1 // SPDX-License-Identifier: GPL-2.0
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 #ifdef CONFIG_RT_MUTEXES
47 static inline struct sched_dl_entity
*pi_of(struct sched_dl_entity
*dl_se
)
52 static inline bool is_dl_boosted(struct sched_dl_entity
*dl_se
)
54 return pi_of(dl_se
) != dl_se
;
57 static inline struct sched_dl_entity
*pi_of(struct sched_dl_entity
*dl_se
)
62 static inline bool is_dl_boosted(struct sched_dl_entity
*dl_se
)
69 static inline struct dl_bw
*dl_bw_of(int i
)
71 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 "sched RCU must be held");
73 return &cpu_rq(i
)->rd
->dl_bw
;
76 static inline int dl_bw_cpus(int i
)
78 struct root_domain
*rd
= cpu_rq(i
)->rd
;
81 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 "sched RCU must be held");
84 if (cpumask_subset(rd
->span
, cpu_active_mask
))
85 return cpumask_weight(rd
->span
);
89 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
95 static inline unsigned long __dl_bw_capacity(int i
)
97 struct root_domain
*rd
= cpu_rq(i
)->rd
;
98 unsigned long cap
= 0;
100 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 "sched RCU must be held");
103 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
104 cap
+= capacity_orig_of(i
);
110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111 * of the CPU the task is running on rather rd's \Sum CPU capacity.
113 static inline unsigned long dl_bw_capacity(int i
)
115 if (!static_branch_unlikely(&sched_asym_cpucapacity
) &&
116 capacity_orig_of(i
) == SCHED_CAPACITY_SCALE
) {
117 return dl_bw_cpus(i
) << SCHED_CAPACITY_SHIFT
;
119 return __dl_bw_capacity(i
);
123 static inline bool dl_bw_visited(int cpu
, u64 gen
)
125 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
127 if (rd
->visit_gen
== gen
)
134 static inline struct dl_bw
*dl_bw_of(int i
)
136 return &cpu_rq(i
)->dl
.dl_bw
;
139 static inline int dl_bw_cpus(int i
)
144 static inline unsigned long dl_bw_capacity(int i
)
146 return SCHED_CAPACITY_SCALE
;
149 static inline bool dl_bw_visited(int cpu
, u64 gen
)
156 void __add_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
158 u64 old
= dl_rq
->running_bw
;
160 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
161 dl_rq
->running_bw
+= dl_bw
;
162 SCHED_WARN_ON(dl_rq
->running_bw
< old
); /* overflow */
163 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
169 void __sub_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
171 u64 old
= dl_rq
->running_bw
;
173 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
174 dl_rq
->running_bw
-= dl_bw
;
175 SCHED_WARN_ON(dl_rq
->running_bw
> old
); /* underflow */
176 if (dl_rq
->running_bw
> old
)
177 dl_rq
->running_bw
= 0;
178 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
179 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
183 void __add_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
185 u64 old
= dl_rq
->this_bw
;
187 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
188 dl_rq
->this_bw
+= dl_bw
;
189 SCHED_WARN_ON(dl_rq
->this_bw
< old
); /* overflow */
193 void __sub_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
195 u64 old
= dl_rq
->this_bw
;
197 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
198 dl_rq
->this_bw
-= dl_bw
;
199 SCHED_WARN_ON(dl_rq
->this_bw
> old
); /* underflow */
200 if (dl_rq
->this_bw
> old
)
202 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
206 void add_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
208 if (!dl_entity_is_special(dl_se
))
209 __add_rq_bw(dl_se
->dl_bw
, dl_rq
);
213 void sub_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
215 if (!dl_entity_is_special(dl_se
))
216 __sub_rq_bw(dl_se
->dl_bw
, dl_rq
);
220 void add_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
222 if (!dl_entity_is_special(dl_se
))
223 __add_running_bw(dl_se
->dl_bw
, dl_rq
);
227 void sub_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
229 if (!dl_entity_is_special(dl_se
))
230 __sub_running_bw(dl_se
->dl_bw
, dl_rq
);
233 static void dl_change_utilization(struct task_struct
*p
, u64 new_bw
)
237 BUG_ON(p
->dl
.flags
& SCHED_FLAG_SUGOV
);
239 if (task_on_rq_queued(p
))
243 if (p
->dl
.dl_non_contending
) {
244 sub_running_bw(&p
->dl
, &rq
->dl
);
245 p
->dl
.dl_non_contending
= 0;
247 * If the timer handler is currently running and the
248 * timer cannot be cancelled, inactive_task_timer()
249 * will see that dl_not_contending is not set, and
250 * will not touch the rq's active utilization,
251 * so we are still safe.
253 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
256 __sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
257 __add_rq_bw(new_bw
, &rq
->dl
);
261 * The utilization of a task cannot be immediately removed from
262 * the rq active utilization (running_bw) when the task blocks.
263 * Instead, we have to wait for the so called "0-lag time".
265 * If a task blocks before the "0-lag time", a timer (the inactive
266 * timer) is armed, and running_bw is decreased when the timer
269 * If the task wakes up again before the inactive timer fires,
270 * the timer is cancelled, whereas if the task wakes up after the
271 * inactive timer fired (and running_bw has been decreased) the
272 * task's utilization has to be added to running_bw again.
273 * A flag in the deadline scheduling entity (dl_non_contending)
274 * is used to avoid race conditions between the inactive timer handler
277 * The following diagram shows how running_bw is updated. A task is
278 * "ACTIVE" when its utilization contributes to running_bw; an
279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
282 * time already passed, which does not contribute to running_bw anymore.
283 * +------------------+
285 * +------------------>+ contending |
286 * | add_running_bw | |
287 * | +----+------+------+
290 * +--------+-------+ | |
291 * | | t >= 0-lag | | wakeup
292 * | INACTIVE |<---------------+ |
293 * | | sub_running_bw | |
294 * +--------+-------+ | |
299 * | +----+------+------+
300 * | sub_running_bw | ACTIVE |
301 * +-------------------+ |
302 * inactive timer | non contending |
303 * fired +------------------+
305 * The task_non_contending() function is invoked when a task
306 * blocks, and checks if the 0-lag time already passed or
307 * not (in the first case, it directly updates running_bw;
308 * in the second case, it arms the inactive timer).
310 * The task_contending() function is invoked when a task wakes
311 * up, and checks if the task is still in the "ACTIVE non contending"
312 * state or not (in the second case, it updates running_bw).
314 static void task_non_contending(struct task_struct
*p
)
316 struct sched_dl_entity
*dl_se
= &p
->dl
;
317 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
318 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
319 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
323 * If this is a non-deadline task that has been boosted,
326 if (dl_se
->dl_runtime
== 0)
329 if (dl_entity_is_special(dl_se
))
332 WARN_ON(dl_se
->dl_non_contending
);
334 zerolag_time
= dl_se
->deadline
-
335 div64_long((dl_se
->runtime
* dl_se
->dl_period
),
339 * Using relative times instead of the absolute "0-lag time"
340 * allows to simplify the code
342 zerolag_time
-= rq_clock(rq
);
345 * If the "0-lag time" already passed, decrease the active
346 * utilization now, instead of starting a timer
348 if ((zerolag_time
< 0) || hrtimer_active(&dl_se
->inactive_timer
)) {
350 sub_running_bw(dl_se
, dl_rq
);
351 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
352 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
354 if (p
->state
== TASK_DEAD
)
355 sub_rq_bw(&p
->dl
, &rq
->dl
);
356 raw_spin_lock(&dl_b
->lock
);
357 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
358 __dl_clear_params(p
);
359 raw_spin_unlock(&dl_b
->lock
);
365 dl_se
->dl_non_contending
= 1;
367 hrtimer_start(timer
, ns_to_ktime(zerolag_time
), HRTIMER_MODE_REL_HARD
);
370 static void task_contending(struct sched_dl_entity
*dl_se
, int flags
)
372 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
375 * If this is a non-deadline task that has been boosted,
378 if (dl_se
->dl_runtime
== 0)
381 if (flags
& ENQUEUE_MIGRATED
)
382 add_rq_bw(dl_se
, dl_rq
);
384 if (dl_se
->dl_non_contending
) {
385 dl_se
->dl_non_contending
= 0;
387 * If the timer handler is currently running and the
388 * timer cannot be cancelled, inactive_task_timer()
389 * will see that dl_not_contending is not set, and
390 * will not touch the rq's active utilization,
391 * so we are still safe.
393 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1)
394 put_task_struct(dl_task_of(dl_se
));
397 * Since "dl_non_contending" is not set, the
398 * task's utilization has already been removed from
399 * active utilization (either when the task blocked,
400 * when the "inactive timer" fired).
