow subtraction from FP, because (according to
5661 * test_verifier.c test "invalid fp arithmetic", JITs might not
5662 * be able to deal with it.
5664 if (ptr_reg->type == PTR_TO_STACK) {
5665 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5666 dst);
5667 return -EACCES;
5669 if (known && (ptr_reg->off - smin_val ==
5670 (s64)(s32)(ptr_reg->off - smin_val))) {
5671 /* pointer -= K. Subtract it from fixed offset */
5672 dst_reg->smin_value = smin_ptr;
5673 dst_reg->smax_value = smax_ptr;
5674 dst_reg->umin_value = umin_ptr;
5675 dst_reg->umax_value = umax_ptr;
5676 dst_reg->var_off = ptr_reg->var_off;
5677 dst_reg->id = ptr_reg->id;
5678 dst_reg->off = ptr_reg->off - smin_val;
5679 dst_reg->raw = ptr_reg->raw;
5680 break;
5682 /* A new variable offset is created. If the subtrahend is known
5683 * nonnegative, then any reg->range we had before is still good.
5685 if (signed_sub_overflows(smin_ptr, smax_val) ||
5686 signed_sub_overflows(smax_ptr, smin_val)) {
5687 /* Overflow possible, we know nothing */
5688 dst_reg->smin_value = S64_MIN;
5689 dst_reg->smax_value = S64_MAX;
5690 } else {
5691 dst_reg->smin_value = smin_ptr - smax_val;
5692 dst_reg->smax_value = smax_ptr - smin_val;
5694 if (umin_ptr < umax_val) {
5695 /* Overflow possible, we know nothing */
5696 dst_reg->umin_value = 0;
5697 dst_reg->umax_value = U64_MAX;
5698 } else {
5699 /* Cannot overflow (as long as bounds are consistent) */
5700 dst_reg->umin_value = umin_ptr - umax_val;
5701 dst_reg->umax_value = umax_ptr - umin_val;
5703 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5704 dst_reg->off = ptr_reg->off;
5705 dst_reg->raw = ptr_reg->raw;
5706 if (reg_is_pkt_pointer(ptr_reg)) {
5707 dst_reg->id = ++env->id_gen;
5708 /* something was added to pkt_ptr, set range to zero */
5709 if (smin_val < 0)
5710 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5712 break;
5713 case BPF_AND:
5714 case BPF_OR:
5715 case BPF_XOR:
5716 /* bitwise ops on pointers are troublesome, prohibit. */
5717 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5718 dst, bpf_alu_string[opcode >> 4]);
5719 return -EACCES;
5720 default:
5721 /* other operators (e.g. MUL,LSH) produce non-pointer results */
5722 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5723 dst, bpf_alu_string[opcode >> 4]);
5724 return -EACCES;
5727 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5728 return -EINVAL;
5730 __update_reg_bounds(dst_reg);
5731 __reg_deduce_bounds(dst_reg);
5732 __reg_bound_offset(dst_reg);
5734 /* For unprivileged we require that resulting offset must be in bounds
5735 * in order to be able to sanitize access later on.
5737 if (!env->bypass_spec_v1) {
5738 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5739 check_map_access(env, dst, dst_reg->off, 1, false)) {
5740 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5741 "prohibited for !root\n", dst);
5742 return -EACCES;
5743 } else if (dst_reg->type == PTR_TO_STACK &&
5744 check_stack_access(env, dst_reg, dst_reg->off +
5745 dst_reg->var_off.value, 1)) {
5746 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5747 "prohibited for !root\n", dst);
5748 return -EACCES;
5752 return 0;
5755 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5756 struct bpf_reg_state *src_reg)
5758 s32 smin_val = src_reg->s32_min_value;
5759 s32 smax_val = src_reg->s32_max_value;
5760 u32 umin_val = src_reg->u32_min_value;
5761 u32 umax_val = src_reg->u32_max_value;
5763 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5764 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5765 dst_reg->s32_min_value = S32_MIN;
5766 dst_reg->s32_max_value = S32_MAX;
5767 } else {
5768 dst_reg->s32_min_value += smin_val;
5769 dst_reg->s32_max_value += smax_val;
5771 if (dst_reg->u32_min_value + umin_val < umin_val ||
5772 dst_reg->u32_max_value + umax_val < umax_val) {
5773 dst_reg->u32_min_value = 0;
5774 dst_reg->u32_max_value = U32_MAX;
5775 } else {
5776 dst_reg->u32_min_value += umin_val;
5777 dst_reg->u32_max_value += umax_val;
5781 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5782 struct bpf_reg_state *src_reg)
5784 s64 smin_val = src_reg->smin_value;
5785 s64 smax_val = src_reg->smax_value;
5786 u64 umin_val = src_reg->umin_value;
5787 u64 umax_val = src_reg->umax_value;
5789 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5790 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5791 dst_reg->smin_value = S64_MIN;
5792 dst_reg->smax_value = S64_MAX;
5793 } else {
5794 dst_reg->smin_value += smin_val;
5795 dst_reg->smax_value += smax_val;
5797 if (dst_reg->umin_value + umin_val < umin_val ||
5798 dst_reg->umax_value + umax_val < umax_val) {
5799 dst_reg->umin_value = 0;
5800 dst_reg->umax_value = U64_MAX;
5801 } else {
5802 dst_reg->umin_value += umin_val;
5803 dst_reg->umax_value += umax_val;
5807 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5808 struct bpf_reg_state *src_reg)
5810 s32 smin_val = src_reg->s32_min_value;
5811 s32 smax_val = src_reg->s32_max_value;
5812 u32 umin_val = src_reg->u32_min_value;
5813 u32 umax_val = src_reg->u32_max_value;
5815 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5816 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5817 /* Overflow possible, we know nothing */
5818 dst_reg->s32_min_value = S32_MIN;
5819 dst_reg->s32_max_value = S32_MAX;
5820 } else {
5821 dst_reg->s32_min_value -= smax_val;
5822 dst_reg->s32_max_value -= smin_val;
5824 if (dst_reg->u32_min_value < umax_val) {
5825 /* Overflow possible, we know nothing */
5826 dst_reg->u32_min_value = 0;
5827 dst_reg->u32_max_value = U32_MAX;
5828 } else {
5829 /* Cannot overflow (as long as bounds are consistent) */
5830 dst_reg->u32_min_value -= umax_val;
5831 dst_reg->u32_max_value -= umin_val;
5835 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5836 struct bpf_reg_state *src_reg)
5838 s64 smin_val = src_reg->smin_value;
5839 s64 smax_val = src_reg->smax_value;
5840 u64 umin_val = src_reg->umin_value;
5841 u64 umax_val = src_reg->umax_value;
5843 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5844 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5845 /* Overflow possible, we know nothing */
5846 dst_reg->smin_value = S64_MIN;
5847 dst_reg->smax_value = S64_MAX;
5848 } else {
5849 dst_reg->smin_value -= smax_val;
5850 dst_reg->smax_value -= smin_val;
5852 if (dst_reg->umin_value < umax_val) {
5853 /* Overflow possible, we know nothing */
5854 dst_reg->umin_value = 0;
5855 dst_reg->umax_value = U64_MAX;
5856 } else {
5857 /* Cannot overflow (as long as bounds are consistent) */
5858 dst_reg->umin_value -= umax_val;
5859 dst_reg->umax_value -= umin_val;
5863 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5864 struct bpf_reg_state *src_reg)
5866 s32 smin_val = src_reg->s32_min_value;
5867 u32 umin_val = src_reg->u32_min_value;
5868 u32 umax_val = src_reg->u32_max_value;
5870 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5871 /* Ain't nobody got time to multiply that sign */
5872 __mark_reg32_unbounded(dst_reg);
5873 return;
5875 /* Both values are positive, so we can work with unsigned and
5876 * copy the result to signed (unless it exceeds S32_MAX).
5878 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5879 /* Potential overflow, we know nothing */
5880 __mark_reg32_unbounded(dst_reg);
5881 return;
5883 dst_reg->u32_min_value *= umin_val;
5884 dst_reg->u32_max_value *= umax_val;
5885 if (dst_reg->u32_max_value > S32_MAX) {
5886 /* Overflow possible, we know nothing */
5887 dst_reg->s32_min_value = S32_MIN;
5888 dst_reg->s32_max_value = S32_MAX;
5889 } else {
5890 dst_reg->s32_min_value = dst_reg->u32_min_value;
5891 dst_reg->s32_max_value = dst_reg->u32_max_value;
5895 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5896 struct bpf_reg_state *src_reg)
5898 s64 smin_val = src_reg->smin_value;
5899 u64 umin_val = src_reg->umin_value;
5900 u64 umax_val = src_reg->umax_value;
5902 if (smin_val < 0 || dst_reg->smin_value < 0) {
5903 /* Ain't nobody got time to multiply that sign */
5904 __mark_reg64_unbounded(dst_reg);
5905 return;
5907 /* Both values are positive, so we can work with unsigned and
5908 * copy the result to signed (unless it exceeds S64_MAX).
5910 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5911 /* Potential overflow, we know nothing */
5912 __mark_reg64_unbounded(dst_reg);
5913 return;
5915 dst_reg->umin_value *= umin_val;
5916 dst_reg->umax_value *= umax_val;
5917 if (dst_reg->umax_value > S64_MAX) {
5918 /* Overflow possible, we know nothing */
5919 dst_reg->smin_value = S64_MIN;
5920 dst_reg->smax_value = S64_MAX;
5921 } else {
5922 dst_reg->smin_value = dst_reg->umin_value;
5923 dst_reg->smax_value = dst_reg->umax_value;
5927 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5928 struct bpf_reg_state *src_reg)
5930 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5931 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5932 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5933 s32 smin_val = src_reg->s32_min_value;
5934 u32 umax_val = src_reg->u32_max_value;
5936 /* Assuming scalar64_min_max_and will be called so its safe
5937 * to skip updating register for known 32-bit case.
5939 if (src_known && dst_known)
5940 return;
5942 /* We get our minimum from the var_off, since that's inherently
5943 * bitwise. Our maximum is the minimum of the operands' maxima.
5945 dst_reg->u32_min_value = var32_off.value;
5946 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5947 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5948 /* Lose signed bounds when ANDing negative numbers,
5949 * ain't nobody got time for that.
5951 dst_reg->s32_min_value = S32_MIN;
5952 dst_reg->s32_max_value = S32_MAX;
5953 } else {
5954 /* ANDing two positives gives a positive, so safe to
5955 * cast result into s64.
5957 dst_reg->s32_min_value = dst_reg->u32_min_value;
5958 dst_reg->s32_max_value = dst_reg->u32_max_value;
5963 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5964 struct bpf_reg_state *src_reg)
5966 bool src_known = tnum_is_const(src_reg->var_off);
5967 bool dst_known = tnum_is_const(dst_reg->var_off);
5968 s64 smin_val = src_reg->smin_value;
5969 u64 umax_val = src_reg->umax_value;
5971 if (src_known && dst_known) {
5972 __mark_reg_known(dst_reg, dst_reg->var_off.value);
5973 return;
5976 /* We get our minimum from the var_off, since that's inherently
5977 * bitwise. Our maximum is the minimum of the operands' maxima.
5979 dst_reg->umin_value = dst_reg->var_off.value;
5980 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5981 if (dst_reg->smin_value < 0 || smin_val < 0) {
5982 /* Lose signed bounds when ANDing negative numbers,
5983 * ain't nobody got time for that.
5985 dst_reg->smin_value = S64_MIN;
5986 dst_reg->smax_value = S64_MAX;
5987 } else {
5988 /* ANDing two positives gives a positive, so safe to
5989 * cast result into s64.
5991 dst_reg->smin_value = dst_reg->umin_value;
5992 dst_reg->smax_value = dst_reg->umax_value;
5994 /* We may learn something more from the var_off */
5995 __update_reg_bounds(dst_reg);
5998 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5999 struct bpf_reg_state *src_reg)
6001 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6002 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6003 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6004 s32 smin_val = src_reg->s32_min_value;
6005 u32 umin_val = src_reg->u32_min_value;
6007 /* Assuming scalar64_min_max_or will be called so it is safe
6008 * to skip updating register for known case.
6010 if (src_known && dst_known)
6011 return;
6013 /* We get our maximum from the var_off, and our minimum is the
6014 * maximum of the operands' minima
6016 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6017 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6018 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6019 /* Lose signed bounds when ORing negative numbers,
6020 * ain't nobody got time for that.
6022 dst_reg->s32_min_value = S32_MIN;
6023 dst_reg->s32_max_value = S32_MAX;
6024 } else {
6025 /* ORing two positives gives a positive, so safe to
6026 * cast result into s64.
6028 dst_reg->s32_min_value = dst_reg->u32_min_value;
6029 dst_reg->s32_max_value = dst_reg->u32_max_value;
6033 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6034 struct bpf_reg_state *src_reg)
6036 bool src_known = tnum_is_const(src_reg->var_off);
6037 bool dst_known = tnum_is_const(dst_reg->var_off);
6038 s64 smin_val = src_reg->smin_value;
6039 u64 umin_val = src_reg->umin_value;
6041 if (src_known && dst_known) {
6042 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6043 return;
6046 /* We get our maximum from the var_off, and our minimum is the
6047 * maximum of the operands' minima
6049 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6050 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6051 if (dst_reg->smin_value < 0 || smin_val < 0) {
6052 /* Lose signed bounds when ORing negative numbers,
6053 * ain't nobody got time for that.
6055 dst_reg->smin_value = S64_MIN;
6056 dst_reg->smax_value = S64_MAX;
6057 } else {
6058 /* ORing two positives gives a positive, so safe to
6059 * cast result into s64.
6061 dst_reg->smin_value = dst_reg->umin_value;
6062 dst_reg->smax_value = dst_reg->umax_value;
6064 /* We may learn something more from the var_off */
6065 __update_reg_bounds(dst_reg);
6068 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6069 struct bpf_reg_state *src_reg)
6071 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6072 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6073 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6074 s32 smin_val = src_reg->s32_min_value;
6076 /* Assuming scalar64_min_max_xor will be called so it is safe
6077 * to skip updating register for known case.
6079 if (src_known && dst_known)
6080 return;
6082 /* We get both minimum and maximum from the var32_off. */
6083 dst_reg->u32_min_value = var32_off.value;
6084 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6086 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6087 /* XORing two positive sign numbers gives a positive,
6088 * so safe to cast u32 result into s32.
6090 dst_reg->s32_min_value = dst_reg->u32_min_value;
6091 dst_reg->s32_max_value = dst_reg->u32_max_value;
6092 } else {
6093 dst_reg->s32_min_value = S32_MIN;
6094 dst_reg->s32_max_value = S32_MAX;
6098 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6099 struct bpf_reg_state *src_reg)
6101 bool src_known = tnum_is_const(src_reg->var_off);
6102 bool dst_known = tnum_is_const(dst_reg->var_off);
6103 s64 smin_val = src_reg->smin_value;
6105 if (src_known && dst_known) {
6106 /* dst_reg->var_off.value has been updated earlier */
6107 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6108 return;
6111 /* We get both minimum and maximum from the var_off. */
6112 dst_reg->umin_value = dst_reg->var_off.value;
6113 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6115 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6116 /* XORing two positive sign numbers gives a positive,
6117 * so safe to cast u64 result into s64.
6119 dst_reg->smin_value = dst_reg->umin_value;
6120 dst_reg->smax_value = dst_reg->umax_value;
6121 } else {
6122 dst_reg->smin_value = S64_MIN;
6123 dst_reg->smax_value = S64_MAX;
6126 __update_reg_bounds(dst_reg);
6129 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6130 u64 umin_val, u64 umax_val)
6132 /* We lose all sign bit information (except what we can pick
6133 * up from var_off)
6135 dst_reg->s32_min_value = S32_MIN;
6136 dst_reg->s32_max_value = S32_MAX;
6137 /* If we might shift our top bit out, then we know nothing */
6138 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6139 dst_reg->u32_min_value = 0;
6140 dst_reg->u32_max_value = U32_MAX;
6141 } else {
6142 dst_reg->u32_min_value <<= umin_val;
6143 dst_reg->u32_max_value <<= umax_val;
6147 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6148 struct bpf_reg_state *src_reg)
6150 u32 umax_val = src_reg->u32_max_value;
6151 u32 umin_val = src_reg->u32_min_value;
6152 /* u32 alu operation will zext upper bits */
6153 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6155 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6156 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6157 /* Not required but being careful mark reg64 bounds as unknown so
6158 * that we are forced to pick them up from tnum and zext later and
6159 * if some path skips this step we are still safe.
6161 __mark_reg64_unbounded(dst_reg);
6162 __update_reg32_bounds(dst_reg);
6165 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6166 u64 umin_val, u64 umax_val)
6168 /* Special case <<32 because it is a common compiler pattern to sign
6169 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6170 * positive we know this shift will also be positive so we can track
6171 * bounds correctly. Otherwise we lose all sign bit information except
6172 * what we can pick up from var_off. Perhaps we can generalize this
6173 * later to shifts of any length.
6175 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6176 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6177 else
6178 dst_reg->smax_value = S64_MAX;
6180 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6181 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6182 else
6183 dst_reg->smin_value = S64_MIN;
6185 /* If we might shift our top bit out, then we know nothing */
6186 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6187 dst_reg->umin_value = 0;
6188 dst_reg->umax_value = U64_MAX;
6189 } else {
6190 dst_reg->umin_value <<= umin_val;
6191 dst_reg->umax_value <<= umax_val;
6195 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6196 struct bpf_reg_state *src_reg)
6198 u64 umax_val = src_reg->umax_value;
6199 u64 umin_val = src_reg->umin_value;
6201 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6202 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6203 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6205 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6206 /* We may learn something more from the var_off */
6207 __update_reg_bounds(dst_reg);
6210 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6211 struct bpf_reg_state *src_reg)
6213 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6214 u32 umax_val = src_reg->u32_max_value;
6215 u32 umin_val = src_reg->u32_min_value;
6217 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6218 * be negative, then either:
6219 * 1) src_reg might be zero, so the sign bit of the result is
6220 * unknown, so we lose our signed bounds
6221 * 2) it's known negative, thus the unsigned bounds capture the
6222 * signed bounds
6223 * 3) the signed bounds cross zero, so they tell us nothing
6224 * about the result
6225 * If the value in dst_reg is known nonnegative, then again the
6226 * unsigned bounts capture the signed bounds.
6227 * Thus, in all cases it suffices to blow away our signed bounds
6228 * and rely on inferring new ones from the unsigned bounds and
6229 * var_off of the result.
6231 dst_reg->s32_min_value = S32_MIN;
6232 dst_reg->s32_max_value = S32_MAX;
6234 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6235 dst_reg->u32_min_value >>= umax_val;
6236 dst_reg->u32_max_value >>= umin_val;
6238 __mark_reg64_unbounded(dst_reg);
6239 __update_reg32_bounds(dst_reg);
6242 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6243 struct bpf_reg_state *src_reg)
6245 u64 umax_val = src_reg->umax_value;
6246 u64 umin_val = src_reg->umin_value;
6248 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6249 * be negative, then either:
6250 * 1) src_reg might be zero, so the sign bit of the result is
6251 * unknown, so we lose our signed bounds
6252 * 2) it's known negative, thus the unsigned bounds capture the
6253 * signed bounds
6254 * 3) the signed bounds cross zero, so they tell us nothing
6255 * about the result
6256 * If the value in dst_reg is known nonnegative, then again the
6257 * unsigned bounts capture the signed bounds.
6258 * Thus, in all cases it suffices to blow away our signed bounds
6259 * and rely on inferring new ones from the unsigned bounds and
6260 * var_off of the result.
6262 dst_reg->smin_value = S64_MIN;
6263 dst_reg->smax_value = S64_MAX;
6264 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6265 dst_reg->umin_value >>= umax_val;
6266 dst_reg->umax_value >>= umin_val;
6268 /* Its not easy to operate on alu32 bounds here because it depends
6269 * on bits being shifted in. Take easy way out and mark unbounded
6270 * so we can recalculate later from tnum.
6272 __mark_reg32_unbounded(dst_reg);
6273 __update_reg_bounds(dst_reg);
6276 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6277 struct bpf_reg_state *src_reg)
6279 u64 umin_val = src_reg->u32_min_value;
6281 /* Upon reaching here, src_known is true and
6282 * umax_val is equal to umin_val.
6284 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6285 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6287 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6289 /* blow away the dst_reg umin_value/umax_value and rely on
6290 * dst_reg var_off to refine the result.
6292 dst_reg->u32_min_value = 0;
6293 dst_reg->u32_max_value = U32_MAX;
6295 __mark_reg64_unbounded(dst_reg);
6296 __update_reg32_bounds(dst_reg);
6299 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6300 struct bpf_reg_state *src_reg)
6302 u64 umin_val = src_reg->umin_value;
6304 /* Upon reaching here, src_known is true and umax_val is equal
6305 * to umin_val.
6307 dst_reg->smin_value >>= umin_val;
6308 dst_reg->smax_value >>= umin_val;
6310 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6312 /* blow away the dst_reg umin_value/umax_value and rely on
6313 * dst_reg var_off to refine the result.
6315 dst_reg->umin_value = 0;
6316 dst_reg->umax_value = U64_MAX;
6318 /* Its not easy to operate on alu32 bounds here because it depends
6319 * on bits being shifted in from upper 32-bits. Take easy way out
6320 * and mark unbounded so we can recalculate later from tnum.
6322 __mark_reg32_unbounded(dst_reg);
6323 __update_reg_bounds(dst_reg);
6326 /* WARNING: This function does calculations on 64-bit values, but the actual
6327 * execution may occur on 32-bit values. Therefore, things like bitshifts
6328 * need extra checks in the 32-bit case.
6330 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6331 struct bpf_insn *insn,
6332 struct bpf_reg_state *dst_reg,
6333 struct bpf_reg_state src_reg)
6335 struct bpf_reg_state *regs = cur_regs(env);
6336 u8 opcode = BPF_OP(insn->code);
6337 bool src_known;
6338 s64 smin_val, smax_val;
6339 u64 umin_val, umax_val;
6340 s32 s32_min_val, s32_max_val;
6341 u32 u32_min_val, u32_max_val;
6342 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6343 u32 dst = insn->dst_reg;
6344 int ret;
6345 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6347 smin_val = src_reg.smin_value;
6348 smax_val = src_reg.smax_value;
6349 umin_val = src_reg.umin_value;
6350 umax_val = src_reg.umax_value;
6352 s32_min_val = src_reg.s32_min_value;
6353 s32_max_val = src_reg.s32_max_value;
6354 u32_min_val = src_reg.u32_min_value;
6355 u32_max_val = src_reg.u32_max_value;
6357 if (alu32) {
6358 src_known = tnum_subreg_is_const(src_reg.var_off);
6359 if ((src_known &&
6360 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6361 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6362 /* Taint dst register if offset had invalid bounds
6363 * derived from e.g. dead branches.
6365 __mark_reg_unknown(env, dst_reg);
6366 return 0;
6368 } else {
6369 src_known = tnum_is_const(src_reg.var_off);
6370 if ((src_known &&
6371 (smin_val != smax_val || umin_val != umax_val)) ||
6372 smin_val > smax_val || umin_val > umax_val) {
6373 /* Taint dst register if offset had invalid bounds
6374 * derived from e.g. dead branches.
6376 __mark_reg_unknown(env, dst_reg);
6377 return 0;
6381 if (!src_known &&
6382 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6383 __mark_reg_unknown(env, dst_reg);
6384 return 0;
6387 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6388 * There are two classes of instructions: The first class we track both
6389 * alu32 and alu64 sign/unsigned bounds independently this provides the
6390 * greatest amount of precision when alu operations are mixed with jmp32
6391 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6392 * and BPF_OR. This is possible because these ops have fairly easy to
6393 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6394 * See alu32 verifier tests for examples. The second class of
6395 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6396 * with regards to tracking sign/unsigned bounds because the bits may
6397 * cross subreg boundaries in the alu64 case. When this happens we mark
6398 * the reg unbounded in the subreg bound space and use the resulting
6399 * tnum to calculate an approximation of the sign/unsigned bounds.
