1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic pidhash and scalable, time-bounded PID allocator
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
46 #include <uapi/linux/pidfd.h>
48 struct pid init_struct_pid
= {
49 .count
= REFCOUNT_INIT(1),
62 int pid_max
= PID_MAX_DEFAULT
;
64 #define RESERVED_PIDS 300
66 int pid_max_min
= RESERVED_PIDS
+ 1;
67 int pid_max_max
= PID_MAX_LIMIT
;
70 * PID-map pages start out as NULL, they get allocated upon
71 * first use and are never deallocated. This way a low pid_max
72 * value does not cause lots of bitmaps to be allocated, but
73 * the scheme scales to up to 4 million PIDs, runtime.
75 struct pid_namespace init_pid_ns
= {
76 .ns
.count
= REFCOUNT_INIT(2),
77 .idr
= IDR_INIT(init_pid_ns
.idr
),
78 .pid_allocated
= PIDNS_ADDING
,
80 .child_reaper
= &init_task
,
81 .user_ns
= &init_user_ns
,
82 .ns
.inum
= PROC_PID_INIT_INO
,
84 .ns
.ops
= &pidns_operations
,
87 EXPORT_SYMBOL_GPL(init_pid_ns
);
90 * Note: disable interrupts while the pidmap_lock is held as an
91 * interrupt might come in and do read_lock(&tasklist_lock).
93 * If we don't disable interrupts there is a nasty deadlock between
94 * detach_pid()->free_pid() and another cpu that does
95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
96 * read_lock(&tasklist_lock);
98 * After we clean up the tasklist_lock and know there are no
99 * irq handlers that take it we can leave the interrupts enabled.
100 * For now it is easier to be safe than to prove it can't happen.
103 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
105 void put_pid(struct pid
*pid
)
107 struct pid_namespace
*ns
;
112 ns
= pid
->numbers
[pid
->level
].ns
;
113 if (refcount_dec_and_test(&pid
->count
)) {
114 kmem_cache_free(ns
->pid_cachep
, pid
);
118 EXPORT_SYMBOL_GPL(put_pid
);
120 static void delayed_put_pid(struct rcu_head
*rhp
)
122 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
126 void free_pid(struct pid
*pid
)
128 /* We can be called with write_lock_irq(&tasklist_lock) held */
132 spin_lock_irqsave(&pidmap_lock
, flags
);
133 for (i
= 0; i
<= pid
->level
; i
++) {
134 struct upid
*upid
= pid
->numbers
+ i
;
135 struct pid_namespace
*ns
= upid
->ns
;
136 switch (--ns
->pid_allocated
) {
139 /* When all that is left in the pid namespace
140 * is the reaper wake up the reaper. The reaper
141 * may be sleeping in zap_pid_ns_processes().
143 wake_up_process(ns
->child_reaper
);
146 /* Handle a fork failure of the first process */
147 WARN_ON(ns
->child_reaper
);
148 ns
->pid_allocated
= 0;
152 idr_remove(&ns
->idr
, upid
->nr
);
154 spin_unlock_irqrestore(&pidmap_lock
, flags
);
156 call_rcu(&pid
->rcu
, delayed_put_pid
);
159 struct pid
*alloc_pid(struct pid_namespace
*ns
, pid_t
*set_tid
,
165 struct pid_namespace
*tmp
;
167 int retval
= -ENOMEM
;
170 * set_tid_size contains the size of the set_tid array. Starting at
171 * the most nested currently active PID namespace it tells alloc_pid()
172 * which PID to set for a process in that most nested PID namespace
173 * up to set_tid_size PID namespaces. It does not have to set the PID
174 * for a process in all nested PID namespaces but set_tid_size must
175 * never be greater than the current ns->level + 1.
