Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / sched / fair.c
blob04a3ce20da671e456905fe56a7496b255c2c4d3b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include "sched.h"
26 * Targeted preemption latency for CPU-bound tasks:
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
44 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
65 static unsigned int sched_nr_latency = 8;
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 * SCHED_OTHER wake-up granularity.
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
90 int _shift = 0;
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
100 #ifdef CONFIG_SMP
102 * For asym packing, by default the lower numbered CPU has higher priority.
104 int __weak arch_asym_cpu_priority(int cpu)
106 return -cpu;
110 * The margin used when comparing utilization with CPU capacity.
112 * (default: ~20%)
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
116 #endif
118 #ifdef CONFIG_CFS_BANDWIDTH
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
127 * (default: 5 msec, units: microseconds)
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
134 lw->weight += inc;
135 lw->inv_weight = 0;
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
140 lw->weight -= dec;
141 lw->inv_weight = 0;
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
146 lw->weight = w;
147 lw->inv_weight = 0;
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
157 * This idea comes from the SD scheduler of Con Kolivas:
159 static unsigned int get_update_sysctl_factor(void)
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
177 return factor;
180 static void update_sysctl(void)
182 unsigned int factor = get_update_sysctl_factor();
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
192 void __init sched_init_granularity(void)
194 update_sysctl();
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
200 static void __update_inv_weight(struct load_weight *lw)
202 unsigned long w;
204 if (likely(lw->inv_weight))
205 return;
207 w = scale_load_down(lw->weight);
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
234 __update_inv_weight(lw);
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
243 fact = mul_u32_u32(fact, lw->inv_weight);
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
250 return mul_u64_u32_shr(delta_exec, fact, shift);
254 const struct sched_class fair_sched_class;
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 return p->se.cfs_rq;
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 return se->cfs_rq;
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 return grp->my_q;
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
290 if (!path)
291 return;
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
309 cfs_rq->on_list = 1;
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
339 if (!cfs_rq->tg->parent) {
341 * cfs rq without parent should be put
342 * at the tail of the list.
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
406 return NULL;
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
411 return se->parent;
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417 int se_depth, pse_depth;
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
448 static inline struct task_struct *task_of(struct sched_entity *se)
450 return container_of(se, struct task_struct, se);
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
458 return &task_rq(p)->cfs;
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
466 return &rq->cfs;
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
472 return NULL;
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
477 if (path)
478 strlcpy(path, "(null)", len);
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 return true;
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
499 return NULL;
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
522 return max_vruntime;
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
531 return min_vruntime;
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
537 return (s64)(a->vruntime - b->vruntime) < 0;
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
545 u64 vruntime = cfs_rq->min_vruntime;
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
573 * Enqueue an entity into the rb-tree:
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
583 * Find the right place in the rbtree:
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
614 if (!left)
615 return NULL;
617 return rb_entry(left, struct sched_entity, run_node);
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
622 struct rb_node *next = rb_next(&se->run_node);
624 if (!next)
625 return NULL;
627 return rb_entry(next, struct sched_entity, run_node);
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
635 if (!last)
636 return NULL;
638 return rb_entry(last, struct sched_entity, run_node);
641 /**************************************************************
642 * Scheduling class statistics methods:
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
651 if (ret || !write)
652 return ret;
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
664 return 0;
666 #endif
669 * delta /= w
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
676 return delta;
680 * The idea is to set a period in which each task runs once.
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
685 * p = (nr <= nl) ? l : l*nr/nl
687 static u64 __sched_period(unsigned long nr_running)
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
699 * s = p*P[w/rw]
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
705 for_each_sched_entity(se) {
706 struct load_weight *load;
707 struct load_weight lw;
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
712 if (unlikely(!se->on_rq)) {
713 lw = cfs_rq->load;
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
718 slice = __calc_delta(slice, se->load.weight, load);
720 return slice;
724 * We calculate the vruntime slice of a to-be-inserted task.
726 * vs = s/w
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
743 struct sched_avg *sa = &se->avg;
745 memset(sa, 0, sizeof(*sa));
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 static void attach_entity_cfs_rq(struct sched_entity *se);
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
776 * where n denotes the nth task and cpu_scale the CPU capacity.
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
787 void post_init_entity_util_avg(struct task_struct *p)
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
807 sa->runnable_avg = sa->util_avg;
809 if (p->sched_class != &fair_sched_class) {
811 * For !fair tasks do:
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
817 * such that the next switched_to_fair() has the
818 * expected state.
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
824 attach_entity_cfs_rq(se);
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
831 void post_init_entity_util_avg(struct task_struct *p)
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
837 #endif /* CONFIG_SMP */
840 * Update the current task's runtime statistics.
842 static void update_curr(struct cfs_rq *cfs_rq)
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
848 if (unlikely(!curr))
849 return;
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
855 curr->exec_start = now;
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cgroup_account_cputime(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
877 static void update_curr_fair(struct rq *rq)
879 update_curr(cfs_rq_of(&rq->curr->se));
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
885 u64 wait_start, prev_wait_start;
887 if (!schedstat_enabled())
888 return;
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
897 __schedstat_set(se->statistics.wait_start, wait_start);
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
903 struct task_struct *p;
904 u64 delta;
906 if (!schedstat_enabled())
907 return;
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
913 * scenario.
915 if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 return;
918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
920 if (entity_is_task(se)) {
921 p = task_of(se);
922 if (task_on_rq_migrating(p)) {
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
928 __schedstat_set(se->statistics.wait_start, delta);
929 return;
931 trace_sched_stat_wait(p, delta);
934 __schedstat_set(se->statistics.wait_max,
935 max(schedstat_val(se->statistics.wait_max), delta));
936 __schedstat_inc(se->statistics.wait_count);
937 __schedstat_add(se->statistics.wait_sum, delta);
938 __schedstat_set(se->statistics.wait_start, 0);
941 static inline void
942 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
944 struct task_struct *tsk = NULL;
945 u64 sleep_start, block_start;
947 if (!schedstat_enabled())
948 return;
950 sleep_start = schedstat_val(se->statistics.sleep_start);
951 block_start = schedstat_val(se->statistics.block_start);
953 if (entity_is_task(se))
954 tsk = task_of(se);
956 if (sleep_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
959 if ((s64)delta < 0)
960 delta = 0;
962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
963 __schedstat_set(se->statistics.sleep_max, delta);
965 __schedstat_set(se->statistics.sleep_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
968 if (tsk) {
969 account_scheduler_latency(tsk, delta >> 10, 1);
970 trace_sched_stat_sleep(tsk, delta);
973 if (block_start) {
974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
976 if ((s64)delta < 0)
977 delta = 0;
979 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
980 __schedstat_set(se->statistics.block_max, delta);
982 __schedstat_set(se->statistics.block_start, 0);
983 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
985 if (tsk) {
986 if (tsk->in_iowait) {
987 __schedstat_add(se->statistics.iowait_sum, delta);
988 __schedstat_inc(se->statistics.iowait_count);
989 trace_sched_stat_iowait(tsk, delta);
992 trace_sched_stat_blocked(tsk, delta);
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
999 if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 profile_hits(SLEEP_PROFILING,
1001 (void *)get_wchan(tsk),
1002 delta >> 20);
1004 account_scheduler_latency(tsk, delta >> 10, 0);
1010 * Task is being enqueued - update stats:
1012 static inline void
1013 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1015 if (!schedstat_enabled())
1016 return;
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1022 if (se != cfs_rq->curr)
1023 update_stats_wait_start(cfs_rq, se);
1025 if (flags & ENQUEUE_WAKEUP)
1026 update_stats_enqueue_sleeper(cfs_rq, se);
1029 static inline void
1030 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1033 if (!schedstat_enabled())
1034 return;
1037 * Mark the end of the wait period if dequeueing a
1038 * waiting task:
1040 if (se != cfs_rq->curr)
1041 update_stats_wait_end(cfs_rq, se);
1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 struct task_struct *tsk = task_of(se);
1046 if (tsk->state & TASK_INTERRUPTIBLE)
1047 __schedstat_set(se->statistics.sleep_start,
1048 rq_clock(rq_of(cfs_rq)));
1049 if (tsk->state & TASK_UNINTERRUPTIBLE)
1050 __schedstat_set(se->statistics.block_start,
1051 rq_clock(rq_of(cfs_rq)));
1056 * We are picking a new current task - update its stats:
1058 static inline void
1059 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1062 * We are starting a new run period:
1064 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1067 /**************************************************
1068 * Scheduling class queueing methods:
1071 #ifdef CONFIG_NUMA_BALANCING
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
1077 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1080 /* Portion of address space to scan in MB */
1081 unsigned int sysctl_numa_balancing_scan_size = 256;
1083 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1086 struct numa_group {
1087 refcount_t refcount;
1089 spinlock_t lock; /* nr_tasks, tasks */
1090 int nr_tasks;
1091 pid_t gid;
1092 int active_nodes;
1094 struct rcu_head rcu;
1095 unsigned long total_faults;
1096 unsigned long max_faults_cpu;
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1102 unsigned long *faults_cpu;
1103 unsigned long faults[];
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1110 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1112 return rcu_dereference_check(p->numa_group, p == current ||