6401 switch (opcode) {
6402 case BPF_ADD:
6403 ret = sanitize_val_alu(env, insn);
6404 if (ret < 0) {
6405 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6406 return ret;
6408 scalar32_min_max_add(dst_reg, &src_reg);
6409 scalar_min_max_add(dst_reg, &src_reg);
6410 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6411 break;
6412 case BPF_SUB:
6413 ret = sanitize_val_alu(env, insn);
6414 if (ret < 0) {
6415 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6416 return ret;
6418 scalar32_min_max_sub(dst_reg, &src_reg);
6419 scalar_min_max_sub(dst_reg, &src_reg);
6420 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6421 break;
6422 case BPF_MUL:
6423 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6424 scalar32_min_max_mul(dst_reg, &src_reg);
6425 scalar_min_max_mul(dst_reg, &src_reg);
6426 break;
6427 case BPF_AND:
6428 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6429 scalar32_min_max_and(dst_reg, &src_reg);
6430 scalar_min_max_and(dst_reg, &src_reg);
6431 break;
6432 case BPF_OR:
6433 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6434 scalar32_min_max_or(dst_reg, &src_reg);
6435 scalar_min_max_or(dst_reg, &src_reg);
6436 break;
6437 case BPF_XOR:
6438 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6439 scalar32_min_max_xor(dst_reg, &src_reg);
6440 scalar_min_max_xor(dst_reg, &src_reg);
6441 break;
6442 case BPF_LSH:
6443 if (umax_val >= insn_bitness) {
6444 /* Shifts greater than 31 or 63 are undefined.
6445 * This includes shifts by a negative number.
6447 mark_reg_unknown(env, regs, insn->dst_reg);
6448 break;
6450 if (alu32)
6451 scalar32_min_max_lsh(dst_reg, &src_reg);
6452 else
6453 scalar_min_max_lsh(dst_reg, &src_reg);
6454 break;
6455 case BPF_RSH:
6456 if (umax_val >= insn_bitness) {
6457 /* Shifts greater than 31 or 63 are undefined.
6458 * This includes shifts by a negative number.
6460 mark_reg_unknown(env, regs, insn->dst_reg);
6461 break;
6463 if (alu32)
6464 scalar32_min_max_rsh(dst_reg, &src_reg);
6465 else
6466 scalar_min_max_rsh(dst_reg, &src_reg);
6467 break;
6468 case BPF_ARSH:
6469 if (umax_val >= insn_bitness) {
6470 /* Shifts greater than 31 or 63 are undefined.
6471 * This includes shifts by a negative number.
6473 mark_reg_unknown(env, regs, insn->dst_reg);
6474 break;
6476 if (alu32)
6477 scalar32_min_max_arsh(dst_reg, &src_reg);
6478 else
6479 scalar_min_max_arsh(dst_reg, &src_reg);
6480 break;
6481 default:
6482 mark_reg_unknown(env, regs, insn->dst_reg);
6483 break;
6486 /* ALU32 ops are zero extended into 64bit register */
6487 if (alu32)
6488 zext_32_to_64(dst_reg);
6490 __update_reg_bounds(dst_reg);
6491 __reg_deduce_bounds(dst_reg);
6492 __reg_bound_offset(dst_reg);
6493 return 0;
6496 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6497 * and var_off.
6499 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6500 struct bpf_insn *insn)
6502 struct bpf_verifier_state *vstate = env->cur_state;
6503 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6504 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6505 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6506 u8 opcode = BPF_OP(insn->code);
6507 int err;
6509 dst_reg = &regs[insn->dst_reg];
6510 src_reg = NULL;
6511 if (dst_reg->type != SCALAR_VALUE)
6512 ptr_reg = dst_reg;
6513 else
6514 /* Make sure ID is cleared otherwise dst_reg min/max could be
6515 * incorrectly propagated into other registers by find_equal_scalars()
6517 dst_reg->id = 0;
6518 if (BPF_SRC(insn->code) == BPF_X) {
6519 src_reg = &regs[insn->src_reg];
6520 if (src_reg->type != SCALAR_VALUE) {
6521 if (dst_reg->type != SCALAR_VALUE) {
6522 /* Combining two pointers by any ALU op yields
6523 * an arbitrary scalar. Disallow all math except
6524 * pointer subtraction
6526 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6527 mark_reg_unknown(env, regs, insn->dst_reg);
6528 return 0;
6530 verbose(env, "R%d pointer %s pointer prohibited\n",
6531 insn->dst_reg,
6532 bpf_alu_string[opcode >> 4]);
6533 return -EACCES;
6534 } else {
6535 /* scalar += pointer
6536 * This is legal, but we have to reverse our
6537 * src/dest handling in computing the range
6539 err = mark_chain_precision(env, insn->dst_reg);
6540 if (err)
6541 return err;
6542 return adjust_ptr_min_max_vals(env, insn,
6543 src_reg, dst_reg);
6545 } else if (ptr_reg) {
6546 /* pointer += scalar */
6547 err = mark_chain_precision(env, insn->src_reg);
6548 if (err)
6549 return err;
6550 return adjust_ptr_min_max_vals(env, insn,
6551 dst_reg, src_reg);
6553 } else {
6554 /* Pretend the src is a reg with a known value, since we only
6555 * need to be able to read from this state.
6557 off_reg.type = SCALAR_VALUE;
6558 __mark_reg_known(&off_reg, insn->imm);
6559 src_reg = &off_reg;
6560 if (ptr_reg) /* pointer += K */
6561 return adjust_ptr_min_max_vals(env, insn,
6562 ptr_reg, src_reg);
6565 /* Got here implies adding two SCALAR_VALUEs */
6566 if (WARN_ON_ONCE(ptr_reg)) {
6567 print_verifier_state(env, state);
6568 verbose(env, "verifier internal error: unexpected ptr_reg\n");
6569 return -EINVAL;
6571 if (WARN_ON(!src_reg)) {
6572 print_verifier_state(env, state);
6573 verbose(env, "verifier internal error: no src_reg\n");
6574 return -EINVAL;
6576 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6579 /* check validity of 32-bit and 64-bit arithmetic operations */
6580 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6582 struct bpf_reg_state *regs = cur_regs(env);
6583 u8 opcode = BPF_OP(insn->code);
6584 int err;
6586 if (opcode == BPF_END || opcode == BPF_NEG) {
6587 if (opcode == BPF_NEG) {
6588 if (BPF_SRC(insn->code) != 0 ||
6589 insn->src_reg != BPF_REG_0 ||
6590 insn->off != 0 || insn->imm != 0) {
6591 verbose(env, "BPF_NEG uses reserved fields\n");
6592 return -EINVAL;
6594 } else {
6595 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6596 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6597 BPF_CLASS(insn->code) == BPF_ALU64) {
6598 verbose(env, "BPF_END uses reserved fields\n");
6599 return -EINVAL;
6603 /* check src operand */
6604 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6605 if (err)
6606 return err;
6608 if (is_pointer_value(env, insn->dst_reg)) {
6609 verbose(env, "R%d pointer arithmetic prohibited\n",
6610 insn->dst_reg);
6611 return -EACCES;
6614 /* check dest operand */
6615 err = check_reg_arg(env, insn->dst_reg, DST_OP);
6616 if (err)
6617 return err;
6619 } else if (opcode == BPF_MOV) {
6621 if (BPF_SRC(insn->code) == BPF_X) {
6622 if (insn->imm != 0 || insn->off != 0) {
6623 verbose(env, "BPF_MOV uses reserved fields\n");
6624 return -EINVAL;
6627 /* check src operand */
6628 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6629 if (err)
6630 return err;
6631 } else {
6632 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6633 verbose(env, "BPF_MOV uses reserved fields\n");
6634 return -EINVAL;
6638 /* check dest operand, mark as required later */
6639 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6640 if (err)
6641 return err;
6643 if (BPF_SRC(insn->code) == BPF_X) {
6644 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6645 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6647 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6648 /* case: R1 = R2
6649 * copy register state to dest reg
6651 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6652 /* Assign src and dst registers the same ID
6653 * that will be used by find_equal_scalars()
6654 * to propagate min/max range.
6656 src_reg->id = ++env->id_gen;
6657 *dst_reg = *src_reg;
6658 dst_reg->live |= REG_LIVE_WRITTEN;
6659 dst_reg->subreg_def = DEF_NOT_SUBREG;
6660 } else {
6661 /* R1 = (u32) R2 */
6662 if (is_pointer_value(env, insn->src_reg)) {
6663 verbose(env,
6664 "R%d partial copy of pointer\n",
6665 insn->src_reg);
6666 return -EACCES;
6667 } else if (src_reg->type == SCALAR_VALUE) {
6668 *dst_reg = *src_reg;
6669 /* Make sure ID is cleared otherwise
6670 * dst_reg min/max could be incorrectly
6671 * propagated into src_reg by find_equal_scalars()
6673 dst_reg->id = 0;
6674 dst_reg->live |= REG_LIVE_WRITTEN;
6675 dst_reg->subreg_def = env->insn_idx + 1;
6676 } else {
6677 mark_reg_unknown(env, regs,
6678 insn->dst_reg);
6680 zext_32_to_64(dst_reg);
6682 } else {
6683 /* case: R = imm
6684 * remember the value we stored into this reg
6686 /* clear any state __mark_reg_known doesn't set */
6687 mark_reg_unknown(env, regs, insn->dst_reg);
6688 regs[insn->dst_reg].type = SCALAR_VALUE;
6689 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6690 __mark_reg_known(regs + insn->dst_reg,
6691 insn->imm);
6692 } else {
6693 __mark_reg_known(regs + insn->dst_reg,
6694 (u32)insn->imm);
6698 } else if (opcode > BPF_END) {
6699 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6700 return -EINVAL;
6702 } else { /* all other ALU ops: and, sub, xor, add, ... */
6704 if (BPF_SRC(insn->code) == BPF_X) {
6705 if (insn->imm != 0 || insn->off != 0) {
6706 verbose(env, "BPF_ALU uses reserved fields\n");
6707 return -EINVAL;
6709 /* check src1 operand */
6710 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6711 if (err)
6712 return err;
6713 } else {
6714 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6715 verbose(env, "BPF_ALU uses reserved fields\n");
6716 return -EINVAL;
6720 /* check src2 operand */
6721 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6722 if (err)
6723 return err;
6725 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6726 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6727 verbose(env, "div by zero\n");
6728 return -EINVAL;
6731 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6732 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6733 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6735 if (insn->imm < 0 || insn->imm >= size) {
6736 verbose(env, "invalid shift %d\n", insn->imm);
6737 return -EINVAL;
6741 /* check dest operand */
6742 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6743 if (err)
6744 return err;
6746 return adjust_reg_min_max_vals(env, insn);
6749 return 0;
6752 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6753 struct bpf_reg_state *dst_reg,
6754 enum bpf_reg_type type, int new_range)
6756 struct bpf_reg_state *reg;
6757 int i;
6759 for (i = 0; i < MAX_BPF_REG; i++) {
6760 reg = &state->regs[i];
6761 if (reg->type == type && reg->id == dst_reg->id)
6762 /* keep the maximum range already checked */
6763 reg->range = max(reg->range, new_range);
6766 bpf_for_each_spilled_reg(i, state, reg) {
6767 if (!reg)
6768 continue;
6769 if (reg->type == type && reg->id == dst_reg->id)
6770 reg->range = max(reg->range, new_range);
6774 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6775 struct bpf_reg_state *dst_reg,
6776 enum bpf_reg_type type,
6777 bool range_right_open)
6779 int new_range, i;
6781 if (dst_reg->off < 0 ||
6782 (dst_reg->off == 0 && range_right_open))
6783 /* This doesn't give us any range */
6784 return;
6786 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6787 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6788 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6789 * than pkt_end, but that's because it's also less than pkt.
6791 return;
6793 new_range = dst_reg->off;
6794 if (range_right_open)
6795 new_range--;
6797 /* Examples for register markings:
6799 * pkt_data in dst register:
6801 * r2 = r3;
6802 * r2 += 8;
6803 * if (r2 > pkt_end) goto <handle exception>
6804 * <access okay>
6806 * r2 = r3;
6807 * r2 += 8;
6808 * if (r2 < pkt_end) goto <access okay>
6809 * <handle exception>
6811 * Where:
6812 * r2 == dst_reg, pkt_end == src_reg
6813 * r2=pkt(id=n,off=8,r=0)
6814 * r3=pkt(id=n,off=0,r=0)
6816 * pkt_data in src register:
6818 * r2 = r3;
6819 * r2 += 8;
6820 * if (pkt_end >= r2) goto <access okay>
6821 * <handle exception>
6823 * r2 = r3;
6824 * r2 += 8;
6825 * if (pkt_end <= r2) goto <handle exception>
6826 * <access okay>
6828 * Where:
6829 * pkt_end == dst_reg, r2 == src_reg
6830 * r2=pkt(id=n,off=8,r=0)
6831 * r3=pkt(id=n,off=0,r=0)
6833 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6834 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6835 * and [r3, r3 + 8-1) respectively is safe to access depending on
6836 * the check.
6839 /* If our ids match, then we must have the same max_value. And we
6840 * don't care about the other reg's fixed offset, since if it's too big
6841 * the range won't allow anything.
6842 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6844 for (i = 0; i <= vstate->curframe; i++)
6845 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6846 new_range);
6849 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6851 struct tnum subreg = tnum_subreg(reg->var_off);
6852 s32 sval = (s32)val;
6854 switch (opcode) {
6855 case BPF_JEQ:
6856 if (tnum_is_const(subreg))
6857 return !!tnum_equals_const(subreg, val);
6858 break;
6859 case BPF_JNE:
6860 if (tnum_is_const(subreg))
6861 return !tnum_equals_const(subreg, val);
6862 break;
6863 case BPF_JSET:
6864 if ((~subreg.mask & subreg.value) & val)
6865 return 1;
6866 if (!((subreg.mask | subreg.value) & val))
6867 return 0;
6868 break;
6869 case BPF_JGT:
6870 if (reg->u32_min_value > val)
6871 return 1;
6872 else if (reg->u32_max_value <= val)
6873 return 0;
6874 break;
6875 case BPF_JSGT:
6876 if (reg->s32_min_value > sval)
6877 return 1;
6878 else if (reg->s32_max_value < sval)
6879 return 0;
6880 break;
6881 case BPF_JLT:
6882 if (reg->u32_max_value < val)
6883 return 1;
6884 else if (reg->u32_min_value >= val)
6885 return 0;
6886 break;
6887 case BPF_JSLT:
6888 if (reg->s32_max_value < sval)
6889 return 1;
6890 else if (reg->s32_min_value >= sval)
6891 return 0;
6892 break;
6893 case BPF_JGE:
6894 if (reg->u32_min_value >= val)
6895 return 1;
6896 else if (reg->u32_max_value < val)
6897 return 0;
6898 break;
6899 case BPF_JSGE:
6900 if (reg->s32_min_value >= sval)
6901 return 1;
6902 else if (reg->s32_max_value < sval)
6903 return 0;
6904 break;
6905 case BPF_JLE:
6906 if (reg->u32_max_value <= val)
6907 return 1;
6908 else if (reg->u32_min_value > val)
6909 return 0;
6910 break;
6911 case BPF_JSLE:
6912 if (reg->s32_max_value <= sval)
6913 return 1;
6914 else if (reg->s32_min_value > sval)
6915 return 0;
6916 break;
6919 return -1;
6923 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6925 s64 sval = (s64)val;
6927 switch (opcode) {
6928 case BPF_JEQ:
6929 if (tnum_is_const(reg->var_off))
6930 return !!tnum_equals_const(reg->var_off, val);
6931 break;
6932 case BPF_JNE:
6933 if (tnum_is_const(reg->var_off))
6934 return !tnum_equals_const(reg->var_off, val);
6935 break;
6936 case BPF_JSET:
6937 if ((~reg->var_off.mask & reg->var_off.value) & val)
6938 return 1;
6939 if (!((reg->var_off.mask | reg->var_off.value) & val))
6940 return 0;
6941 break;
6942 case BPF_JGT:
6943 if (reg->umin_value > val)
6944 return 1;
6945 else if (reg->umax_value <= val)
6946 return 0;
6947 break;
6948 case BPF_JSGT:
6949 if (reg->smin_value > sval)
6950 return 1;
6951 else if (reg->smax_value < sval)
6952 return 0;
6953 break;
6954 case BPF_JLT:
6955 if (reg->umax_value < val)
6956 return 1;
6957 else if (reg->umin_value >= val)
6958 return 0;
6959 break;
6960 case BPF_JSLT:
6961 if (reg->smax_value < sval)
6962 return 1;
6963 else if (reg->smin_value >= sval)
6964 return 0;
6965 break;
6966 case BPF_JGE:
6967 if (reg->umin_value >= val)
6968 return 1;
6969 else if (reg->umax_value < val)
6970 return 0;
6971 break;
6972 case BPF_JSGE:
6973 if (reg->smin_value >= sval)
6974 return 1;
6975 else if (reg->smax_value < sval)
6976 return 0;
6977 break;
6978 case BPF_JLE:
6979 if (reg->umax_value <= val)
6980 return 1;
6981 else if (reg->umin_value > val)
6982 return 0;
6983 break;
6984 case BPF_JSLE:
6985 if (reg->smax_value <= sval)
6986 return 1;
6987 else if (reg->smin_value > sval)
6988 return 0;
6989 break;
6992 return -1;
6995 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6996 * and return:
6997 * 1 - branch will be taken and "goto target" will be executed
6998 * 0 - branch will not be taken and fall-through to next insn
6999 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7000 * range [0,10]
7002 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7003 bool is_jmp32)
7005 if (__is_pointer_value(false, reg)) {
7006 if (!reg_type_not_null(reg->type))
7007 return -1;
7009 /* If pointer is valid tests against zero will fail so we can
7010 * use this to direct branch taken.
7012 if (val != 0)
7013 return -1;
7015 switch (opcode) {
7016 case BPF_JEQ:
7017 return 0;
7018 case BPF_JNE:
7019 return 1;
7020 default:
7021 return -1;
7025 if (is_jmp32)
7026 return is_branch32_taken(reg, val, opcode);
7027 return is_branch64_taken(reg, val, opcode);
7030 static int flip_opcode(u32 opcode)
7032 /* How can we transform "a <op> b" into "b <op> a"? */
7033 static const u8 opcode_flip[16] = {
7034 /* these stay the same */
7035 [BPF_JEQ >> 4] = BPF_JEQ,
7036 [BPF_JNE >> 4] = BPF_JNE,
7037 [BPF_JSET >> 4] = BPF_JSET,
7038 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7039 [BPF_JGE >> 4] = BPF_JLE,
7040 [BPF_JGT >> 4] = BPF_JLT,
7041 [BPF_JLE >> 4] = BPF_JGE,
7042 [BPF_JLT >> 4] = BPF_JGT,
7043 [BPF_JSGE >> 4] = BPF_JSLE,
7044 [BPF_JSGT >> 4] = BPF_JSLT,
7045 [BPF_JSLE >> 4] = BPF_JSGE,
7046 [BPF_JSLT >> 4] = BPF_JSGT
7048 return opcode_flip[opcode >> 4];
7051 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7052 struct bpf_reg_state *src_reg,
7053 u8 opcode)
7055 struct bpf_reg_state *pkt;
7057 if (src_reg->type == PTR_TO_PACKET_END) {
7058 pkt = dst_reg;
7059 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7060 pkt = src_reg;
7061 opcode = flip_opcode(opcode);
7062 } else {
7063 return -1;
7066 if (pkt->range >= 0)
7067 return -1;
7069 switch (opcode) {
7070 case BPF_JLE:
7071 /* pkt <= pkt_end */
7072 fallthrough;
7073 case BPF_JGT:
7074 /* pkt > pkt_end */
7075 if (pkt->range == BEYOND_PKT_END)
7076 /* pkt has at last one extra byte beyond pkt_end */
7077 return opcode == BPF_JGT;
7078 break;
7079 case BPF_JLT:
7080 /* pkt < pkt_end */
7081 fallthrough;
7082 case BPF_JGE:
7083 /* pkt >= pkt_end */
7084 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7085 return opcode == BPF_JGE;
7086 break;
7088 return -1;
7091 /* Adjusts the register min/max values in the case that the dst_reg is the
7092 * variable register that we are working on, and src_reg is a constant or we're
7093 * simply doing a BPF_K check.
7094 * In JEQ/JNE cases we also adjust the var_off values.
7096 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7097 struct bpf_reg_state *false_reg,
7098 u64 val, u32 val32,
7099 u8 opcode, bool is_jmp32)
7101 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7102 struct tnum false_64off = false_reg->var_off;
7103 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7104 struct tnum true_64off = true_reg->var_off;
7105 s64 sval = (s64)val;
7106 s32 sval32 = (s32)val32;
7108 /* If the dst_reg is a pointer, we can't learn anything about its
7109 * variable offset from the compare (unless src_reg were a pointer into
7110 * the same object, but we don't bother with that.
7111 * Since false_reg and true_reg have the same type by construction, we
7112 * only need to check one of them for pointerness.
7114 if (__is_pointer_value(false, false_reg))
7115 return;
7117 switch (opcode) {
7118 case BPF_JEQ:
7119 case BPF_JNE:
7121 struct bpf_reg_state *reg =
7122 opcode == BPF_JEQ ? true_reg : false_reg;
7124 /* JEQ/JNE comparison doesn't change the register equivalence.
7125 * r1 = r2;
7126 * if (r1 == 42) goto label;
7127 * ...
7128 * label: // here both r1 and r2 are known to be 42.
7130 * Hence when marking register as known preserve it's ID.
7132 if (is_jmp32)
7133 __mark_reg32_known(reg, val32);
7134 else
7135 ___mark_reg_known(reg, val);
7136 break;
7138 case BPF_JSET:
7139 if (is_jmp32) {
7140 false_32off = tnum_and(false_32off, tnum_const(~val32));
7141 if (is_power_of_2(val32))
7142 true_32off = tnum_or(true_32off,
7143 tnum_const(val32));
7144 } else {
7145 false_64off = tnum_and(false_64off, tnum_const(~val));
7146 if (is_power_of_2(val))
7147 true_64off = tnum_or(true_64off,
7148 tnum_const(val));
7150 break;
7151 case BPF_JGE:
7152 case BPF_JGT:
7154 if (is_jmp32) {
7155 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7156 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7158 false_reg->u32_max_value = min(false_reg->u32_max_value,
7159 false_umax);
7160 true_reg->u32_min_value = max(true_reg->u32_min_value,
7161 true_umin);
7162 } else {
7163 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7164 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7166 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7167 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7169 break;
7171 case BPF_JSGE:
7172 case BPF_JSGT:
7174 if (is_jmp32) {
7175 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7176 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7178 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7179 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7180 } else {
7181 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7182 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7184 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7185 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7187 break;
7189 case BPF_JLE:
7190 case BPF_JLT:
7192 if (is_jmp32) {
7193 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7194 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7196 false_reg->u32_min_value = max(false_reg->u32_min_value,
7197 false_umin);
7198 true_reg->u32_max_value = min(true_reg->u32_max_value,
7199 true_umax);
7200 } else {
7201 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7202 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7204 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7205 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7207 break;
7209 case BPF_JSLE:
7210 case BPF_JSLT:
7212 if (is_jmp32) {
7213 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7214 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7216 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7217 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7218 } else {
7219 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7220 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7222 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7223 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7225 break;
7227 default:
7228 return;
7231 if (is_jmp32) {
7232 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7233 tnum_subreg(false_32off));
7234 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7235 tnum_subreg(true_32off));
7236 __reg_combine_32_into_64(false_reg);
7237 __reg_combine_32_into_64(true_reg);
7238 } else {
7239 false_reg->var_off = false_64off;
7240 true_reg->var_off = true_64off;
7241 __reg_combine_64_into_32(false_reg);
7242 __reg_combine_64_into_32(true_reg);
7246 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7247 * the variable reg.