403 add_running_bw(dl_se
, dl_rq
);
407 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
409 struct sched_dl_entity
*dl_se
= &p
->dl
;
411 return dl_rq
->root
.rb_leftmost
== &dl_se
->rb_node
;
414 static void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
);
416 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
418 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
419 dl_b
->dl_period
= period
;
420 dl_b
->dl_runtime
= runtime
;
423 void init_dl_bw(struct dl_bw
*dl_b
)
425 raw_spin_lock_init(&dl_b
->lock
);
426 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
427 if (global_rt_runtime() == RUNTIME_INF
)
430 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
431 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
435 void init_dl_rq(struct dl_rq
*dl_rq
)
437 dl_rq
->root
= RB_ROOT_CACHED
;
440 /* zero means no -deadline tasks */
441 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
443 dl_rq
->dl_nr_migratory
= 0;
444 dl_rq
->overloaded
= 0;
445 dl_rq
->pushable_dl_tasks_root
= RB_ROOT_CACHED
;
447 init_dl_bw(&dl_rq
->dl_bw
);
450 dl_rq
->running_bw
= 0;
452 init_dl_rq_bw_ratio(dl_rq
);
457 static inline int dl_overloaded(struct rq
*rq
)
459 return atomic_read(&rq
->rd
->dlo_count
);
462 static inline void dl_set_overload(struct rq
*rq
)
467 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
469 * Must be visible before the overload count is
470 * set (as in sched_rt.c).
472 * Matched by the barrier in pull_dl_task().
475 atomic_inc(&rq
->rd
->dlo_count
);
478 static inline void dl_clear_overload(struct rq
*rq
)
483 atomic_dec(&rq
->rd
->dlo_count
);
484 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
487 static void update_dl_migration(struct dl_rq
*dl_rq
)
489 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
490 if (!dl_rq
->overloaded
) {
491 dl_set_overload(rq_of_dl_rq(dl_rq
));
492 dl_rq
->overloaded
= 1;
494 } else if (dl_rq
->overloaded
) {
495 dl_clear_overload(rq_of_dl_rq(dl_rq
));
496 dl_rq
->overloaded
= 0;
500 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
502 struct task_struct
*p
= dl_task_of(dl_se
);
504 if (p
->nr_cpus_allowed
> 1)
505 dl_rq
->dl_nr_migratory
++;
507 update_dl_migration(dl_rq
);
510 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
512 struct task_struct
*p
= dl_task_of(dl_se
);
514 if (p
->nr_cpus_allowed
> 1)
515 dl_rq
->dl_nr_migratory
--;
517 update_dl_migration(dl_rq
);
521 * The list of pushable -deadline task is not a plist, like in
522 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
524 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
526 struct dl_rq
*dl_rq
= &rq
->dl
;
527 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_root
.rb_node
;
528 struct rb_node
*parent
= NULL
;
529 struct task_struct
*entry
;
530 bool leftmost
= true;
532 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
536 entry
= rb_entry(parent
, struct task_struct
,
538 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
539 link
= &parent
->rb_left
;
541 link
= &parent
->rb_right
;
547 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
549 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
550 rb_insert_color_cached(&p
->pushable_dl_tasks
,
551 &dl_rq
->pushable_dl_tasks_root
, leftmost
);
554 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
556 struct dl_rq
*dl_rq
= &rq
->dl
;
558 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
561 if (dl_rq
->pushable_dl_tasks_root
.rb_leftmost
== &p
->pushable_dl_tasks
) {
562 struct rb_node
*next_node
;
564 next_node
= rb_next(&p
->pushable_dl_tasks
);
566 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
567 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
571 rb_erase_cached(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
572 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
575 static inline int has_pushable_dl_tasks(struct rq
*rq
)
577 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
.rb_root
);
580 static int push_dl_task(struct rq
*rq
);
582 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
584 return rq
->online
&& dl_task(prev
);
587 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
588 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
590 static void push_dl_tasks(struct rq
*);
591 static void pull_dl_task(struct rq
*);
593 static inline void deadline_queue_push_tasks(struct rq
*rq
)
595 if (!has_pushable_dl_tasks(rq
))
598 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
601 static inline void deadline_queue_pull_task(struct rq
*rq
)
603 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
606 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
608 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
610 struct rq
*later_rq
= NULL
;
613 later_rq
= find_lock_later_rq(p
, rq
);
618 * If we cannot preempt any rq, fall back to pick any
621 cpu
= cpumask_any_and(cpu_active_mask
, p
->cpus_ptr
);
622 if (cpu
>= nr_cpu_ids
) {
624 * Failed to find any suitable CPU.
625 * The task will never come back!
627 BUG_ON(dl_bandwidth_enabled());
630 * If admission control is disabled we
631 * try a little harder to let the task
634 cpu
= cpumask_any(cpu_active_mask
);
636 later_rq
= cpu_rq(cpu
);
637 double_lock_balance(rq
, later_rq
);
640 if (p
->dl
.dl_non_contending
|| p
->dl
.dl_throttled
) {
642 * Inactive timer is armed (or callback is running, but
643 * waiting for us to release rq locks). In any case, when it
644 * will fire (or continue), it will see running_bw of this
645 * task migrated to later_rq (and correctly handle it).
647 sub_running_bw(&p
->dl
, &rq
->dl
);
648 sub_rq_bw(&p
->dl
, &rq
->dl
);
650 add_rq_bw(&p
->dl
, &later_rq
->dl
);
651 add_running_bw(&p
->dl
, &later_rq
->dl
);
653 sub_rq_bw(&p
->dl
, &rq
->dl
);
654 add_rq_bw(&p
->dl
, &later_rq
->dl
);
658 * And we finally need to fixup root_domain(s) bandwidth accounting,
659 * since p is still hanging out in the old (now moved to default) root
662 dl_b
= &rq
->rd
->dl_bw
;
663 raw_spin_lock(&dl_b
->lock
);
664 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
665 raw_spin_unlock(&dl_b
->lock
);
667 dl_b
= &later_rq
->rd
->dl_bw
;
668 raw_spin_lock(&dl_b
->lock
);
669 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(later_rq
->rd
->span
));
670 raw_spin_unlock(&dl_b
->lock
);
672 set_task_cpu(p
, later_rq
->cpu
);
673 double_unlock_balance(later_rq
, rq
);
681 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
686 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
691 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
696 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
700 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
705 static inline void pull_dl_task(struct rq
*rq
)
709 static inline void deadline_queue_push_tasks(struct rq
*rq
)
713 static inline void deadline_queue_pull_task(struct rq
*rq
)
716 #endif /* CONFIG_SMP */
718 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
719 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
720 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
723 * We are being explicitly informed that a new instance is starting,
724 * and this means that:
725 * - the absolute deadline of the entity has to be placed at
726 * current time + relative deadline;
727 * - the runtime of the entity has to be set to the maximum value.
729 * The capability of specifying such event is useful whenever a -deadline
730 * entity wants to (try to!) synchronize its behaviour with the scheduler's
731 * one, and to (try to!) reconcile itself with its own scheduling
734 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
736 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
737 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
739 WARN_ON(is_dl_boosted(dl_se
));
740 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
743 * We are racing with the deadline timer. So, do nothing because
744 * the deadline timer handler will take care of properly recharging
745 * the runtime and postponing the deadline
747 if (dl_se
->dl_throttled
)
751 * We use the regular wall clock time to set deadlines in the
752 * future; in fact, we must consider execution overheads (time
753 * spent on hardirq context, etc.).
755 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
756 dl_se
->runtime
= dl_se
->dl_runtime
;
760 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
761 * possibility of a entity lasting more than what it declared, and thus
762 * exhausting its runtime.
764 * Here we are interested in making runtime overrun possible, but we do
765 * not want a entity which is misbehaving to affect the scheduling of all
767 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
768 * is used, in order to confine each entity within its own bandwidth.
770 * This function deals exactly with that, and ensures that when the runtime
771 * of a entity is replenished, its deadline is also postponed. That ensures
772 * the overrunning entity can't interfere with other entity in the system and
773 * can't make them miss their deadlines. Reasons why this kind of overruns
774 * could happen are, typically, a entity voluntarily trying to overcome its
775 * runtime, or it just underestimated it during sched_setattr().
777 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
)
779 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
780 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
782 BUG_ON(pi_of(dl_se
)->dl_runtime
<= 0);
785 * This could be the case for a !-dl task that is boosted.
786 * Just go with full inherited parameters.
788 if (dl_se
->dl_deadline
== 0) {
789 dl_se
->deadline
= rq_clock(rq
) + pi_of(dl_se
)->dl_deadline
;
790 dl_se
->runtime
= pi_of(dl_se
)->dl_runtime
;
793 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
797 * We keep moving the deadline away until we get some
798 * available runtime for the entity. This ensures correct
799 * handling of situations where the runtime overrun is
802 while (dl_se
->runtime
<= 0) {
803 dl_se
->deadline
+= pi_of(dl_se
)->dl_period
;
804 dl_se
->runtime
+= pi_of(dl_se
)->dl_runtime
;
808 * At this point, the deadline really should be "in
809 * the future" with respect to rq->clock. If it's
810 * not, we are, for some reason, lagging too much!
811 * Anyway, after having warn userspace abut that,
812 * we still try to keep the things running by
813 * resetting the deadline and the budget of the
816 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
817 printk_deferred_once("sched: DL replenish lagged too much\n");
818 dl_se
->deadline
= rq_clock(rq
) + pi_of(dl_se
)->dl_deadline
;
819 dl_se
->runtime
= pi_of(dl_se
)->dl_runtime
;
822 if (dl_se
->dl_yielded
)
823 dl_se
->dl_yielded
= 0;
824 if (dl_se
->dl_throttled
)
825 dl_se
->dl_throttled
= 0;
829 * Here we check if --at time t-- an entity (which is probably being
830 * [re]activated or, in general, enqueued) can use its remaining runtime
831 * and its current deadline _without_ exceeding the bandwidth it is
832 * assigned (function returns true if it can't). We are in fact applying
833 * one of the CBS rules: when a task wakes up, if the residual runtime
834 * over residual deadline fits within the allocated bandwidth, then we
835 * can keep the current (absolute) deadline and residual budget without
836 * disrupting the schedulability of the system. Otherwise, we should
837 * refill the runtime and set the deadline a period in the future,
838 * because keeping the current (absolute) deadline of the task would
839 * result in breaking guarantees promised to other tasks (refer to
840 * Documentation/scheduler/sched-deadline.rst for more information).