1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1116 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1118 return rcu_dereference_protected(p->numa_group, p == current);
1121 static inline unsigned long group_faults_priv(struct numa_group *ng);
1122 static inline unsigned long group_faults_shared(struct numa_group *ng);
1124 static unsigned int task_nr_scan_windows(struct task_struct *p)
1126 unsigned long rss = 0;
1127 unsigned long nr_scan_pages;
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 * on resident pages
1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 rss = get_mm_rss(p->mm);
1136 if (!rss)
1137 rss = nr_scan_pages;
1139 rss = round_up(rss, nr_scan_pages);
1140 return rss / nr_scan_pages;
1143 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144 #define MAX_SCAN_WINDOW 2560
1146 static unsigned int task_scan_min(struct task_struct *p)
1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1149 unsigned int scan, floor;
1150 unsigned int windows = 1;
1152 if (scan_size < MAX_SCAN_WINDOW)
1153 windows = MAX_SCAN_WINDOW / scan_size;
1154 floor = 1000 / windows;
1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 return max_t(unsigned int, floor, scan);
1160 static unsigned int task_scan_start(struct task_struct *p)
1162 unsigned long smin = task_scan_min(p);
1163 unsigned long period = smin;
1164 struct numa_group *ng;
1166 /* Scale the maximum scan period with the amount of shared memory. */
1167 rcu_read_lock();
1168 ng = rcu_dereference(p->numa_group);
1169 if (ng) {
1170 unsigned long shared = group_faults_shared(ng);
1171 unsigned long private = group_faults_priv(ng);
1173 period *= refcount_read(&ng->refcount);
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1177 rcu_read_unlock();
1179 return max(smin, period);
1182 static unsigned int task_scan_max(struct task_struct *p)
1184 unsigned long smin = task_scan_min(p);
1185 unsigned long smax;
1186 struct numa_group *ng;
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1191 /* Scale the maximum scan period with the amount of shared memory. */
1192 ng = deref_curr_numa_group(p);
1193 if (ng) {
1194 unsigned long shared = group_faults_shared(ng);
1195 unsigned long private = group_faults_priv(ng);
1196 unsigned long period = smax;
1198 period *= refcount_read(&ng->refcount);
1199 period *= shared + 1;
1200 period /= private + shared + 1;
1202 smax = max(smax, period);
1205 return max(smin, smax);
1208 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1214 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1220 /* Shared or private faults. */
1221 #define NR_NUMA_HINT_FAULT_TYPES 2
1223 /* Memory and CPU locality */
1224 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1226 /* Averaged statistics, and temporary buffers. */
1227 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1229 pid_t task_numa_group_id(struct task_struct *p)
1231 struct numa_group *ng;
1232 pid_t gid = 0;
1234 rcu_read_lock();
1235 ng = rcu_dereference(p->numa_group);
1236 if (ng)
1237 gid = ng->gid;
1238 rcu_read_unlock();
1240 return gid;
1244 * The averaged statistics, shared & private, memory & CPU,
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1249 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1254 static inline unsigned long task_faults(struct task_struct *p, int nid)
1256 if (!p->numa_faults)
1257 return 0;
1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 static inline unsigned long group_faults(struct task_struct *p, int nid)
1265 struct numa_group *ng = deref_task_numa_group(p);
1267 if (!ng)
1268 return 0;
1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1274 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1280 static inline unsigned long group_faults_priv(struct numa_group *ng)
1282 unsigned long faults = 0;
1283 int node;
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1289 return faults;
1292 static inline unsigned long group_faults_shared(struct numa_group *ng)
1294 unsigned long faults = 0;
1295 int node;
1297 for_each_online_node(node) {
1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1301 return faults;
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1309 #define ACTIVE_NODE_FRACTION 3
1311 static bool numa_is_active_node(int nid, struct numa_group *ng)
1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1316 /* Handle placement on systems where not all nodes are directly connected. */
1317 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 int maxdist, bool task)
1320 unsigned long score = 0;
1321 int node;
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1327 if (sched_numa_topology_type == NUMA_DIRECT)
1328 return 0;
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1334 for_each_online_node(node) {
1335 unsigned long faults;
1336 int dist = node_distance(nid, node);
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1342 if (dist == sched_max_numa_distance || node == nid)
1343 continue;
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1352 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1353 dist >= maxdist)
1354 continue;
1356 /* Add up the faults from nearby nodes. */
1357 if (task)
1358 faults = task_faults(p, node);
1359 else
1360 faults = group_faults(p, node);
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 faults *= (sched_max_numa_distance - dist);
1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1375 score += faults;
1378 return score;
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1387 static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 int dist)
1390 unsigned long faults, total_faults;
1392 if (!p->numa_faults)
1393 return 0;
1395 total_faults = p->total_numa_faults;
1397 if (!total_faults)
1398 return 0;
1400 faults = task_faults(p, nid);
1401 faults += score_nearby_nodes(p, nid, dist, true);
1403 return 1000 * faults / total_faults;
1406 static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 int dist)
1409 struct numa_group *ng = deref_task_numa_group(p);
1410 unsigned long faults, total_faults;
1412 if (!ng)
1413 return 0;
1415 total_faults = ng->total_faults;
1417 if (!total_faults)
1418 return 0;
1420 faults = group_faults(p, nid);
1421 faults += score_nearby_nodes(p, nid, dist, false);
1423 return 1000 * faults / total_faults;
1426 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 int src_nid, int dst_cpu)
1429 struct numa_group *ng = deref_curr_numa_group(p);
1430 int dst_nid = cpu_to_node(dst_cpu);
1431 int last_cpupid, this_cpupid;
1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1440 * executed below.
1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 return true;
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1463 if (!cpupid_pid_unset(last_cpupid) &&
1464 cpupid_to_nid(last_cpupid) != dst_nid)
1465 return false;
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p, last_cpupid))
1469 return true;
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1472 if (!ng)
1473 return true;
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 ACTIVE_NODE_FRACTION)
1481 return true;
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1496 * 'numa_type' describes the node at the moment of load balancing.
1498 enum numa_type {
1499 /* The node has spare capacity that can be used to run more tasks. */
1500 node_has_spare = 0,
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1505 node_fully_busy,
1507 * The node is overloaded and can't provide expected CPU cycles to all
1508 * tasks.
1510 node_overloaded
1513 /* Cached statistics for all CPUs within a node */
1514 struct numa_stats {
1515 unsigned long load;
1516 unsigned long runnable;
1517 unsigned long util;
1518 /* Total compute capacity of CPUs on a node */
1519 unsigned long compute_capacity;
1520 unsigned int nr_running;
1521 unsigned int weight;
1522 enum numa_type node_type;
1523 int idle_cpu;
1526 static inline bool is_core_idle(int cpu)
1528 #ifdef CONFIG_SCHED_SMT
1529 int sibling;
1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 if (cpu == sibling)
1533 continue;
1535 if (!idle_cpu(cpu))
1536 return false;
1538 #endif
1540 return true;
1543 struct task_numa_env {
1544 struct task_struct *p;
1546 int src_cpu, src_nid;
1547 int dst_cpu, dst_nid;
1549 struct numa_stats src_stats, dst_stats;
1551 int imbalance_pct;
1552 int dist;
1554 struct task_struct *best_task;
1555 long best_imp;
1556 int best_cpu;
1559 static unsigned long cpu_load(struct rq *rq);
1560 static unsigned long cpu_runnable(struct rq *rq);
1561 static unsigned long cpu_util(int cpu);
1562 static inline long adjust_numa_imbalance(int imbalance,
1563 int dst_running, int dst_weight);
1565 static inline enum
1566 numa_type numa_classify(unsigned int imbalance_pct,
1567 struct numa_stats *ns)
1569 if ((ns->nr_running > ns->weight) &&
1570 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1571 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1572 return node_overloaded;
1574 if ((ns->nr_running < ns->weight) ||
1575 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1576 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1577 return node_has_spare;
1579 return node_fully_busy;
1582 #ifdef CONFIG_SCHED_SMT
1583 /* Forward declarations of select_idle_sibling helpers */
1584 static inline bool test_idle_cores(int cpu, bool def);
1585 static inline int numa_idle_core(int idle_core, int cpu)
1587 if (!static_branch_likely(&sched_smt_present) ||
1588 idle_core >= 0 || !test_idle_cores(cpu, false))
1589 return idle_core;
1592 * Prefer cores instead of packing HT siblings
1593 * and triggering future load balancing.
1595 if (is_core_idle(cpu))
1596 idle_core = cpu;
1598 return idle_core;
1600 #else
1601 static inline int numa_idle_core(int idle_core, int cpu)
1603 return idle_core;
1605 #endif
1608 * Gather all necessary information to make NUMA balancing placement
1609 * decisions that are compatible with standard load balancer. This
1610 * borrows code and logic from update_sg_lb_stats but sharing a
1611 * common implementation is impractical.
1613 static void update_numa_stats(struct task_numa_env *env,
1614 struct numa_stats *ns, int nid,
1615 bool find_idle)
1617 int cpu, idle_core = -1;
1619 memset(ns, 0, sizeof(*ns));
1620 ns->idle_cpu = -1;
1622 rcu_read_lock();
1623 for_each_cpu(cpu, cpumask_of_node(nid)) {
1624 struct rq *rq = cpu_rq(cpu);
1626 ns->load += cpu_load(rq);
1627 ns->runnable += cpu_runnable(rq);
1628 ns->util += cpu_util(cpu);
1629 ns->nr_running += rq->cfs.h_nr_running;
1630 ns->compute_capacity += capacity_of(cpu);
1632 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1633 if (READ_ONCE(rq->numa_migrate_on) ||
1634 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1635 continue;
1637 if (ns->idle_cpu == -1)
1638 ns->idle_cpu = cpu;
1640 idle_core = numa_idle_core(idle_core, cpu);
1643 rcu_read_unlock();
1645 ns->weight = cpumask_weight(cpumask_of_node(nid));
1647 ns->node_type = numa_classify(env->imbalance_pct, ns);
1649 if (idle_core >= 0)
1650 ns->idle_cpu = idle_core;
1653 static void task_numa_assign(struct task_numa_env *env,
1654 struct task_struct *p, long imp)
1656 struct rq *rq = cpu_rq(env->dst_cpu);
1658 /* Check if run-queue part of active NUMA balance. */
1659 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1660 int cpu;
1661 int start = env->dst_cpu;
1663 /* Find alternative idle CPU. */
1664 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1665 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1666 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1667 continue;
1670 env->dst_cpu = cpu;
1671 rq = cpu_rq(env->dst_cpu);
1672 if (!xchg(&rq->numa_migrate_on, 1))
1673 goto assign;
1676 /* Failed to find an alternative idle CPU */
1677 return;
1680 assign:
1682 * Clear previous best_cpu/rq numa-migrate flag, since task now
1683 * found a better CPU to move/swap.
1685 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1686 rq = cpu_rq(env->best_cpu);
1687 WRITE_ONCE(rq->numa_migrate_on, 0);
1690 if (env->best_task)
1691 put_task_struct(env->best_task);
1692 if (p)
1693 get_task_struct(p);
1695 env->best_task = p;
1696 env->best_imp = imp;
1697 env->best_cpu = env->dst_cpu;
1700 static bool load_too_imbalanced(long src_load, long dst_load,
1701 struct task_numa_env *env)
1703 long imb, old_imb;
1704 long orig_src_load, orig_dst_load;
1705 long src_capacity, dst_capacity;
1708 * The load is corrected for the CPU capacity available on each node.