7249 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7250 struct bpf_reg_state *false_reg,
7251 u64 val, u32 val32,
7252 u8 opcode, bool is_jmp32)
7254 opcode = flip_opcode(opcode);
7255 /* This uses zero as "not present in table"; luckily the zero opcode,
7256 * BPF_JA, can't get here.
7258 if (opcode)
7259 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7262 /* Regs are known to be equal, so intersect their min/max/var_off */
7263 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7264 struct bpf_reg_state *dst_reg)
7266 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7267 dst_reg->umin_value);
7268 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7269 dst_reg->umax_value);
7270 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7271 dst_reg->smin_value);
7272 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7273 dst_reg->smax_value);
7274 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7275 dst_reg->var_off);
7276 /* We might have learned new bounds from the var_off. */
7277 __update_reg_bounds(src_reg);
7278 __update_reg_bounds(dst_reg);
7279 /* We might have learned something about the sign bit. */
7280 __reg_deduce_bounds(src_reg);
7281 __reg_deduce_bounds(dst_reg);
7282 /* We might have learned some bits from the bounds. */
7283 __reg_bound_offset(src_reg);
7284 __reg_bound_offset(dst_reg);
7285 /* Intersecting with the old var_off might have improved our bounds
7286 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7287 * then new var_off is (0; 0x7f...fc) which improves our umax.
7289 __update_reg_bounds(src_reg);
7290 __update_reg_bounds(dst_reg);
7293 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7294 struct bpf_reg_state *true_dst,
7295 struct bpf_reg_state *false_src,
7296 struct bpf_reg_state *false_dst,
7297 u8 opcode)
7299 switch (opcode) {
7300 case BPF_JEQ:
7301 __reg_combine_min_max(true_src, true_dst);
7302 break;
7303 case BPF_JNE:
7304 __reg_combine_min_max(false_src, false_dst);
7305 break;
7309 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7310 struct bpf_reg_state *reg, u32 id,
7311 bool is_null)
7313 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7314 !WARN_ON_ONCE(!reg->id)) {
7315 /* Old offset (both fixed and variable parts) should
7316 * have been known-zero, because we don't allow pointer
7317 * arithmetic on pointers that might be NULL.
7319 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7320 !tnum_equals_const(reg->var_off, 0) ||
7321 reg->off)) {
7322 __mark_reg_known_zero(reg);
7323 reg->off = 0;
7325 if (is_null) {
7326 reg->type = SCALAR_VALUE;
7327 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7328 const struct bpf_map *map = reg->map_ptr;
7330 if (map->inner_map_meta) {
7331 reg->type = CONST_PTR_TO_MAP;
7332 reg->map_ptr = map->inner_map_meta;
7333 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7334 reg->type = PTR_TO_XDP_SOCK;
7335 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7336 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7337 reg->type = PTR_TO_SOCKET;
7338 } else {
7339 reg->type = PTR_TO_MAP_VALUE;
7341 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7342 reg->type = PTR_TO_SOCKET;
7343 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7344 reg->type = PTR_TO_SOCK_COMMON;
7345 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7346 reg->type = PTR_TO_TCP_SOCK;
7347 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7348 reg->type = PTR_TO_BTF_ID;
7349 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7350 reg->type = PTR_TO_MEM;
7351 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7352 reg->type = PTR_TO_RDONLY_BUF;
7353 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7354 reg->type = PTR_TO_RDWR_BUF;
7356 if (is_null) {
7357 /* We don't need id and ref_obj_id from this point
7358 * onwards anymore, thus we should better reset it,
7359 * so that state pruning has chances to take effect.
7361 reg->id = 0;
7362 reg->ref_obj_id = 0;
7363 } else if (!reg_may_point_to_spin_lock(reg)) {
7364 /* For not-NULL ptr, reg->ref_obj_id will be reset
7365 * in release_reg_references().
7367 * reg->id is still used by spin_lock ptr. Other
7368 * than spin_lock ptr type, reg->id can be reset.
7370 reg->id = 0;
7375 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7376 bool is_null)
7378 struct bpf_reg_state *reg;
7379 int i;
7381 for (i = 0; i < MAX_BPF_REG; i++)
7382 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7384 bpf_for_each_spilled_reg(i, state, reg) {
7385 if (!reg)
7386 continue;
7387 mark_ptr_or_null_reg(state, reg, id, is_null);
7391 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7392 * be folded together at some point.
7394 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7395 bool is_null)
7397 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7398 struct bpf_reg_state *regs = state->regs;
7399 u32 ref_obj_id = regs[regno].ref_obj_id;
7400 u32 id = regs[regno].id;
7401 int i;
7403 if (ref_obj_id && ref_obj_id == id && is_null)
7404 /* regs[regno] is in the " == NULL" branch.
7405 * No one could have freed the reference state before
7406 * doing the NULL check.
7408 WARN_ON_ONCE(release_reference_state(state, id));
7410 for (i = 0; i <= vstate->curframe; i++)
7411 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7414 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7415 struct bpf_reg_state *dst_reg,
7416 struct bpf_reg_state *src_reg,
7417 struct bpf_verifier_state *this_branch,
7418 struct bpf_verifier_state *other_branch)
7420 if (BPF_SRC(insn->code) != BPF_X)
7421 return false;
7423 /* Pointers are always 64-bit. */
7424 if (BPF_CLASS(insn->code) == BPF_JMP32)
7425 return false;
7427 switch (BPF_OP(insn->code)) {
7428 case BPF_JGT:
7429 if ((dst_reg->type == PTR_TO_PACKET &&
7430 src_reg->type == PTR_TO_PACKET_END) ||
7431 (dst_reg->type == PTR_TO_PACKET_META &&
7432 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7433 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7434 find_good_pkt_pointers(this_branch, dst_reg,
7435 dst_reg->type, false);
7436 mark_pkt_end(other_branch, insn->dst_reg, true);
7437 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7438 src_reg->type == PTR_TO_PACKET) ||
7439 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7440 src_reg->type == PTR_TO_PACKET_META)) {
7441 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7442 find_good_pkt_pointers(other_branch, src_reg,
7443 src_reg->type, true);
7444 mark_pkt_end(this_branch, insn->src_reg, false);
7445 } else {
7446 return false;
7448 break;
7449 case BPF_JLT:
7450 if ((dst_reg->type == PTR_TO_PACKET &&
7451 src_reg->type == PTR_TO_PACKET_END) ||
7452 (dst_reg->type == PTR_TO_PACKET_META &&
7453 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7454 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7455 find_good_pkt_pointers(other_branch, dst_reg,
7456 dst_reg->type, true);
7457 mark_pkt_end(this_branch, insn->dst_reg, false);
7458 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7459 src_reg->type == PTR_TO_PACKET) ||
7460 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7461 src_reg->type == PTR_TO_PACKET_META)) {
7462 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7463 find_good_pkt_pointers(this_branch, src_reg,
7464 src_reg->type, false);
7465 mark_pkt_end(other_branch, insn->src_reg, true);
7466 } else {
7467 return false;
7469 break;
7470 case BPF_JGE:
7471 if ((dst_reg->type == PTR_TO_PACKET &&
7472 src_reg->type == PTR_TO_PACKET_END) ||
7473 (dst_reg->type == PTR_TO_PACKET_META &&
7474 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7475 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7476 find_good_pkt_pointers(this_branch, dst_reg,
7477 dst_reg->type, true);
7478 mark_pkt_end(other_branch, insn->dst_reg, false);
7479 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7480 src_reg->type == PTR_TO_PACKET) ||
7481 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7482 src_reg->type == PTR_TO_PACKET_META)) {
7483 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7484 find_good_pkt_pointers(other_branch, src_reg,
7485 src_reg->type, false);
7486 mark_pkt_end(this_branch, insn->src_reg, true);
7487 } else {
7488 return false;
7490 break;
7491 case BPF_JLE:
7492 if ((dst_reg->type == PTR_TO_PACKET &&
7493 src_reg->type == PTR_TO_PACKET_END) ||
7494 (dst_reg->type == PTR_TO_PACKET_META &&
7495 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7496 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7497 find_good_pkt_pointers(other_branch, dst_reg,
7498 dst_reg->type, false);
7499 mark_pkt_end(this_branch, insn->dst_reg, true);
7500 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7501 src_reg->type == PTR_TO_PACKET) ||
7502 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7503 src_reg->type == PTR_TO_PACKET_META)) {
7504 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7505 find_good_pkt_pointers(this_branch, src_reg,
7506 src_reg->type, true);
7507 mark_pkt_end(other_branch, insn->src_reg, false);
7508 } else {
7509 return false;
7511 break;
7512 default:
7513 return false;
7516 return true;
7519 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7520 struct bpf_reg_state *known_reg)
7522 struct bpf_func_state *state;
7523 struct bpf_reg_state *reg;
7524 int i, j;
7526 for (i = 0; i <= vstate->curframe; i++) {
7527 state = vstate->frame[i];
7528 for (j = 0; j < MAX_BPF_REG; j++) {
7529 reg = &state->regs[j];
7530 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7531 *reg = *known_reg;
7534 bpf_for_each_spilled_reg(j, state, reg) {
7535 if (!reg)
7536 continue;
7537 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7538 *reg = *known_reg;
7543 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7544 struct bpf_insn *insn, int *insn_idx)
7546 struct bpf_verifier_state *this_branch = env->cur_state;
7547 struct bpf_verifier_state *other_branch;
7548 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7549 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7550 u8 opcode = BPF_OP(insn->code);
7551 bool is_jmp32;
7552 int pred = -1;
7553 int err;
7555 /* Only conditional jumps are expected to reach here. */
7556 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7557 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7558 return -EINVAL;
7561 if (BPF_SRC(insn->code) == BPF_X) {
7562 if (insn->imm != 0) {
7563 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7564 return -EINVAL;
7567 /* check src1 operand */
7568 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7569 if (err)
7570 return err;
7572 if (is_pointer_value(env, insn->src_reg)) {
7573 verbose(env, "R%d pointer comparison prohibited\n",
7574 insn->src_reg);
7575 return -EACCES;
7577 src_reg = &regs[insn->src_reg];
7578 } else {
7579 if (insn->src_reg != BPF_REG_0) {
7580 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7581 return -EINVAL;
7585 /* check src2 operand */
7586 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7587 if (err)
7588 return err;
7590 dst_reg = &regs[insn->dst_reg];
7591 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7593 if (BPF_SRC(insn->code) == BPF_K) {
7594 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7595 } else if (src_reg->type == SCALAR_VALUE &&
7596 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7597 pred = is_branch_taken(dst_reg,
7598 tnum_subreg(src_reg->var_off).value,
7599 opcode,
7600 is_jmp32);
7601 } else if (src_reg->type == SCALAR_VALUE &&
7602 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7603 pred = is_branch_taken(dst_reg,
7604 src_reg->var_off.value,
7605 opcode,
7606 is_jmp32);
7607 } else if (reg_is_pkt_pointer_any(dst_reg) &&
7608 reg_is_pkt_pointer_any(src_reg) &&
7609 !is_jmp32) {
7610 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
7613 if (pred >= 0) {
7614 /* If we get here with a dst_reg pointer type it is because
7615 * above is_branch_taken() special cased the 0 comparison.
7617 if (!__is_pointer_value(false, dst_reg))
7618 err = mark_chain_precision(env, insn->dst_reg);
7619 if (BPF_SRC(insn->code) == BPF_X && !err &&
7620 !__is_pointer_value(false, src_reg))
7621 err = mark_chain_precision(env, insn->src_reg);
7622 if (err)
7623 return err;
7625 if (pred == 1) {
7626 /* only follow the goto, ignore fall-through */
7627 *insn_idx += insn->off;
7628 return 0;
7629 } else if (pred == 0) {
7630 /* only follow fall-through branch, since
7631 * that's where the program will go
7633 return 0;
7636 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7637 false);
7638 if (!other_branch)
7639 return -EFAULT;
7640 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7642 /* detect if we are comparing against a constant value so we can adjust
7643 * our min/max values for our dst register.
7644 * this is only legit if both are scalars (or pointers to the same
7645 * object, I suppose, but we don't support that right now), because
7646 * otherwise the different base pointers mean the offsets aren't
7647 * comparable.
7649 if (BPF_SRC(insn->code) == BPF_X) {
7650 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7652 if (dst_reg->type == SCALAR_VALUE &&
7653 src_reg->type == SCALAR_VALUE) {
7654 if (tnum_is_const(src_reg->var_off) ||
7655 (is_jmp32 &&
7656 tnum_is_const(tnum_subreg(src_reg->var_off))))
7657 reg_set_min_max(&other_branch_regs[insn->dst_reg],
7658 dst_reg,
7659 src_reg->var_off.value,
7660 tnum_subreg(src_reg->var_off).value,
7661 opcode, is_jmp32);
7662 else if (tnum_is_const(dst_reg->var_off) ||
7663 (is_jmp32 &&
7664 tnum_is_const(tnum_subreg(dst_reg->var_off))))
7665 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7666 src_reg,
7667 dst_reg->var_off.value,
7668 tnum_subreg(dst_reg->var_off).value,
7669 opcode, is_jmp32);
7670 else if (!is_jmp32 &&
7671 (opcode == BPF_JEQ || opcode == BPF_JNE))
7672 /* Comparing for equality, we can combine knowledge */
7673 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7674 &other_branch_regs[insn->dst_reg],
7675 src_reg, dst_reg, opcode);
7676 if (src_reg->id &&
7677 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7678 find_equal_scalars(this_branch, src_reg);
7679 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7683 } else if (dst_reg->type == SCALAR_VALUE) {
7684 reg_set_min_max(&other_branch_regs[insn->dst_reg],
7685 dst_reg, insn->imm, (u32)insn->imm,
7686 opcode, is_jmp32);
7689 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7690 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7691 find_equal_scalars(this_branch, dst_reg);
7692 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7695 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7696 * NOTE: these optimizations below are related with pointer comparison
7697 * which will never be JMP32.
7699 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7700 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7701 reg_type_may_be_null(dst_reg->type)) {
7702 /* Mark all identical registers in each branch as either
7703 * safe or unknown depending R == 0 or R != 0 conditional.
7705 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7706 opcode == BPF_JNE);
7707 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7708 opcode == BPF_JEQ);
7709 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7710 this_branch, other_branch) &&
7711 is_pointer_value(env, insn->dst_reg)) {
7712 verbose(env, "R%d pointer comparison prohibited\n",
7713 insn->dst_reg);
7714 return -EACCES;
7716 if (env->log.level & BPF_LOG_LEVEL)
7717 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7718 return 0;
7721 /* verify BPF_LD_IMM64 instruction */
7722 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7724 struct bpf_insn_aux_data *aux = cur_aux(env);
7725 struct bpf_reg_state *regs = cur_regs(env);
7726 struct bpf_reg_state *dst_reg;
7727 struct bpf_map *map;
7728 int err;
7730 if (BPF_SIZE(insn->code) != BPF_DW) {
7731 verbose(env, "invalid BPF_LD_IMM insn\n");
7732 return -EINVAL;
7734 if (insn->off != 0) {
7735 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7736 return -EINVAL;
7739 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7740 if (err)
7741 return err;
7743 dst_reg = &regs[insn->dst_reg];
7744 if (insn->src_reg == 0) {
7745 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7747 dst_reg->type = SCALAR_VALUE;
7748 __mark_reg_known(&regs[insn->dst_reg], imm);
7749 return 0;
7752 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7753 mark_reg_known_zero(env, regs, insn->dst_reg);
7755 dst_reg->type = aux->btf_var.reg_type;
7756 switch (dst_reg->type) {
7757 case PTR_TO_MEM:
7758 dst_reg->mem_size = aux->btf_var.mem_size;
7759 break;
7760 case PTR_TO_BTF_ID:
7761 case PTR_TO_PERCPU_BTF_ID:
7762 dst_reg->btf = aux->btf_var.btf;
7763 dst_reg->btf_id = aux->btf_var.btf_id;
7764 break;
7765 default:
7766 verbose(env, "bpf verifier is misconfigured\n");
7767 return -EFAULT;
7769 return 0;
7772 map = env->used_maps[aux->map_index];
7773 mark_reg_known_zero(env, regs, insn->dst_reg);
7774 dst_reg->map_ptr = map;
7776 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7777 dst_reg->type = PTR_TO_MAP_VALUE;
7778 dst_reg->off = aux->map_off;
7779 if (map_value_has_spin_lock(map))
7780 dst_reg->id = ++env->id_gen;
7781 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7782 dst_reg->type = CONST_PTR_TO_MAP;
7783 } else {
7784 verbose(env, "bpf verifier is misconfigured\n");
7785 return -EINVAL;
7788 return 0;
7791 static bool may_access_skb(enum bpf_prog_type type)
7793 switch (type) {
7794 case BPF_PROG_TYPE_SOCKET_FILTER:
7795 case BPF_PROG_TYPE_SCHED_CLS:
7796 case BPF_PROG_TYPE_SCHED_ACT:
7797 return true;
7798 default:
7799 return false;
7803 /* verify safety of LD_ABS|LD_IND instructions:
7804 * - they can only appear in the programs where ctx == skb
7805 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7806 * preserve R6-R9, and store return value into R0
7808 * Implicit input:
7809 * ctx == skb == R6 == CTX
7811 * Explicit input:
7812 * SRC == any register
7813 * IMM == 32-bit immediate
7815 * Output:
7816 * R0 - 8/16/32-bit skb data converted to cpu endianness
7818 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7820 struct bpf_reg_state *regs = cur_regs(env);
7821 static const int ctx_reg = BPF_REG_6;
7822 u8 mode = BPF_MODE(insn->code);
7823 int i, err;
7825 if (!may_access_skb(resolve_prog_type(env->prog))) {
7826 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7827 return -EINVAL;
7830 if (!env->ops->gen_ld_abs) {
7831 verbose(env, "bpf verifier is misconfigured\n");
7832 return -EINVAL;
7835 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7836 BPF_SIZE(insn->code) == BPF_DW ||
7837 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7838 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7839 return -EINVAL;
7842 /* check whether implicit source operand (register R6) is readable */
7843 err = check_reg_arg(env, ctx_reg, SRC_OP);
7844 if (err)
7845 return err;
7847 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7848 * gen_ld_abs() may terminate the program at runtime, leading to
7849 * reference leak.
7851 err = check_reference_leak(env);
7852 if (err) {
7853 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7854 return err;
7857 if (env->cur_state->active_spin_lock) {
7858 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7859 return -EINVAL;
7862 if (regs[ctx_reg].type != PTR_TO_CTX) {
7863 verbose(env,
7864 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7865 return -EINVAL;
7868 if (mode == BPF_IND) {
7869 /* check explicit source operand */
7870 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7871 if (err)
7872 return err;
7875 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7876 if (err < 0)
7877 return err;
7879 /* reset caller saved regs to unreadable */
7880 for (i = 0; i < CALLER_SAVED_REGS; i++) {
7881 mark_reg_not_init(env, regs, caller_saved[i]);
7882 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7885 /* mark destination R0 register as readable, since it contains
7886 * the value fetched from the packet.
7887 * Already marked as written above.
7889 mark_reg_unknown(env, regs, BPF_REG_0);
7890 /* ld_abs load up to 32-bit skb data. */
7891 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7892 return 0;
7895 static int check_return_code(struct bpf_verifier_env *env)
7897 struct tnum enforce_attach_type_range = tnum_unknown;
7898 const struct bpf_prog *prog = env->prog;
7899 struct bpf_reg_state *reg;
7900 struct tnum range = tnum_range(0, 1);
7901 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7902 int err;
7903 const bool is_subprog = env->cur_state->frame[0]->subprogno;
7905 /* LSM and struct_ops func-ptr's return type could be "void" */
7906 if (!is_subprog &&
7907 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7908 prog_type == BPF_PROG_TYPE_LSM) &&
7909 !prog->aux->attach_func_proto->type)
7910 return 0;
7912 /* eBPF calling convetion is such that R0 is used
7913 * to return the value from eBPF program.
7914 * Make sure that it's readable at this time
7915 * of bpf_exit, which means that program wrote
7916 * something into it earlier
7918 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7919 if (err)
7920 return err;
7922 if (is_pointer_value(env, BPF_REG_0)) {
7923 verbose(env, "R0 leaks addr as return value\n");
7924 return -EACCES;
7927 reg = cur_regs(env) + BPF_REG_0;
7928 if (is_subprog) {
7929 if (reg->type != SCALAR_VALUE) {
7930 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7931 reg_type_str[reg->type]);
7932 return -EINVAL;
7934 return 0;
7937 switch (prog_type) {
7938 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7939 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7940 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7941 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7942 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7943 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7944 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7945 range = tnum_range(1, 1);
7946 break;
7947 case BPF_PROG_TYPE_CGROUP_SKB:
7948 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7949 range = tnum_range(0, 3);
7950 enforce_attach_type_range = tnum_range(2, 3);
7952 break;
7953 case BPF_PROG_TYPE_CGROUP_SOCK:
7954 case BPF_PROG_TYPE_SOCK_OPS:
7955 case BPF_PROG_TYPE_CGROUP_DEVICE:
7956 case BPF_PROG_TYPE_CGROUP_SYSCTL:
7957 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7958 break;
7959 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7960 if (!env->prog->aux->attach_btf_id)
7961 return 0;
7962 range = tnum_const(0);
7963 break;
7964 case BPF_PROG_TYPE_TRACING:
7965 switch (env->prog->expected_attach_type) {
7966 case BPF_TRACE_FENTRY:
7967 case BPF_TRACE_FEXIT:
7968 range = tnum_const(0);
7969 break;
7970 case BPF_TRACE_RAW_TP:
7971 case BPF_MODIFY_RETURN:
7972 return 0;
7973 case BPF_TRACE_ITER:
7974 break;
7975 default:
7976 return -ENOTSUPP;
7978 break;
7979 case BPF_PROG_TYPE_SK_LOOKUP:
7980 range = tnum_range(SK_DROP, SK_PASS);
7981 break;
7982 case BPF_PROG_TYPE_EXT:
7983 /* freplace program can return anything as its return value
7984 * depends on the to-be-replaced kernel func or bpf program.