177 if (set_tid_size
> ns
->level
+ 1)
178 return ERR_PTR(-EINVAL
);
180 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
182 return ERR_PTR(retval
);
185 pid
->level
= ns
->level
;
187 for (i
= ns
->level
; i
>= 0; i
--) {
191 tid
= set_tid
[ns
->level
- i
];
194 if (tid
< 1 || tid
>= pid_max
)
197 * Also fail if a PID != 1 is requested and
200 if (tid
!= 1 && !tmp
->child_reaper
)
203 if (!checkpoint_restore_ns_capable(tmp
->user_ns
))
208 idr_preload(GFP_KERNEL
);
209 spin_lock_irq(&pidmap_lock
);
212 nr
= idr_alloc(&tmp
->idr
, NULL
, tid
,
213 tid
+ 1, GFP_ATOMIC
);
215 * If ENOSPC is returned it means that the PID is
216 * alreay in use. Return EEXIST in that case.
223 * init really needs pid 1, but after reaching the
224 * maximum wrap back to RESERVED_PIDS
226 if (idr_get_cursor(&tmp
->idr
) > RESERVED_PIDS
)
227 pid_min
= RESERVED_PIDS
;
230 * Store a null pointer so find_pid_ns does not find
231 * a partially initialized PID (see below).
233 nr
= idr_alloc_cyclic(&tmp
->idr
, NULL
, pid_min
,
234 pid_max
, GFP_ATOMIC
);
236 spin_unlock_irq(&pidmap_lock
);
240 retval
= (nr
== -ENOSPC
) ? -EAGAIN
: nr
;
244 pid
->numbers
[i
].nr
= nr
;
245 pid
->numbers
[i
].ns
= tmp
;
250 * ENOMEM is not the most obvious choice especially for the case
251 * where the child subreaper has already exited and the pid
252 * namespace denies the creation of any new processes. But ENOMEM
253 * is what we have exposed to userspace for a long time and it is
254 * documented behavior for pid namespaces. So we can't easily
255 * change it even if there were an error code better suited.
260 refcount_set(&pid
->count
, 1);
261 spin_lock_init(&pid
->lock
);
262 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
263 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
265 init_waitqueue_head(&pid
->wait_pidfd
);
266 INIT_HLIST_HEAD(&pid
->inodes
);
268 upid
= pid
->numbers
+ ns
->level
;
269 spin_lock_irq(&pidmap_lock
);
270 if (!(ns
->pid_allocated
& PIDNS_ADDING
))
272 for ( ; upid
>= pid
->numbers
; --upid
) {
273 /* Make the PID visible to find_pid_ns. */
274 idr_replace(&upid
->ns
->idr
, pid
, upid
->nr
);
275 upid
->ns
->pid_allocated
++;
277 spin_unlock_irq(&pidmap_lock
);
282 spin_unlock_irq(&pidmap_lock
);
286 spin_lock_irq(&pidmap_lock
);
287 while (++i
<= ns
->level
) {
288 upid
= pid
->numbers
+ i
;
289 idr_remove(&upid
->ns
->idr
, upid
->nr
);
292 /* On failure to allocate the first pid, reset the state */
293 if (ns
->pid_allocated
== PIDNS_ADDING
)
294 idr_set_cursor(&ns
->idr
, 0);
296 spin_unlock_irq(&pidmap_lock
);
298 kmem_cache_free(ns
->pid_cachep
, pid
);
299 return ERR_PTR(retval
);
302 void disable_pid_allocation(struct pid_namespace
*ns
)
304 spin_lock_irq(&pidmap_lock
);
305 ns
->pid_allocated
&= ~PIDNS_ADDING
;
306 spin_unlock_irq(&pidmap_lock
);
309 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
311 return idr_find(&ns
->idr
, nr
);
313 EXPORT_SYMBOL_GPL(find_pid_ns
);
315 struct pid
*find_vpid(int nr
)
317 return find_pid_ns(nr
, task_active_pid_ns(current
));
319 EXPORT_SYMBOL_GPL(find_vpid
);
321 static struct pid
**task_pid_ptr(struct task_struct
*task
, enum pid_type type
)
323 return (type
== PIDTYPE_PID
) ?
325 &task
->signal
->pids
[type
];
329 * attach_pid() must be called with the tasklist_lock write-held.