842 * This function returns true if:
844 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
846 * IOW we can't recycle current parameters.
848 * Notice that the bandwidth check is done against the deadline. For
849 * task with deadline equal to period this is the same of using
850 * dl_period instead of dl_deadline in the equation above.
852 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
, u64 t
)
857 * left and right are the two sides of the equation above,
858 * after a bit of shuffling to use multiplications instead
861 * Note that none of the time values involved in the two
862 * multiplications are absolute: dl_deadline and dl_runtime
863 * are the relative deadline and the maximum runtime of each
864 * instance, runtime is the runtime left for the last instance
865 * and (deadline - t), since t is rq->clock, is the time left
866 * to the (absolute) deadline. Even if overflowing the u64 type
867 * is very unlikely to occur in both cases, here we scale down
868 * as we want to avoid that risk at all. Scaling down by 10
869 * means that we reduce granularity to 1us. We are fine with it,
870 * since this is only a true/false check and, anyway, thinking
871 * of anything below microseconds resolution is actually fiction
872 * (but still we want to give the user that illusion >;).
874 left
= (pi_of(dl_se
)->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
875 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
876 (pi_of(dl_se
)->dl_runtime
>> DL_SCALE
);
878 return dl_time_before(right
, left
);
882 * Revised wakeup rule [1]: For self-suspending tasks, rather then
883 * re-initializing task's runtime and deadline, the revised wakeup
884 * rule adjusts the task's runtime to avoid the task to overrun its
887 * Reasoning: a task may overrun the density if:
888 * runtime / (deadline - t) > dl_runtime / dl_deadline
890 * Therefore, runtime can be adjusted to:
891 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
893 * In such way that runtime will be equal to the maximum density
894 * the task can use without breaking any rule.
896 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
897 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
900 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
902 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
905 * If the task has deadline < period, and the deadline is in the past,
906 * it should already be throttled before this check.
908 * See update_dl_entity() comments for further details.
910 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
912 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> BW_SHIFT
;
916 * Regarding the deadline, a task with implicit deadline has a relative
917 * deadline == relative period. A task with constrained deadline has a
918 * relative deadline <= relative period.
920 * We support constrained deadline tasks. However, there are some restrictions
921 * applied only for tasks which do not have an implicit deadline. See
922 * update_dl_entity() to know more about such restrictions.
924 * The dl_is_implicit() returns true if the task has an implicit deadline.
926 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
928 return dl_se
->dl_deadline
== dl_se
->dl_period
;
932 * When a deadline entity is placed in the runqueue, its runtime and deadline
933 * might need to be updated. This is done by a CBS wake up rule. There are two
934 * different rules: 1) the original CBS; and 2) the Revisited CBS.
936 * When the task is starting a new period, the Original CBS is used. In this
937 * case, the runtime is replenished and a new absolute deadline is set.
939 * When a task is queued before the begin of the next period, using the
940 * remaining runtime and deadline could make the entity to overflow, see
941 * dl_entity_overflow() to find more about runtime overflow. When such case
942 * is detected, the runtime and deadline need to be updated.
944 * If the task has an implicit deadline, i.e., deadline == period, the Original
945 * CBS is applied. the runtime is replenished and a new absolute deadline is
946 * set, as in the previous cases.
948 * However, the Original CBS does not work properly for tasks with
949 * deadline < period, which are said to have a constrained deadline. By
950 * applying the Original CBS, a constrained deadline task would be able to run
951 * runtime/deadline in a period. With deadline < period, the task would
952 * overrun the runtime/period allowed bandwidth, breaking the admission test.
954 * In order to prevent this misbehave, the Revisited CBS is used for
955 * constrained deadline tasks when a runtime overflow is detected. In the
956 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
957 * the remaining runtime of the task is reduced to avoid runtime overflow.
958 * Please refer to the comments update_dl_revised_wakeup() function to find
959 * more about the Revised CBS rule.
961 static void update_dl_entity(struct sched_dl_entity
*dl_se
)
963 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
964 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
966 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
967 dl_entity_overflow(dl_se
, rq_clock(rq
))) {
969 if (unlikely(!dl_is_implicit(dl_se
) &&
970 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
971 !is_dl_boosted(dl_se
))) {
972 update_dl_revised_wakeup(dl_se
, rq
);
976 dl_se
->deadline
= rq_clock(rq
) + pi_of(dl_se
)->dl_deadline
;
977 dl_se
->runtime
= pi_of(dl_se
)->dl_runtime
;
981 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
983 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
987 * If the entity depleted all its runtime, and if we want it to sleep
988 * while waiting for some new execution time to become available, we
989 * set the bandwidth replenishment timer to the replenishment instant
990 * and try to activate it.
992 * Notice that it is important for the caller to know if the timer
993 * actually started or not (i.e., the replenishment instant is in
994 * the future or in the past).
996 static int start_dl_timer(struct task_struct
*p
)
998 struct sched_dl_entity
*dl_se
= &p
->dl
;
999 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1000 struct rq
*rq
= task_rq(p
);
1004 lockdep_assert_held(&rq
->lock
);
1007 * We want the timer to fire at the deadline, but considering
1008 * that it is actually coming from rq->clock and not from
1009 * hrtimer's time base reading.
1011 act
= ns_to_ktime(dl_next_period(dl_se
));
1012 now
= hrtimer_cb_get_time(timer
);
1013 delta
= ktime_to_ns(now
) - rq_clock(rq
);
1014 act
= ktime_add_ns(act
, delta
);
1017 * If the expiry time already passed, e.g., because the value
1018 * chosen as the deadline is too small, don't even try to
1019 * start the timer in the past!
1021 if (ktime_us_delta(act
, now
) < 0)
1025 * !enqueued will guarantee another callback; even if one is already in
1026 * progress. This ensures a balanced {get,put}_task_struct().
1028 * The race against __run_timer() clearing the enqueued state is
1029 * harmless because we're holding task_rq()->lock, therefore the timer
1030 * expiring after we've done the check will wait on its task_rq_lock()
1031 * and observe our state.
1033 if (!hrtimer_is_queued(timer
)) {
1035 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS_HARD
);
1042 * This is the bandwidth enforcement timer callback. If here, we know
1043 * a task is not on its dl_rq, since the fact that the timer was running
1044 * means the task is throttled and needs a runtime replenishment.
1046 * However, what we actually do depends on the fact the task is active,
1047 * (it is on its rq) or has been removed from there by a call to
1048 * dequeue_task_dl(). In the former case we must issue the runtime
1049 * replenishment and add the task back to the dl_rq; in the latter, we just
1050 * do nothing but clearing dl_throttled, so that runtime and deadline
1051 * updating (and the queueing back to dl_rq) will be done by the
1052 * next call to enqueue_task_dl().
1054 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
1056 struct sched_dl_entity
*dl_se
= container_of(timer
,
1057 struct sched_dl_entity
,
1059 struct task_struct
*p
= dl_task_of(dl_se
);
1063 rq
= task_rq_lock(p
, &rf
);
1066 * The task might have changed its scheduling policy to something
1067 * different than SCHED_DEADLINE (through switched_from_dl()).
1073 * The task might have been boosted by someone else and might be in the
1074 * boosting/deboosting path, its not throttled.
1076 if (is_dl_boosted(dl_se
))
1080 * Spurious timer due to start_dl_timer() race; or we already received
1081 * a replenishment from rt_mutex_setprio().
1083 if (!dl_se
->dl_throttled
)
1087 update_rq_clock(rq
);
1090 * If the throttle happened during sched-out; like:
1097 * __dequeue_task_dl()
1100 * We can be both throttled and !queued. Replenish the counter
1101 * but do not enqueue -- wait for our wakeup to do that.
1103 if (!task_on_rq_queued(p
)) {
1104 replenish_dl_entity(dl_se
);
1109 if (unlikely(!rq
->online
)) {
1111 * If the runqueue is no longer available, migrate the
1112 * task elsewhere. This necessarily changes rq.
1114 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
1115 rq
= dl_task_offline_migration(rq
, p
);
1116 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
1117 update_rq_clock(rq
);
1120 * Now that the task has been migrated to the new RQ and we
1121 * have that locked, proceed as normal and enqueue the task
1127 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
1128 if (dl_task(rq
->curr
))
1129 check_preempt_curr_dl(rq
, p
, 0);
1135 * Queueing this task back might have overloaded rq, check if we need
1136 * to kick someone away.
1138 if (has_pushable_dl_tasks(rq
)) {
1140 * Nothing relies on rq->lock after this, so its safe to drop
1143 rq_unpin_lock(rq
, &rf
);
1145 rq_repin_lock(rq
, &rf
);
1150 task_rq_unlock(rq
, p
, &rf
);
1153 * This can free the task_struct, including this hrtimer, do not touch
1154 * anything related to that after this.