7986 default:
7987 return 0;
7990 if (reg->type != SCALAR_VALUE) {
7991 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7992 reg_type_str[reg->type]);
7993 return -EINVAL;
7996 if (!tnum_in(range, reg->var_off)) {
7997 char tn_buf[48];
7999 verbose(env, "At program exit the register R0 ");
8000 if (!tnum_is_unknown(reg->var_off)) {
8001 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8002 verbose(env, "has value %s", tn_buf);
8003 } else {
8004 verbose(env, "has unknown scalar value");
8006 tnum_strn(tn_buf, sizeof(tn_buf), range);
8007 verbose(env, " should have been in %s\n", tn_buf);
8008 return -EINVAL;
8011 if (!tnum_is_unknown(enforce_attach_type_range) &&
8012 tnum_in(enforce_attach_type_range, reg->var_off))
8013 env->prog->enforce_expected_attach_type = 1;
8014 return 0;
8017 /* non-recursive DFS pseudo code
8018 * 1 procedure DFS-iterative(G,v):
8019 * 2 label v as discovered
8020 * 3 let S be a stack
8021 * 4 S.push(v)
8022 * 5 while S is not empty
8023 * 6 t <- S.pop()
8024 * 7 if t is what we're looking for:
8025 * 8 return t
8026 * 9 for all edges e in G.adjacentEdges(t) do
8027 * 10 if edge e is already labelled
8028 * 11 continue with the next edge
8029 * 12 w <- G.adjacentVertex(t,e)
8030 * 13 if vertex w is not discovered and not explored
8031 * 14 label e as tree-edge
8032 * 15 label w as discovered
8033 * 16 S.push(w)
8034 * 17 continue at 5
8035 * 18 else if vertex w is discovered
8036 * 19 label e as back-edge
8037 * 20 else
8038 * 21 // vertex w is explored
8039 * 22 label e as forward- or cross-edge
8040 * 23 label t as explored
8041 * 24 S.pop()
8043 * convention:
8044 * 0x10 - discovered
8045 * 0x11 - discovered and fall-through edge labelled
8046 * 0x12 - discovered and fall-through and branch edges labelled
8047 * 0x20 - explored
8050 enum {
8051 DISCOVERED = 0x10,
8052 EXPLORED = 0x20,
8053 FALLTHROUGH = 1,
8054 BRANCH = 2,
8057 static u32 state_htab_size(struct bpf_verifier_env *env)
8059 return env->prog->len;
8062 static struct bpf_verifier_state_list **explored_state(
8063 struct bpf_verifier_env *env,
8064 int idx)
8066 struct bpf_verifier_state *cur = env->cur_state;
8067 struct bpf_func_state *state = cur->frame[cur->curframe];
8069 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8072 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8074 env->insn_aux_data[idx].prune_point = true;
8077 enum {
8078 DONE_EXPLORING = 0,
8079 KEEP_EXPLORING = 1,
8082 /* t, w, e - match pseudo-code above:
8083 * t - index of current instruction
8084 * w - next instruction
8085 * e - edge
8087 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8088 bool loop_ok)
8090 int *insn_stack = env->cfg.insn_stack;
8091 int *insn_state = env->cfg.insn_state;
8093 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8094 return DONE_EXPLORING;
8096 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8097 return DONE_EXPLORING;
8099 if (w < 0 || w >= env->prog->len) {
8100 verbose_linfo(env, t, "%d: ", t);
8101 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8102 return -EINVAL;
8105 if (e == BRANCH)
8106 /* mark branch target for state pruning */
8107 init_explored_state(env, w);
8109 if (insn_state[w] == 0) {
8110 /* tree-edge */
8111 insn_state[t] = DISCOVERED | e;
8112 insn_state[w] = DISCOVERED;
8113 if (env->cfg.cur_stack >= env->prog->len)
8114 return -E2BIG;
8115 insn_stack[env->cfg.cur_stack++] = w;
8116 return KEEP_EXPLORING;
8117 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8118 if (loop_ok && env->bpf_capable)
8119 return DONE_EXPLORING;
8120 verbose_linfo(env, t, "%d: ", t);
8121 verbose_linfo(env, w, "%d: ", w);
8122 verbose(env, "back-edge from insn %d to %d\n", t, w);
8123 return -EINVAL;
8124 } else if (insn_state[w] == EXPLORED) {
8125 /* forward- or cross-edge */
8126 insn_state[t] = DISCOVERED | e;
8127 } else {
8128 verbose(env, "insn state internal bug\n");
8129 return -EFAULT;
8131 return DONE_EXPLORING;
8134 /* Visits the instruction at index t and returns one of the following:
8135 * < 0 - an error occurred
8136 * DONE_EXPLORING - the instruction was fully explored
8137 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8139 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8141 struct bpf_insn *insns = env->prog->insnsi;
8142 int ret;
8144 /* All non-branch instructions have a single fall-through edge. */
8145 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8146 BPF_CLASS(insns[t].code) != BPF_JMP32)
8147 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8149 switch (BPF_OP(insns[t].code)) {
8150 case BPF_EXIT:
8151 return DONE_EXPLORING;
8153 case BPF_CALL:
8154 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8155 if (ret)
8156 return ret;
8158 if (t + 1 < insn_cnt)
8159 init_explored_state(env, t + 1);
8160 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8161 init_explored_state(env, t);
8162 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8163 env, false);
8165 return ret;
8167 case BPF_JA:
8168 if (BPF_SRC(insns[t].code) != BPF_K)
8169 return -EINVAL;
8171 /* unconditional jump with single edge */
8172 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8173 true);
8174 if (ret)
8175 return ret;
8177 /* unconditional jmp is not a good pruning point,
8178 * but it's marked, since backtracking needs
8179 * to record jmp history in is_state_visited().
8181 init_explored_state(env, t + insns[t].off + 1);
8182 /* tell verifier to check for equivalent states
8183 * after every call and jump
8185 if (t + 1 < insn_cnt)
8186 init_explored_state(env, t + 1);
8188 return ret;
8190 default:
8191 /* conditional jump with two edges */
8192 init_explored_state(env, t);
8193 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8194 if (ret)
8195 return ret;
8197 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8201 /* non-recursive depth-first-search to detect loops in BPF program
8202 * loop == back-edge in directed graph
8204 static int check_cfg(struct bpf_verifier_env *env)
8206 int insn_cnt = env->prog->len;
8207 int *insn_stack, *insn_state;
8208 int ret = 0;
8209 int i;
8211 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8212 if (!insn_state)
8213 return -ENOMEM;
8215 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8216 if (!insn_stack) {
8217 kvfree(insn_state);
8218 return -ENOMEM;
8221 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8222 insn_stack[0] = 0; /* 0 is the first instruction */
8223 env->cfg.cur_stack = 1;
8225 while (env->cfg.cur_stack > 0) {
8226 int t = insn_stack[env->cfg.cur_stack - 1];
8228 ret = visit_insn(t, insn_cnt, env);
8229 switch (ret) {
8230 case DONE_EXPLORING:
8231 insn_state[t] = EXPLORED;
8232 env->cfg.cur_stack--;
8233 break;
8234 case KEEP_EXPLORING:
8235 break;
8236 default:
8237 if (ret > 0) {
8238 verbose(env, "visit_insn internal bug\n");
8239 ret = -EFAULT;
8241 goto err_free;
8245 if (env->cfg.cur_stack < 0) {
8246 verbose(env, "pop stack internal bug\n");
8247 ret = -EFAULT;
8248 goto err_free;
8251 for (i = 0; i < insn_cnt; i++) {
8252 if (insn_state[i] != EXPLORED) {
8253 verbose(env, "unreachable insn %d\n", i);
8254 ret = -EINVAL;
8255 goto err_free;
8258 ret = 0; /* cfg looks good */
8260 err_free:
8261 kvfree(insn_state);
8262 kvfree(insn_stack);
8263 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8264 return ret;
8267 static int check_abnormal_return(struct bpf_verifier_env *env)
8269 int i;
8271 for (i = 1; i < env->subprog_cnt; i++) {
8272 if (env->subprog_info[i].has_ld_abs) {
8273 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8274 return -EINVAL;
8276 if (env->subprog_info[i].has_tail_call) {
8277 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8278 return -EINVAL;
8281 return 0;
8284 /* The minimum supported BTF func info size */
8285 #define MIN_BPF_FUNCINFO_SIZE 8
8286 #define MAX_FUNCINFO_REC_SIZE 252
8288 static int check_btf_func(struct bpf_verifier_env *env,
8289 const union bpf_attr *attr,
8290 union bpf_attr __user *uattr)
8292 const struct btf_type *type, *func_proto, *ret_type;
8293 u32 i, nfuncs, urec_size, min_size;
8294 u32 krec_size = sizeof(struct bpf_func_info);
8295 struct bpf_func_info *krecord;
8296 struct bpf_func_info_aux *info_aux = NULL;
8297 struct bpf_prog *prog;
8298 const struct btf *btf;
8299 void __user *urecord;
8300 u32 prev_offset = 0;
8301 bool scalar_return;
8302 int ret = -ENOMEM;
8304 nfuncs = attr->func_info_cnt;
8305 if (!nfuncs) {
8306 if (check_abnormal_return(env))
8307 return -EINVAL;
8308 return 0;
8311 if (nfuncs != env->subprog_cnt) {
8312 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8313 return -EINVAL;
8316 urec_size = attr->func_info_rec_size;
8317 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8318 urec_size > MAX_FUNCINFO_REC_SIZE ||
8319 urec_size % sizeof(u32)) {
8320 verbose(env, "invalid func info rec size %u\n", urec_size);
8321 return -EINVAL;
8324 prog = env->prog;
8325 btf = prog->aux->btf;
8327 urecord = u64_to_user_ptr(attr->func_info);
8328 min_size = min_t(u32, krec_size, urec_size);
8330 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8331 if (!krecord)
8332 return -ENOMEM;
8333 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8334 if (!info_aux)
8335 goto err_free;
8337 for (i = 0; i < nfuncs; i++) {
8338 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8339 if (ret) {
8340 if (ret == -E2BIG) {
8341 verbose(env, "nonzero tailing record in func info");
8342 /* set the size kernel expects so loader can zero
8343 * out the rest of the record.
8345 if (put_user(min_size, &uattr->func_info_rec_size))
8346 ret = -EFAULT;
8348 goto err_free;
8351 if (copy_from_user(&krecord[i], urecord, min_size)) {
8352 ret = -EFAULT;
8353 goto err_free;
8356 /* check insn_off */
8357 ret = -EINVAL;
8358 if (i == 0) {
8359 if (krecord[i].insn_off) {
8360 verbose(env,
8361 "nonzero insn_off %u for the first func info record",
8362 krecord[i].insn_off);
8363 goto err_free;
8365 } else if (krecord[i].insn_off <= prev_offset) {
8366 verbose(env,
8367 "same or smaller insn offset (%u) than previous func info record (%u)",
8368 krecord[i].insn_off, prev_offset);
8369 goto err_free;
8372 if (env->subprog_info[i].start != krecord[i].insn_off) {
8373 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8374 goto err_free;
8377 /* check type_id */
8378 type = btf_type_by_id(btf, krecord[i].type_id);
8379 if (!type || !btf_type_is_func(type)) {
8380 verbose(env, "invalid type id %d in func info",
8381 krecord[i].type_id);
8382 goto err_free;
8384 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8386 func_proto = btf_type_by_id(btf, type->type);
8387 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8388 /* btf_func_check() already verified it during BTF load */
8389 goto err_free;
8390 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8391 scalar_return =
8392 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8393 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8394 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8395 goto err_free;
8397 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8398 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8399 goto err_free;
8402 prev_offset = krecord[i].insn_off;
8403 urecord += urec_size;
8406 prog->aux->func_info = krecord;
8407 prog->aux->func_info_cnt = nfuncs;
8408 prog->aux->func_info_aux = info_aux;
8409 return 0;
8411 err_free:
8412 kvfree(krecord);
8413 kfree(info_aux);
8414 return ret;
8417 static void adjust_btf_func(struct bpf_verifier_env *env)
8419 struct bpf_prog_aux *aux = env->prog->aux;
8420 int i;
8422 if (!aux->func_info)
8423 return;
8425 for (i = 0; i < env->subprog_cnt; i++)
8426 aux->func_info[i].insn_off = env->subprog_info[i].start;
8429 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8430 sizeof(((struct bpf_line_info *)(0))->line_col))
8431 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8433 static int check_btf_line(struct bpf_verifier_env *env,
8434 const union bpf_attr *attr,
8435 union bpf_attr __user *uattr)
8437 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8438 struct bpf_subprog_info *sub;
8439 struct bpf_line_info *linfo;
8440 struct bpf_prog *prog;
8441 const struct btf *btf;
8442 void __user *ulinfo;
8443 int err;
8445 nr_linfo = attr->line_info_cnt;
8446 if (!nr_linfo)
8447 return 0;
8449 rec_size = attr->line_info_rec_size;
8450 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8451 rec_size > MAX_LINEINFO_REC_SIZE ||
8452 rec_size & (sizeof(u32) - 1))
8453 return -EINVAL;
8455 /* Need to zero it in case the userspace may
8456 * pass in a smaller bpf_line_info object.
8458 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8459 GFP_KERNEL | __GFP_NOWARN);
8460 if (!linfo)
8461 return -ENOMEM;
8463 prog = env->prog;
8464 btf = prog->aux->btf;
8466 s = 0;
8467 sub = env->subprog_info;
8468 ulinfo = u64_to_user_ptr(attr->line_info);
8469 expected_size = sizeof(struct bpf_line_info);
8470 ncopy = min_t(u32, expected_size, rec_size);
8471 for (i = 0; i < nr_linfo; i++) {
8472 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8473 if (err) {
8474 if (err == -E2BIG) {
8475 verbose(env, "nonzero tailing record in line_info");
8476 if (put_user(expected_size,
8477 &uattr->line_info_rec_size))
8478 err = -EFAULT;
8480 goto err_free;
8483 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8484 err = -EFAULT;
8485 goto err_free;
8489 * Check insn_off to ensure
8490 * 1) strictly increasing AND
8491 * 2) bounded by prog->len
8493 * The linfo[0].insn_off == 0 check logically falls into
8494 * the later "missing bpf_line_info for func..." case
8495 * because the first linfo[0].insn_off must be the
8496 * first sub also and the first sub must have
8497 * subprog_info[0].start == 0.
8499 if ((i && linfo[i].insn_off <= prev_offset) ||
8500 linfo[i].insn_off >= prog->len) {
8501 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8502 i, linfo[i].insn_off, prev_offset,
8503 prog->len);
8504 err = -EINVAL;
8505 goto err_free;
8508 if (!prog->insnsi[linfo[i].insn_off].code) {
8509 verbose(env,
8510 "Invalid insn code at line_info[%u].insn_off\n",
8512 err = -EINVAL;
8513 goto err_free;
8516 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8517 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8518 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8519 err = -EINVAL;
8520 goto err_free;
8523 if (s != env->subprog_cnt) {
8524 if (linfo[i].insn_off == sub[s].start) {
8525 sub[s].linfo_idx = i;
8526 s++;
8527 } else if (sub[s].start < linfo[i].insn_off) {
8528 verbose(env, "missing bpf_line_info for func#%u\n", s);
8529 err = -EINVAL;
8530 goto err_free;
8534 prev_offset = linfo[i].insn_off;
8535 ulinfo += rec_size;
8538 if (s != env->subprog_cnt) {
8539 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8540 env->subprog_cnt - s, s);
8541 err = -EINVAL;
8542 goto err_free;
8545 prog->aux->linfo = linfo;
8546 prog->aux->nr_linfo = nr_linfo;
8548 return 0;
8550 err_free:
8551 kvfree(linfo);
8552 return err;
8555 static int check_btf_info(struct bpf_verifier_env *env,
8556 const union bpf_attr *attr,
8557 union bpf_attr __user *uattr)
8559 struct btf *btf;
8560 int err;
8562 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8563 if (check_abnormal_return(env))
8564 return -EINVAL;
8565 return 0;
8568 btf = btf_get_by_fd(attr->prog_btf_fd);
8569 if (IS_ERR(btf))
8570 return PTR_ERR(btf);
8571 env->prog->aux->btf = btf;
8573 err = check_btf_func(env, attr, uattr);
8574 if (err)
8575 return err;
8577 err = check_btf_line(env, attr, uattr);
8578 if (err)
8579 return err;
8581 return 0;
8584 /* check %cur's range satisfies %old's */
8585 static bool range_within(struct bpf_reg_state *old,
8586 struct bpf_reg_state *cur)
8588 return old->umin_value <= cur->umin_value &&
8589 old->umax_value >= cur->umax_value &&
8590 old->smin_value <= cur->smin_value &&
8591 old->smax_value >= cur->smax_value;
8594 /* Maximum number of register states that can exist at once */
8595 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8596 struct idpair {
8597 u32 old;
8598 u32 cur;
8601 /* If in the old state two registers had the same id, then they need to have
8602 * the same id in the new state as well. But that id could be different from
8603 * the old state, so we need to track the mapping from old to new ids.
8604 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8605 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8606 * regs with a different old id could still have new id 9, we don't care about
8607 * that.
8608 * So we look through our idmap to see if this old id has been seen before. If
8609 * so, we require the new id to match; otherwise, we add the id pair to the map.
8611 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8613 unsigned int i;
8615 for (i = 0; i < ID_MAP_SIZE; i++) {
8616 if (!idmap[i].old) {
8617 /* Reached an empty slot; haven't seen this id before */
8618 idmap[i].old = old_id;
8619 idmap[i].cur = cur_id;
8620 return true;
8622 if (idmap[i].old == old_id)
8623 return idmap[i].cur == cur_id;
8625 /* We ran out of idmap slots, which should be impossible */
8626 WARN_ON_ONCE(1);
8627 return false;
8630 static void clean_func_state(struct bpf_verifier_env *env,
8631 struct bpf_func_state *st)
8633 enum bpf_reg_liveness live;
8634 int i, j;
8636 for (i = 0; i < BPF_REG_FP; i++) {
8637 live = st->regs[i].live;
8638 /* liveness must not touch this register anymore */
8639 st->regs[i].live |= REG_LIVE_DONE;
8640 if (!(live & REG_LIVE_READ))
8641 /* since the register is unused, clear its state
8642 * to make further comparison simpler
8644 __mark_reg_not_init(env, &st->regs[i]);
8647 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8648 live = st->stack[i].spilled_ptr.live;
8649 /* liveness must not touch this stack slot anymore */
8650 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8651 if (!(live & REG_LIVE_READ)) {
8652 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8653 for (j = 0; j < BPF_REG_SIZE; j++)
8654 st->stack[i].slot_type[j] = STACK_INVALID;
8659 static void clean_verifier_state(struct bpf_verifier_env *env,
8660 struct bpf_verifier_state *st)
8662 int i;
8664 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8665 /* all regs in this state in all frames were already marked */
8666 return;
8668 for (i = 0; i <= st->curframe; i++)
8669 clean_func_state(env, st->frame[i]);
8672 /* the parentage chains form a tree.
8673 * the verifier states are added to state lists at given insn and
8674 * pushed into state stack for future exploration.
8675 * when the verifier reaches bpf_exit insn some of the verifer states
8676 * stored in the state lists have their final liveness state already,
8677 * but a lot of states will get revised from liveness point of view when
8678 * the verifier explores other branches.
8679 * Example:
8680 * 1: r0 = 1
8681 * 2: if r1 == 100 goto pc+1
8682 * 3: r0 = 2
8683 * 4: exit
8684 * when the verifier reaches exit insn the register r0 in the state list of
8685 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8686 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8687 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8689 * Since the verifier pushes the branch states as it sees them while exploring
8690 * the program the condition of walking the branch instruction for the second
8691 * time means that all states below this branch were already explored and
8692 * their final liveness markes are already propagated.
8693 * Hence when the verifier completes the search of state list in is_state_visited()
8694 * we can call this clean_live_states() function to mark all liveness states
8695 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8696 * will not be used.
8697 * This function also clears the registers and stack for states that !READ
8698 * to simplify state merging.
8700 * Important note here that walking the same branch instruction in the callee
8701 * doesn't meant that the states are DONE. The verifier has to compare
8702 * the callsites
8704 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8705 struct bpf_verifier_state *cur)
8707 struct bpf_verifier_state_list *sl;
8708 int i;
8710 sl = *explored_state(env, insn);
8711 while (sl) {
8712 if (sl->state.branches)
8713 goto next;
8714 if (sl->state.insn_idx != insn ||
8715 sl->state.curframe != cur->curframe)
8716 goto next;
8717 for (i = 0; i <= cur->curframe; i++)
8718 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8719 goto next;
8720 clean_verifier_state(env, &sl->state);
8721 next:
8722 sl = sl->next;
8726 /* Returns true if (rold safe implies rcur safe) */
8727 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8728 struct idpair *idmap)
8730 bool equal;
8732 if (!(rold->live & REG_LIVE_READ))
8733 /* explored state didn't use this */
8734 return true;
8736 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8738 if (rold->type == PTR_TO_STACK)
8739 /* two stack pointers are equal only if they're pointing to
8740 * the same stack frame, since fp-8 in foo != fp-8 in bar
8742 return equal && rold->frameno == rcur->frameno;
8744 if (equal)
8745 return true;
8747 if (rold->type == NOT_INIT)
8748 /* explored state can't have used this */
8749 return true;
8750 if (rcur->type == NOT_INIT)
8751 return false;
8752 switch (rold->type) {
8753 case SCALAR_VALUE:
8754 if (rcur->type == SCALAR_VALUE) {
8755 if (!rold->precise && !rcur->precise)
8756 return true;
8757 /* new val must satisfy old val knowledge */
8758 return range_within(rold, rcur) &&
8759 tnum_in(rold->var_off, rcur->var_off);
8760 } else {
8761 /* We're trying to use a pointer in place of a scalar.
8762 * Even if the scalar was unbounded, this could lead to
8763 * pointer leaks because scalars are allowed to leak
8764 * while pointers are not. We could make this safe in
8765 * special cases if root is calling us, but it's
8766 * probably not worth the hassle.
8768 return false;
8770 case PTR_TO_MAP_VALUE:
8771 /* If the new min/max/var_off satisfy the old ones and
8772 * everything else matches, we are OK.
8773 * 'id' is not compared, since it's only used for maps with
8774 * bpf_spin_lock inside map element and in such cases if
8775 * the rest of the prog is valid for one map element then
8776 * it's valid for all map elements regardless of the key
8777 * used in bpf_map_lookup()
8779 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8780 range_within(rold, rcur) &&
8781 tnum_in(rold->var_off, rcur->var_off);
8782 case PTR_TO_MAP_VALUE_OR_NULL:
8783 /* a PTR_TO_MAP_VALUE could be safe to use as a
8784 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8785 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8786 * checked, doing so could have affected others with the same
8787 * id, and we can't check for that because we lost the id when
8788 * we converted to a PTR_TO_MAP_VALUE.
8790 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8791 return false;
8792 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8793 return false;
8794 /* Check our ids match any regs they're supposed to */
8795 return check_ids(rold->id, rcur->id, idmap);
8796 case PTR_TO_PACKET_META:
8797 case PTR_TO_PACKET:
8798 if (rcur->type != rold->type)
8799 return false;
8800 /* We must have at least as much range as the old ptr
8801 * did, so that any accesses which were safe before are
8802 * still safe. This is true even if old range < old off,
8803 * since someone could have accessed through (ptr - k), or
8804 * even done ptr -= k in a register, to get a safe access.
8806 if (rold->range > rcur->range)
8807 return false;
8808 /* If the offsets don't match, we can't trust our alignment;
8809 * nor can we be sure that we won't fall out of range.
8811 if (rold->off != rcur->off)
8812 return false;
8813 /* id relations must be preserved */
8814 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8815 return false;
8816 /* new val must satisfy old val knowledge */
8817 return range_within(rold, rcur) &&
8818 tnum_in(rold->var_off, rcur->var_off);
8819 case PTR_TO_CTX:
8820 case CONST_PTR_TO_MAP:
8821 case PTR_TO_PACKET_END:
8822 case PTR_TO_FLOW_KEYS:
8823 case PTR_TO_SOCKET:
8824 case PTR_TO_SOCKET_OR_NULL:
8825 case PTR_TO_SOCK_COMMON:
8826 case PTR_TO_SOCK_COMMON_OR_NULL:
8827 case PTR_TO_TCP_SOCK:
8828 case PTR_TO_TCP_SOCK_OR_NULL:
8829 case PTR_TO_XDP_SOCK:
8830 /* Only valid matches are exact, which memcmp() above
8831 * would have accepted
8833 default:
8834 /* Don't know what's going on, just say it's not safe */
8835 return false;
8838 /* Shouldn't get here; if we do, say it's not safe */
8839 WARN_ON_ONCE(1);
8840 return false;
8843 static bool stacksafe(struct bpf_func_state *old,
8844 struct bpf_func_state *cur,
8845 struct idpair *idmap)
8847 int i, spi;
8849 /* walk slots of the explored stack and ignore any additional
8850 * slots in the current stack, since explored(safe) state
8851 * didn't use them
8853 for (i = 0; i < old->allocated_stack; i++) {
8854 spi = i / BPF_REG_SIZE;
8856 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8857 i += BPF_REG_SIZE - 1;
8858 /* explored state didn't use this */
8859 continue;
8862 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8863 continue;
8865 /* explored stack has more populated slots than current stack
8866 * and these slots were used
8868 if (i >= cur->allocated_stack)
8869 return false;
8871 /* if old state was safe with misc data in the stack
8872 * it will be safe with zero-initialized stack.