331 void attach_pid(struct task_struct
*task
, enum pid_type type
)
333 struct pid
*pid
= *task_pid_ptr(task
, type
);
334 hlist_add_head_rcu(&task
->pid_links
[type
], &pid
->tasks
[type
]);
337 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
340 struct pid
**pid_ptr
= task_pid_ptr(task
, type
);
346 hlist_del_rcu(&task
->pid_links
[type
]);
349 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
350 if (pid_has_task(pid
, tmp
))
356 void detach_pid(struct task_struct
*task
, enum pid_type type
)
358 __change_pid(task
, type
, NULL
);
361 void change_pid(struct task_struct
*task
, enum pid_type type
,
364 __change_pid(task
, type
, pid
);
365 attach_pid(task
, type
);
368 void exchange_tids(struct task_struct
*left
, struct task_struct
*right
)
370 struct pid
*pid1
= left
->thread_pid
;
371 struct pid
*pid2
= right
->thread_pid
;
372 struct hlist_head
*head1
= &pid1
->tasks
[PIDTYPE_PID
];
373 struct hlist_head
*head2
= &pid2
->tasks
[PIDTYPE_PID
];
375 /* Swap the single entry tid lists */
376 hlists_swap_heads_rcu(head1
, head2
);
378 /* Swap the per task_struct pid */
379 rcu_assign_pointer(left
->thread_pid
, pid2
);
380 rcu_assign_pointer(right
->thread_pid
, pid1
);
382 /* Swap the cached value */
383 WRITE_ONCE(left
->pid
, pid_nr(pid2
));
384 WRITE_ONCE(right
->pid
, pid_nr(pid1
));
387 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
388 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
391 if (type
== PIDTYPE_PID
)
392 new->thread_pid
= old
->thread_pid
;
393 hlist_replace_rcu(&old
->pid_links
[type
], &new->pid_links
[type
]);
396 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
398 struct task_struct
*result
= NULL
;
400 struct hlist_node
*first
;
401 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
402 lockdep_tasklist_lock_is_held());
404 result
= hlist_entry(first
, struct task_struct
, pid_links
[(type
)]);
408 EXPORT_SYMBOL(pid_task
);
411 * Must be called under rcu_read_lock().
413 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
415 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
416 "find_task_by_pid_ns() needs rcu_read_lock() protection");
417 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
420 struct task_struct
*find_task_by_vpid(pid_t vnr
)
422 return find_task_by_pid_ns(vnr
, task_active_pid_ns(current
));
425 struct task_struct
*find_get_task_by_vpid(pid_t nr
)
427 struct task_struct
*task
;
430 task
= find_task_by_vpid(nr
);
432 get_task_struct(task
);
438 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
442 pid
= get_pid(rcu_dereference(*task_pid_ptr(task
, type
)));
446 EXPORT_SYMBOL_GPL(get_task_pid
);
448 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
450 struct task_struct
*result
;
452 result
= pid_task(pid
, type
);
454 get_task_struct(result
);
458 EXPORT_SYMBOL_GPL(get_pid_task
);
460 struct pid
*find_get_pid(pid_t nr
)
465 pid
= get_pid(find_vpid(nr
));
470 EXPORT_SYMBOL_GPL(find_get_pid
);
472 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
477 if (pid
&& ns
->level
<= pid
->level
) {
478 upid
= &pid
->numbers
[ns
->level
];
484 EXPORT_SYMBOL_GPL(pid_nr_ns
);
486 pid_t
pid_vnr(struct pid
*pid
)
488 return pid_nr_ns(pid
, task_active_pid_ns(current
));
490 EXPORT_SYMBOL_GPL(pid_vnr
);
492 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
493 struct pid_namespace
*ns
)
499 ns
= task_active_pid_ns(current
);
500 nr
= pid_nr_ns(rcu_dereference(*task_pid_ptr(task
, type
)), ns
);
505 EXPORT_SYMBOL(__task_pid_nr_ns
);
507 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
509 return ns_of_pid(task_pid(tsk
));
511 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
514 * Used by proc to find the first pid that is greater than or equal to nr.