1710 * src_load dst_load
1711 * ------------ vs ---------
1712 * src_capacity dst_capacity
1714 src_capacity = env->src_stats.compute_capacity;
1715 dst_capacity = env->dst_stats.compute_capacity;
1717 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1719 orig_src_load = env->src_stats.load;
1720 orig_dst_load = env->dst_stats.load;
1722 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1724 /* Would this change make things worse? */
1725 return (imb > old_imb);
1729 * Maximum NUMA importance can be 1998 (2*999);
1730 * SMALLIMP @ 30 would be close to 1998/64.
1731 * Used to deter task migration.
1733 #define SMALLIMP 30
1736 * This checks if the overall compute and NUMA accesses of the system would
1737 * be improved if the source tasks was migrated to the target dst_cpu taking
1738 * into account that it might be best if task running on the dst_cpu should
1739 * be exchanged with the source task
1741 static bool task_numa_compare(struct task_numa_env *env,
1742 long taskimp, long groupimp, bool maymove)
1744 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1745 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1746 long imp = p_ng ? groupimp : taskimp;
1747 struct task_struct *cur;
1748 long src_load, dst_load;
1749 int dist = env->dist;
1750 long moveimp = imp;
1751 long load;
1752 bool stopsearch = false;
1754 if (READ_ONCE(dst_rq->numa_migrate_on))
1755 return false;
1757 rcu_read_lock();
1758 cur = rcu_dereference(dst_rq->curr);
1759 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1760 cur = NULL;
1763 * Because we have preemption enabled we can get migrated around and
1764 * end try selecting ourselves (current == env->p) as a swap candidate.
1766 if (cur == env->p) {
1767 stopsearch = true;
1768 goto unlock;
1771 if (!cur) {
1772 if (maymove && moveimp >= env->best_imp)
1773 goto assign;
1774 else
1775 goto unlock;
1778 /* Skip this swap candidate if cannot move to the source cpu. */
1779 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1780 goto unlock;
1783 * Skip this swap candidate if it is not moving to its preferred
1784 * node and the best task is.
1786 if (env->best_task &&
1787 env->best_task->numa_preferred_nid == env->src_nid &&
1788 cur->numa_preferred_nid != env->src_nid) {
1789 goto unlock;
1793 * "imp" is the fault differential for the source task between the
1794 * source and destination node. Calculate the total differential for
1795 * the source task and potential destination task. The more negative
1796 * the value is, the more remote accesses that would be expected to
1797 * be incurred if the tasks were swapped.
1799 * If dst and source tasks are in the same NUMA group, or not
1800 * in any group then look only at task weights.
1802 cur_ng = rcu_dereference(cur->numa_group);
1803 if (cur_ng == p_ng) {
1804 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1805 task_weight(cur, env->dst_nid, dist);
1807 * Add some hysteresis to prevent swapping the
1808 * tasks within a group over tiny differences.
1810 if (cur_ng)
1811 imp -= imp / 16;
1812 } else {
1814 * Compare the group weights. If a task is all by itself
1815 * (not part of a group), use the task weight instead.
1817 if (cur_ng && p_ng)
1818 imp += group_weight(cur, env->src_nid, dist) -
1819 group_weight(cur, env->dst_nid, dist);
1820 else
1821 imp += task_weight(cur, env->src_nid, dist) -
1822 task_weight(cur, env->dst_nid, dist);
1825 /* Discourage picking a task already on its preferred node */
1826 if (cur->numa_preferred_nid == env->dst_nid)
1827 imp -= imp / 16;
1830 * Encourage picking a task that moves to its preferred node.
1831 * This potentially makes imp larger than it's maximum of
1832 * 1998 (see SMALLIMP and task_weight for why) but in this
1833 * case, it does not matter.
1835 if (cur->numa_preferred_nid == env->src_nid)
1836 imp += imp / 8;
1838 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1839 imp = moveimp;
1840 cur = NULL;
1841 goto assign;
1845 * Prefer swapping with a task moving to its preferred node over a
1846 * task that is not.
1848 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1849 env->best_task->numa_preferred_nid != env->src_nid) {
1850 goto assign;
1854 * If the NUMA importance is less than SMALLIMP,
1855 * task migration might only result in ping pong
1856 * of tasks and also hurt performance due to cache
1857 * misses.
1859 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1860 goto unlock;
1863 * In the overloaded case, try and keep the load balanced.
1865 load = task_h_load(env->p) - task_h_load(cur);
1866 if (!load)
1867 goto assign;
1869 dst_load = env->dst_stats.load + load;
1870 src_load = env->src_stats.load - load;
1872 if (load_too_imbalanced(src_load, dst_load, env))
1873 goto unlock;
1875 assign:
1876 /* Evaluate an idle CPU for a task numa move. */
1877 if (!cur) {
1878 int cpu = env->dst_stats.idle_cpu;
1880 /* Nothing cached so current CPU went idle since the search. */
1881 if (cpu < 0)
1882 cpu = env->dst_cpu;
1885 * If the CPU is no longer truly idle and the previous best CPU
1886 * is, keep using it.
1888 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1889 idle_cpu(env->best_cpu)) {
1890 cpu = env->best_cpu;
1893 env->dst_cpu = cpu;
1896 task_numa_assign(env, cur, imp);
1899 * If a move to idle is allowed because there is capacity or load
1900 * balance improves then stop the search. While a better swap
1901 * candidate may exist, a search is not free.
1903 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1904 stopsearch = true;
1907 * If a swap candidate must be identified and the current best task
1908 * moves its preferred node then stop the search.
1910 if (!maymove && env->best_task &&
1911 env->best_task->numa_preferred_nid == env->src_nid) {
1912 stopsearch = true;
1914 unlock:
1915 rcu_read_unlock();
1917 return stopsearch;
1920 static void task_numa_find_cpu(struct task_numa_env *env,
1921 long taskimp, long groupimp)
1923 bool maymove = false;
1924 int cpu;
1927 * If dst node has spare capacity, then check if there is an
1928 * imbalance that would be overruled by the load balancer.
1930 if (env->dst_stats.node_type == node_has_spare) {
1931 unsigned int imbalance;
1932 int src_running, dst_running;
1935 * Would movement cause an imbalance? Note that if src has
1936 * more running tasks that the imbalance is ignored as the
1937 * move improves the imbalance from the perspective of the
1938 * CPU load balancer.
1939 * */
1940 src_running = env->src_stats.nr_running - 1;
1941 dst_running = env->dst_stats.nr_running + 1;
1942 imbalance = max(0, dst_running - src_running);
1943 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1944 env->dst_stats.weight);
1946 /* Use idle CPU if there is no imbalance */
1947 if (!imbalance) {
1948 maymove = true;
1949 if (env->dst_stats.idle_cpu >= 0) {
1950 env->dst_cpu = env->dst_stats.idle_cpu;
1951 task_numa_assign(env, NULL, 0);
1952 return;
1955 } else {
1956 long src_load, dst_load, load;
1958 * If the improvement from just moving env->p direction is better
1959 * than swapping tasks around, check if a move is possible.
1961 load = task_h_load(env->p);
1962 dst_load = env->dst_stats.load + load;
1963 src_load = env->src_stats.load - load;
1964 maymove = !load_too_imbalanced(src_load, dst_load, env);
1967 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1968 /* Skip this CPU if the source task cannot migrate */
1969 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1970 continue;
1972 env->dst_cpu = cpu;
1973 if (task_numa_compare(env, taskimp, groupimp, maymove))
1974 break;
1978 static int task_numa_migrate(struct task_struct *p)
1980 struct task_numa_env env = {
1981 .p = p,
1983 .src_cpu = task_cpu(p),
1984 .src_nid = task_node(p),
1986 .imbalance_pct = 112,
1988 .best_task = NULL,
1989 .best_imp = 0,
1990 .best_cpu = -1,
1992 unsigned long taskweight, groupweight;
1993 struct sched_domain *sd;
1994 long taskimp, groupimp;
1995 struct numa_group *ng;
1996 struct rq *best_rq;
1997 int nid, ret, dist;
2000 * Pick the lowest SD_NUMA domain, as that would have the smallest
2001 * imbalance and would be the first to start moving tasks about.
2003 * And we want to avoid any moving of tasks about, as that would create
2004 * random movement of tasks -- counter the numa conditions we're trying
2005 * to satisfy here.
2007 rcu_read_lock();
2008 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2009 if (sd)
2010 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2011 rcu_read_unlock();
2014 * Cpusets can break the scheduler domain tree into smaller
2015 * balance domains, some of which do not cross NUMA boundaries.
2016 * Tasks that are "trapped" in such domains cannot be migrated
2017 * elsewhere, so there is no point in (re)trying.
2019 if (unlikely(!sd)) {
2020 sched_setnuma(p, task_node(p));
2021 return -EINVAL;
2024 env.dst_nid = p->numa_preferred_nid;
2025 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2026 taskweight = task_weight(p, env.src_nid, dist);
2027 groupweight = group_weight(p, env.src_nid, dist);
2028 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2029 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2030 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2031 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2033 /* Try to find a spot on the preferred nid. */
2034 task_numa_find_cpu(&env, taskimp, groupimp);
2037 * Look at other nodes in these cases:
2038 * - there is no space available on the preferred_nid
2039 * - the task is part of a numa_group that is interleaved across
2040 * multiple NUMA nodes; in order to better consolidate the group,
2041 * we need to check other locations.
2043 ng = deref_curr_numa_group(p);
2044 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2045 for_each_online_node(nid) {
2046 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2047 continue;
2049 dist = node_distance(env.src_nid, env.dst_nid);
2050 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2051 dist != env.dist) {
2052 taskweight = task_weight(p, env.src_nid, dist);
2053 groupweight = group_weight(p, env.src_nid, dist);
2056 /* Only consider nodes where both task and groups benefit */
2057 taskimp = task_weight(p, nid, dist) - taskweight;
2058 groupimp = group_weight(p, nid, dist) - groupweight;
2059 if (taskimp < 0 && groupimp < 0)
2060 continue;
2062 env.dist = dist;
2063 env.dst_nid = nid;
2064 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2065 task_numa_find_cpu(&env, taskimp, groupimp);
2070 * If the task is part of a workload that spans multiple NUMA nodes,
2071 * and is migrating into one of the workload's active nodes, remember
2072 * this node as the task's preferred numa node, so the workload can
2073 * settle down.