8873 * The opposite is not true
8875 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8876 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8877 continue;
8878 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8879 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8880 /* Ex: old explored (safe) state has STACK_SPILL in
8881 * this stack slot, but current has STACK_MISC ->
8882 * this verifier states are not equivalent,
8883 * return false to continue verification of this path
8885 return false;
8886 if (i % BPF_REG_SIZE)
8887 continue;
8888 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8889 continue;
8890 if (!regsafe(&old->stack[spi].spilled_ptr,
8891 &cur->stack[spi].spilled_ptr,
8892 idmap))
8893 /* when explored and current stack slot are both storing
8894 * spilled registers, check that stored pointers types
8895 * are the same as well.
8896 * Ex: explored safe path could have stored
8897 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8898 * but current path has stored:
8899 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8900 * such verifier states are not equivalent.
8901 * return false to continue verification of this path
8903 return false;
8905 return true;
8908 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8910 if (old->acquired_refs != cur->acquired_refs)
8911 return false;
8912 return !memcmp(old->refs, cur->refs,
8913 sizeof(*old->refs) * old->acquired_refs);
8916 /* compare two verifier states
8918 * all states stored in state_list are known to be valid, since
8919 * verifier reached 'bpf_exit' instruction through them
8921 * this function is called when verifier exploring different branches of
8922 * execution popped from the state stack. If it sees an old state that has
8923 * more strict register state and more strict stack state then this execution
8924 * branch doesn't need to be explored further, since verifier already
8925 * concluded that more strict state leads to valid finish.
8927 * Therefore two states are equivalent if register state is more conservative
8928 * and explored stack state is more conservative than the current one.
8929 * Example:
8930 * explored current
8931 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8932 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8934 * In other words if current stack state (one being explored) has more
8935 * valid slots than old one that already passed validation, it means
8936 * the verifier can stop exploring and conclude that current state is valid too
8938 * Similarly with registers. If explored state has register type as invalid
8939 * whereas register type in current state is meaningful, it means that
8940 * the current state will reach 'bpf_exit' instruction safely
8942 static bool func_states_equal(struct bpf_func_state *old,
8943 struct bpf_func_state *cur)
8945 struct idpair *idmap;
8946 bool ret = false;
8947 int i;
8949 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8950 /* If we failed to allocate the idmap, just say it's not safe */
8951 if (!idmap)
8952 return false;
8954 for (i = 0; i < MAX_BPF_REG; i++) {
8955 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8956 goto out_free;
8959 if (!stacksafe(old, cur, idmap))
8960 goto out_free;
8962 if (!refsafe(old, cur))
8963 goto out_free;
8964 ret = true;
8965 out_free:
8966 kfree(idmap);
8967 return ret;
8970 static bool states_equal(struct bpf_verifier_env *env,
8971 struct bpf_verifier_state *old,
8972 struct bpf_verifier_state *cur)
8974 int i;
8976 if (old->curframe != cur->curframe)
8977 return false;
8979 /* Verification state from speculative execution simulation
8980 * must never prune a non-speculative execution one.
8982 if (old->speculative && !cur->speculative)
8983 return false;
8985 if (old->active_spin_lock != cur->active_spin_lock)
8986 return false;
8988 /* for states to be equal callsites have to be the same
8989 * and all frame states need to be equivalent
8991 for (i = 0; i <= old->curframe; i++) {
8992 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8993 return false;
8994 if (!func_states_equal(old->frame[i], cur->frame[i]))
8995 return false;
8997 return true;
9000 /* Return 0 if no propagation happened. Return negative error code if error
9001 * happened. Otherwise, return the propagated bit.
9003 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9004 struct bpf_reg_state *reg,
9005 struct bpf_reg_state *parent_reg)
9007 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9008 u8 flag = reg->live & REG_LIVE_READ;
9009 int err;
9011 /* When comes here, read flags of PARENT_REG or REG could be any of
9012 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9013 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9015 if (parent_flag == REG_LIVE_READ64 ||
9016 /* Or if there is no read flag from REG. */
9017 !flag ||
9018 /* Or if the read flag from REG is the same as PARENT_REG. */
9019 parent_flag == flag)
9020 return 0;
9022 err = mark_reg_read(env, reg, parent_reg, flag);
9023 if (err)
9024 return err;
9026 return flag;
9029 /* A write screens off any subsequent reads; but write marks come from the
9030 * straight-line code between a state and its parent. When we arrive at an
9031 * equivalent state (jump target or such) we didn't arrive by the straight-line
9032 * code, so read marks in the state must propagate to the parent regardless
9033 * of the state's write marks. That's what 'parent == state->parent' comparison
9034 * in mark_reg_read() is for.
9036 static int propagate_liveness(struct bpf_verifier_env *env,
9037 const struct bpf_verifier_state *vstate,
9038 struct bpf_verifier_state *vparent)
9040 struct bpf_reg_state *state_reg, *parent_reg;
9041 struct bpf_func_state *state, *parent;
9042 int i, frame, err = 0;
9044 if (vparent->curframe != vstate->curframe) {
9045 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9046 vparent->curframe, vstate->curframe);
9047 return -EFAULT;
9049 /* Propagate read liveness of registers... */
9050 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9051 for (frame = 0; frame <= vstate->curframe; frame++) {
9052 parent = vparent->frame[frame];
9053 state = vstate->frame[frame];
9054 parent_reg = parent->regs;
9055 state_reg = state->regs;
9056 /* We don't need to worry about FP liveness, it's read-only */
9057 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9058 err = propagate_liveness_reg(env, &state_reg[i],
9059 &parent_reg[i]);
9060 if (err < 0)
9061 return err;
9062 if (err == REG_LIVE_READ64)
9063 mark_insn_zext(env, &parent_reg[i]);
9066 /* Propagate stack slots. */
9067 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9068 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9069 parent_reg = &parent->stack[i].spilled_ptr;
9070 state_reg = &state->stack[i].spilled_ptr;
9071 err = propagate_liveness_reg(env, state_reg,
9072 parent_reg);
9073 if (err < 0)
9074 return err;
9077 return 0;
9080 /* find precise scalars in the previous equivalent state and
9081 * propagate them into the current state
9083 static int propagate_precision(struct bpf_verifier_env *env,
9084 const struct bpf_verifier_state *old)
9086 struct bpf_reg_state *state_reg;
9087 struct bpf_func_state *state;
9088 int i, err = 0;
9090 state = old->frame[old->curframe];
9091 state_reg = state->regs;
9092 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9093 if (state_reg->type != SCALAR_VALUE ||
9094 !state_reg->precise)
9095 continue;
9096 if (env->log.level & BPF_LOG_LEVEL2)
9097 verbose(env, "propagating r%d\n", i);
9098 err = mark_chain_precision(env, i);
9099 if (err < 0)
9100 return err;
9103 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9104 if (state->stack[i].slot_type[0] != STACK_SPILL)
9105 continue;
9106 state_reg = &state->stack[i].spilled_ptr;
9107 if (state_reg->type != SCALAR_VALUE ||
9108 !state_reg->precise)
9109 continue;
9110 if (env->log.level & BPF_LOG_LEVEL2)
9111 verbose(env, "propagating fp%d\n",
9112 (-i - 1) * BPF_REG_SIZE);
9113 err = mark_chain_precision_stack(env, i);
9114 if (err < 0)
9115 return err;
9117 return 0;
9120 static bool states_maybe_looping(struct bpf_verifier_state *old,
9121 struct bpf_verifier_state *cur)
9123 struct bpf_func_state *fold, *fcur;
9124 int i, fr = cur->curframe;
9126 if (old->curframe != fr)
9127 return false;
9129 fold = old->frame[fr];
9130 fcur = cur->frame[fr];
9131 for (i = 0; i < MAX_BPF_REG; i++)
9132 if (memcmp(&fold->regs[i], &fcur->regs[i],
9133 offsetof(struct bpf_reg_state, parent)))
9134 return false;
9135 return true;
9139 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9141 struct bpf_verifier_state_list *new_sl;
9142 struct bpf_verifier_state_list *sl, **pprev;
9143 struct bpf_verifier_state *cur = env->cur_state, *new;
9144 int i, j, err, states_cnt = 0;
9145 bool add_new_state = env->test_state_freq ? true : false;
9147 cur->last_insn_idx = env->prev_insn_idx;
9148 if (!env->insn_aux_data[insn_idx].prune_point)
9149 /* this 'insn_idx' instruction wasn't marked, so we will not
9150 * be doing state search here
9152 return 0;
9154 /* bpf progs typically have pruning point every 4 instructions
9155 * http://vger.kernel.org/bpfconf2019.html#session-1
9156 * Do not add new state for future pruning if the verifier hasn't seen
9157 * at least 2 jumps and at least 8 instructions.
9158 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9159 * In tests that amounts to up to 50% reduction into total verifier
9160 * memory consumption and 20% verifier time speedup.
9162 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9163 env->insn_processed - env->prev_insn_processed >= 8)
9164 add_new_state = true;
9166 pprev = explored_state(env, insn_idx);
9167 sl = *pprev;
9169 clean_live_states(env, insn_idx, cur);
9171 while (sl) {
9172 states_cnt++;
9173 if (sl->state.insn_idx != insn_idx)
9174 goto next;
9175 if (sl->state.branches) {
9176 if (states_maybe_looping(&sl->state, cur) &&
9177 states_equal(env, &sl->state, cur)) {
9178 verbose_linfo(env, insn_idx, "; ");
9179 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9180 return -EINVAL;
9182 /* if the verifier is processing a loop, avoid adding new state
9183 * too often, since different loop iterations have distinct
9184 * states and may not help future pruning.
9185 * This threshold shouldn't be too low to make sure that
9186 * a loop with large bound will be rejected quickly.
9187 * The most abusive loop will be:
9188 * r1 += 1
9189 * if r1 < 1000000 goto pc-2
9190 * 1M insn_procssed limit / 100 == 10k peak states.
9191 * This threshold shouldn't be too high either, since states
9192 * at the end of the loop are likely to be useful in pruning.
9194 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9195 env->insn_processed - env->prev_insn_processed < 100)
9196 add_new_state = false;
9197 goto miss;
9199 if (states_equal(env, &sl->state, cur)) {
9200 sl->hit_cnt++;
9201 /* reached equivalent register/stack state,
9202 * prune the search.
9203 * Registers read by the continuation are read by us.
9204 * If we have any write marks in env->cur_state, they
9205 * will prevent corresponding reads in the continuation
9206 * from reaching our parent (an explored_state). Our
9207 * own state will get the read marks recorded, but
9208 * they'll be immediately forgotten as we're pruning
9209 * this state and will pop a new one.
9211 err = propagate_liveness(env, &sl->state, cur);
9213 /* if previous state reached the exit with precision and
9214 * current state is equivalent to it (except precsion marks)
9215 * the precision needs to be propagated back in
9216 * the current state.
9218 err = err ? : push_jmp_history(env, cur);
9219 err = err ? : propagate_precision(env, &sl->state);
9220 if (err)
9221 return err;
9222 return 1;
9224 miss:
9225 /* when new state is not going to be added do not increase miss count.
9226 * Otherwise several loop iterations will remove the state
9227 * recorded earlier. The goal of these heuristics is to have
9228 * states from some iterations of the loop (some in the beginning
9229 * and some at the end) to help pruning.
9231 if (add_new_state)
9232 sl->miss_cnt++;
9233 /* heuristic to determine whether this state is beneficial
9234 * to keep checking from state equivalence point of view.
9235 * Higher numbers increase max_states_per_insn and verification time,
9236 * but do not meaningfully decrease insn_processed.
9238 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9239 /* the state is unlikely to be useful. Remove it to
9240 * speed up verification
9242 *pprev = sl->next;
9243 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9244 u32 br = sl->state.branches;
9246 WARN_ONCE(br,
9247 "BUG live_done but branches_to_explore %d\n",
9248 br);
9249 free_verifier_state(&sl->state, false);
9250 kfree(sl);
9251 env->peak_states--;
9252 } else {
9253 /* cannot free this state, since parentage chain may
9254 * walk it later. Add it for free_list instead to
9255 * be freed at the end of verification
9257 sl->next = env->free_list;
9258 env->free_list = sl;
9260 sl = *pprev;
9261 continue;
9263 next:
9264 pprev = &sl->next;
9265 sl = *pprev;
9268 if (env->max_states_per_insn < states_cnt)
9269 env->max_states_per_insn = states_cnt;
9271 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9272 return push_jmp_history(env, cur);
9274 if (!add_new_state)
9275 return push_jmp_history(env, cur);
9277 /* There were no equivalent states, remember the current one.
9278 * Technically the current state is not proven to be safe yet,
9279 * but it will either reach outer most bpf_exit (which means it's safe)
9280 * or it will be rejected. When there are no loops the verifier won't be
9281 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9282 * again on the way to bpf_exit.
9283 * When looping the sl->state.branches will be > 0 and this state
9284 * will not be considered for equivalence until branches == 0.
9286 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9287 if (!new_sl)
9288 return -ENOMEM;
9289 env->total_states++;
9290 env->peak_states++;
9291 env->prev_jmps_processed = env->jmps_processed;
9292 env->prev_insn_processed = env->insn_processed;
9294 /* add new state to the head of linked list */
9295 new = &new_sl->state;
9296 err = copy_verifier_state(new, cur);
9297 if (err) {
9298 free_verifier_state(new, false);
9299 kfree(new_sl);
9300 return err;
9302 new->insn_idx = insn_idx;
9303 WARN_ONCE(new->branches != 1,
9304 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9306 cur->parent = new;
9307 cur->first_insn_idx = insn_idx;
9308 clear_jmp_history(cur);
9309 new_sl->next = *explored_state(env, insn_idx);
9310 *explored_state(env, insn_idx) = new_sl;
9311 /* connect new state to parentage chain. Current frame needs all
9312 * registers connected. Only r6 - r9 of the callers are alive (pushed
9313 * to the stack implicitly by JITs) so in callers' frames connect just
9314 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9315 * the state of the call instruction (with WRITTEN set), and r0 comes
9316 * from callee with its full parentage chain, anyway.
9318 /* clear write marks in current state: the writes we did are not writes
9319 * our child did, so they don't screen off its reads from us.
9320 * (There are no read marks in current state, because reads always mark
9321 * their parent and current state never has children yet. Only
9322 * explored_states can get read marks.)
9324 for (j = 0; j <= cur->curframe; j++) {
9325 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9326 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9327 for (i = 0; i < BPF_REG_FP; i++)
9328 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9331 /* all stack frames are accessible from callee, clear them all */
9332 for (j = 0; j <= cur->curframe; j++) {
9333 struct bpf_func_state *frame = cur->frame[j];
9334 struct bpf_func_state *newframe = new->frame[j];
9336 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9337 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9338 frame->stack[i].spilled_ptr.parent =
9339 &newframe->stack[i].spilled_ptr;
9342 return 0;
9345 /* Return true if it's OK to have the same insn return a different type. */
9346 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9348 switch (type) {
9349 case PTR_TO_CTX:
9350 case PTR_TO_SOCKET:
9351 case PTR_TO_SOCKET_OR_NULL:
9352 case PTR_TO_SOCK_COMMON:
9353 case PTR_TO_SOCK_COMMON_OR_NULL:
9354 case PTR_TO_TCP_SOCK:
9355 case PTR_TO_TCP_SOCK_OR_NULL:
9356 case PTR_TO_XDP_SOCK:
9357 case PTR_TO_BTF_ID:
9358 case PTR_TO_BTF_ID_OR_NULL:
9359 return false;
9360 default:
9361 return true;
9365 /* If an instruction was previously used with particular pointer types, then we
9366 * need to be careful to avoid cases such as the below, where it may be ok
9367 * for one branch accessing the pointer, but not ok for the other branch:
9369 * R1 = sock_ptr
9370 * goto X;
9371 * ...
9372 * R1 = some_other_valid_ptr;
9373 * goto X;
9374 * ...
9375 * R2 = *(u32 *)(R1 + 0);
9377 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9379 return src != prev && (!reg_type_mismatch_ok(src) ||
9380 !reg_type_mismatch_ok(prev));
9383 static int do_check(struct bpf_verifier_env *env)
9385 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9386 struct bpf_verifier_state *state = env->cur_state;
9387 struct bpf_insn *insns = env->prog->insnsi;
9388 struct bpf_reg_state *regs;
9389 int insn_cnt = env->prog->len;
9390 bool do_print_state = false;
9391 int prev_insn_idx = -1;
9393 for (;;) {
9394 struct bpf_insn *insn;
9395 u8 class;
9396 int err;
9398 env->prev_insn_idx = prev_insn_idx;
9399 if (env->insn_idx >= insn_cnt) {
9400 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9401 env->insn_idx, insn_cnt);
9402 return -EFAULT;
9405 insn = &insns[env->insn_idx];
9406 class = BPF_CLASS(insn->code);
9408 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9409 verbose(env,
9410 "BPF program is too large. Processed %d insn\n",
9411 env->insn_processed);
9412 return -E2BIG;
9415 err = is_state_visited(env, env->insn_idx);
9416 if (err < 0)
9417 return err;
9418 if (err == 1) {
9419 /* found equivalent state, can prune the search */
9420 if (env->log.level & BPF_LOG_LEVEL) {
9421 if (do_print_state)
9422 verbose(env, "\nfrom %d to %d%s: safe\n",
9423 env->prev_insn_idx, env->insn_idx,
9424 env->cur_state->speculative ?
9425 " (speculative execution)" : "");
9426 else
9427 verbose(env, "%d: safe\n", env->insn_idx);
9429 goto process_bpf_exit;
9432 if (signal_pending(current))
9433 return -EAGAIN;
9435 if (need_resched())
9436 cond_resched();
9438 if (env->log.level & BPF_LOG_LEVEL2 ||
9439 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9440 if (env->log.level & BPF_LOG_LEVEL2)
9441 verbose(env, "%d:", env->insn_idx);
9442 else
9443 verbose(env, "\nfrom %d to %d%s:",
9444 env->prev_insn_idx, env->insn_idx,
9445 env->cur_state->speculative ?
9446 " (speculative execution)" : "");
9447 print_verifier_state(env, state->frame[state->curframe]);
9448 do_print_state = false;
9451 if (env->log.level & BPF_LOG_LEVEL) {
9452 const struct bpf_insn_cbs cbs = {
9453 .cb_print = verbose,
9454 .private_data = env,
9457 verbose_linfo(env, env->insn_idx, "; ");
9458 verbose(env, "%d: ", env->insn_idx);
9459 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9462 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9463 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9464 env->prev_insn_idx);
9465 if (err)
9466 return err;
9469 regs = cur_regs(env);
9470 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9471 prev_insn_idx = env->insn_idx;
9473 if (class == BPF_ALU || class == BPF_ALU64) {
9474 err = check_alu_op(env, insn);
9475 if (err)
9476 return err;
9478 } else if (class == BPF_LDX) {
9479 enum bpf_reg_type *prev_src_type, src_reg_type;
9481 /* check for reserved fields is already done */
9483 /* check src operand */
9484 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9485 if (err)
9486 return err;
9488 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9489 if (err)
9490 return err;
9492 src_reg_type = regs[insn->src_reg].type;
9494 /* check that memory (src_reg + off) is readable,
9495 * the state of dst_reg will be updated by this func
9497 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9498 insn->off, BPF_SIZE(insn->code),
9499 BPF_READ, insn->dst_reg, false);
9500 if (err)
9501 return err;
9503 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9505 if (*prev_src_type == NOT_INIT) {
9506 /* saw a valid insn
9507 * dst_reg = *(u32 *)(src_reg + off)
9508 * save type to validate intersecting paths
9510 *prev_src_type = src_reg_type;
9512 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9513 /* ABuser program is trying to use the same insn
9514 * dst_reg = *(u32*) (src_reg + off)
9515 * with different pointer types:
9516 * src_reg == ctx in one branch and
9517 * src_reg == stack|map in some other branch.
9518 * Reject it.