1158 return HRTIMER_NORESTART
;
1161 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
1163 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1165 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1166 timer
->function
= dl_task_timer
;
1170 * During the activation, CBS checks if it can reuse the current task's
1171 * runtime and period. If the deadline of the task is in the past, CBS
1172 * cannot use the runtime, and so it replenishes the task. This rule
1173 * works fine for implicit deadline tasks (deadline == period), and the
1174 * CBS was designed for implicit deadline tasks. However, a task with
1175 * constrained deadline (deadline < period) might be awakened after the
1176 * deadline, but before the next period. In this case, replenishing the
1177 * task would allow it to run for runtime / deadline. As in this case
1178 * deadline < period, CBS enables a task to run for more than the
1179 * runtime / period. In a very loaded system, this can cause a domino
1180 * effect, making other tasks miss their deadlines.
1182 * To avoid this problem, in the activation of a constrained deadline
1183 * task after the deadline but before the next period, throttle the
1184 * task and set the replenishing timer to the begin of the next period,
1185 * unless it is boosted.
1187 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
1189 struct task_struct
*p
= dl_task_of(dl_se
);
1190 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
1192 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1193 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
1194 if (unlikely(is_dl_boosted(dl_se
) || !start_dl_timer(p
)))
1196 dl_se
->dl_throttled
= 1;
1197 if (dl_se
->runtime
> 0)
1203 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
1205 return (dl_se
->runtime
<= 0);
1208 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
1211 * This function implements the GRUB accounting rule:
1212 * according to the GRUB reclaiming algorithm, the runtime is
1213 * not decreased as "dq = -dt", but as
1214 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1215 * where u is the utilization of the task, Umax is the maximum reclaimable
1216 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1217 * as the difference between the "total runqueue utilization" and the
1218 * runqueue active utilization, and Uextra is the (per runqueue) extra
1219 * reclaimable utilization.
1220 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1221 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1223 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1224 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1225 * Since delta is a 64 bit variable, to have an overflow its value
1226 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1227 * So, overflow is not an issue here.
1229 static u64
grub_reclaim(u64 delta
, struct rq
*rq
, struct sched_dl_entity
*dl_se
)
1231 u64 u_inact
= rq
->dl
.this_bw
- rq
->dl
.running_bw
; /* Utot - Uact */
1233 u64 u_act_min
= (dl_se
->dl_bw
* rq
->dl
.bw_ratio
) >> RATIO_SHIFT
;
1236 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1237 * we compare u_inact + rq->dl.extra_bw with
1238 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1239 * u_inact + rq->dl.extra_bw can be larger than
1240 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1241 * leading to wrong results)
1243 if (u_inact
+ rq
->dl
.extra_bw
> BW_UNIT
- u_act_min
)
1246 u_act
= BW_UNIT
- u_inact
- rq
->dl
.extra_bw
;
1248 return (delta
* u_act
) >> BW_SHIFT
;
1252 * Update the current task's runtime statistics (provided it is still
1253 * a -deadline task and has not been removed from the dl_rq).
1255 static void update_curr_dl(struct rq
*rq
)
1257 struct task_struct
*curr
= rq
->curr
;
1258 struct sched_dl_entity
*dl_se
= &curr
->dl
;
1259 u64 delta_exec
, scaled_delta_exec
;
1260 int cpu
= cpu_of(rq
);
1263 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
1267 * Consumed budget is computed considering the time as
1268 * observed by schedulable tasks (excluding time spent
1269 * in hardirq context, etc.). Deadlines are instead
1270 * computed using hard walltime. This seems to be the more
1271 * natural solution, but the full ramifications of this
1272 * approach need further study.
1274 now
= rq_clock_task(rq
);
1275 delta_exec
= now
- curr
->se
.exec_start
;
1276 if (unlikely((s64
)delta_exec
<= 0)) {
1277 if (unlikely(dl_se
->dl_yielded
))
1282 schedstat_set(curr
->se
.statistics
.exec_max
,
1283 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1285 curr
->se
.sum_exec_runtime
+= delta_exec
;
1286 account_group_exec_runtime(curr
, delta_exec
);
1288 curr
->se
.exec_start
= now
;
1289 cgroup_account_cputime(curr
, delta_exec
);
1291 if (dl_entity_is_special(dl_se
))
1295 * For tasks that participate in GRUB, we implement GRUB-PA: the
1296 * spare reclaimed bandwidth is used to clock down frequency.
1298 * For the others, we still need to scale reservation parameters
1299 * according to current frequency and CPU maximum capacity.
1301 if (unlikely(dl_se
->flags
& SCHED_FLAG_RECLAIM
)) {
1302 scaled_delta_exec
= grub_reclaim(delta_exec
,
1306 unsigned long scale_freq
= arch_scale_freq_capacity(cpu
);
1307 unsigned long scale_cpu
= arch_scale_cpu_capacity(cpu
);
1309 scaled_delta_exec
= cap_scale(delta_exec
, scale_freq
);
1310 scaled_delta_exec
= cap_scale(scaled_delta_exec
, scale_cpu
);
1313 dl_se
->runtime
-= scaled_delta_exec
;
1316 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
1317 dl_se
->dl_throttled
= 1;
1319 /* If requested, inform the user about runtime overruns. */
1320 if (dl_runtime_exceeded(dl_se
) &&
1321 (dl_se
->flags
& SCHED_FLAG_DL_OVERRUN
))
1322 dl_se
->dl_overrun
= 1;
1324 __dequeue_task_dl(rq
, curr
, 0);
1325 if (unlikely(is_dl_boosted(dl_se
) || !start_dl_timer(curr
)))
1326 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
1328 if (!is_leftmost(curr
, &rq
->dl
))
1333 * Because -- for now -- we share the rt bandwidth, we need to
1334 * account our runtime there too, otherwise actual rt tasks
1335 * would be able to exceed the shared quota.
1337 * Account to the root rt group for now.
1339 * The solution we're working towards is having the RT groups scheduled
1340 * using deadline servers -- however there's a few nasties to figure
1341 * out before that can happen.
1343 if (rt_bandwidth_enabled()) {
1344 struct rt_rq
*rt_rq
= &rq
->rt
;
1346 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1348 * We'll let actual RT tasks worry about the overflow here, we
1349 * have our own CBS to keep us inline; only account when RT
1350 * bandwidth is relevant.
1352 if (sched_rt_bandwidth_account(rt_rq
))
1353 rt_rq
->rt_time
+= delta_exec
;
1354 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1358 static enum hrtimer_restart
inactive_task_timer(struct hrtimer
*timer
)
1360 struct sched_dl_entity
*dl_se
= container_of(timer
,
1361 struct sched_dl_entity
,
1363 struct task_struct
*p
= dl_task_of(dl_se
);
1367 rq
= task_rq_lock(p
, &rf
);
1370 update_rq_clock(rq
);
1372 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
1373 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1375 if (p
->state
== TASK_DEAD
&& dl_se
->dl_non_contending
) {
1376 sub_running_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1377 sub_rq_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1378 dl_se
->dl_non_contending
= 0;
1381 raw_spin_lock(&dl_b
->lock
);
1382 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
1383 raw_spin_unlock(&dl_b
->lock
);
1384 __dl_clear_params(p
);
1388 if (dl_se
->dl_non_contending
== 0)
1391 sub_running_bw(dl_se
, &rq
->dl
);
1392 dl_se
->dl_non_contending
= 0;
1394 task_rq_unlock(rq
, p
, &rf
);
1397 return HRTIMER_NORESTART
;
1400 void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
)
1402 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
1404 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1405 timer
->function
= inactive_task_timer
;
1410 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1412 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1414 if (dl_rq
->earliest_dl
.curr
== 0 ||
1415 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
1416 if (dl_rq
->earliest_dl
.curr
== 0)
1417 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_HIGHER
);
1418 dl_rq
->earliest_dl
.curr
= deadline
;
1419 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
1423 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1425 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1428 * Since we may have removed our earliest (and/or next earliest)
1429 * task we must recompute them.
1431 if (!dl_rq
->dl_nr_running
) {
1432 dl_rq
->earliest_dl
.curr
= 0;
1433 dl_rq
->earliest_dl
.next
= 0;
1434 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1435 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1437 struct rb_node
*leftmost
= dl_rq
->root
.rb_leftmost
;
1438 struct sched_dl_entity
*entry
;
1440 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
1441 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
1442 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
1448 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1449 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1451 #endif /* CONFIG_SMP */
1454 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1456 int prio
= dl_task_of(dl_se
)->prio
;
1457 u64 deadline
= dl_se
->deadline
;
1459 WARN_ON(!dl_prio(prio
));
1460 dl_rq
->dl_nr_running
++;
1461 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
1463 inc_dl_deadline(dl_rq
, deadline
);
1464 inc_dl_migration(dl_se
, dl_rq
);
1468 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1470 int prio
= dl_task_of(dl_se
)->prio
;
1472 WARN_ON(!dl_prio(prio
));
1473 WARN_ON(!dl_rq
->dl_nr_running
);
1474 dl_rq
->dl_nr_running
--;
1475 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
1477 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
1478 dec_dl_migration(dl_se
, dl_rq
);
1481 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1483 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1484 struct rb_node
**link
= &dl_rq
->root
.rb_root
.rb_node
;
1485 struct rb_node
*parent
= NULL
;
1486 struct sched_dl_entity
*entry
;
1489 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1493 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
1494 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
1495 link
= &parent
->rb_left
;
1497 link
= &parent
->rb_right
;
1502 rb_link_node(&dl_se
->rb_node
, parent
, link
);
1503 rb_insert_color_cached(&dl_se
->rb_node
, &dl_rq
->root
, leftmost
);
1505 inc_dl_tasks(dl_se
, dl_rq
);
1508 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1510 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1512 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1515 rb_erase_cached(&dl_se
->rb_node
, &dl_rq
->root
);
1516 RB_CLEAR_NODE(&dl_se
->rb_node
);
1518 dec_dl_tasks(dl_se
, dl_rq
);
1522 enqueue_dl_entity(struct sched_dl_entity
*dl_se
, int flags
)
1524 BUG_ON(on_dl_rq(dl_se
));
1527 * If this is a wakeup or a new instance, the scheduling
1528 * parameters of the task might need updating. Otherwise,
1529 * we want a replenishment of its runtime.