2074 * A task that migrated to a second choice node will be better off
2075 * trying for a better one later. Do not set the preferred node here.
2077 if (ng) {
2078 if (env.best_cpu == -1)
2079 nid = env.src_nid;
2080 else
2081 nid = cpu_to_node(env.best_cpu);
2083 if (nid != p->numa_preferred_nid)
2084 sched_setnuma(p, nid);
2087 /* No better CPU than the current one was found. */
2088 if (env.best_cpu == -1) {
2089 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2090 return -EAGAIN;
2093 best_rq = cpu_rq(env.best_cpu);
2094 if (env.best_task == NULL) {
2095 ret = migrate_task_to(p, env.best_cpu);
2096 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2097 if (ret != 0)
2098 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2099 return ret;
2102 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2103 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2105 if (ret != 0)
2106 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2107 put_task_struct(env.best_task);
2108 return ret;
2111 /* Attempt to migrate a task to a CPU on the preferred node. */
2112 static void numa_migrate_preferred(struct task_struct *p)
2114 unsigned long interval = HZ;
2116 /* This task has no NUMA fault statistics yet */
2117 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2118 return;
2120 /* Periodically retry migrating the task to the preferred node */
2121 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2122 p->numa_migrate_retry = jiffies + interval;
2124 /* Success if task is already running on preferred CPU */
2125 if (task_node(p) == p->numa_preferred_nid)
2126 return;
2128 /* Otherwise, try migrate to a CPU on the preferred node */
2129 task_numa_migrate(p);
2133 * Find out how many nodes on the workload is actively running on. Do this by
2134 * tracking the nodes from which NUMA hinting faults are triggered. This can
2135 * be different from the set of nodes where the workload's memory is currently
2136 * located.
2138 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2140 unsigned long faults, max_faults = 0;
2141 int nid, active_nodes = 0;
2143 for_each_online_node(nid) {
2144 faults = group_faults_cpu(numa_group, nid);
2145 if (faults > max_faults)
2146 max_faults = faults;
2149 for_each_online_node(nid) {
2150 faults = group_faults_cpu(numa_group, nid);
2151 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2152 active_nodes++;
2155 numa_group->max_faults_cpu = max_faults;
2156 numa_group->active_nodes = active_nodes;
2160 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2161 * increments. The more local the fault statistics are, the higher the scan
2162 * period will be for the next scan window. If local/(local+remote) ratio is
2163 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2164 * the scan period will decrease. Aim for 70% local accesses.
2166 #define NUMA_PERIOD_SLOTS 10
2167 #define NUMA_PERIOD_THRESHOLD 7
2170 * Increase the scan period (slow down scanning) if the majority of
2171 * our memory is already on our local node, or if the majority of
2172 * the page accesses are shared with other processes.
2173 * Otherwise, decrease the scan period.
2175 static void update_task_scan_period(struct task_struct *p,
2176 unsigned long shared, unsigned long private)
2178 unsigned int period_slot;
2179 int lr_ratio, ps_ratio;
2180 int diff;
2182 unsigned long remote = p->numa_faults_locality[0];
2183 unsigned long local = p->numa_faults_locality[1];
2186 * If there were no record hinting faults then either the task is
2187 * completely idle or all activity is areas that are not of interest
2188 * to automatic numa balancing. Related to that, if there were failed
2189 * migration then it implies we are migrating too quickly or the local
2190 * node is overloaded. In either case, scan slower
2192 if (local + shared == 0 || p->numa_faults_locality[2]) {
2193 p->numa_scan_period = min(p->numa_scan_period_max,
2194 p->numa_scan_period << 1);
2196 p->mm->numa_next_scan = jiffies +
2197 msecs_to_jiffies(p->numa_scan_period);
2199 return;
2203 * Prepare to scale scan period relative to the current period.
2204 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2205 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2206 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2208 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2209 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2210 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2212 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2214 * Most memory accesses are local. There is no need to
2215 * do fast NUMA scanning, since memory is already local.
2217 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2218 if (!slot)
2219 slot = 1;
2220 diff = slot * period_slot;
2221 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2223 * Most memory accesses are shared with other tasks.
2224 * There is no point in continuing fast NUMA scanning,
2225 * since other tasks may just move the memory elsewhere.
2227 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else {
2233 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2234 * yet they are not on the local NUMA node. Speed up
2235 * NUMA scanning to get the memory moved over.
2237 int ratio = max(lr_ratio, ps_ratio);
2238 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2241 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2242 task_scan_min(p), task_scan_max(p));
2243 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2247 * Get the fraction of time the task has been running since the last
2248 * NUMA placement cycle. The scheduler keeps similar statistics, but
2249 * decays those on a 32ms period, which is orders of magnitude off
2250 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2251 * stats only if the task is so new there are no NUMA statistics yet.
2253 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2255 u64 runtime, delta, now;
2256 /* Use the start of this time slice to avoid calculations. */
2257 now = p->se.exec_start;
2258 runtime = p->se.sum_exec_runtime;
2260 if (p->last_task_numa_placement) {
2261 delta = runtime - p->last_sum_exec_runtime;
2262 *period = now - p->last_task_numa_placement;
2264 /* Avoid time going backwards, prevent potential divide error: */
2265 if (unlikely((s64)*period < 0))
2266 *period = 0;
2267 } else {
2268 delta = p->se.avg.load_sum;
2269 *period = LOAD_AVG_MAX;
2272 p->last_sum_exec_runtime = runtime;
2273 p->last_task_numa_placement = now;
2275 return delta;
2279 * Determine the preferred nid for a task in a numa_group. This needs to
2280 * be done in a way that produces consistent results with group_weight,
2281 * otherwise workloads might not converge.
2283 static int preferred_group_nid(struct task_struct *p, int nid)
2285 nodemask_t nodes;
2286 int dist;
2288 /* Direct connections between all NUMA nodes. */
2289 if (sched_numa_topology_type == NUMA_DIRECT)
2290 return nid;
2293 * On a system with glueless mesh NUMA topology, group_weight
2294 * scores nodes according to the number of NUMA hinting faults on
2295 * both the node itself, and on nearby nodes.
2297 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2298 unsigned long score, max_score = 0;
2299 int node, max_node = nid;
2301 dist = sched_max_numa_distance;
2303 for_each_online_node(node) {
2304 score = group_weight(p, node, dist);
2305 if (score > max_score) {
2306 max_score = score;
2307 max_node = node;
2310 return max_node;
2314 * Finding the preferred nid in a system with NUMA backplane
2315 * interconnect topology is more involved. The goal is to locate
2316 * tasks from numa_groups near each other in the system, and
2317 * untangle workloads from different sides of the system. This requires
2318 * searching down the hierarchy of node groups, recursively searching
2319 * inside the highest scoring group of nodes. The nodemask tricks
2320 * keep the complexity of the search down.
2322 nodes = node_online_map;
2323 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2324 unsigned long max_faults = 0;
2325 nodemask_t max_group = NODE_MASK_NONE;
2326 int a, b;
2328 /* Are there nodes at this distance from each other? */
2329 if (!find_numa_distance(dist))
2330 continue;
2332 for_each_node_mask(a, nodes) {
2333 unsigned long faults = 0;
2334 nodemask_t this_group;
2335 nodes_clear(this_group);
2337 /* Sum group's NUMA faults; includes a==b case. */
2338 for_each_node_mask(b, nodes) {
2339 if (node_distance(a, b) < dist) {
2340 faults += group_faults(p, b);
2341 node_set(b, this_group);
2342 node_clear(b, nodes);
2346 /* Remember the top group. */
2347 if (faults > max_faults) {
2348 max_faults = faults;
2349 max_group = this_group;
2351 * subtle: at the smallest distance there is
2352 * just one node left in each "group", the
2353 * winner is the preferred nid.
2355 nid = a;
2358 /* Next round, evaluate the nodes within max_group. */
2359 if (!max_faults)
2360 break;
2361 nodes = max_group;
2363 return nid;
2366 static void task_numa_placement(struct task_struct *p)
2368 int seq, nid, max_nid = NUMA_NO_NODE;
2369 unsigned long max_faults = 0;
2370 unsigned long fault_types[2] = { 0, 0 };
2371 unsigned long total_faults;
2372 u64 runtime, period;
2373 spinlock_t *group_lock = NULL;
2374 struct numa_group *ng;
2377 * The p->mm->numa_scan_seq field gets updated without
2378 * exclusive access. Use READ_ONCE() here to ensure
2379 * that the field is read in a single access:
2381 seq = READ_ONCE(p->mm->numa_scan_seq);
2382 if (p->numa_scan_seq == seq)
2383 return;
2384 p->numa_scan_seq = seq;
2385 p->numa_scan_period_max = task_scan_max(p);
2387 total_faults = p->numa_faults_locality[0] +
2388 p->numa_faults_locality[1];
2389 runtime = numa_get_avg_runtime(p, &period);
2391 /* If the task is part of a group prevent parallel updates to group stats */
2392 ng = deref_curr_numa_group(p);
2393 if (ng) {
2394 group_lock = &ng->lock;
2395 spin_lock_irq(group_lock);
2398 /* Find the node with the highest number of faults */
2399 for_each_online_node(nid) {
2400 /* Keep track of the offsets in numa_faults array */
2401 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2402 unsigned long faults = 0, group_faults = 0;
2403 int priv;
2405 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2406 long diff, f_diff, f_weight;
2408 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2409 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2410 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2411 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2413 /* Decay existing window, copy faults since last scan */
2414 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2415 fault_types[priv] += p->numa_faults[membuf_idx];
2416 p->numa_faults[membuf_idx] = 0;
2419 * Normalize the faults_from, so all tasks in a group
2420 * count according to CPU use, instead of by the raw
2421 * number of faults. Tasks with little runtime have
2422 * little over-all impact on throughput, and thus their
2423 * faults are less important.