9520 verbose(env, "same insn cannot be used with different pointers\n");
9521 return -EINVAL;
9524 } else if (class == BPF_STX) {
9525 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9527 if (BPF_MODE(insn->code) == BPF_XADD) {
9528 err = check_xadd(env, env->insn_idx, insn);
9529 if (err)
9530 return err;
9531 env->insn_idx++;
9532 continue;
9535 /* check src1 operand */
9536 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9537 if (err)
9538 return err;
9539 /* check src2 operand */
9540 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9541 if (err)
9542 return err;
9544 dst_reg_type = regs[insn->dst_reg].type;
9546 /* check that memory (dst_reg + off) is writeable */
9547 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9548 insn->off, BPF_SIZE(insn->code),
9549 BPF_WRITE, insn->src_reg, false);
9550 if (err)
9551 return err;
9553 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9555 if (*prev_dst_type == NOT_INIT) {
9556 *prev_dst_type = dst_reg_type;
9557 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9558 verbose(env, "same insn cannot be used with different pointers\n");
9559 return -EINVAL;
9562 } else if (class == BPF_ST) {
9563 if (BPF_MODE(insn->code) != BPF_MEM ||
9564 insn->src_reg != BPF_REG_0) {
9565 verbose(env, "BPF_ST uses reserved fields\n");
9566 return -EINVAL;
9568 /* check src operand */
9569 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9570 if (err)
9571 return err;
9573 if (is_ctx_reg(env, insn->dst_reg)) {
9574 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9575 insn->dst_reg,
9576 reg_type_str[reg_state(env, insn->dst_reg)->type]);
9577 return -EACCES;
9580 /* check that memory (dst_reg + off) is writeable */
9581 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9582 insn->off, BPF_SIZE(insn->code),
9583 BPF_WRITE, -1, false);
9584 if (err)
9585 return err;
9587 } else if (class == BPF_JMP || class == BPF_JMP32) {
9588 u8 opcode = BPF_OP(insn->code);
9590 env->jmps_processed++;
9591 if (opcode == BPF_CALL) {
9592 if (BPF_SRC(insn->code) != BPF_K ||
9593 insn->off != 0 ||
9594 (insn->src_reg != BPF_REG_0 &&
9595 insn->src_reg != BPF_PSEUDO_CALL) ||
9596 insn->dst_reg != BPF_REG_0 ||
9597 class == BPF_JMP32) {
9598 verbose(env, "BPF_CALL uses reserved fields\n");
9599 return -EINVAL;
9602 if (env->cur_state->active_spin_lock &&
9603 (insn->src_reg == BPF_PSEUDO_CALL ||
9604 insn->imm != BPF_FUNC_spin_unlock)) {
9605 verbose(env, "function calls are not allowed while holding a lock\n");
9606 return -EINVAL;
9608 if (insn->src_reg == BPF_PSEUDO_CALL)
9609 err = check_func_call(env, insn, &env->insn_idx);
9610 else
9611 err = check_helper_call(env, insn->imm, env->insn_idx);
9612 if (err)
9613 return err;
9615 } else if (opcode == BPF_JA) {
9616 if (BPF_SRC(insn->code) != BPF_K ||
9617 insn->imm != 0 ||
9618 insn->src_reg != BPF_REG_0 ||
9619 insn->dst_reg != BPF_REG_0 ||
9620 class == BPF_JMP32) {
9621 verbose(env, "BPF_JA uses reserved fields\n");
9622 return -EINVAL;
9625 env->insn_idx += insn->off + 1;
9626 continue;
9628 } else if (opcode == BPF_EXIT) {
9629 if (BPF_SRC(insn->code) != BPF_K ||
9630 insn->imm != 0 ||
9631 insn->src_reg != BPF_REG_0 ||
9632 insn->dst_reg != BPF_REG_0 ||
9633 class == BPF_JMP32) {
9634 verbose(env, "BPF_EXIT uses reserved fields\n");
9635 return -EINVAL;
9638 if (env->cur_state->active_spin_lock) {
9639 verbose(env, "bpf_spin_unlock is missing\n");
9640 return -EINVAL;
9643 if (state->curframe) {
9644 /* exit from nested function */
9645 err = prepare_func_exit(env, &env->insn_idx);
9646 if (err)
9647 return err;
9648 do_print_state = true;
9649 continue;
9652 err = check_reference_leak(env);
9653 if (err)
9654 return err;
9656 err = check_return_code(env);
9657 if (err)
9658 return err;
9659 process_bpf_exit:
9660 update_branch_counts(env, env->cur_state);
9661 err = pop_stack(env, &prev_insn_idx,
9662 &env->insn_idx, pop_log);
9663 if (err < 0) {
9664 if (err != -ENOENT)
9665 return err;
9666 break;
9667 } else {
9668 do_print_state = true;
9669 continue;
9671 } else {
9672 err = check_cond_jmp_op(env, insn, &env->insn_idx);
9673 if (err)
9674 return err;
9676 } else if (class == BPF_LD) {
9677 u8 mode = BPF_MODE(insn->code);
9679 if (mode == BPF_ABS || mode == BPF_IND) {
9680 err = check_ld_abs(env, insn);
9681 if (err)
9682 return err;
9684 } else if (mode == BPF_IMM) {
9685 err = check_ld_imm(env, insn);
9686 if (err)
9687 return err;
9689 env->insn_idx++;
9690 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9691 } else {
9692 verbose(env, "invalid BPF_LD mode\n");
9693 return -EINVAL;
9695 } else {
9696 verbose(env, "unknown insn class %d\n", class);
9697 return -EINVAL;
9700 env->insn_idx++;
9703 return 0;
9706 /* replace pseudo btf_id with kernel symbol address */
9707 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9708 struct bpf_insn *insn,
9709 struct bpf_insn_aux_data *aux)
9711 const struct btf_var_secinfo *vsi;
9712 const struct btf_type *datasec;
9713 const struct btf_type *t;
9714 const char *sym_name;
9715 bool percpu = false;
9716 u32 type, id = insn->imm;
9717 s32 datasec_id;
9718 u64 addr;
9719 int i;
9721 if (!btf_vmlinux) {
9722 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9723 return -EINVAL;
9726 if (insn[1].imm != 0) {
9727 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9728 return -EINVAL;
9731 t = btf_type_by_id(btf_vmlinux, id);
9732 if (!t) {
9733 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9734 return -ENOENT;
9737 if (!btf_type_is_var(t)) {
9738 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9739 id);
9740 return -EINVAL;
9743 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9744 addr = kallsyms_lookup_name(sym_name);
9745 if (!addr) {
9746 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9747 sym_name);
9748 return -ENOENT;
9751 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9752 BTF_KIND_DATASEC);
9753 if (datasec_id > 0) {
9754 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9755 for_each_vsi(i, datasec, vsi) {
9756 if (vsi->type == id) {
9757 percpu = true;
9758 break;
9763 insn[0].imm = (u32)addr;
9764 insn[1].imm = addr >> 32;
9766 type = t->type;
9767 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9768 if (percpu) {
9769 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9770 aux->btf_var.btf = btf_vmlinux;
9771 aux->btf_var.btf_id = type;
9772 } else if (!btf_type_is_struct(t)) {
9773 const struct btf_type *ret;
9774 const char *tname;
9775 u32 tsize;
9777 /* resolve the type size of ksym. */
9778 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9779 if (IS_ERR(ret)) {
9780 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9781 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9782 tname, PTR_ERR(ret));
9783 return -EINVAL;
9785 aux->btf_var.reg_type = PTR_TO_MEM;
9786 aux->btf_var.mem_size = tsize;
9787 } else {
9788 aux->btf_var.reg_type = PTR_TO_BTF_ID;
9789 aux->btf_var.btf = btf_vmlinux;
9790 aux->btf_var.btf_id = type;
9792 return 0;
9795 static int check_map_prealloc(struct bpf_map *map)
9797 return (map->map_type != BPF_MAP_TYPE_HASH &&
9798 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9799 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9800 !(map->map_flags & BPF_F_NO_PREALLOC);
9803 static bool is_tracing_prog_type(enum bpf_prog_type type)
9805 switch (type) {
9806 case BPF_PROG_TYPE_KPROBE:
9807 case BPF_PROG_TYPE_TRACEPOINT:
9808 case BPF_PROG_TYPE_PERF_EVENT:
9809 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9810 return true;
9811 default:
9812 return false;
9816 static bool is_preallocated_map(struct bpf_map *map)
9818 if (!check_map_prealloc(map))
9819 return false;
9820 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9821 return false;
9822 return true;
9825 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9826 struct bpf_map *map,
9827 struct bpf_prog *prog)
9830 enum bpf_prog_type prog_type = resolve_prog_type(prog);
9832 * Validate that trace type programs use preallocated hash maps.
9834 * For programs attached to PERF events this is mandatory as the
9835 * perf NMI can hit any arbitrary code sequence.
9837 * All other trace types using preallocated hash maps are unsafe as
9838 * well because tracepoint or kprobes can be inside locked regions
9839 * of the memory allocator or at a place where a recursion into the
9840 * memory allocator would see inconsistent state.
9842 * On RT enabled kernels run-time allocation of all trace type
9843 * programs is strictly prohibited due to lock type constraints. On
9844 * !RT kernels it is allowed for backwards compatibility reasons for
9845 * now, but warnings are emitted so developers are made aware of
9846 * the unsafety and can fix their programs before this is enforced.
9848 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9849 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9850 verbose(env, "perf_event programs can only use preallocated hash map\n");
9851 return -EINVAL;
9853 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9854 verbose(env, "trace type programs can only use preallocated hash map\n");
9855 return -EINVAL;
9857 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9858 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9861 if (map_value_has_spin_lock(map)) {
9862 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9863 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9864 return -EINVAL;
9867 if (is_tracing_prog_type(prog_type)) {
9868 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9869 return -EINVAL;
9872 if (prog->aux->sleepable) {
9873 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9874 return -EINVAL;
9878 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9879 !bpf_offload_prog_map_match(prog, map)) {
9880 verbose(env, "offload device mismatch between prog and map\n");
9881 return -EINVAL;
9884 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9885 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9886 return -EINVAL;
9889 if (prog->aux->sleepable)
9890 switch (map->map_type) {
9891 case BPF_MAP_TYPE_HASH:
9892 case BPF_MAP_TYPE_LRU_HASH:
9893 case BPF_MAP_TYPE_ARRAY:
9894 if (!is_preallocated_map(map)) {
9895 verbose(env,
9896 "Sleepable programs can only use preallocated hash maps\n");
9897 return -EINVAL;
9899 break;
9900 default:
9901 verbose(env,
9902 "Sleepable programs can only use array and hash maps\n");
9903 return -EINVAL;
9906 return 0;
9909 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9911 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9912 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9915 /* find and rewrite pseudo imm in ld_imm64 instructions:
9917 * 1. if it accesses map FD, replace it with actual map pointer.
9918 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9920 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9922 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9924 struct bpf_insn *insn = env->prog->insnsi;
9925 int insn_cnt = env->prog->len;
9926 int i, j, err;
9928 err = bpf_prog_calc_tag(env->prog);
9929 if (err)
9930 return err;
9932 for (i = 0; i < insn_cnt; i++, insn++) {
9933 if (BPF_CLASS(insn->code) == BPF_LDX &&
9934 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9935 verbose(env, "BPF_LDX uses reserved fields\n");
9936 return -EINVAL;
9939 if (BPF_CLASS(insn->code) == BPF_STX &&
9940 ((BPF_MODE(insn->code) != BPF_MEM &&
9941 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9942 verbose(env, "BPF_STX uses reserved fields\n");
9943 return -EINVAL;
9946 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9947 struct bpf_insn_aux_data *aux;
9948 struct bpf_map *map;
9949 struct fd f;
9950 u64 addr;
9952 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9953 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9954 insn[1].off != 0) {
9955 verbose(env, "invalid bpf_ld_imm64 insn\n");
9956 return -EINVAL;
9959 if (insn[0].src_reg == 0)
9960 /* valid generic load 64-bit imm */
9961 goto next_insn;
9963 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9964 aux = &env->insn_aux_data[i];
9965 err = check_pseudo_btf_id(env, insn, aux);
9966 if (err)
9967 return err;
9968 goto next_insn;
9971 /* In final convert_pseudo_ld_imm64() step, this is
9972 * converted into regular 64-bit imm load insn.
9974 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9975 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9976 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9977 insn[1].imm != 0)) {
9978 verbose(env,
9979 "unrecognized bpf_ld_imm64 insn\n");
9980 return -EINVAL;
9983 f = fdget(insn[0].imm);
9984 map = __bpf_map_get(f);
9985 if (IS_ERR(map)) {
9986 verbose(env, "fd %d is not pointing to valid bpf_map\n",
9987 insn[0].imm);
9988 return PTR_ERR(map);
9991 err = check_map_prog_compatibility(env, map, env->prog);
9992 if (err) {
9993 fdput(f);
9994 return err;
9997 aux = &env->insn_aux_data[i];
9998 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9999 addr = (unsigned long)map;
10000 } else {
10001 u32 off = insn[1].imm;
10003 if (off >= BPF_MAX_VAR_OFF) {
10004 verbose(env, "direct value offset of %u is not allowed\n", off);
10005 fdput(f);
10006 return -EINVAL;
10009 if (!map->ops->map_direct_value_addr) {
10010 verbose(env, "no direct value access support for this map type\n");
10011 fdput(f);
10012 return -EINVAL;
10015 err = map->ops->map_direct_value_addr(map, &addr, off);
10016 if (err) {
10017 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10018 map->value_size, off);
10019 fdput(f);
10020 return err;
10023 aux->map_off = off;
10024 addr += off;
10027 insn[0].imm = (u32)addr;
10028 insn[1].imm = addr >> 32;
10030 /* check whether we recorded this map already */
10031 for (j = 0; j < env->used_map_cnt; j++) {
10032 if (env->used_maps[j] == map) {
10033 aux->map_index = j;
10034 fdput(f);
10035 goto next_insn;
10039 if (env->used_map_cnt >= MAX_USED_MAPS) {
10040 fdput(f);
10041 return -E2BIG;
10044 /* hold the map. If the program is rejected by verifier,
10045 * the map will be released by release_maps() or it
10046 * will be used by the valid program until it's unloaded
10047 * and all maps are released in free_used_maps()
10049 bpf_map_inc(map);
10051 aux->map_index = env->used_map_cnt;
10052 env->used_maps[env->used_map_cnt++] = map;
10054 if (bpf_map_is_cgroup_storage(map) &&
10055 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10056 verbose(env, "only one cgroup storage of each type is allowed\n");
10057 fdput(f);
10058 return -EBUSY;
10061 fdput(f);
10062 next_insn:
10063 insn++;
10064 i++;
10065 continue;
10068 /* Basic sanity check before we invest more work here. */
10069 if (!bpf_opcode_in_insntable(insn->code)) {
10070 verbose(env, "unknown opcode %02x\n", insn->code);
10071 return -EINVAL;
10075 /* now all pseudo BPF_LD_IMM64 instructions load valid
10076 * 'struct bpf_map *' into a register instead of user map_fd.
10077 * These pointers will be used later by verifier to validate map access.
10079 return 0;
10082 /* drop refcnt of maps used by the rejected program */
10083 static void release_maps(struct bpf_verifier_env *env)
10085 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10086 env->used_map_cnt);
10089 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10090 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10092 struct bpf_insn *insn = env->prog->insnsi;
10093 int insn_cnt = env->prog->len;
10094 int i;
10096 for (i = 0; i < insn_cnt; i++, insn++)
10097 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10098 insn->src_reg = 0;
10101 /* single env->prog->insni[off] instruction was replaced with the range
10102 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10103 * [0, off) and [off, end) to new locations, so the patched range stays zero
10105 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10106 struct bpf_prog *new_prog, u32 off, u32 cnt)
10108 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10109 struct bpf_insn *insn = new_prog->insnsi;
10110 u32 prog_len;
10111 int i;
10113 /* aux info at OFF always needs adjustment, no matter fast path
10114 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10115 * original insn at old prog.
10117 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10119 if (cnt == 1)
10120 return 0;
10121 prog_len = new_prog->len;
10122 new_data = vzalloc(array_size(prog_len,
10123 sizeof(struct bpf_insn_aux_data)));
10124 if (!new_data)
10125 return -ENOMEM;
10126 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10127 memcpy(new_data + off + cnt - 1, old_data + off,
10128 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10129 for (i = off; i < off + cnt - 1; i++) {
10130 new_data[i].seen = env->pass_cnt;
10131 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10133 env->insn_aux_data = new_data;
10134 vfree(old_data);
10135 return 0;
10138 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10140 int i;
10142 if (len == 1)
10143 return;
10144 /* NOTE: fake 'exit' subprog should be updated as well. */
10145 for (i = 0; i <= env->subprog_cnt; i++) {
10146 if (env->subprog_info[i].start <= off)
10147 continue;
10148 env->subprog_info[i].start += len - 1;
10152 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10154 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10155 int i, sz = prog->aux->size_poke_tab;
10156 struct bpf_jit_poke_descriptor *desc;
10158 for (i = 0; i < sz; i++) {
10159 desc = &tab[i];
10160 desc->insn_idx += len - 1;
10164 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10165 const struct bpf_insn *patch, u32 len)
10167 struct bpf_prog *new_prog;
10169 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10170 if (IS_ERR(new_prog)) {
10171 if (PTR_ERR(new_prog) == -ERANGE)
10172 verbose(env,
10173 "insn %d cannot be patched due to 16-bit range\n",
10174 env->insn_aux_data[off].orig_idx);
10175 return NULL;
10177 if (adjust_insn_aux_data(env, new_prog, off, len))
10178 return NULL;
10179 adjust_subprog_starts(env, off, len);
10180 adjust_poke_descs(new_prog, len);
10181 return new_prog;
10184 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10185 u32 off, u32 cnt)
10187 int i, j;
10189 /* find first prog starting at or after off (first to remove) */
10190 for (i = 0; i < env->subprog_cnt; i++)
10191 if (env->subprog_info[i].start >= off)
10192 break;
10193 /* find first prog starting at or after off + cnt (first to stay) */
10194 for (j = i; j < env->subprog_cnt; j++)
10195 if (env->subprog_info[j].start >= off + cnt)
10196 break;
10197 /* if j doesn't start exactly at off + cnt, we are just removing
10198 * the front of previous prog
10200 if (env->subprog_info[j].start != off + cnt)
10201 j--;
10203 if (j > i) {
10204 struct bpf_prog_aux *aux = env->prog->aux;
10205 int move;
10207 /* move fake 'exit' subprog as well */
10208 move = env->subprog_cnt + 1 - j;
10210 memmove(env->subprog_info + i,
10211 env->subprog_info + j,
10212 sizeof(*env->subprog_info) * move);
10213 env->subprog_cnt -= j - i;
10215 /* remove func_info */
10216 if (aux->func_info) {
10217 move = aux->func_info_cnt - j;
10219 memmove(aux->func_info + i,
10220 aux->func_info + j,
10221 sizeof(*aux->func_info) * move);
10222 aux->func_info_cnt -= j - i;
10223 /* func_info->insn_off is set after all code rewrites,
10224 * in adjust_btf_func() - no need to adjust
10227 } else {
10228 /* convert i from "first prog to remove" to "first to adjust" */
10229 if (env->subprog_info[i].start == off)
10230 i++;
10233 /* update fake 'exit' subprog as well */
10234 for (; i <= env->subprog_cnt; i++)
10235 env->subprog_info[i].start -= cnt;
10237 return 0;
10240 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10241 u32 cnt)
10243 struct bpf_prog *prog = env->prog;
10244 u32 i, l_off, l_cnt, nr_linfo;
10245 struct bpf_line_info *linfo;
10247 nr_linfo = prog->aux->nr_linfo;
10248 if (!nr_linfo)
10249 return 0;
10251 linfo = prog->aux->linfo;
10253 /* find first line info to remove, count lines to be removed */
10254 for (i = 0; i < nr_linfo; i++)
10255 if (linfo[i].insn_off >= off)
10256 break;
10258 l_off = i;
10259 l_cnt = 0;
10260 for (; i < nr_linfo; i++)
10261 if (linfo[i].insn_off < off + cnt)
10262 l_cnt++;
10263 else
10264 break;
10266 /* First live insn doesn't match first live linfo, it needs to "inherit"
10267 * last removed linfo. prog is already modified, so prog->len == off
10268 * means no live instructions after (tail of the program was removed).
10270 if (prog->len != off && l_cnt &&
10271 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10272 l_cnt--;
10273 linfo[--i].insn_off = off + cnt;
10276 /* remove the line info which refer to the removed instructions */
10277 if (l_cnt) {
10278 memmove(linfo + l_off, linfo + i,
10279 sizeof(*linfo) * (nr_linfo - i));
10281 prog->aux->nr_linfo -= l_cnt;
10282 nr_linfo = prog->aux->nr_linfo;
10285 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10286 for (i = l_off; i < nr_linfo; i++)
10287 linfo[i].insn_off -= cnt;
10289 /* fix up all subprogs (incl. 'exit') which start >= off */
10290 for (i = 0; i <= env->subprog_cnt; i++)
10291 if (env->subprog_info[i].linfo_idx > l_off) {
10292 /* program may have started in the removed region but
10293 * may not be fully removed
10295 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10296 env->subprog_info[i].linfo_idx -= l_cnt;
10297 else
10298 env->subprog_info[i].linfo_idx = l_off;
10301 return 0;
10304 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10306 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10307 unsigned int orig_prog_len = env->prog->len;
10308 int err;
10310 if (bpf_prog_is_dev_bound(env->prog->aux))
10311 bpf_prog_offload_remove_insns(env, off, cnt);
10313 err = bpf_remove_insns(env->prog, off, cnt);
10314 if (err)
10315 return err;
10317 err = adjust_subprog_starts_after_remove(env, off, cnt);
10318 if (err)
10319 return err;
10321 err = bpf_adj_linfo_after_remove(env, off, cnt);
10322 if (err)
10323 return err;
10325 memmove(aux_data + off, aux_data + off + cnt,
10326 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10328 return 0;
10331 /* The verifier does more data flow analysis than llvm and will not
10332 * explore branches that are dead at run time. Malicious programs can
10333 * have dead code too. Therefore replace all dead at-run-time code
10334 * with 'ja -1'.
10336 * Just nops are not optimal, e.g. if they would sit at the end of the
10337 * program and through another bug we would manage to jump there, then
10338 * we'd execute beyond program memory otherwise. Returning exception
10339 * code also wouldn't work since we can have subprogs where the dead
10340 * code could be located.
10342 static void sanitize_dead_code(struct bpf_verifier_env *env)
10344 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10345 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10346 struct bpf_insn *insn = env->prog->insnsi;
10347 const int insn_cnt = env->prog->len;
10348 int i;
10350 for (i = 0; i < insn_cnt; i++) {
10351 if (aux_data[i].seen)
10352 continue;
10353 memcpy(insn + i, &trap, sizeof(trap));
10357 static bool insn_is_cond_jump(u8 code)
10359 u8 op;
10361 if (BPF_CLASS(code) == BPF_JMP32)
10362 return true;
10364 if (BPF_CLASS(code) != BPF_JMP)
10365 return false;
10367 op = BPF_OP(code);
10368 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10371 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10373 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10374 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10375 struct bpf_insn *insn = env->prog->insnsi;
10376 const int insn_cnt = env->prog->len;
10377 int i;
10379 for (i = 0; i < insn_cnt; i++, insn++) {
10380 if (!insn_is_cond_jump(insn->code))
10381 continue;
10383 if (!aux_data[i + 1].seen)
10384 ja.off = insn->off;
10385 else if (!aux_data[i + 1 + insn->off].seen)
10386 ja.off = 0;
10387 else
10388 continue;
10390 if (bpf_prog_is_dev_bound(env->prog->aux))
10391 bpf_prog_offload_replace_insn(env, i, &ja);
10393 memcpy(insn, &ja, sizeof(ja));
10397 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10399 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10400 int insn_cnt = env->prog->len;
10401 int i, err;
10403 for (i = 0; i < insn_cnt; i++) {
10404 int j;
10406 j = 0;
10407 while (i + j < insn_cnt && !aux_data[i + j].seen)
10408 j++;
10409 if (!j)
10410 continue;
10412 err = verifier_remove_insns(env, i, j);
10413 if (err)
10414 return err;
10415 insn_cnt = env->prog->len;
10418 return 0;
10421 static int opt_remove_nops(struct bpf_verifier_env *env)
10423 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10424 struct bpf_insn *insn = env->prog->insnsi;
10425 int insn_cnt = env->prog->len;
10426 int i, err;
10428 for (i = 0; i < insn_cnt; i++) {
10429 if (memcmp(&insn[i], &ja, sizeof(ja)))
10430 continue;
10432 err = verifier_remove_insns(env, i, 1);
10433 if (err)
10434 return err;
10435 insn_cnt--;
10436 i--;
10439 return 0;
10442 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10443 const union bpf_attr *attr)
10445 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10446 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10447 int i, patch_len, delta = 0, len = env->prog->len;
10448 struct bpf_insn *insns = env->prog->insnsi;
10449 struct bpf_prog *new_prog;
10450 bool rnd_hi32;
10452 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10453 zext_patch[1] = BPF_ZEXT_REG(0);
10454 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10455 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10456 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10457 for (i = 0; i < len; i++) {
10458 int adj_idx = i + delta;
10459 struct bpf_insn insn;
10461 insn = insns[adj_idx];
10462 if (!aux[adj_idx].zext_dst) {
10463 u8 code, class;
10464 u32 imm_rnd;
10466 if (!rnd_hi32)
10467 continue;
10469 code = insn.code;
10470 class = BPF_CLASS(code);
10471 if (insn_no_def(&insn))
10472 continue;
10474 /* NOTE: arg "reg" (the fourth one) is only used for
10475 * BPF_STX which has been ruled out in above
10476 * check, it is safe to pass NULL here.