1531 if (flags
& ENQUEUE_WAKEUP
) {
1532 task_contending(dl_se
, flags
);
1533 update_dl_entity(dl_se
);
1534 } else if (flags
& ENQUEUE_REPLENISH
) {
1535 replenish_dl_entity(dl_se
);
1536 } else if ((flags
& ENQUEUE_RESTORE
) &&
1537 dl_time_before(dl_se
->deadline
,
1538 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se
))))) {
1539 setup_new_dl_entity(dl_se
);
1542 __enqueue_dl_entity(dl_se
);
1545 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1547 __dequeue_dl_entity(dl_se
);
1550 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1552 if (is_dl_boosted(&p
->dl
)) {
1554 * Because of delays in the detection of the overrun of a
1555 * thread's runtime, it might be the case that a thread
1556 * goes to sleep in a rt mutex with negative runtime. As
1557 * a consequence, the thread will be throttled.
1559 * While waiting for the mutex, this thread can also be
1560 * boosted via PI, resulting in a thread that is throttled
1561 * and boosted at the same time.
1563 * In this case, the boost overrides the throttle.
1565 if (p
->dl
.dl_throttled
) {
1567 * The replenish timer needs to be canceled. No
1568 * problem if it fires concurrently: boosted threads
1569 * are ignored in dl_task_timer().
1571 hrtimer_try_to_cancel(&p
->dl
.dl_timer
);
1572 p
->dl
.dl_throttled
= 0;
1574 } else if (!dl_prio(p
->normal_prio
)) {
1576 * Special case in which we have a !SCHED_DEADLINE task that is going
1577 * to be deboosted, but exceeds its runtime while doing so. No point in
1578 * replenishing it, as it's going to return back to its original
1579 * scheduling class after this. If it has been throttled, we need to
1580 * clear the flag, otherwise the task may wake up as throttled after
1581 * being boosted again with no means to replenish the runtime and clear
1584 p
->dl
.dl_throttled
= 0;
1585 BUG_ON(!is_dl_boosted(&p
->dl
) || flags
!= ENQUEUE_REPLENISH
);
1590 * Check if a constrained deadline task was activated
1591 * after the deadline but before the next period.
1592 * If that is the case, the task will be throttled and
1593 * the replenishment timer will be set to the next period.
1595 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1596 dl_check_constrained_dl(&p
->dl
);
1598 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& ENQUEUE_RESTORE
) {
1599 add_rq_bw(&p
->dl
, &rq
->dl
);
1600 add_running_bw(&p
->dl
, &rq
->dl
);
1604 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1605 * its budget it needs a replenishment and, since it now is on
1606 * its rq, the bandwidth timer callback (which clearly has not
1607 * run yet) will take care of this.
1608 * However, the active utilization does not depend on the fact
1609 * that the task is on the runqueue or not (but depends on the
1610 * task's state - in GRUB parlance, "inactive" vs "active contending").
1611 * In other words, even if a task is throttled its utilization must
1612 * be counted in the active utilization; hence, we need to call
1615 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
)) {
1616 if (flags
& ENQUEUE_WAKEUP
)
1617 task_contending(&p
->dl
, flags
);
1622 enqueue_dl_entity(&p
->dl
, flags
);
1624 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1625 enqueue_pushable_dl_task(rq
, p
);
1628 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1630 dequeue_dl_entity(&p
->dl
);
1631 dequeue_pushable_dl_task(rq
, p
);
1634 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1637 __dequeue_task_dl(rq
, p
, flags
);
1639 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& DEQUEUE_SAVE
) {
1640 sub_running_bw(&p
->dl
, &rq
->dl
);
1641 sub_rq_bw(&p
->dl
, &rq
->dl
);
1645 * This check allows to start the inactive timer (or to immediately
1646 * decrease the active utilization, if needed) in two cases:
1647 * when the task blocks and when it is terminating
1648 * (p->state == TASK_DEAD). We can handle the two cases in the same
1649 * way, because from GRUB's point of view the same thing is happening
1650 * (the task moves from "active contending" to "active non contending"
1653 if (flags
& DEQUEUE_SLEEP
)
1654 task_non_contending(p
);
1658 * Yield task semantic for -deadline tasks is:
1660 * get off from the CPU until our next instance, with
1661 * a new runtime. This is of little use now, since we
1662 * don't have a bandwidth reclaiming mechanism. Anyway,
1663 * bandwidth reclaiming is planned for the future, and
1664 * yield_task_dl will indicate that some spare budget
1665 * is available for other task instances to use it.
1667 static void yield_task_dl(struct rq
*rq
)
1670 * We make the task go to sleep until its current deadline by
1671 * forcing its runtime to zero. This way, update_curr_dl() stops
1672 * it and the bandwidth timer will wake it up and will give it
1673 * new scheduling parameters (thanks to dl_yielded=1).
1675 rq
->curr
->dl
.dl_yielded
= 1;
1677 update_rq_clock(rq
);
1680 * Tell update_rq_clock() that we've just updated,
1681 * so we don't do microscopic update in schedule()
1682 * and double the fastpath cost.
1684 rq_clock_skip_update(rq
);
1689 static int find_later_rq(struct task_struct
*task
);
1692 select_task_rq_dl(struct task_struct
*p
, int cpu
, int flags
)
1694 struct task_struct
*curr
;
1698 if (!(flags
& WF_TTWU
))
1704 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1707 * If we are dealing with a -deadline task, we must
1708 * decide where to wake it up.
1709 * If it has a later deadline and the current task
1710 * on this rq can't move (provided the waking task
1711 * can!) we prefer to send it somewhere else. On the
1712 * other hand, if it has a shorter deadline, we
1713 * try to make it stay here, it might be important.
1715 select_rq
= unlikely(dl_task(curr
)) &&
1716 (curr
->nr_cpus_allowed
< 2 ||
1717 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1718 p
->nr_cpus_allowed
> 1;
1721 * Take the capacity of the CPU into account to
1722 * ensure it fits the requirement of the task.
1724 if (static_branch_unlikely(&sched_asym_cpucapacity
))
1725 select_rq
|= !dl_task_fits_capacity(p
, cpu
);
1728 int target
= find_later_rq(p
);
1731 (dl_time_before(p
->dl
.deadline
,
1732 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1733 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1742 static void migrate_task_rq_dl(struct task_struct
*p
, int new_cpu __maybe_unused
)
1746 if (p
->state
!= TASK_WAKING
)
1751 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1752 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1753 * rq->lock is not... So, lock it
1755 raw_spin_lock(&rq
->lock
);
1756 if (p
->dl
.dl_non_contending
) {
1757 sub_running_bw(&p
->dl
, &rq
->dl
);
1758 p
->dl
.dl_non_contending
= 0;
1760 * If the timer handler is currently running and the
1761 * timer cannot be cancelled, inactive_task_timer()
1762 * will see that dl_not_contending is not set, and
1763 * will not touch the rq's active utilization,
1764 * so we are still safe.
1766 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
1769 sub_rq_bw(&p
->dl
, &rq
->dl
);
1770 raw_spin_unlock(&rq
->lock
);
1773 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1776 * Current can't be migrated, useless to reschedule,
1777 * let's hope p can move out.
1779 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1780 !cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
))
1784 * p is migratable, so let's not schedule it and
1785 * see if it is pushed or pulled somewhere else.
1787 if (p
->nr_cpus_allowed
!= 1 &&
1788 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
))
1794 static int balance_dl(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1796 if (!on_dl_rq(&p
->dl
) && need_pull_dl_task(rq
, p
)) {
1798 * This is OK, because current is on_cpu, which avoids it being
1799 * picked for load-balance and preemption/IRQs are still
1800 * disabled avoiding further scheduler activity on it and we've
1801 * not yet started the picking loop.
1803 rq_unpin_lock(rq
, rf
);
1805 rq_repin_lock(rq
, rf
);
1808 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
);
1810 #endif /* CONFIG_SMP */
1813 * Only called when both the current and waking task are -deadline
1816 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1819 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1826 * In the unlikely case current and p have the same deadline
1827 * let us try to decide what's the best thing to do...