2425 f_weight = div64_u64(runtime << 16, period + 1);
2426 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2427 (total_faults + 1);
2428 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2429 p->numa_faults[cpubuf_idx] = 0;
2431 p->numa_faults[mem_idx] += diff;
2432 p->numa_faults[cpu_idx] += f_diff;
2433 faults += p->numa_faults[mem_idx];
2434 p->total_numa_faults += diff;
2435 if (ng) {
2437 * safe because we can only change our own group
2439 * mem_idx represents the offset for a given
2440 * nid and priv in a specific region because it
2441 * is at the beginning of the numa_faults array.
2443 ng->faults[mem_idx] += diff;
2444 ng->faults_cpu[mem_idx] += f_diff;
2445 ng->total_faults += diff;
2446 group_faults += ng->faults[mem_idx];
2450 if (!ng) {
2451 if (faults > max_faults) {
2452 max_faults = faults;
2453 max_nid = nid;
2455 } else if (group_faults > max_faults) {
2456 max_faults = group_faults;
2457 max_nid = nid;
2461 if (ng) {
2462 numa_group_count_active_nodes(ng);
2463 spin_unlock_irq(group_lock);
2464 max_nid = preferred_group_nid(p, max_nid);
2467 if (max_faults) {
2468 /* Set the new preferred node */
2469 if (max_nid != p->numa_preferred_nid)
2470 sched_setnuma(p, max_nid);
2473 update_task_scan_period(p, fault_types[0], fault_types[1]);
2476 static inline int get_numa_group(struct numa_group *grp)
2478 return refcount_inc_not_zero(&grp->refcount);
2481 static inline void put_numa_group(struct numa_group *grp)
2483 if (refcount_dec_and_test(&grp->refcount))
2484 kfree_rcu(grp, rcu);
2487 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2488 int *priv)
2490 struct numa_group *grp, *my_grp;
2491 struct task_struct *tsk;
2492 bool join = false;
2493 int cpu = cpupid_to_cpu(cpupid);
2494 int i;
2496 if (unlikely(!deref_curr_numa_group(p))) {
2497 unsigned int size = sizeof(struct numa_group) +
2498 4*nr_node_ids*sizeof(unsigned long);
2500 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2501 if (!grp)
2502 return;
2504 refcount_set(&grp->refcount, 1);
2505 grp->active_nodes = 1;
2506 grp->max_faults_cpu = 0;
2507 spin_lock_init(&grp->lock);
2508 grp->gid = p->pid;
2509 /* Second half of the array tracks nids where faults happen */
2510 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2511 nr_node_ids;
2513 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2514 grp->faults[i] = p->numa_faults[i];
2516 grp->total_faults = p->total_numa_faults;
2518 grp->nr_tasks++;
2519 rcu_assign_pointer(p->numa_group, grp);
2522 rcu_read_lock();
2523 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2525 if (!cpupid_match_pid(tsk, cpupid))
2526 goto no_join;
2528 grp = rcu_dereference(tsk->numa_group);
2529 if (!grp)
2530 goto no_join;
2532 my_grp = deref_curr_numa_group(p);
2533 if (grp == my_grp)
2534 goto no_join;
2537 * Only join the other group if its bigger; if we're the bigger group,
2538 * the other task will join us.
2540 if (my_grp->nr_tasks > grp->nr_tasks)
2541 goto no_join;
2544 * Tie-break on the grp address.
2546 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2547 goto no_join;
2549 /* Always join threads in the same process. */
2550 if (tsk->mm == current->mm)
2551 join = true;
2553 /* Simple filter to avoid false positives due to PID collisions */
2554 if (flags & TNF_SHARED)
2555 join = true;
2557 /* Update priv based on whether false sharing was detected */
2558 *priv = !join;
2560 if (join && !get_numa_group(grp))
2561 goto no_join;
2563 rcu_read_unlock();
2565 if (!join)
2566 return;
2568 BUG_ON(irqs_disabled());
2569 double_lock_irq(&my_grp->lock, &grp->lock);
2571 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2572 my_grp->faults[i] -= p->numa_faults[i];
2573 grp->faults[i] += p->numa_faults[i];
2575 my_grp->total_faults -= p->total_numa_faults;
2576 grp->total_faults += p->total_numa_faults;
2578 my_grp->nr_tasks--;
2579 grp->nr_tasks++;
2581 spin_unlock(&my_grp->lock);
2582 spin_unlock_irq(&grp->lock);
2584 rcu_assign_pointer(p->numa_group, grp);
2586 put_numa_group(my_grp);
2587 return;
2589 no_join:
2590 rcu_read_unlock();
2591 return;
2595 * Get rid of NUMA staticstics associated with a task (either current or dead).
2596 * If @final is set, the task is dead and has reached refcount zero, so we can
2597 * safely free all relevant data structures. Otherwise, there might be
2598 * concurrent reads from places like load balancing and procfs, and we should
2599 * reset the data back to default state without freeing ->numa_faults.
2601 void task_numa_free(struct task_struct *p, bool final)
2603 /* safe: p either is current or is being freed by current */
2604 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2605 unsigned long *numa_faults = p->numa_faults;
2606 unsigned long flags;
2607 int i;
2609 if (!numa_faults)
2610 return;
2612 if (grp) {
2613 spin_lock_irqsave(&grp->lock, flags);
2614 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2615 grp->faults[i] -= p->numa_faults[i];
2616 grp->total_faults -= p->total_numa_faults;
2618 grp->nr_tasks--;
2619 spin_unlock_irqrestore(&grp->lock, flags);
2620 RCU_INIT_POINTER(p->numa_group, NULL);
2621 put_numa_group(grp);
2624 if (final) {
2625 p->numa_faults = NULL;
2626 kfree(numa_faults);
2627 } else {
2628 p->total_numa_faults = 0;
2629 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2630 numa_faults[i] = 0;
2635 * Got a PROT_NONE fault for a page on @node.
2637 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2639 struct task_struct *p = current;
2640 bool migrated = flags & TNF_MIGRATED;
2641 int cpu_node = task_node(current);
2642 int local = !!(flags & TNF_FAULT_LOCAL);
2643 struct numa_group *ng;
2644 int priv;
2646 if (!static_branch_likely(&sched_numa_balancing))
2647 return;
2649 /* for example, ksmd faulting in a user's mm */
2650 if (!p->mm)
2651 return;
2653 /* Allocate buffer to track faults on a per-node basis */
2654 if (unlikely(!p->numa_faults)) {
2655 int size = sizeof(*p->numa_faults) *
2656 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2658 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2659 if (!p->numa_faults)
2660 return;
2662 p->total_numa_faults = 0;
2663 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2667 * First accesses are treated as private, otherwise consider accesses
2668 * to be private if the accessing pid has not changed
2670 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2671 priv = 1;
2672 } else {
2673 priv = cpupid_match_pid(p, last_cpupid);
2674 if (!priv && !(flags & TNF_NO_GROUP))
2675 task_numa_group(p, last_cpupid, flags, &priv);
2679 * If a workload spans multiple NUMA nodes, a shared fault that
2680 * occurs wholly within the set of nodes that the workload is
2681 * actively using should be counted as local. This allows the
2682 * scan rate to slow down when a workload has settled down.
2684 ng = deref_curr_numa_group(p);
2685 if (!priv && !local && ng && ng->active_nodes > 1 &&
2686 numa_is_active_node(cpu_node, ng) &&
2687 numa_is_active_node(mem_node, ng))
2688 local = 1;
2691 * Retry to migrate task to preferred node periodically, in case it
2692 * previously failed, or the scheduler moved us.
2694 if (time_after(jiffies, p->numa_migrate_retry)) {
2695 task_numa_placement(p);
2696 numa_migrate_preferred(p);
2699 if (migrated)
2700 p->numa_pages_migrated += pages;
2701 if (flags & TNF_MIGRATE_FAIL)
2702 p->numa_faults_locality[2] += pages;
2704 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2705 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2706 p->numa_faults_locality[local] += pages;
2709 static void reset_ptenuma_scan(struct task_struct *p)
2712 * We only did a read acquisition of the mmap sem, so
2713 * p->mm->numa_scan_seq is written to without exclusive access
2714 * and the update is not guaranteed to be atomic. That's not
2715 * much of an issue though, since this is just used for
2716 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2717 * expensive, to avoid any form of compiler optimizations:
2719 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2720 p->mm->numa_scan_offset = 0;
2724 * The expensive part of numa migration is done from task_work context.
2725 * Triggered from task_tick_numa().
2727 static void task_numa_work(struct callback_head *work)
2729 unsigned long migrate, next_scan, now = jiffies;
2730 struct task_struct *p = current;
2731 struct mm_struct *mm = p->mm;
2732 u64 runtime = p->se.sum_exec_runtime;
2733 struct vm_area_struct *vma;
2734 unsigned long start, end;
2735 unsigned long nr_pte_updates = 0;
2736 long pages, virtpages;
2738 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2740 work->next = work;
2742 * Who cares about NUMA placement when they're dying.
2744 * NOTE: make sure not to dereference p->mm before this check,
2745 * exit_task_work() happens _after_ exit_mm() so we could be called
2746 * without p->mm even though we still had it when we enqueued this
2747 * work.
2749 if (p->flags & PF_EXITING)
2750 return;
2752 if (!mm->numa_next_scan) {
2753 mm->numa_next_scan = now +
2754 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2758 * Enforce maximal scan/migration frequency..
2760 migrate = mm->numa_next_scan;
2761 if (time_before(now, migrate))
2762 return;
2764 if (p->numa_scan_period == 0) {
2765 p->numa_scan_period_max = task_scan_max(p);
2766 p->numa_scan_period = task_scan_start(p);
2769 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2770 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2771 return;
2774 * Delay this task enough that another task of this mm will likely win
2775 * the next time around.
2777 p->node_stamp += 2 * TICK_NSEC;
2779 start = mm->numa_scan_offset;
2780 pages = sysctl_numa_balancing_scan_size;
2781 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2782 virtpages = pages * 8; /* Scan up to this much virtual space */
2783 if (!pages)
2784 return;
2787 if (!mmap_read_trylock(mm))
2788 return;
2789 vma = find_vma(mm, start);
2790 if (!vma) {
2791 reset_ptenuma_scan(p);
2792 start = 0;
2793 vma = mm->mmap;
2795 for (; vma; vma = vma->vm_next) {
2796 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2797 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2798 continue;
2802 * Shared library pages mapped by multiple processes are not
2803 * migrated as it is expected they are cache replicated. Avoid
2804 * hinting faults in read-only file-backed mappings or the vdso
2805 * as migrating the pages will be of marginal benefit.