10478 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10479 if (class == BPF_LD &&
10480 BPF_MODE(code) == BPF_IMM)
10481 i++;
10482 continue;
10485 /* ctx load could be transformed into wider load. */
10486 if (class == BPF_LDX &&
10487 aux[adj_idx].ptr_type == PTR_TO_CTX)
10488 continue;
10490 imm_rnd = get_random_int();
10491 rnd_hi32_patch[0] = insn;
10492 rnd_hi32_patch[1].imm = imm_rnd;
10493 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10494 patch = rnd_hi32_patch;
10495 patch_len = 4;
10496 goto apply_patch_buffer;
10499 if (!bpf_jit_needs_zext())
10500 continue;
10502 zext_patch[0] = insn;
10503 zext_patch[1].dst_reg = insn.dst_reg;
10504 zext_patch[1].src_reg = insn.dst_reg;
10505 patch = zext_patch;
10506 patch_len = 2;
10507 apply_patch_buffer:
10508 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10509 if (!new_prog)
10510 return -ENOMEM;
10511 env->prog = new_prog;
10512 insns = new_prog->insnsi;
10513 aux = env->insn_aux_data;
10514 delta += patch_len - 1;
10517 return 0;
10520 /* convert load instructions that access fields of a context type into a
10521 * sequence of instructions that access fields of the underlying structure:
10522 * struct __sk_buff -> struct sk_buff
10523 * struct bpf_sock_ops -> struct sock
10525 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10527 const struct bpf_verifier_ops *ops = env->ops;
10528 int i, cnt, size, ctx_field_size, delta = 0;
10529 const int insn_cnt = env->prog->len;
10530 struct bpf_insn insn_buf[16], *insn;
10531 u32 target_size, size_default, off;
10532 struct bpf_prog *new_prog;
10533 enum bpf_access_type type;
10534 bool is_narrower_load;
10536 if (ops->gen_prologue || env->seen_direct_write) {
10537 if (!ops->gen_prologue) {
10538 verbose(env, "bpf verifier is misconfigured\n");
10539 return -EINVAL;
10541 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10542 env->prog);
10543 if (cnt >= ARRAY_SIZE(insn_buf)) {
10544 verbose(env, "bpf verifier is misconfigured\n");
10545 return -EINVAL;
10546 } else if (cnt) {
10547 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10548 if (!new_prog)
10549 return -ENOMEM;
10551 env->prog = new_prog;
10552 delta += cnt - 1;
10556 if (bpf_prog_is_dev_bound(env->prog->aux))
10557 return 0;
10559 insn = env->prog->insnsi + delta;
10561 for (i = 0; i < insn_cnt; i++, insn++) {
10562 bpf_convert_ctx_access_t convert_ctx_access;
10564 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10565 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10566 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10567 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10568 type = BPF_READ;
10569 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10570 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10571 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10572 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10573 type = BPF_WRITE;
10574 else
10575 continue;
10577 if (type == BPF_WRITE &&
10578 env->insn_aux_data[i + delta].sanitize_stack_off) {
10579 struct bpf_insn patch[] = {
10580 /* Sanitize suspicious stack slot with zero.
10581 * There are no memory dependencies for this store,
10582 * since it's only using frame pointer and immediate
10583 * constant of zero
10585 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10586 env->insn_aux_data[i + delta].sanitize_stack_off,
10588 /* the original STX instruction will immediately
10589 * overwrite the same stack slot with appropriate value
10591 *insn,
10594 cnt = ARRAY_SIZE(patch);
10595 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10596 if (!new_prog)
10597 return -ENOMEM;
10599 delta += cnt - 1;
10600 env->prog = new_prog;
10601 insn = new_prog->insnsi + i + delta;
10602 continue;
10605 switch (env->insn_aux_data[i + delta].ptr_type) {
10606 case PTR_TO_CTX:
10607 if (!ops->convert_ctx_access)
10608 continue;
10609 convert_ctx_access = ops->convert_ctx_access;
10610 break;
10611 case PTR_TO_SOCKET:
10612 case PTR_TO_SOCK_COMMON:
10613 convert_ctx_access = bpf_sock_convert_ctx_access;
10614 break;
10615 case PTR_TO_TCP_SOCK:
10616 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10617 break;
10618 case PTR_TO_XDP_SOCK:
10619 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10620 break;
10621 case PTR_TO_BTF_ID:
10622 if (type == BPF_READ) {
10623 insn->code = BPF_LDX | BPF_PROBE_MEM |
10624 BPF_SIZE((insn)->code);
10625 env->prog->aux->num_exentries++;
10626 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10627 verbose(env, "Writes through BTF pointers are not allowed\n");
10628 return -EINVAL;
10630 continue;
10631 default:
10632 continue;
10635 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10636 size = BPF_LDST_BYTES(insn);
10638 /* If the read access is a narrower load of the field,
10639 * convert to a 4/8-byte load, to minimum program type specific
10640 * convert_ctx_access changes. If conversion is successful,
10641 * we will apply proper mask to the result.
10643 is_narrower_load = size < ctx_field_size;
10644 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10645 off = insn->off;
10646 if (is_narrower_load) {
10647 u8 size_code;
10649 if (type == BPF_WRITE) {
10650 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10651 return -EINVAL;
10654 size_code = BPF_H;
10655 if (ctx_field_size == 4)
10656 size_code = BPF_W;
10657 else if (ctx_field_size == 8)
10658 size_code = BPF_DW;
10660 insn->off = off & ~(size_default - 1);
10661 insn->code = BPF_LDX | BPF_MEM | size_code;
10664 target_size = 0;
10665 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10666 &target_size);
10667 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10668 (ctx_field_size && !target_size)) {
10669 verbose(env, "bpf verifier is misconfigured\n");
10670 return -EINVAL;
10673 if (is_narrower_load && size < target_size) {
10674 u8 shift = bpf_ctx_narrow_access_offset(
10675 off, size, size_default) * 8;
10676 if (ctx_field_size <= 4) {
10677 if (shift)
10678 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10679 insn->dst_reg,
10680 shift);
10681 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10682 (1 << size * 8) - 1);
10683 } else {
10684 if (shift)
10685 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10686 insn->dst_reg,
10687 shift);
10688 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10689 (1ULL << size * 8) - 1);
10693 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10694 if (!new_prog)
10695 return -ENOMEM;
10697 delta += cnt - 1;
10699 /* keep walking new program and skip insns we just inserted */
10700 env->prog = new_prog;
10701 insn = new_prog->insnsi + i + delta;
10704 return 0;
10707 static int jit_subprogs(struct bpf_verifier_env *env)
10709 struct bpf_prog *prog = env->prog, **func, *tmp;
10710 int i, j, subprog_start, subprog_end = 0, len, subprog;
10711 struct bpf_map *map_ptr;
10712 struct bpf_insn *insn;
10713 void *old_bpf_func;
10714 int err, num_exentries;
10716 if (env->subprog_cnt <= 1)
10717 return 0;
10719 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10720 if (insn->code != (BPF_JMP | BPF_CALL) ||
10721 insn->src_reg != BPF_PSEUDO_CALL)
10722 continue;
10723 /* Upon error here we cannot fall back to interpreter but
10724 * need a hard reject of the program. Thus -EFAULT is
10725 * propagated in any case.
10727 subprog = find_subprog(env, i + insn->imm + 1);
10728 if (subprog < 0) {
10729 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10730 i + insn->imm + 1);
10731 return -EFAULT;
10733 /* temporarily remember subprog id inside insn instead of
10734 * aux_data, since next loop will split up all insns into funcs
10736 insn->off = subprog;
10737 /* remember original imm in case JIT fails and fallback
10738 * to interpreter will be needed
10740 env->insn_aux_data[i].call_imm = insn->imm;
10741 /* point imm to __bpf_call_base+1 from JITs point of view */
10742 insn->imm = 1;
10745 err = bpf_prog_alloc_jited_linfo(prog);
10746 if (err)
10747 goto out_undo_insn;
10749 err = -ENOMEM;
10750 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10751 if (!func)
10752 goto out_undo_insn;
10754 for (i = 0; i < env->subprog_cnt; i++) {
10755 subprog_start = subprog_end;
10756 subprog_end = env->subprog_info[i + 1].start;
10758 len = subprog_end - subprog_start;
10759 /* BPF_PROG_RUN doesn't call subprogs directly,
10760 * hence main prog stats include the runtime of subprogs.
10761 * subprogs don't have IDs and not reachable via prog_get_next_id
10762 * func[i]->aux->stats will never be accessed and stays NULL
10764 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10765 if (!func[i])
10766 goto out_free;
10767 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10768 len * sizeof(struct bpf_insn));
10769 func[i]->type = prog->type;
10770 func[i]->len = len;
10771 if (bpf_prog_calc_tag(func[i]))
10772 goto out_free;
10773 func[i]->is_func = 1;
10774 func[i]->aux->func_idx = i;
10775 /* the btf and func_info will be freed only at prog->aux */
10776 func[i]->aux->btf = prog->aux->btf;
10777 func[i]->aux->func_info = prog->aux->func_info;
10779 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10780 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10781 int ret;
10783 if (!(insn_idx >= subprog_start &&
10784 insn_idx <= subprog_end))
10785 continue;
10787 ret = bpf_jit_add_poke_descriptor(func[i],
10788 &prog->aux->poke_tab[j]);
10789 if (ret < 0) {
10790 verbose(env, "adding tail call poke descriptor failed\n");
10791 goto out_free;
10794 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10796 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10797 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10798 if (ret < 0) {
10799 verbose(env, "tracking tail call prog failed\n");
10800 goto out_free;
10804 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10805 * Long term would need debug info to populate names
10807 func[i]->aux->name[0] = 'F';
10808 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10809 func[i]->jit_requested = 1;
10810 func[i]->aux->linfo = prog->aux->linfo;
10811 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10812 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10813 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10814 num_exentries = 0;
10815 insn = func[i]->insnsi;
10816 for (j = 0; j < func[i]->len; j++, insn++) {
10817 if (BPF_CLASS(insn->code) == BPF_LDX &&
10818 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10819 num_exentries++;
10821 func[i]->aux->num_exentries = num_exentries;
10822 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10823 func[i] = bpf_int_jit_compile(func[i]);
10824 if (!func[i]->jited) {
10825 err = -ENOTSUPP;
10826 goto out_free;
10828 cond_resched();
10831 /* Untrack main program's aux structs so that during map_poke_run()
10832 * we will not stumble upon the unfilled poke descriptors; each
10833 * of the main program's poke descs got distributed across subprogs
10834 * and got tracked onto map, so we are sure that none of them will
10835 * be missed after the operation below
10837 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10838 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10840 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10843 /* at this point all bpf functions were successfully JITed
10844 * now populate all bpf_calls with correct addresses and
10845 * run last pass of JIT
10847 for (i = 0; i < env->subprog_cnt; i++) {
10848 insn = func[i]->insnsi;
10849 for (j = 0; j < func[i]->len; j++, insn++) {
10850 if (insn->code != (BPF_JMP | BPF_CALL) ||
10851 insn->src_reg != BPF_PSEUDO_CALL)
10852 continue;
10853 subprog = insn->off;
10854 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10855 __bpf_call_base;
10858 /* we use the aux data to keep a list of the start addresses
10859 * of the JITed images for each function in the program
10861 * for some architectures, such as powerpc64, the imm field
10862 * might not be large enough to hold the offset of the start
10863 * address of the callee's JITed image from __bpf_call_base
10865 * in such cases, we can lookup the start address of a callee
10866 * by using its subprog id, available from the off field of
10867 * the call instruction, as an index for this list
10869 func[i]->aux->func = func;
10870 func[i]->aux->func_cnt = env->subprog_cnt;
10872 for (i = 0; i < env->subprog_cnt; i++) {
10873 old_bpf_func = func[i]->bpf_func;
10874 tmp = bpf_int_jit_compile(func[i]);
10875 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10876 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10877 err = -ENOTSUPP;
10878 goto out_free;
10880 cond_resched();
10883 /* finally lock prog and jit images for all functions and
10884 * populate kallsysm
10886 for (i = 0; i < env->subprog_cnt; i++) {
10887 bpf_prog_lock_ro(func[i]);
10888 bpf_prog_kallsyms_add(func[i]);
10891 /* Last step: make now unused interpreter insns from main
10892 * prog consistent for later dump requests, so they can
10893 * later look the same as if they were interpreted only.
10895 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10896 if (insn->code != (BPF_JMP | BPF_CALL) ||
10897 insn->src_reg != BPF_PSEUDO_CALL)
10898 continue;
10899 insn->off = env->insn_aux_data[i].call_imm;
10900 subprog = find_subprog(env, i + insn->off + 1);
10901 insn->imm = subprog;
10904 prog->jited = 1;
10905 prog->bpf_func = func[0]->bpf_func;
10906 prog->aux->func = func;
10907 prog->aux->func_cnt = env->subprog_cnt;
10908 bpf_prog_free_unused_jited_linfo(prog);
10909 return 0;
10910 out_free:
10911 for (i = 0; i < env->subprog_cnt; i++) {
10912 if (!func[i])
10913 continue;
10915 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10916 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10917 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10919 bpf_jit_free(func[i]);
10921 kfree(func);
10922 out_undo_insn:
10923 /* cleanup main prog to be interpreted */
10924 prog->jit_requested = 0;
10925 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10926 if (insn->code != (BPF_JMP | BPF_CALL) ||
10927 insn->src_reg != BPF_PSEUDO_CALL)
10928 continue;
10929 insn->off = 0;
10930 insn->imm = env->insn_aux_data[i].call_imm;
10932 bpf_prog_free_jited_linfo(prog);
10933 return err;
10936 static int fixup_call_args(struct bpf_verifier_env *env)
10938 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10939 struct bpf_prog *prog = env->prog;
10940 struct bpf_insn *insn = prog->insnsi;
10941 int i, depth;
10942 #endif
10943 int err = 0;
10945 if (env->prog->jit_requested &&
10946 !bpf_prog_is_dev_bound(env->prog->aux)) {
10947 err = jit_subprogs(env);
10948 if (err == 0)
10949 return 0;
10950 if (err == -EFAULT)
10951 return err;
10953 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10954 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10955 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10956 * have to be rejected, since interpreter doesn't support them yet.
10958 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10959 return -EINVAL;
10961 for (i = 0; i < prog->len; i++, insn++) {
10962 if (insn->code != (BPF_JMP | BPF_CALL) ||
10963 insn->src_reg != BPF_PSEUDO_CALL)
10964 continue;
10965 depth = get_callee_stack_depth(env, insn, i);
10966 if (depth < 0)
10967 return depth;
10968 bpf_patch_call_args(insn, depth);
10970 err = 0;
10971 #endif
10972 return err;
10975 /* fixup insn->imm field of bpf_call instructions
10976 * and inline eligible helpers as explicit sequence of BPF instructions
10978 * this function is called after eBPF program passed verification
10980 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10982 struct bpf_prog *prog = env->prog;
10983 bool expect_blinding = bpf_jit_blinding_enabled(prog);
10984 struct bpf_insn *insn = prog->insnsi;
10985 const struct bpf_func_proto *fn;
10986 const int insn_cnt = prog->len;
10987 const struct bpf_map_ops *ops;
10988 struct bpf_insn_aux_data *aux;
10989 struct bpf_insn insn_buf[16];
10990 struct bpf_prog *new_prog;
10991 struct bpf_map *map_ptr;
10992 int i, ret, cnt, delta = 0;
10994 for (i = 0; i < insn_cnt; i++, insn++) {
10995 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10996 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10997 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10998 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10999 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11000 struct bpf_insn mask_and_div[] = {
11001 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11002 /* Rx div 0 -> 0 */
11003 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
11004 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11005 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11006 *insn,
11008 struct bpf_insn mask_and_mod[] = {
11009 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11010 /* Rx mod 0 -> Rx */
11011 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
11012 *insn,
11014 struct bpf_insn *patchlet;
11016 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11017 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11018 patchlet = mask_and_div + (is64 ? 1 : 0);
11019 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
11020 } else {
11021 patchlet = mask_and_mod + (is64 ? 1 : 0);
11022 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
11025 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11026 if (!new_prog)
11027 return -ENOMEM;
11029 delta += cnt - 1;
11030 env->prog = prog = new_prog;
11031 insn = new_prog->insnsi + i + delta;
11032 continue;
11035 if (BPF_CLASS(insn->code) == BPF_LD &&
11036 (BPF_MODE(insn->code) == BPF_ABS ||
11037 BPF_MODE(insn->code) == BPF_IND)) {
11038 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11039 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11040 verbose(env, "bpf verifier is misconfigured\n");
11041 return -EINVAL;
11044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11045 if (!new_prog)
11046 return -ENOMEM;
11048 delta += cnt - 1;
11049 env->prog = prog = new_prog;
11050 insn = new_prog->insnsi + i + delta;
11051 continue;
11054 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11055 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11056 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11057 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11058 struct bpf_insn insn_buf[16];
11059 struct bpf_insn *patch = &insn_buf[0];
11060 bool issrc, isneg;
11061 u32 off_reg;
11063 aux = &env->insn_aux_data[i + delta];
11064 if (!aux->alu_state ||
11065 aux->alu_state == BPF_ALU_NON_POINTER)
11066 continue;
11068 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11069 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11070 BPF_ALU_SANITIZE_SRC;
11072 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11073 if (isneg)
11074 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11075 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11076 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11077 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11078 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11079 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11080 if (issrc) {
11081 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11082 off_reg);
11083 insn->src_reg = BPF_REG_AX;
11084 } else {
11085 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11086 BPF_REG_AX);
11088 if (isneg)
11089 insn->code = insn->code == code_add ?
11090 code_sub : code_add;
11091 *patch++ = *insn;
11092 if (issrc && isneg)
11093 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11094 cnt = patch - insn_buf;
11096 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11097 if (!new_prog)
11098 return -ENOMEM;
11100 delta += cnt - 1;
11101 env->prog = prog = new_prog;
11102 insn = new_prog->insnsi + i + delta;
11103 continue;
11106 if (insn->code != (BPF_JMP | BPF_CALL))
11107 continue;
11108 if (insn->src_reg == BPF_PSEUDO_CALL)
11109 continue;
11111 if (insn->imm == BPF_FUNC_get_route_realm)
11112 prog->dst_needed = 1;
11113 if (insn->imm == BPF_FUNC_get_prandom_u32)
11114 bpf_user_rnd_init_once();
11115 if (insn->imm == BPF_FUNC_override_return)
11116 prog->kprobe_override = 1;
11117 if (insn->imm == BPF_FUNC_tail_call) {
11118 /* If we tail call into other programs, we
11119 * cannot make any assumptions since they can
11120 * be replaced dynamically during runtime in
11121 * the program array.
11123 prog->cb_access = 1;
11124 if (!allow_tail_call_in_subprogs(env))
11125 prog->aux->stack_depth = MAX_BPF_STACK;
11126 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11128 /* mark bpf_tail_call as different opcode to avoid
11129 * conditional branch in the interpeter for every normal
11130 * call and to prevent accidental JITing by JIT compiler
11131 * that doesn't support bpf_tail_call yet
11133 insn->imm = 0;
11134 insn->code = BPF_JMP | BPF_TAIL_CALL;
11136 aux = &env->insn_aux_data[i + delta];
11137 if (env->bpf_capable && !expect_blinding &&
11138 prog->jit_requested &&
11139 !bpf_map_key_poisoned(aux) &&
11140 !bpf_map_ptr_poisoned(aux) &&
11141 !bpf_map_ptr_unpriv(aux)) {
11142 struct bpf_jit_poke_descriptor desc = {
11143 .reason = BPF_POKE_REASON_TAIL_CALL,
11144 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11145 .tail_call.key = bpf_map_key_immediate(aux),
11146 .insn_idx = i + delta,
11149 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11150 if (ret < 0) {
11151 verbose(env, "adding tail call poke descriptor failed\n");
11152 return ret;
11155 insn->imm = ret + 1;
11156 continue;
11159 if (!bpf_map_ptr_unpriv(aux))
11160 continue;
11162 /* instead of changing every JIT dealing with tail_call
11163 * emit two extra insns:
11164 * if (index >= max_entries) goto out;
11165 * index &= array->index_mask;
11166 * to avoid out-of-bounds cpu speculation
11168 if (bpf_map_ptr_poisoned(aux)) {
11169 verbose(env, "tail_call abusing map_ptr\n");
11170 return -EINVAL;
11173 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11174 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11175 map_ptr->max_entries, 2);
11176 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11177 container_of(map_ptr,
11178 struct bpf_array,
11179 map)->index_mask);
11180 insn_buf[2] = *insn;
11181 cnt = 3;
11182 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11183 if (!new_prog)
11184 return -ENOMEM;
11186 delta += cnt - 1;
11187 env->prog = prog = new_prog;
11188 insn = new_prog->insnsi + i + delta;
11189 continue;
11192 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11193 * and other inlining handlers are currently limited to 64 bit
11194 * only.
11196 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11197 (insn->imm == BPF_FUNC_map_lookup_elem ||
11198 insn->imm == BPF_FUNC_map_update_elem ||
11199 insn->imm == BPF_FUNC_map_delete_elem ||
11200 insn->imm == BPF_FUNC_map_push_elem ||
11201 insn->imm == BPF_FUNC_map_pop_elem ||
11202 insn->imm == BPF_FUNC_map_peek_elem)) {
11203 aux = &env->insn_aux_data[i + delta];
11204 if (bpf_map_ptr_poisoned(aux))
11205 goto patch_call_imm;
11207 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11208 ops = map_ptr->ops;
11209 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11210 ops->map_gen_lookup) {
11211 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11212 if (cnt == -EOPNOTSUPP)
11213 goto patch_map_ops_generic;
11214 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11215 verbose(env, "bpf verifier is misconfigured\n");
11216 return -EINVAL;
11219 new_prog = bpf_patch_insn_data(env, i + delta,
11220 insn_buf, cnt);
11221 if (!new_prog)
11222 return -ENOMEM;
11224 delta += cnt - 1;
11225 env->prog = prog = new_prog;
11226 insn = new_prog->insnsi + i + delta;
11227 continue;
11230 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11231 (void *(*)(struct bpf_map *map, void *key))NULL));
11232 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11233 (int (*)(struct bpf_map *map, void *key))NULL));
11234 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11235 (int (*)(struct bpf_map *map, void *key, void *value,
11236 u64 flags))NULL));
11237 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11238 (int (*)(struct bpf_map *map, void *value,
11239 u64 flags))NULL));
11240 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11241 (int (*)(struct bpf_map *map, void *value))NULL));
11242 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11243 (int (*)(struct bpf_map *map, void *value))NULL));
11244 patch_map_ops_generic:
11245 switch (insn->imm) {
11246 case BPF_FUNC_map_lookup_elem:
11247 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11248 __bpf_call_base;
11249 continue;
11250 case BPF_FUNC_map_update_elem:
11251 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11252 __bpf_call_base;
11253 continue;
11254 case BPF_FUNC_map_delete_elem:
11255 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11256 __bpf_call_base;
11257 continue;
11258 case BPF_FUNC_map_push_elem:
11259 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11260 __bpf_call_base;
11261 continue;
11262 case BPF_FUNC_map_pop_elem:
11263 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11264 __bpf_call_base;
11265 continue;
11266 case BPF_FUNC_map_peek_elem:
11267 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11268 __bpf_call_base;
11269 continue;
11272 goto patch_call_imm;
11275 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11276 insn->imm == BPF_FUNC_jiffies64) {
11277 struct bpf_insn ld_jiffies_addr[2] = {
11278 BPF_LD_IMM64(BPF_REG_0,
11279 (unsigned long)&jiffies),
11282 insn_buf[0] = ld_jiffies_addr[0];
11283 insn_buf[1] = ld_jiffies_addr[1];
11284 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11285 BPF_REG_0, 0);
11286 cnt = 3;
11288 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11289 cnt);
11290 if (!new_prog)
11291 return -ENOMEM;
11293 delta += cnt - 1;
11294 env->prog = prog = new_prog;
11295 insn = new_prog->insnsi + i + delta;
11296 continue;
11299 patch_call_imm:
11300 fn = env->ops->get_func_proto(insn->imm, env->prog);
11301 /* all functions that have prototype and verifier allowed
11302 * programs to call them, must be real in-kernel functions
11304 if (!fn->func) {
11305 verbose(env,
11306 "kernel subsystem misconfigured func %s#%d\n",
11307 func_id_name(insn->imm), insn->imm);
11308 return -EFAULT;
11310 insn->imm = fn->func - __bpf_call_base;
11313 /* Since poke tab is now finalized, publish aux to tracker. */
11314 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11315 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11316 if (!map_ptr->ops->map_poke_track ||
11317 !map_ptr->ops->map_poke_untrack ||
11318 !map_ptr->ops->map_poke_run) {
11319 verbose(env, "bpf verifier is misconfigured\n");
11320 return -EINVAL;
11323 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11324 if (ret < 0) {
11325 verbose(env, "tracking tail call prog failed\n");
11326 return ret;
11330 return 0;
11333 static void free_states(struct bpf_verifier_env *env)
11335 struct bpf_verifier_state_list *sl, *sln;
11336 int i;
11338 sl = env->free_list;
11339 while (sl) {
11340 sln = sl->next;
11341 free_verifier_state(&sl->state, false);
11342 kfree(sl);
11343 sl = sln;
11345 env->free_list = NULL;
11347 if (!env->explored_states)
11348 return;
11350 for (i = 0; i < state_htab_size(env); i++) {
11351 sl = env->explored_states[i];
11353 while (sl) {
11354 sln = sl->next;
11355 free_verifier_state(&sl->state, false);
11356 kfree(sl);
11357 sl = sln;
11359 env->explored_states[i] = NULL;
11363 /* The verifier is using insn_aux_data[] to store temporary data during
11364 * verification and to store information for passes that run after the
11365 * verification like dead code sanitization. do_check_common() for subprogram N
11366 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11367 * temporary data after do_check_common() finds that subprogram N cannot be
11368 * verified independently. pass_cnt counts the number of times
11369 * do_check_common() was run and insn->aux->seen tells the pass number
11370 * insn_aux_data was touched. These variables are compared to clear temporary
11371 * data from failed pass. For testing and experiments do_check_common() can be
11372 * run multiple times even when prior attempt to verify is unsuccessful.