1829 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1830 !test_tsk_need_resched(rq
->curr
))
1831 check_preempt_equal_dl(rq
, p
);
1832 #endif /* CONFIG_SMP */
1835 #ifdef CONFIG_SCHED_HRTICK
1836 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1838 hrtick_start(rq
, p
->dl
.runtime
);
1840 #else /* !CONFIG_SCHED_HRTICK */
1841 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1846 static void set_next_task_dl(struct rq
*rq
, struct task_struct
*p
, bool first
)
1848 p
->se
.exec_start
= rq_clock_task(rq
);
1850 /* You can't push away the running task */
1851 dequeue_pushable_dl_task(rq
, p
);
1856 if (hrtick_enabled(rq
))
1857 start_hrtick_dl(rq
, p
);
1859 if (rq
->curr
->sched_class
!= &dl_sched_class
)
1860 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
1862 deadline_queue_push_tasks(rq
);
1865 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1866 struct dl_rq
*dl_rq
)
1868 struct rb_node
*left
= rb_first_cached(&dl_rq
->root
);
1873 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1876 static struct task_struct
*pick_next_task_dl(struct rq
*rq
)
1878 struct sched_dl_entity
*dl_se
;
1879 struct dl_rq
*dl_rq
= &rq
->dl
;
1880 struct task_struct
*p
;
1882 if (!sched_dl_runnable(rq
))
1885 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1887 p
= dl_task_of(dl_se
);
1888 set_next_task_dl(rq
, p
, true);
1892 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1896 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1897 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1898 enqueue_pushable_dl_task(rq
, p
);
1902 * scheduler tick hitting a task of our scheduling class.
1904 * NOTE: This function can be called remotely by the tick offload that
1905 * goes along full dynticks. Therefore no local assumption can be made
1906 * and everything must be accessed through the @rq and @curr passed in
1909 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1913 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1915 * Even when we have runtime, update_curr_dl() might have resulted in us
1916 * not being the leftmost task anymore. In that case NEED_RESCHED will
1917 * be set and schedule() will start a new hrtick for the next task.
1919 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1920 is_leftmost(p
, &rq
->dl
))
1921 start_hrtick_dl(rq
, p
);
1924 static void task_fork_dl(struct task_struct
*p
)
1927 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1934 /* Only try algorithms three times */
1935 #define DL_MAX_TRIES 3
1937 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1939 if (!task_running(rq
, p
) &&
1940 cpumask_test_cpu(cpu
, &p
->cpus_mask
))
1946 * Return the earliest pushable rq's task, which is suitable to be executed
1947 * on the CPU, NULL otherwise:
1949 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1951 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
;
1952 struct task_struct
*p
= NULL
;
1954 if (!has_pushable_dl_tasks(rq
))
1959 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1961 if (pick_dl_task(rq
, p
, cpu
))
1964 next_node
= rb_next(next_node
);
1971 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1973 static int find_later_rq(struct task_struct
*task
)
1975 struct sched_domain
*sd
;
1976 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1977 int this_cpu
= smp_processor_id();
1978 int cpu
= task_cpu(task
);
1980 /* Make sure the mask is initialized first */
1981 if (unlikely(!later_mask
))
1984 if (task
->nr_cpus_allowed
== 1)
1988 * We have to consider system topology and task affinity
1989 * first, then we can look for a suitable CPU.
1991 if (!cpudl_find(&task_rq(task
)->rd
->cpudl
, task
, later_mask
))
1995 * If we are here, some targets have been found, including
1996 * the most suitable which is, among the runqueues where the
1997 * current tasks have later deadlines than the task's one, the
1998 * rq with the latest possible one.
2000 * Now we check how well this matches with task's
2001 * affinity and system topology.
2003 * The last CPU where the task run is our first
2004 * guess, since it is most likely cache-hot there.
2006 if (cpumask_test_cpu(cpu
, later_mask
))
2009 * Check if this_cpu is to be skipped (i.e., it is
2010 * not in the mask) or not.
2012 if (!cpumask_test_cpu(this_cpu
, later_mask
))
2016 for_each_domain(cpu
, sd
) {
2017 if (sd
->flags
& SD_WAKE_AFFINE
) {
2021 * If possible, preempting this_cpu is
2022 * cheaper than migrating.
2024 if (this_cpu
!= -1 &&
2025 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
2030 best_cpu
= cpumask_any_and_distribute(later_mask
,
2031 sched_domain_span(sd
));
2033 * Last chance: if a CPU being in both later_mask
2034 * and current sd span is valid, that becomes our
2035 * choice. Of course, the latest possible CPU is
2036 * already under consideration through later_mask.
2038 if (best_cpu
< nr_cpu_ids
) {
2047 * At this point, all our guesses failed, we just return
2048 * 'something', and let the caller sort the things out.
2053 cpu
= cpumask_any_distribute(later_mask
);
2054 if (cpu
< nr_cpu_ids
)
2060 /* Locks the rq it finds */
2061 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
2063 struct rq
*later_rq
= NULL
;
2067 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
2068 cpu
= find_later_rq(task
);
2070 if ((cpu
== -1) || (cpu
== rq
->cpu
))
2073 later_rq
= cpu_rq(cpu
);
2075 if (later_rq
->dl
.dl_nr_running
&&
2076 !dl_time_before(task
->dl
.deadline
,
2077 later_rq
->dl
.earliest_dl
.curr
)) {
2079 * Target rq has tasks of equal or earlier deadline,
2080 * retrying does not release any lock and is unlikely
2081 * to yield a different result.
2087 /* Retry if something changed. */
2088 if (double_lock_balance(rq
, later_rq
)) {
2089 if (unlikely(task_rq(task
) != rq
||
2090 !cpumask_test_cpu(later_rq
->cpu
, &task
->cpus_mask
) ||
2091 task_running(rq
, task
) ||
2093 !task_on_rq_queued(task
))) {
2094 double_unlock_balance(rq
, later_rq
);
2101 * If the rq we found has no -deadline task, or
2102 * its earliest one has a later deadline than our
2103 * task, the rq is a good one.
2105 if (!later_rq
->dl
.dl_nr_running
||
2106 dl_time_before(task
->dl
.deadline
,
2107 later_rq
->dl
.earliest_dl
.curr
))
2110 /* Otherwise we try again. */
2111 double_unlock_balance(rq
, later_rq
);
2118 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
2120 struct task_struct
*p
;
2122 if (!has_pushable_dl_tasks(rq
))
2125 p
= rb_entry(rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
,
2126 struct task_struct
, pushable_dl_tasks
);
2128 BUG_ON(rq
->cpu
!= task_cpu(p
));
2129 BUG_ON(task_current(rq
, p
));
2130 BUG_ON(p
->nr_cpus_allowed
<= 1);
2132 BUG_ON(!task_on_rq_queued(p
));
2133 BUG_ON(!dl_task(p
));
2139 * See if the non running -deadline tasks on this rq
2140 * can be sent to some other CPU where they can preempt
2141 * and start executing.
2143 static int push_dl_task(struct rq
*rq
)
2145 struct task_struct
*next_task
;
2146 struct rq
*later_rq
;
2149 if (!rq
->dl
.overloaded
)
2152 next_task
= pick_next_pushable_dl_task(rq
);
2157 if (is_migration_disabled(next_task
))
2160 if (WARN_ON(next_task
== rq
->curr
))
2164 * If next_task preempts rq->curr, and rq->curr
2165 * can move away, it makes sense to just reschedule
2166 * without going further in pushing next_task.
2168 if (dl_task(rq
->curr
) &&
2169 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
2170 rq
->curr
->nr_cpus_allowed
> 1) {
2175 /* We might release rq lock */
2176 get_task_struct(next_task
);
2178 /* Will lock the rq it'll find */
2179 later_rq
= find_lock_later_rq(next_task
, rq
);
2181 struct task_struct
*task
;
2184 * We must check all this again, since
2185 * find_lock_later_rq releases rq->lock and it is
2186 * then possible that next_task has migrated.
2188 task
= pick_next_pushable_dl_task(rq
);
2189 if (task
== next_task
) {
2191 * The task is still there. We don't try
2192 * again, some other CPU will pull it when ready.
2201 put_task_struct(next_task
);
2206 deactivate_task(rq
, next_task
, 0);
2207 set_task_cpu(next_task
, later_rq
->cpu
);
2210 * Update the later_rq clock here, because the clock is used
2211 * by the cpufreq_update_util() inside __add_running_bw().
2213 update_rq_clock(later_rq
);
2214 activate_task(later_rq
, next_task
, ENQUEUE_NOCLOCK
);
2217 resched_curr(later_rq
);
2219 double_unlock_balance(rq
, later_rq
);
2222 put_task_struct(next_task
);
2227 static void push_dl_tasks(struct rq
*rq
)
2229 /* push_dl_task() will return true if it moved a -deadline task */
2230 while (push_dl_task(rq
))
2234 static void pull_dl_task(struct rq
*this_rq
)
2236 int this_cpu
= this_rq
->cpu
, cpu
;
2237 struct task_struct
*p
, *push_task
;
2238 bool resched
= false;
2240 u64 dmin
= LONG_MAX
;
2242 if (likely(!dl_overloaded(this_rq
)))
2246 * Match the barrier from dl_set_overloaded; this guarantees that if we
2247 * see overloaded we must also see the dlo_mask bit.
2251 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
2252 if (this_cpu
== cpu
)
2255 src_rq
= cpu_rq(cpu
);
2258 * It looks racy, abd it is! However, as in sched_rt.c,
2259 * we are fine with this.