2807 if (!vma->vm_mm ||
2808 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2809 continue;
2812 * Skip inaccessible VMAs to avoid any confusion between
2813 * PROT_NONE and NUMA hinting ptes
2815 if (!vma_is_accessible(vma))
2816 continue;
2818 do {
2819 start = max(start, vma->vm_start);
2820 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2821 end = min(end, vma->vm_end);
2822 nr_pte_updates = change_prot_numa(vma, start, end);
2825 * Try to scan sysctl_numa_balancing_size worth of
2826 * hpages that have at least one present PTE that
2827 * is not already pte-numa. If the VMA contains
2828 * areas that are unused or already full of prot_numa
2829 * PTEs, scan up to virtpages, to skip through those
2830 * areas faster.
2832 if (nr_pte_updates)
2833 pages -= (end - start) >> PAGE_SHIFT;
2834 virtpages -= (end - start) >> PAGE_SHIFT;
2836 start = end;
2837 if (pages <= 0 || virtpages <= 0)
2838 goto out;
2840 cond_resched();
2841 } while (end != vma->vm_end);
2844 out:
2846 * It is possible to reach the end of the VMA list but the last few
2847 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2848 * would find the !migratable VMA on the next scan but not reset the
2849 * scanner to the start so check it now.
2851 if (vma)
2852 mm->numa_scan_offset = start;
2853 else
2854 reset_ptenuma_scan(p);
2855 mmap_read_unlock(mm);
2858 * Make sure tasks use at least 32x as much time to run other code
2859 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2860 * Usually update_task_scan_period slows down scanning enough; on an
2861 * overloaded system we need to limit overhead on a per task basis.
2863 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2864 u64 diff = p->se.sum_exec_runtime - runtime;
2865 p->node_stamp += 32 * diff;
2869 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2871 int mm_users = 0;
2872 struct mm_struct *mm = p->mm;
2874 if (mm) {
2875 mm_users = atomic_read(&mm->mm_users);
2876 if (mm_users == 1) {
2877 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2878 mm->numa_scan_seq = 0;
2881 p->node_stamp = 0;
2882 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2883 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2884 /* Protect against double add, see task_tick_numa and task_numa_work */
2885 p->numa_work.next = &p->numa_work;
2886 p->numa_faults = NULL;
2887 RCU_INIT_POINTER(p->numa_group, NULL);
2888 p->last_task_numa_placement = 0;
2889 p->last_sum_exec_runtime = 0;
2891 init_task_work(&p->numa_work, task_numa_work);
2893 /* New address space, reset the preferred nid */
2894 if (!(clone_flags & CLONE_VM)) {
2895 p->numa_preferred_nid = NUMA_NO_NODE;
2896 return;
2900 * New thread, keep existing numa_preferred_nid which should be copied
2901 * already by arch_dup_task_struct but stagger when scans start.
2903 if (mm) {
2904 unsigned int delay;
2906 delay = min_t(unsigned int, task_scan_max(current),
2907 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2908 delay += 2 * TICK_NSEC;
2909 p->node_stamp = delay;
2914 * Drive the periodic memory faults..
2916 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2918 struct callback_head *work = &curr->numa_work;
2919 u64 period, now;
2922 * We don't care about NUMA placement if we don't have memory.
2924 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2925 return;
2928 * Using runtime rather than walltime has the dual advantage that
2929 * we (mostly) drive the selection from busy threads and that the
2930 * task needs to have done some actual work before we bother with
2931 * NUMA placement.
2933 now = curr->se.sum_exec_runtime;
2934 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2936 if (now > curr->node_stamp + period) {
2937 if (!curr->node_stamp)
2938 curr->numa_scan_period = task_scan_start(curr);
2939 curr->node_stamp += period;
2941 if (!time_before(jiffies, curr->mm->numa_next_scan))
2942 task_work_add(curr, work, TWA_RESUME);
2946 static void update_scan_period(struct task_struct *p, int new_cpu)
2948 int src_nid = cpu_to_node(task_cpu(p));
2949 int dst_nid = cpu_to_node(new_cpu);
2951 if (!static_branch_likely(&sched_numa_balancing))
2952 return;
2954 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2955 return;
2957 if (src_nid == dst_nid)
2958 return;
2961 * Allow resets if faults have been trapped before one scan
2962 * has completed. This is most likely due to a new task that
2963 * is pulled cross-node due to wakeups or load balancing.
2965 if (p->numa_scan_seq) {
2967 * Avoid scan adjustments if moving to the preferred
2968 * node or if the task was not previously running on
2969 * the preferred node.
2971 if (dst_nid == p->numa_preferred_nid ||
2972 (p->numa_preferred_nid != NUMA_NO_NODE &&
2973 src_nid != p->numa_preferred_nid))
2974 return;
2977 p->numa_scan_period = task_scan_start(p);
2980 #else
2981 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2985 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2989 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2993 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2997 #endif /* CONFIG_NUMA_BALANCING */
2999 static void
3000 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 update_load_add(&cfs_rq->load, se->load.weight);
3003 #ifdef CONFIG_SMP
3004 if (entity_is_task(se)) {
3005 struct rq *rq = rq_of(cfs_rq);
3007 account_numa_enqueue(rq, task_of(se));
3008 list_add(&se->group_node, &rq->cfs_tasks);
3010 #endif
3011 cfs_rq->nr_running++;
3014 static void
3015 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3017 update_load_sub(&cfs_rq->load, se->load.weight);
3018 #ifdef CONFIG_SMP
3019 if (entity_is_task(se)) {
3020 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3021 list_del_init(&se->group_node);
3023 #endif
3024 cfs_rq->nr_running--;
3028 * Signed add and clamp on underflow.
3030 * Explicitly do a load-store to ensure the intermediate value never hits
3031 * memory. This allows lockless observations without ever seeing the negative
3032 * values.
3034 #define add_positive(_ptr, _val) do { \
3035 typeof(_ptr) ptr = (_ptr); \
3036 typeof(_val) val = (_val); \
3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3039 res = var + val; \
3041 if (val < 0 && res > var) \
3042 res = 0; \
3044 WRITE_ONCE(*ptr, res); \
3045 } while (0)
3048 * Unsigned subtract and clamp on underflow.
3050 * Explicitly do a load-store to ensure the intermediate value never hits
3051 * memory. This allows lockless observations without ever seeing the negative
3052 * values.
3054 #define sub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 typeof(*ptr) val = (_val); \
3057 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3058 res = var - val; \
3059 if (res > var) \
3060 res = 0; \
3061 WRITE_ONCE(*ptr, res); \
3062 } while (0)
3065 * Remove and clamp on negative, from a local variable.
3067 * A variant of sub_positive(), which does not use explicit load-store
3068 * and is thus optimized for local variable updates.
3070 #define lsub_positive(_ptr, _val) do { \
3071 typeof(_ptr) ptr = (_ptr); \
3072 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3073 } while (0)
3075 #ifdef CONFIG_SMP
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3079 cfs_rq->avg.load_avg += se->avg.load_avg;
3080 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3083 static inline void
3084 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3086 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3087 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3089 #else
3090 static inline void
3091 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092 static inline void
3093 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3094 #endif
3096 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3097 unsigned long weight)
3099 if (se->on_rq) {
3100 /* commit outstanding execution time */
3101 if (cfs_rq->curr == se)
3102 update_curr(cfs_rq);
3103 update_load_sub(&cfs_rq->load, se->load.weight);
3105 dequeue_load_avg(cfs_rq, se);
3107 update_load_set(&se->load, weight);
3109 #ifdef CONFIG_SMP
3110 do {
3111 u32 divider = get_pelt_divider(&se->avg);
3113 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3114 } while (0);
3115 #endif
3117 enqueue_load_avg(cfs_rq, se);
3118 if (se->on_rq)
3119 update_load_add(&cfs_rq->load, se->load.weight);
3123 void reweight_task(struct task_struct *p, int prio)
3125 struct sched_entity *se = &p->se;
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3127 struct load_weight *load = &se->load;
3128 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3130 reweight_entity(cfs_rq, se, weight);
3131 load->inv_weight = sched_prio_to_wmult[prio];
3134 #ifdef CONFIG_FAIR_GROUP_SCHED
3135 #ifdef CONFIG_SMP
3137 * All this does is approximate the hierarchical proportion which includes that
3138 * global sum we all love to hate.
3140 * That is, the weight of a group entity, is the proportional share of the
3141 * group weight based on the group runqueue weights. That is:
3143 * tg->weight * grq->load.weight
3144 * ge->load.weight = ----------------------------- (1)
3145 * \Sum grq->load.weight
3147 * Now, because computing that sum is prohibitively expensive to compute (been
3148 * there, done that) we approximate it with this average stuff. The average
3149 * moves slower and therefore the approximation is cheaper and more stable.
3151 * So instead of the above, we substitute:
3153 * grq->load.weight -> grq->avg.load_avg (2)
3155 * which yields the following:
3157 * tg->weight * grq->avg.load_avg
3158 * ge->load.weight = ------------------------------ (3)
3159 * tg->load_avg
3161 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3163 * That is shares_avg, and it is right (given the approximation (2)).
3165 * The problem with it is that because the average is slow -- it was designed
3166 * to be exactly that of course -- this leads to transients in boundary
3167 * conditions. In specific, the case where the group was idle and we start the
3168 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169 * yielding bad latency etc..
3171 * Now, in that special case (1) reduces to:
3173 * tg->weight * grq->load.weight
3174 * ge->load.weight = ----------------------------- = tg->weight (4)
3175 * grp->load.weight
3177 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3179 * So what we do is modify our approximation (3) to approach (4) in the (near)
3180 * UP case, like:
3182 * ge->load.weight =
3184 * tg->weight * grq->load.weight
3185 * --------------------------------------------------- (5)
3186 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3188 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3192 * tg->weight * grq->load.weight
3193 * ge->load.weight = ----------------------------- (6)
3194 * tg_load_avg'
3196 * Where:
3198 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199 * max(grq->load.weight, grq->avg.load_avg)
3201 * And that is shares_weight and is icky. In the (near) UP case it approaches
3202 * (4) while in the normal case it approaches (3). It consistently
3203 * overestimates the ge->load.weight and therefore:
3205 * \Sum ge->load.weight >= tg->weight
3207 * hence icky!