516 * If there is a pid at nr this function is exactly the same as find_pid_ns.
518 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
520 return idr_get_next(&ns
->idr
, &nr
);
523 struct pid
*pidfd_get_pid(unsigned int fd
, unsigned int *flags
)
530 return ERR_PTR(-EBADF
);
532 pid
= pidfd_pid(f
.file
);
535 *flags
= f
.file
->f_flags
;
543 * pidfd_create() - Create a new pid file descriptor.
545 * @pid: struct pid that the pidfd will reference
546 * @flags: flags to pass
548 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
550 * Note, that this function can only be called after the fd table has
551 * been unshared to avoid leaking the pidfd to the new process.
553 * Return: On success, a cloexec pidfd is returned.
554 * On error, a negative errno number will be returned.
556 static int pidfd_create(struct pid
*pid
, unsigned int flags
)
560 fd
= anon_inode_getfd("[pidfd]", &pidfd_fops
, get_pid(pid
),
561 flags
| O_RDWR
| O_CLOEXEC
);
569 * pidfd_open() - Open new pid file descriptor.
571 * @pid: pid for which to retrieve a pidfd
572 * @flags: flags to pass
574 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
575 * the process identified by @pid. Currently, the process identified by
576 * @pid must be a thread-group leader. This restriction currently exists
577 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
578 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
581 * Return: On success, a cloexec pidfd is returned.
582 * On error, a negative errno number will be returned.
584 SYSCALL_DEFINE2(pidfd_open
, pid_t
, pid
, unsigned int, flags
)
589 if (flags
& ~PIDFD_NONBLOCK
)
595 p
= find_get_pid(pid
);
599 if (pid_has_task(p
, PIDTYPE_TGID
))
600 fd
= pidfd_create(p
, flags
);
608 void __init
pid_idr_init(void)
610 /* Verify no one has done anything silly: */
611 BUILD_BUG_ON(PID_MAX_LIMIT
>= PIDNS_ADDING
);
613 /* bump default and minimum pid_max based on number of cpus */
614 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
615 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
616 pid_max_min
= max_t(int, pid_max_min
,
617 PIDS_PER_CPU_MIN
* num_possible_cpus());
618 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
620 idr_init(&init_pid_ns
.idr
);
622 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
623 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);
626 static struct file
*__pidfd_fget(struct task_struct
*task
, int fd
)
631 ret
= down_read_killable(&task
->signal
->exec_update_lock
);
635 if (ptrace_may_access(task
, PTRACE_MODE_ATTACH_REALCREDS
))
636 file
= fget_task(task
, fd
);
638 file
= ERR_PTR(-EPERM
);
640 up_read(&task
->signal
->exec_update_lock
);
642 return file
?: ERR_PTR(-EBADF
);
645 static int pidfd_getfd(struct pid
*pid
, int fd
)
647 struct task_struct
*task
;
651 task
= get_pid_task(pid
, PIDTYPE_PID
);
655 file
= __pidfd_fget(task
, fd
);
656 put_task_struct(task
);
658 return PTR_ERR(file
);
660 ret
= receive_fd(file
, O_CLOEXEC
);
667 * sys_pidfd_getfd() - Get a file descriptor from another process
669 * @pidfd: the pidfd file descriptor of the process
670 * @fd: the file descriptor number to get
671 * @flags: flags on how to get the fd (reserved)
673 * This syscall gets a copy of a file descriptor from another process
674 * based on the pidfd, and file descriptor number. It requires that
675 * the calling process has the ability to ptrace the process represented
676 * by the pidfd. The process which is having its file descriptor copied
677 * is otherwise unaffected.
679 * Return: On success, a cloexec file descriptor is returned.
680 * On error, a negative errno number will be returned.
682 SYSCALL_DEFINE3(pidfd_getfd
, int, pidfd
, int, fd
,
689 /* flags is currently unused - make sure it's unset */
697 pid
= pidfd_pid(f
.file
);
701 ret
= pidfd_getfd(pid
, fd
);