2261 if (this_rq
->dl
.dl_nr_running
&&
2262 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
2263 src_rq
->dl
.earliest_dl
.next
))
2266 /* Might drop this_rq->lock */
2268 double_lock_balance(this_rq
, src_rq
);
2271 * If there are no more pullable tasks on the
2272 * rq, we're done with it.
2274 if (src_rq
->dl
.dl_nr_running
<= 1)
2277 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
2280 * We found a task to be pulled if:
2281 * - it preempts our current (if there's one),
2282 * - it will preempt the last one we pulled (if any).
2284 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
2285 (!this_rq
->dl
.dl_nr_running
||
2286 dl_time_before(p
->dl
.deadline
,
2287 this_rq
->dl
.earliest_dl
.curr
))) {
2288 WARN_ON(p
== src_rq
->curr
);
2289 WARN_ON(!task_on_rq_queued(p
));
2292 * Then we pull iff p has actually an earlier
2293 * deadline than the current task of its runqueue.
2295 if (dl_time_before(p
->dl
.deadline
,
2296 src_rq
->curr
->dl
.deadline
))
2299 if (is_migration_disabled(p
)) {
2300 push_task
= get_push_task(src_rq
);
2302 deactivate_task(src_rq
, p
, 0);
2303 set_task_cpu(p
, this_cpu
);
2304 activate_task(this_rq
, p
, 0);
2305 dmin
= p
->dl
.deadline
;
2309 /* Is there any other task even earlier? */
2312 double_unlock_balance(this_rq
, src_rq
);
2315 raw_spin_unlock(&this_rq
->lock
);
2316 stop_one_cpu_nowait(src_rq
->cpu
, push_cpu_stop
,
2317 push_task
, &src_rq
->push_work
);
2318 raw_spin_lock(&this_rq
->lock
);
2323 resched_curr(this_rq
);
2327 * Since the task is not running and a reschedule is not going to happen
2328 * anytime soon on its runqueue, we try pushing it away now.
2330 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
2332 if (!task_running(rq
, p
) &&
2333 !test_tsk_need_resched(rq
->curr
) &&
2334 p
->nr_cpus_allowed
> 1 &&
2335 dl_task(rq
->curr
) &&
2336 (rq
->curr
->nr_cpus_allowed
< 2 ||
2337 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
2342 static void set_cpus_allowed_dl(struct task_struct
*p
,
2343 const struct cpumask
*new_mask
,
2346 struct root_domain
*src_rd
;
2349 BUG_ON(!dl_task(p
));
2354 * Migrating a SCHED_DEADLINE task between exclusive
2355 * cpusets (different root_domains) entails a bandwidth
2356 * update. We already made space for us in the destination
2357 * domain (see cpuset_can_attach()).
2359 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
2360 struct dl_bw
*src_dl_b
;
2362 src_dl_b
= dl_bw_of(cpu_of(rq
));
2364 * We now free resources of the root_domain we are migrating
2365 * off. In the worst case, sched_setattr() may temporary fail
2366 * until we complete the update.
2368 raw_spin_lock(&src_dl_b
->lock
);
2369 __dl_sub(src_dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
2370 raw_spin_unlock(&src_dl_b
->lock
);
2373 set_cpus_allowed_common(p
, new_mask
, flags
);
2376 /* Assumes rq->lock is held */
2377 static void rq_online_dl(struct rq
*rq
)
2379 if (rq
->dl
.overloaded
)
2380 dl_set_overload(rq
);
2382 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2383 if (rq
->dl
.dl_nr_running
> 0)
2384 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
2387 /* Assumes rq->lock is held */
2388 static void rq_offline_dl(struct rq
*rq
)
2390 if (rq
->dl
.overloaded
)
2391 dl_clear_overload(rq
);
2393 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
2394 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2397 void __init
init_sched_dl_class(void)
2401 for_each_possible_cpu(i
)
2402 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
2403 GFP_KERNEL
, cpu_to_node(i
));
2406 void dl_add_task_root_domain(struct task_struct
*p
)
2412 rq
= task_rq_lock(p
, &rf
);
2416 dl_b
= &rq
->rd
->dl_bw
;
2417 raw_spin_lock(&dl_b
->lock
);
2419 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
2421 raw_spin_unlock(&dl_b
->lock
);
2424 task_rq_unlock(rq
, p
, &rf
);
2427 void dl_clear_root_domain(struct root_domain
*rd
)
2429 unsigned long flags
;
2431 raw_spin_lock_irqsave(&rd
->dl_bw
.lock
, flags
);
2432 rd
->dl_bw
.total_bw
= 0;
2433 raw_spin_unlock_irqrestore(&rd
->dl_bw
.lock
, flags
);
2436 #endif /* CONFIG_SMP */
2438 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
2441 * task_non_contending() can start the "inactive timer" (if the 0-lag
2442 * time is in the future). If the task switches back to dl before
2443 * the "inactive timer" fires, it can continue to consume its current
2444 * runtime using its current deadline. If it stays outside of
2445 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2446 * will reset the task parameters.
2448 if (task_on_rq_queued(p
) && p
->dl
.dl_runtime
)
2449 task_non_contending(p
);
2451 if (!task_on_rq_queued(p
)) {
2453 * Inactive timer is armed. However, p is leaving DEADLINE and
2454 * might migrate away from this rq while continuing to run on
2455 * some other class. We need to remove its contribution from
2456 * this rq running_bw now, or sub_rq_bw (below) will complain.
2458 if (p
->dl
.dl_non_contending
)
2459 sub_running_bw(&p
->dl
, &rq
->dl
);
2460 sub_rq_bw(&p
->dl
, &rq
->dl
);
2464 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2465 * at the 0-lag time, because the task could have been migrated
2466 * while SCHED_OTHER in the meanwhile.
2468 if (p
->dl
.dl_non_contending
)
2469 p
->dl
.dl_non_contending
= 0;
2472 * Since this might be the only -deadline task on the rq,
2473 * this is the right place to try to pull some other one
2474 * from an overloaded CPU, if any.
2476 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
2479 deadline_queue_pull_task(rq
);
2483 * When switching to -deadline, we may overload the rq, then
2484 * we try to push someone off, if possible.
2486 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
2488 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
2491 /* If p is not queued we will update its parameters at next wakeup. */
2492 if (!task_on_rq_queued(p
)) {
2493 add_rq_bw(&p
->dl
, &rq
->dl
);
2498 if (rq
->curr
!= p
) {
2500 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
2501 deadline_queue_push_tasks(rq
);
2503 if (dl_task(rq
->curr
))
2504 check_preempt_curr_dl(rq
, p
, 0);
2511 * If the scheduling parameters of a -deadline task changed,
2512 * a push or pull operation might be needed.
2514 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
2517 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
2520 * This might be too much, but unfortunately
2521 * we don't have the old deadline value, and
2522 * we can't argue if the task is increasing
2523 * or lowering its prio, so...
2525 if (!rq
->dl
.overloaded
)
2526 deadline_queue_pull_task(rq
);
2529 * If we now have a earlier deadline task than p,
2530 * then reschedule, provided p is still on this
2533 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
2537 * Again, we don't know if p has a earlier
2538 * or later deadline, so let's blindly set a
2539 * (maybe not needed) rescheduling point.
2542 #endif /* CONFIG_SMP */
2546 DEFINE_SCHED_CLASS(dl
) = {
2548 .enqueue_task
= enqueue_task_dl
,
2549 .dequeue_task
= dequeue_task_dl
,
2550 .yield_task
= yield_task_dl
,
2552 .check_preempt_curr
= check_preempt_curr_dl
,
2554 .pick_next_task
= pick_next_task_dl
,
2555 .put_prev_task
= put_prev_task_dl
,
2556 .set_next_task
= set_next_task_dl
,
2559 .balance
= balance_dl
,
2560 .select_task_rq
= select_task_rq_dl
,
2561 .migrate_task_rq
= migrate_task_rq_dl
,
2562 .set_cpus_allowed
= set_cpus_allowed_dl
,
2563 .rq_online
= rq_online_dl
,
2564 .rq_offline
= rq_offline_dl
,
2565 .task_woken
= task_woken_dl
,
2566 .find_lock_rq
= find_lock_later_rq
,
2569 .task_tick
= task_tick_dl
,
2570 .task_fork
= task_fork_dl
,
2572 .prio_changed
= prio_changed_dl
,
2573 .switched_from
= switched_from_dl
,
2574 .switched_to
= switched_to_dl
,
2576 .update_curr
= update_curr_dl
,
2579 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2580 static u64 dl_generation
;
2582 int sched_dl_global_validate(void)
2584 u64 runtime
= global_rt_runtime();
2585 u64 period
= global_rt_period();
2586 u64 new_bw
= to_ratio(period
, runtime
);
2587 u64 gen
= ++dl_generation
;
2589 int cpu
, cpus
, ret
= 0;
2590 unsigned long flags
;
2593 * Here we want to check the bandwidth not being set to some
2594 * value smaller than the currently allocated bandwidth in
2595 * any of the root_domains.