3209 static long calc_group_shares(struct cfs_rq *cfs_rq)
3211 long tg_weight, tg_shares, load, shares;
3212 struct task_group *tg = cfs_rq->tg;
3214 tg_shares = READ_ONCE(tg->shares);
3216 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3218 tg_weight = atomic_long_read(&tg->load_avg);
3220 /* Ensure tg_weight >= load */
3221 tg_weight -= cfs_rq->tg_load_avg_contrib;
3222 tg_weight += load;
3224 shares = (tg_shares * load);
3225 if (tg_weight)
3226 shares /= tg_weight;
3229 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 * of a group with small tg->shares value. It is a floor value which is
3231 * assigned as a minimum load.weight to the sched_entity representing
3232 * the group on a CPU.
3234 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3238 * instead of 0.
3240 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3242 #endif /* CONFIG_SMP */
3244 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3247 * Recomputes the group entity based on the current state of its group
3248 * runqueue.
3250 static void update_cfs_group(struct sched_entity *se)
3252 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3253 long shares;
3255 if (!gcfs_rq)
3256 return;
3258 if (throttled_hierarchy(gcfs_rq))
3259 return;
3261 #ifndef CONFIG_SMP
3262 shares = READ_ONCE(gcfs_rq->tg->shares);
3264 if (likely(se->load.weight == shares))
3265 return;
3266 #else
3267 shares = calc_group_shares(gcfs_rq);
3268 #endif
3270 reweight_entity(cfs_rq_of(se), se, shares);
3273 #else /* CONFIG_FAIR_GROUP_SCHED */
3274 static inline void update_cfs_group(struct sched_entity *se)
3277 #endif /* CONFIG_FAIR_GROUP_SCHED */
3279 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3281 struct rq *rq = rq_of(cfs_rq);
3283 if (&rq->cfs == cfs_rq) {
3285 * There are a few boundary cases this might miss but it should
3286 * get called often enough that that should (hopefully) not be
3287 * a real problem.
3289 * It will not get called when we go idle, because the idle
3290 * thread is a different class (!fair), nor will the utilization
3291 * number include things like RT tasks.
3293 * As is, the util number is not freq-invariant (we'd have to
3294 * implement arch_scale_freq_capacity() for that).
3296 * See cpu_util().
3298 cpufreq_update_util(rq, flags);
3302 #ifdef CONFIG_SMP
3303 #ifdef CONFIG_FAIR_GROUP_SCHED
3305 * update_tg_load_avg - update the tg's load avg
3306 * @cfs_rq: the cfs_rq whose avg changed
3308 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3309 * However, because tg->load_avg is a global value there are performance
3310 * considerations.
3312 * In order to avoid having to look at the other cfs_rq's, we use a
3313 * differential update where we store the last value we propagated. This in
3314 * turn allows skipping updates if the differential is 'small'.
3316 * Updating tg's load_avg is necessary before update_cfs_share().
3318 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3320 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3323 * No need to update load_avg for root_task_group as it is not used.
3325 if (cfs_rq->tg == &root_task_group)
3326 return;
3328 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3329 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3330 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3335 * Called within set_task_rq() right before setting a task's CPU. The
3336 * caller only guarantees p->pi_lock is held; no other assumptions,
3337 * including the state of rq->lock, should be made.
3339 void set_task_rq_fair(struct sched_entity *se,
3340 struct cfs_rq *prev, struct cfs_rq *next)
3342 u64 p_last_update_time;
3343 u64 n_last_update_time;
3345 if (!sched_feat(ATTACH_AGE_LOAD))
3346 return;
3349 * We are supposed to update the task to "current" time, then its up to
3350 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3351 * getting what current time is, so simply throw away the out-of-date
3352 * time. This will result in the wakee task is less decayed, but giving
3353 * the wakee more load sounds not bad.
3355 if (!(se->avg.last_update_time && prev))
3356 return;
3358 #ifndef CONFIG_64BIT
3360 u64 p_last_update_time_copy;
3361 u64 n_last_update_time_copy;
3363 do {
3364 p_last_update_time_copy = prev->load_last_update_time_copy;
3365 n_last_update_time_copy = next->load_last_update_time_copy;
3367 smp_rmb();
3369 p_last_update_time = prev->avg.last_update_time;
3370 n_last_update_time = next->avg.last_update_time;
3372 } while (p_last_update_time != p_last_update_time_copy ||
3373 n_last_update_time != n_last_update_time_copy);
3375 #else
3376 p_last_update_time = prev->avg.last_update_time;
3377 n_last_update_time = next->avg.last_update_time;
3378 #endif
3379 __update_load_avg_blocked_se(p_last_update_time, se);
3380 se->avg.last_update_time = n_last_update_time;
3385 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3386 * propagate its contribution. The key to this propagation is the invariant
3387 * that for each group:
3389 * ge->avg == grq->avg (1)
3391 * _IFF_ we look at the pure running and runnable sums. Because they
3392 * represent the very same entity, just at different points in the hierarchy.
3394 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3395 * and simply copies the running/runnable sum over (but still wrong, because
3396 * the group entity and group rq do not have their PELT windows aligned).
3398 * However, update_tg_cfs_load() is more complex. So we have:
3400 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3402 * And since, like util, the runnable part should be directly transferable,
3403 * the following would _appear_ to be the straight forward approach:
3405 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3407 * And per (1) we have:
3409 * ge->avg.runnable_avg == grq->avg.runnable_avg
3411 * Which gives:
3413 * ge->load.weight * grq->avg.load_avg
3414 * ge->avg.load_avg = ----------------------------------- (4)
3415 * grq->load.weight
3417 * Except that is wrong!
3419 * Because while for entities historical weight is not important and we
3420 * really only care about our future and therefore can consider a pure
3421 * runnable sum, runqueues can NOT do this.
3423 * We specifically want runqueues to have a load_avg that includes
3424 * historical weights. Those represent the blocked load, the load we expect
3425 * to (shortly) return to us. This only works by keeping the weights as
3426 * integral part of the sum. We therefore cannot decompose as per (3).
3428 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3429 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3430 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3431 * runnable section of these tasks overlap (or not). If they were to perfectly
3432 * align the rq as a whole would be runnable 2/3 of the time. If however we
3433 * always have at least 1 runnable task, the rq as a whole is always runnable.
3435 * So we'll have to approximate.. :/
3437 * Given the constraint:
3439 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3441 * We can construct a rule that adds runnable to a rq by assuming minimal
3442 * overlap.
3444 * On removal, we'll assume each task is equally runnable; which yields:
3446 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3448 * XXX: only do this for the part of runnable > running ?
3452 static inline void
3453 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3455 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3456 u32 divider;
3458 /* Nothing to update */
3459 if (!delta)
3460 return;
3463 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3464 * See ___update_load_avg() for details.
3466 divider = get_pelt_divider(&cfs_rq->avg);
3468 /* Set new sched_entity's utilization */
3469 se->avg.util_avg = gcfs_rq->avg.util_avg;
3470 se->avg.util_sum = se->avg.util_avg * divider;
3472 /* Update parent cfs_rq utilization */
3473 add_positive(&cfs_rq->avg.util_avg, delta);
3474 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3477 static inline void
3478 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3480 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3481 u32 divider;
3483 /* Nothing to update */
3484 if (!delta)
3485 return;
3488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3489 * See ___update_load_avg() for details.
3491 divider = get_pelt_divider(&cfs_rq->avg);
3493 /* Set new sched_entity's runnable */
3494 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3495 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3497 /* Update parent cfs_rq runnable */
3498 add_positive(&cfs_rq->avg.runnable_avg, delta);
3499 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3502 static inline void
3503 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3505 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3506 unsigned long load_avg;
3507 u64 load_sum = 0;
3508 s64 delta_sum;
3509 u32 divider;
3511 if (!runnable_sum)
3512 return;
3514 gcfs_rq->prop_runnable_sum = 0;
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3520 divider = get_pelt_divider(&cfs_rq->avg);
3522 if (runnable_sum >= 0) {
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3527 runnable_sum += se->avg.load_sum;
3528 runnable_sum = min_t(long, runnable_sum, divider);
3529 } else {
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3534 if (scale_load_down(gcfs_rq->load.weight)) {
3535 load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 scale_load_down(gcfs_rq->load.weight));
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum = min(se->avg.load_sum, load_sum);
3544 * runnable_sum can't be lower than running_sum
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3550 runnable_sum = max(runnable_sum, running_sum);
3552 load_sum = (s64)se_weight(se) * runnable_sum;
3553 load_avg = div_s64(load_sum, divider);
3555 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3556 delta_avg = load_avg - se->avg.load_avg;
3558 se->avg.load_sum = runnable_sum;
3559 se->avg.load_avg = load_avg;
3560 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3561 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity *se)
3573 struct cfs_rq *cfs_rq, *gcfs_rq;
3575 if (entity_is_task(se))
3576 return 0;
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
3580 return 0;
3582 gcfs_rq->propagate = 0;
3584 cfs_rq = cfs_rq_of(se);
3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3592 trace_pelt_cfs_tp(cfs_rq);
3593 trace_pelt_se_tp(se);
3595 return 1;
3599 * Check if we need to update the load and the utilization of a blocked
3600 * group_entity:
3602 static inline bool skip_blocked_update(struct sched_entity *se)
3604 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3607 * If sched_entity still have not zero load or utilization, we have to
3608 * decay it:
3610 if (se->avg.load_avg || se->avg.util_avg)
3611 return false;
3614 * If there is a pending propagation, we have to update the load and
3615 * the utilization of the sched_entity:
3617 if (gcfs_rq->propagate)
3618 return false;
3621 * Otherwise, the load and the utilization of the sched_entity is
3622 * already zero and there is no pending propagation, so it will be a
3623 * waste of time to try to decay it:
3625 return true;
3628 #else /* CONFIG_FAIR_GROUP_SCHED */
3630 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3632 static inline int propagate_entity_load_avg(struct sched_entity *se)
3634 return 0;
3637 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3639 #endif /* CONFIG_FAIR_GROUP_SCHED */
3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3643 * @now: current time, as per cfs_rq_clock_pelt()
3644 * @cfs_rq: cfs_rq to update
3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648 * post_init_entity_util_avg().