11374 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11376 struct bpf_insn *insn = env->prog->insnsi;
11377 struct bpf_insn_aux_data *aux;
11378 int i, class;
11380 for (i = 0; i < env->prog->len; i++) {
11381 class = BPF_CLASS(insn[i].code);
11382 if (class != BPF_LDX && class != BPF_STX)
11383 continue;
11384 aux = &env->insn_aux_data[i];
11385 if (aux->seen != env->pass_cnt)
11386 continue;
11387 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11391 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11393 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11394 struct bpf_verifier_state *state;
11395 struct bpf_reg_state *regs;
11396 int ret, i;
11398 env->prev_linfo = NULL;
11399 env->pass_cnt++;
11401 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11402 if (!state)
11403 return -ENOMEM;
11404 state->curframe = 0;
11405 state->speculative = false;
11406 state->branches = 1;
11407 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11408 if (!state->frame[0]) {
11409 kfree(state);
11410 return -ENOMEM;
11412 env->cur_state = state;
11413 init_func_state(env, state->frame[0],
11414 BPF_MAIN_FUNC /* callsite */,
11415 0 /* frameno */,
11416 subprog);
11418 regs = state->frame[state->curframe]->regs;
11419 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11420 ret = btf_prepare_func_args(env, subprog, regs);
11421 if (ret)
11422 goto out;
11423 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11424 if (regs[i].type == PTR_TO_CTX)
11425 mark_reg_known_zero(env, regs, i);
11426 else if (regs[i].type == SCALAR_VALUE)
11427 mark_reg_unknown(env, regs, i);
11429 } else {
11430 /* 1st arg to a function */
11431 regs[BPF_REG_1].type = PTR_TO_CTX;
11432 mark_reg_known_zero(env, regs, BPF_REG_1);
11433 ret = btf_check_func_arg_match(env, subprog, regs);
11434 if (ret == -EFAULT)
11435 /* unlikely verifier bug. abort.
11436 * ret == 0 and ret < 0 are sadly acceptable for
11437 * main() function due to backward compatibility.
11438 * Like socket filter program may be written as:
11439 * int bpf_prog(struct pt_regs *ctx)
11440 * and never dereference that ctx in the program.
11441 * 'struct pt_regs' is a type mismatch for socket
11442 * filter that should be using 'struct __sk_buff'.
11444 goto out;
11447 ret = do_check(env);
11448 out:
11449 /* check for NULL is necessary, since cur_state can be freed inside
11450 * do_check() under memory pressure.
11452 if (env->cur_state) {
11453 free_verifier_state(env->cur_state, true);
11454 env->cur_state = NULL;
11456 while (!pop_stack(env, NULL, NULL, false));
11457 if (!ret && pop_log)
11458 bpf_vlog_reset(&env->log, 0);
11459 free_states(env);
11460 if (ret)
11461 /* clean aux data in case subprog was rejected */
11462 sanitize_insn_aux_data(env);
11463 return ret;
11466 /* Verify all global functions in a BPF program one by one based on their BTF.
11467 * All global functions must pass verification. Otherwise the whole program is rejected.
11468 * Consider:
11469 * int bar(int);
11470 * int foo(int f)
11472 * return bar(f);
11474 * int bar(int b)
11476 * ...
11478 * foo() will be verified first for R1=any_scalar_value. During verification it
11479 * will be assumed that bar() already verified successfully and call to bar()
11480 * from foo() will be checked for type match only. Later bar() will be verified
11481 * independently to check that it's safe for R1=any_scalar_value.
11483 static int do_check_subprogs(struct bpf_verifier_env *env)
11485 struct bpf_prog_aux *aux = env->prog->aux;
11486 int i, ret;
11488 if (!aux->func_info)
11489 return 0;
11491 for (i = 1; i < env->subprog_cnt; i++) {
11492 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11493 continue;
11494 env->insn_idx = env->subprog_info[i].start;
11495 WARN_ON_ONCE(env->insn_idx == 0);
11496 ret = do_check_common(env, i);
11497 if (ret) {
11498 return ret;
11499 } else if (env->log.level & BPF_LOG_LEVEL) {
11500 verbose(env,
11501 "Func#%d is safe for any args that match its prototype\n",
11505 return 0;
11508 static int do_check_main(struct bpf_verifier_env *env)
11510 int ret;
11512 env->insn_idx = 0;
11513 ret = do_check_common(env, 0);
11514 if (!ret)
11515 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11516 return ret;
11520 static void print_verification_stats(struct bpf_verifier_env *env)
11522 int i;
11524 if (env->log.level & BPF_LOG_STATS) {
11525 verbose(env, "verification time %lld usec\n",
11526 div_u64(env->verification_time, 1000));
11527 verbose(env, "stack depth ");
11528 for (i = 0; i < env->subprog_cnt; i++) {
11529 u32 depth = env->subprog_info[i].stack_depth;
11531 verbose(env, "%d", depth);
11532 if (i + 1 < env->subprog_cnt)
11533 verbose(env, "+");
11535 verbose(env, "\n");
11537 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11538 "total_states %d peak_states %d mark_read %d\n",
11539 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11540 env->max_states_per_insn, env->total_states,
11541 env->peak_states, env->longest_mark_read_walk);
11544 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11546 const struct btf_type *t, *func_proto;
11547 const struct bpf_struct_ops *st_ops;
11548 const struct btf_member *member;
11549 struct bpf_prog *prog = env->prog;
11550 u32 btf_id, member_idx;
11551 const char *mname;
11553 btf_id = prog->aux->attach_btf_id;
11554 st_ops = bpf_struct_ops_find(btf_id);
11555 if (!st_ops) {
11556 verbose(env, "attach_btf_id %u is not a supported struct\n",
11557 btf_id);
11558 return -ENOTSUPP;
11561 t = st_ops->type;
11562 member_idx = prog->expected_attach_type;
11563 if (member_idx >= btf_type_vlen(t)) {
11564 verbose(env, "attach to invalid member idx %u of struct %s\n",
11565 member_idx, st_ops->name);
11566 return -EINVAL;
11569 member = &btf_type_member(t)[member_idx];
11570 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11571 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11572 NULL);
11573 if (!func_proto) {
11574 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11575 mname, member_idx, st_ops->name);
11576 return -EINVAL;
11579 if (st_ops->check_member) {
11580 int err = st_ops->check_member(t, member);
11582 if (err) {
11583 verbose(env, "attach to unsupported member %s of struct %s\n",
11584 mname, st_ops->name);
11585 return err;
11589 prog->aux->attach_func_proto = func_proto;
11590 prog->aux->attach_func_name = mname;
11591 env->ops = st_ops->verifier_ops;
11593 return 0;
11595 #define SECURITY_PREFIX "security_"
11597 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11599 if (within_error_injection_list(addr) ||
11600 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11601 return 0;
11603 return -EINVAL;
11606 /* list of non-sleepable functions that are otherwise on
11607 * ALLOW_ERROR_INJECTION list
11609 BTF_SET_START(btf_non_sleepable_error_inject)
11610 /* Three functions below can be called from sleepable and non-sleepable context.
11611 * Assume non-sleepable from bpf safety point of view.
11613 BTF_ID(func, __add_to_page_cache_locked)
11614 BTF_ID(func, should_fail_alloc_page)
11615 BTF_ID(func, should_failslab)
11616 BTF_SET_END(btf_non_sleepable_error_inject)
11618 static int check_non_sleepable_error_inject(u32 btf_id)
11620 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11623 int bpf_check_attach_target(struct bpf_verifier_log *log,
11624 const struct bpf_prog *prog,
11625 const struct bpf_prog *tgt_prog,
11626 u32 btf_id,
11627 struct bpf_attach_target_info *tgt_info)
11629 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11630 const char prefix[] = "btf_trace_";
11631 int ret = 0, subprog = -1, i;
11632 const struct btf_type *t;
11633 bool conservative = true;
11634 const char *tname;
11635 struct btf *btf;
11636 long addr = 0;
11638 if (!btf_id) {
11639 bpf_log(log, "Tracing programs must provide btf_id\n");
11640 return -EINVAL;
11642 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
11643 if (!btf) {
11644 bpf_log(log,
11645 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11646 return -EINVAL;
11648 t = btf_type_by_id(btf, btf_id);
11649 if (!t) {
11650 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11651 return -EINVAL;
11653 tname = btf_name_by_offset(btf, t->name_off);
11654 if (!tname) {
11655 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11656 return -EINVAL;
11658 if (tgt_prog) {
11659 struct bpf_prog_aux *aux = tgt_prog->aux;
11661 for (i = 0; i < aux->func_info_cnt; i++)
11662 if (aux->func_info[i].type_id == btf_id) {
11663 subprog = i;
11664 break;
11666 if (subprog == -1) {
11667 bpf_log(log, "Subprog %s doesn't exist\n", tname);
11668 return -EINVAL;
11670 conservative = aux->func_info_aux[subprog].unreliable;
11671 if (prog_extension) {
11672 if (conservative) {
11673 bpf_log(log,
11674 "Cannot replace static functions\n");
11675 return -EINVAL;
11677 if (!prog->jit_requested) {
11678 bpf_log(log,
11679 "Extension programs should be JITed\n");
11680 return -EINVAL;
11683 if (!tgt_prog->jited) {
11684 bpf_log(log, "Can attach to only JITed progs\n");
11685 return -EINVAL;
11687 if (tgt_prog->type == prog->type) {
11688 /* Cannot fentry/fexit another fentry/fexit program.
11689 * Cannot attach program extension to another extension.
11690 * It's ok to attach fentry/fexit to extension program.
11692 bpf_log(log, "Cannot recursively attach\n");
11693 return -EINVAL;
11695 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11696 prog_extension &&
11697 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11698 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11699 /* Program extensions can extend all program types
11700 * except fentry/fexit. The reason is the following.
11701 * The fentry/fexit programs are used for performance
11702 * analysis, stats and can be attached to any program
11703 * type except themselves. When extension program is
11704 * replacing XDP function it is necessary to allow
11705 * performance analysis of all functions. Both original
11706 * XDP program and its program extension. Hence
11707 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11708 * allowed. If extending of fentry/fexit was allowed it
11709 * would be possible to create long call chain
11710 * fentry->extension->fentry->extension beyond
11711 * reasonable stack size. Hence extending fentry is not
11712 * allowed.
11714 bpf_log(log, "Cannot extend fentry/fexit\n");
11715 return -EINVAL;
11717 } else {
11718 if (prog_extension) {
11719 bpf_log(log, "Cannot replace kernel functions\n");
11720 return -EINVAL;
11724 switch (prog->expected_attach_type) {
11725 case BPF_TRACE_RAW_TP:
11726 if (tgt_prog) {
11727 bpf_log(log,
11728 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11729 return -EINVAL;
11731 if (!btf_type_is_typedef(t)) {
11732 bpf_log(log, "attach_btf_id %u is not a typedef\n",
11733 btf_id);
11734 return -EINVAL;
11736 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11737 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11738 btf_id, tname);
11739 return -EINVAL;
11741 tname += sizeof(prefix) - 1;
11742 t = btf_type_by_id(btf, t->type);
11743 if (!btf_type_is_ptr(t))
11744 /* should never happen in valid vmlinux build */
11745 return -EINVAL;
11746 t = btf_type_by_id(btf, t->type);
11747 if (!btf_type_is_func_proto(t))
11748 /* should never happen in valid vmlinux build */
11749 return -EINVAL;
11751 break;
11752 case BPF_TRACE_ITER:
11753 if (!btf_type_is_func(t)) {
11754 bpf_log(log, "attach_btf_id %u is not a function\n",
11755 btf_id);
11756 return -EINVAL;
11758 t = btf_type_by_id(btf, t->type);
11759 if (!btf_type_is_func_proto(t))
11760 return -EINVAL;
11761 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11762 if (ret)
11763 return ret;
11764 break;
11765 default:
11766 if (!prog_extension)
11767 return -EINVAL;
11768 fallthrough;
11769 case BPF_MODIFY_RETURN:
11770 case BPF_LSM_MAC:
11771 case BPF_TRACE_FENTRY:
11772 case BPF_TRACE_FEXIT:
11773 if (!btf_type_is_func(t)) {
11774 bpf_log(log, "attach_btf_id %u is not a function\n",
11775 btf_id);
11776 return -EINVAL;
11778 if (prog_extension &&
11779 btf_check_type_match(log, prog, btf, t))
11780 return -EINVAL;
11781 t = btf_type_by_id(btf, t->type);
11782 if (!btf_type_is_func_proto(t))
11783 return -EINVAL;
11785 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11786 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11787 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11788 return -EINVAL;
11790 if (tgt_prog && conservative)
11791 t = NULL;
11793 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11794 if (ret < 0)
11795 return ret;
11797 if (tgt_prog) {
11798 if (subprog == 0)
11799 addr = (long) tgt_prog->bpf_func;
11800 else
11801 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11802 } else {
11803 addr = kallsyms_lookup_name(tname);
11804 if (!addr) {
11805 bpf_log(log,
11806 "The address of function %s cannot be found\n",
11807 tname);
11808 return -ENOENT;
11812 if (prog->aux->sleepable) {
11813 ret = -EINVAL;
11814 switch (prog->type) {
11815 case BPF_PROG_TYPE_TRACING:
11816 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11817 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11819 if (!check_non_sleepable_error_inject(btf_id) &&
11820 within_error_injection_list(addr))
11821 ret = 0;
11822 break;
11823 case BPF_PROG_TYPE_LSM:
11824 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11825 * Only some of them are sleepable.
11827 if (bpf_lsm_is_sleepable_hook(btf_id))
11828 ret = 0;
11829 break;
11830 default:
11831 break;
11833 if (ret) {
11834 bpf_log(log, "%s is not sleepable\n", tname);
11835 return ret;
11837 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11838 if (tgt_prog) {
11839 bpf_log(log, "can't modify return codes of BPF programs\n");
11840 return -EINVAL;
11842 ret = check_attach_modify_return(addr, tname);
11843 if (ret) {
11844 bpf_log(log, "%s() is not modifiable\n", tname);
11845 return ret;
11849 break;
11851 tgt_info->tgt_addr = addr;
11852 tgt_info->tgt_name = tname;
11853 tgt_info->tgt_type = t;
11854 return 0;
11857 static int check_attach_btf_id(struct bpf_verifier_env *env)
11859 struct bpf_prog *prog = env->prog;
11860 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11861 struct bpf_attach_target_info tgt_info = {};
11862 u32 btf_id = prog->aux->attach_btf_id;
11863 struct bpf_trampoline *tr;
11864 int ret;
11865 u64 key;
11867 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11868 prog->type != BPF_PROG_TYPE_LSM) {
11869 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11870 return -EINVAL;
11873 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11874 return check_struct_ops_btf_id(env);
11876 if (prog->type != BPF_PROG_TYPE_TRACING &&
11877 prog->type != BPF_PROG_TYPE_LSM &&
11878 prog->type != BPF_PROG_TYPE_EXT)
11879 return 0;
11881 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11882 if (ret)
11883 return ret;
11885 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11886 /* to make freplace equivalent to their targets, they need to
11887 * inherit env->ops and expected_attach_type for the rest of the
11888 * verification
11890 env->ops = bpf_verifier_ops[tgt_prog->type];
11891 prog->expected_attach_type = tgt_prog->expected_attach_type;
11894 /* store info about the attachment target that will be used later */
11895 prog->aux->attach_func_proto = tgt_info.tgt_type;
11896 prog->aux->attach_func_name = tgt_info.tgt_name;
11898 if (tgt_prog) {
11899 prog->aux->saved_dst_prog_type = tgt_prog->type;
11900 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11903 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11904 prog->aux->attach_btf_trace = true;
11905 return 0;
11906 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11907 if (!bpf_iter_prog_supported(prog))
11908 return -EINVAL;
11909 return 0;
11912 if (prog->type == BPF_PROG_TYPE_LSM) {
11913 ret = bpf_lsm_verify_prog(&env->log, prog);
11914 if (ret < 0)
11915 return ret;
11918 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
11919 tr = bpf_trampoline_get(key, &tgt_info);
11920 if (!tr)
11921 return -ENOMEM;
11923 prog->aux->dst_trampoline = tr;
11924 return 0;
11927 struct btf *bpf_get_btf_vmlinux(void)
11929 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11930 mutex_lock(&bpf_verifier_lock);
11931 if (!btf_vmlinux)
11932 btf_vmlinux = btf_parse_vmlinux();
11933 mutex_unlock(&bpf_verifier_lock);
11935 return btf_vmlinux;
11938 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11939 union bpf_attr __user *uattr)
11941 u64 start_time = ktime_get_ns();
11942 struct bpf_verifier_env *env;
11943 struct bpf_verifier_log *log;
11944 int i, len, ret = -EINVAL;
11945 bool is_priv;
11947 /* no program is valid */
11948 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11949 return -EINVAL;
11951 /* 'struct bpf_verifier_env' can be global, but since it's not small,
11952 * allocate/free it every time bpf_check() is called
11954 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11955 if (!env)
11956 return -ENOMEM;
11957 log = &env->log;
11959 len = (*prog)->len;
11960 env->insn_aux_data =
11961 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11962 ret = -ENOMEM;
11963 if (!env->insn_aux_data)
11964 goto err_free_env;
11965 for (i = 0; i < len; i++)
11966 env->insn_aux_data[i].orig_idx = i;
11967 env->prog = *prog;
11968 env->ops = bpf_verifier_ops[env->prog->type];
11969 is_priv = bpf_capable();
11971 bpf_get_btf_vmlinux();
11973 /* grab the mutex to protect few globals used by verifier */
11974 if (!is_priv)
11975 mutex_lock(&bpf_verifier_lock);
11977 if (attr->log_level || attr->log_buf || attr->log_size) {
11978 /* user requested verbose verifier output
11979 * and supplied buffer to store the verification trace
11981 log->level = attr->log_level;
11982 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11983 log->len_total = attr->log_size;
11985 ret = -EINVAL;
11986 /* log attributes have to be sane */
11987 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11988 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11989 goto err_unlock;
11992 if (IS_ERR(btf_vmlinux)) {
11993 /* Either gcc or pahole or kernel are broken. */
11994 verbose(env, "in-kernel BTF is malformed\n");
11995 ret = PTR_ERR(btf_vmlinux);
11996 goto skip_full_check;
11999 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12000 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12001 env->strict_alignment = true;
12002 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12003 env->strict_alignment = false;
12005 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12006 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12007 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12008 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12009 env->bpf_capable = bpf_capable();
12011 if (is_priv)
12012 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12014 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12015 ret = bpf_prog_offload_verifier_prep(env->prog);
12016 if (ret)
12017 goto skip_full_check;
12020 env->explored_states = kvcalloc(state_htab_size(env),
12021 sizeof(struct bpf_verifier_state_list *),
12022 GFP_USER);
12023 ret = -ENOMEM;
12024 if (!env->explored_states)
12025 goto skip_full_check;
12027 ret = check_subprogs(env);
12028 if (ret < 0)
12029 goto skip_full_check;
12031 ret = check_btf_info(env, attr, uattr);
12032 if (ret < 0)
12033 goto skip_full_check;
12035 ret = check_attach_btf_id(env);
12036 if (ret)
12037 goto skip_full_check;
12039 ret = resolve_pseudo_ldimm64(env);
12040 if (ret < 0)
12041 goto skip_full_check;
12043 ret = check_cfg(env);
12044 if (ret < 0)
12045 goto skip_full_check;
12047 ret = do_check_subprogs(env);
12048 ret = ret ?: do_check_main(env);
12050 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12051 ret = bpf_prog_offload_finalize(env);
12053 skip_full_check:
12054 kvfree(env->explored_states);
12056 if (ret == 0)
12057 ret = check_max_stack_depth(env);
12059 /* instruction rewrites happen after this point */
12060 if (is_priv) {
12061 if (ret == 0)
12062 opt_hard_wire_dead_code_branches(env);
12063 if (ret == 0)
12064 ret = opt_remove_dead_code(env);
12065 if (ret == 0)
12066 ret = opt_remove_nops(env);
12067 } else {
12068 if (ret == 0)
12069 sanitize_dead_code(env);
12072 if (ret == 0)
12073 /* program is valid, convert *(u32*)(ctx + off) accesses */
12074 ret = convert_ctx_accesses(env);
12076 if (ret == 0)
12077 ret = fixup_bpf_calls(env);
12079 /* do 32-bit optimization after insn patching has done so those patched
12080 * insns could be handled correctly.
12082 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12083 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12084 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12085 : false;
12088 if (ret == 0)
12089 ret = fixup_call_args(env);
12091 env->verification_time = ktime_get_ns() - start_time;
12092 print_verification_stats(env);
12094 if (log->level && bpf_verifier_log_full(log))
12095 ret = -ENOSPC;
12096 if (log->level && !log->ubuf) {
12097 ret = -EFAULT;
12098 goto err_release_maps;
12101 if (ret == 0 && env->used_map_cnt) {
12102 /* if program passed verifier, update used_maps in bpf_prog_info */
12103 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12104 sizeof(env->used_maps[0]),
12105 GFP_KERNEL);
12107 if (!env->prog->aux->used_maps) {
12108 ret = -ENOMEM;
12109 goto err_release_maps;
12112 memcpy(env->prog->aux->used_maps, env->used_maps,
12113 sizeof(env->used_maps[0]) * env->used_map_cnt);
12114 env->prog->aux->used_map_cnt = env->used_map_cnt;
12116 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12117 * bpf_ld_imm64 instructions
12119 convert_pseudo_ld_imm64(env);
12122 if (ret == 0)
12123 adjust_btf_func(env);
12125 err_release_maps:
12126 if (!env->prog->aux->used_maps)
12127 /* if we didn't copy map pointers into bpf_prog_info, release
12128 * them now. Otherwise free_used_maps() will release them.
12130 release_maps(env);
12132 /* extension progs temporarily inherit the attach_type of their targets
12133 for verification purposes, so set it back to zero before returning
12135 if (env->prog->type == BPF_PROG_TYPE_EXT)
12136 env->prog->expected_attach_type = 0;
12138 *prog = env->prog;
12139 err_unlock:
12140 if (!is_priv)
12141 mutex_unlock(&bpf_verifier_lock);
12142 vfree(env->insn_aux_data);
12143 err_free_env:
12144 kfree(env);
12145 return ret;