2597 for_each_possible_cpu(cpu
) {
2598 rcu_read_lock_sched();
2600 if (dl_bw_visited(cpu
, gen
))
2603 dl_b
= dl_bw_of(cpu
);
2604 cpus
= dl_bw_cpus(cpu
);
2606 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2607 if (new_bw
* cpus
< dl_b
->total_bw
)
2609 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2612 rcu_read_unlock_sched();
2621 static void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
)
2623 if (global_rt_runtime() == RUNTIME_INF
) {
2624 dl_rq
->bw_ratio
= 1 << RATIO_SHIFT
;
2625 dl_rq
->extra_bw
= 1 << BW_SHIFT
;
2627 dl_rq
->bw_ratio
= to_ratio(global_rt_runtime(),
2628 global_rt_period()) >> (BW_SHIFT
- RATIO_SHIFT
);
2629 dl_rq
->extra_bw
= to_ratio(global_rt_period(),
2630 global_rt_runtime());
2634 void sched_dl_do_global(void)
2637 u64 gen
= ++dl_generation
;
2640 unsigned long flags
;
2642 def_dl_bandwidth
.dl_period
= global_rt_period();
2643 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
2645 if (global_rt_runtime() != RUNTIME_INF
)
2646 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
2648 for_each_possible_cpu(cpu
) {
2649 rcu_read_lock_sched();
2651 if (dl_bw_visited(cpu
, gen
)) {
2652 rcu_read_unlock_sched();
2656 dl_b
= dl_bw_of(cpu
);
2658 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2660 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2662 rcu_read_unlock_sched();
2663 init_dl_rq_bw_ratio(&cpu_rq(cpu
)->dl
);
2668 * We must be sure that accepting a new task (or allowing changing the
2669 * parameters of an existing one) is consistent with the bandwidth
2670 * constraints. If yes, this function also accordingly updates the currently
2671 * allocated bandwidth to reflect the new situation.
2673 * This function is called while holding p's rq->lock.
2675 int sched_dl_overflow(struct task_struct
*p
, int policy
,
2676 const struct sched_attr
*attr
)
2678 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2679 u64 runtime
= attr
->sched_runtime
;
2680 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2681 int cpus
, err
= -1, cpu
= task_cpu(p
);
2682 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
2685 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2688 /* !deadline task may carry old deadline bandwidth */
2689 if (new_bw
== p
->dl
.dl_bw
&& task_has_dl_policy(p
))
2693 * Either if a task, enters, leave, or stays -deadline but changes
2694 * its parameters, we may need to update accordingly the total
2695 * allocated bandwidth of the container.
2697 raw_spin_lock(&dl_b
->lock
);
2698 cpus
= dl_bw_cpus(cpu
);
2699 cap
= dl_bw_capacity(cpu
);
2701 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2702 !__dl_overflow(dl_b
, cap
, 0, new_bw
)) {
2703 if (hrtimer_active(&p
->dl
.inactive_timer
))
2704 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2705 __dl_add(dl_b
, new_bw
, cpus
);
2707 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2708 !__dl_overflow(dl_b
, cap
, p
->dl
.dl_bw
, new_bw
)) {
2710 * XXX this is slightly incorrect: when the task
2711 * utilization decreases, we should delay the total
2712 * utilization change until the task's 0-lag point.
2713 * But this would require to set the task's "inactive
2714 * timer" when the task is not inactive.
2716 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2717 __dl_add(dl_b
, new_bw
, cpus
);
2718 dl_change_utilization(p
, new_bw
);
2720 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2722 * Do not decrease the total deadline utilization here,
2723 * switched_from_dl() will take care to do it at the correct
2728 raw_spin_unlock(&dl_b
->lock
);
2734 * This function initializes the sched_dl_entity of a newly becoming
2735 * SCHED_DEADLINE task.
2737 * Only the static values are considered here, the actual runtime and the
2738 * absolute deadline will be properly calculated when the task is enqueued
2739 * for the first time with its new policy.
2741 void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
2743 struct sched_dl_entity
*dl_se
= &p
->dl
;
2745 dl_se
->dl_runtime
= attr
->sched_runtime
;
2746 dl_se
->dl_deadline
= attr
->sched_deadline
;
2747 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
2748 dl_se
->flags
= attr
->sched_flags
;
2749 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
2750 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
2753 void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
2755 struct sched_dl_entity
*dl_se
= &p
->dl
;
2757 attr
->sched_priority
= p
->rt_priority
;
2758 attr
->sched_runtime
= dl_se
->dl_runtime
;
2759 attr
->sched_deadline
= dl_se
->dl_deadline
;
2760 attr
->sched_period
= dl_se
->dl_period
;
2761 attr
->sched_flags
= dl_se
->flags
;
2765 * Default limits for DL period; on the top end we guard against small util
2766 * tasks still getting rediculous long effective runtimes, on the bottom end we
2767 * guard against timer DoS.
2769 unsigned int sysctl_sched_dl_period_max
= 1 << 22; /* ~4 seconds */
2770 unsigned int sysctl_sched_dl_period_min
= 100; /* 100 us */
2773 * This function validates the new parameters of a -deadline task.
2774 * We ask for the deadline not being zero, and greater or equal
2775 * than the runtime, as well as the period of being zero or
2776 * greater than deadline. Furthermore, we have to be sure that
2777 * user parameters are above the internal resolution of 1us (we
2778 * check sched_runtime only since it is always the smaller one) and
2779 * below 2^63 ns (we have to check both sched_deadline and
2780 * sched_period, as the latter can be zero).
2782 bool __checkparam_dl(const struct sched_attr
*attr
)
2784 u64 period
, max
, min
;
2786 /* special dl tasks don't actually use any parameter */
2787 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2791 if (attr
->sched_deadline
== 0)
2795 * Since we truncate DL_SCALE bits, make sure we're at least
2798 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
2802 * Since we use the MSB for wrap-around and sign issues, make
2803 * sure it's not set (mind that period can be equal to zero).
2805 if (attr
->sched_deadline
& (1ULL << 63) ||
2806 attr
->sched_period
& (1ULL << 63))
2809 period
= attr
->sched_period
;
2811 period
= attr
->sched_deadline
;
2813 /* runtime <= deadline <= period (if period != 0) */
2814 if (period
< attr
->sched_deadline
||
2815 attr
->sched_deadline
< attr
->sched_runtime
)
2818 max
= (u64
)READ_ONCE(sysctl_sched_dl_period_max
) * NSEC_PER_USEC
;
2819 min
= (u64
)READ_ONCE(sysctl_sched_dl_period_min
) * NSEC_PER_USEC
;
2821 if (period
< min
|| period
> max
)
2828 * This function clears the sched_dl_entity static params.
2830 void __dl_clear_params(struct task_struct
*p
)
2832 struct sched_dl_entity
*dl_se
= &p
->dl
;
2834 dl_se
->dl_runtime
= 0;
2835 dl_se
->dl_deadline
= 0;
2836 dl_se
->dl_period
= 0;
2839 dl_se
->dl_density
= 0;
2841 dl_se
->dl_throttled
= 0;
2842 dl_se
->dl_yielded
= 0;
2843 dl_se
->dl_non_contending
= 0;
2844 dl_se
->dl_overrun
= 0;
2846 #ifdef CONFIG_RT_MUTEXES
2847 dl_se
->pi_se
= dl_se
;
2851 bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
)
2853 struct sched_dl_entity
*dl_se
= &p
->dl
;
2855 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
2856 dl_se
->dl_deadline
!= attr
->sched_deadline
||
2857 dl_se
->dl_period
!= attr
->sched_period
||
2858 dl_se
->flags
!= attr
->sched_flags
)
2865 int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
)
2867 unsigned long flags
, cap
;
2868 unsigned int dest_cpu
;
2873 dest_cpu
= cpumask_any_and(cpu_active_mask
, cs_cpus_allowed
);
2875 rcu_read_lock_sched();
2876 dl_b
= dl_bw_of(dest_cpu
);
2877 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2878 cap
= dl_bw_capacity(dest_cpu
);
2879 overflow
= __dl_overflow(dl_b
, cap
, 0, p
->dl
.dl_bw
);
2884 * We reserve space for this task in the destination
2885 * root_domain, as we can't fail after this point.
2886 * We will free resources in the source root_domain
2887 * later on (see set_cpus_allowed_dl()).
2889 int cpus
= dl_bw_cpus(dest_cpu
);
2891 __dl_add(dl_b
, p
->dl
.dl_bw
, cpus
);
2894 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2895 rcu_read_unlock_sched();
2900 int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2901 const struct cpumask
*trial
)
2903 int ret
= 1, trial_cpus
;
2904 struct dl_bw
*cur_dl_b
;
2905 unsigned long flags
;
2907 rcu_read_lock_sched();
2908 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
2909 trial_cpus
= cpumask_weight(trial
);
2911 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
2912 if (cur_dl_b
->bw
!= -1 &&
2913 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
2915 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
2916 rcu_read_unlock_sched();
2921 bool dl_cpu_busy(unsigned int cpu
)
2923 unsigned long flags
, cap
;
2927 rcu_read_lock_sched();
2928 dl_b
= dl_bw_of(cpu
);
2929 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2930 cap
= dl_bw_capacity(cpu
);
2931 overflow
= __dl_overflow(dl_b
, cap
, 0, 0);
2932 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2933 rcu_read_unlock_sched();
2939 #ifdef CONFIG_SCHED_DEBUG
2940 void print_dl_stats(struct seq_file
*m
, int cpu
)
2942 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
2944 #endif /* CONFIG_SCHED_DEBUG */