3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3652 * Returns true if the load decayed or we removed load.
3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655 * call update_tg_load_avg() when this function returns true.
3657 static inline int
3658 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3660 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3661 struct sched_avg *sa = &cfs_rq->avg;
3662 int decayed = 0;
3664 if (cfs_rq->removed.nr) {
3665 unsigned long r;
3666 u32 divider = get_pelt_divider(&cfs_rq->avg);
3668 raw_spin_lock(&cfs_rq->removed.lock);
3669 swap(cfs_rq->removed.util_avg, removed_util);
3670 swap(cfs_rq->removed.load_avg, removed_load);
3671 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3672 cfs_rq->removed.nr = 0;
3673 raw_spin_unlock(&cfs_rq->removed.lock);
3675 r = removed_load;
3676 sub_positive(&sa->load_avg, r);
3677 sub_positive(&sa->load_sum, r * divider);
3679 r = removed_util;
3680 sub_positive(&sa->util_avg, r);
3681 sub_positive(&sa->util_sum, r * divider);
3683 r = removed_runnable;
3684 sub_positive(&sa->runnable_avg, r);
3685 sub_positive(&sa->runnable_sum, r * divider);
3688 * removed_runnable is the unweighted version of removed_load so we
3689 * can use it to estimate removed_load_sum.
3691 add_tg_cfs_propagate(cfs_rq,
3692 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3694 decayed = 1;
3697 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3699 #ifndef CONFIG_64BIT
3700 smp_wmb();
3701 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3702 #endif
3704 return decayed;
3708 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3709 * @cfs_rq: cfs_rq to attach to
3710 * @se: sched_entity to attach
3712 * Must call update_cfs_rq_load_avg() before this, since we rely on
3713 * cfs_rq->avg.last_update_time being current.
3715 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3718 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3719 * See ___update_load_avg() for details.
3721 u32 divider = get_pelt_divider(&cfs_rq->avg);
3724 * When we attach the @se to the @cfs_rq, we must align the decay
3725 * window because without that, really weird and wonderful things can
3726 * happen.
3728 * XXX illustrate
3730 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3731 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3734 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3735 * period_contrib. This isn't strictly correct, but since we're
3736 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3737 * _sum a little.
3739 se->avg.util_sum = se->avg.util_avg * divider;
3741 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3743 se->avg.load_sum = divider;
3744 if (se_weight(se)) {
3745 se->avg.load_sum =
3746 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3749 enqueue_load_avg(cfs_rq, se);
3750 cfs_rq->avg.util_avg += se->avg.util_avg;
3751 cfs_rq->avg.util_sum += se->avg.util_sum;
3752 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3753 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3755 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3757 cfs_rq_util_change(cfs_rq, 0);
3759 trace_pelt_cfs_tp(cfs_rq);
3763 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3764 * @cfs_rq: cfs_rq to detach from
3765 * @se: sched_entity to detach
3767 * Must call update_cfs_rq_load_avg() before this, since we rely on
3768 * cfs_rq->avg.last_update_time being current.
3770 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3772 dequeue_load_avg(cfs_rq, se);
3773 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3774 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3775 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3776 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3778 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3780 cfs_rq_util_change(cfs_rq, 0);
3782 trace_pelt_cfs_tp(cfs_rq);
3786 * Optional action to be done while updating the load average
3788 #define UPDATE_TG 0x1
3789 #define SKIP_AGE_LOAD 0x2
3790 #define DO_ATTACH 0x4
3792 /* Update task and its cfs_rq load average */
3793 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3795 u64 now = cfs_rq_clock_pelt(cfs_rq);
3796 int decayed;
3799 * Track task load average for carrying it to new CPU after migrated, and
3800 * track group sched_entity load average for task_h_load calc in migration
3802 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3803 __update_load_avg_se(now, cfs_rq, se);
3805 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3806 decayed |= propagate_entity_load_avg(se);
3808 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3811 * DO_ATTACH means we're here from enqueue_entity().
3812 * !last_update_time means we've passed through
3813 * migrate_task_rq_fair() indicating we migrated.
3815 * IOW we're enqueueing a task on a new CPU.
3817 attach_entity_load_avg(cfs_rq, se);
3818 update_tg_load_avg(cfs_rq);
3820 } else if (decayed) {
3821 cfs_rq_util_change(cfs_rq, 0);
3823 if (flags & UPDATE_TG)
3824 update_tg_load_avg(cfs_rq);
3828 #ifndef CONFIG_64BIT
3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3831 u64 last_update_time_copy;
3832 u64 last_update_time;
3834 do {
3835 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3836 smp_rmb();
3837 last_update_time = cfs_rq->avg.last_update_time;
3838 } while (last_update_time != last_update_time_copy);
3840 return last_update_time;
3842 #else
3843 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3845 return cfs_rq->avg.last_update_time;
3847 #endif
3850 * Synchronize entity load avg of dequeued entity without locking
3851 * the previous rq.
3853 static void sync_entity_load_avg(struct sched_entity *se)
3855 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3856 u64 last_update_time;
3858 last_update_time = cfs_rq_last_update_time(cfs_rq);
3859 __update_load_avg_blocked_se(last_update_time, se);
3863 * Task first catches up with cfs_rq, and then subtract
3864 * itself from the cfs_rq (task must be off the queue now).
3866 static void remove_entity_load_avg(struct sched_entity *se)
3868 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3869 unsigned long flags;
3872 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 * post_init_entity_util_avg() which will have added things to the
3874 * cfs_rq, so we can remove unconditionally.
3877 sync_entity_load_avg(se);
3879 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3880 ++cfs_rq->removed.nr;
3881 cfs_rq->removed.util_avg += se->avg.util_avg;
3882 cfs_rq->removed.load_avg += se->avg.load_avg;
3883 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3884 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3887 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3889 return cfs_rq->avg.runnable_avg;
3892 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3894 return cfs_rq->avg.load_avg;
3897 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3899 static inline unsigned long task_util(struct task_struct *p)
3901 return READ_ONCE(p->se.avg.util_avg);
3904 static inline unsigned long _task_util_est(struct task_struct *p)
3906 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3908 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3911 static inline unsigned long task_util_est(struct task_struct *p)
3913 return max(task_util(p), _task_util_est(p));
3916 #ifdef CONFIG_UCLAMP_TASK
3917 static inline unsigned long uclamp_task_util(struct task_struct *p)
3919 return clamp(task_util_est(p),
3920 uclamp_eff_value(p, UCLAMP_MIN),
3921 uclamp_eff_value(p, UCLAMP_MAX));
3923 #else
3924 static inline unsigned long uclamp_task_util(struct task_struct *p)
3926 return task_util_est(p);
3928 #endif
3930 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3931 struct task_struct *p)
3933 unsigned int enqueued;
3935 if (!sched_feat(UTIL_EST))
3936 return;
3938 /* Update root cfs_rq's estimated utilization */
3939 enqueued = cfs_rq->avg.util_est.enqueued;
3940 enqueued += _task_util_est(p);
3941 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3943 trace_sched_util_est_cfs_tp(cfs_rq);
3947 * Check if a (signed) value is within a specified (unsigned) margin,
3948 * based on the observation that:
3950 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3952 * NOTE: this only works when value + maring < INT_MAX.
3954 static inline bool within_margin(int value, int margin)
3956 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3959 static void
3960 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3962 long last_ewma_diff;
3963 struct util_est ue;
3964 int cpu;
3966 if (!sched_feat(UTIL_EST))
3967 return;
3969 /* Update root cfs_rq's estimated utilization */
3970 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3971 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3972 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3974 trace_sched_util_est_cfs_tp(cfs_rq);
3977 * Skip update of task's estimated utilization when the task has not
3978 * yet completed an activation, e.g. being migrated.
3980 if (!task_sleep)
3981 return;
3984 * If the PELT values haven't changed since enqueue time,
3985 * skip the util_est update.
3987 ue = p->se.avg.util_est;
3988 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3989 return;
3992 * Reset EWMA on utilization increases, the moving average is used only
3993 * to smooth utilization decreases.
3995 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3996 if (sched_feat(UTIL_EST_FASTUP)) {
3997 if (ue.ewma < ue.enqueued) {
3998 ue.ewma = ue.enqueued;
3999 goto done;
4004 * Skip update of task's estimated utilization when its EWMA is
4005 * already ~1% close to its last activation value.
4007 last_ewma_diff = ue.enqueued - ue.ewma;
4008 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4009 return;
4012 * To avoid overestimation of actual task utilization, skip updates if
4013 * we cannot grant there is idle time in this CPU.
4015 cpu = cpu_of(rq_of(cfs_rq));
4016 if (task_util(p) > capacity_orig_of(cpu))
4017 return;
4020 * Update Task's estimated utilization
4022 * When *p completes an activation we can consolidate another sample
4023 * of the task size. This is done by storing the current PELT value
4024 * as ue.enqueued and by using this value to update the Exponential
4025 * Weighted Moving Average (EWMA):
4027 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4028 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4029 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4030 * = w * ( last_ewma_diff ) + ewma(t-1)
4031 * = w * (last_ewma_diff + ewma(t-1) / w)
4033 * Where 'w' is the weight of new samples, which is configured to be
4034 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4036 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4037 ue.ewma += last_ewma_diff;
4038 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4039 done:
4040 WRITE_ONCE(p->se.avg.util_est, ue);
4042 trace_sched_util_est_se_tp(&p->se);
4045 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4047 return fits_capacity(uclamp_task_util(p), capacity);
4050 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4052 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4053 return;
4055 if (!p) {
4056 rq->misfit_task_load = 0;
4057 return;
4060 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4061 rq->misfit_task_load = 0;
4062 return;
4066 * Make sure that misfit_task_load will not be null even if
4067 * task_h_load() returns 0.
4069 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4072 #else /* CONFIG_SMP */
4074 #define UPDATE_TG 0x0
4075 #define SKIP_AGE_LOAD 0x0
4076 #define DO_ATTACH 0x0
4078 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4080 cfs_rq_util_change(cfs_rq, 0);
4083 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4085 static inline void
4086 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4087 static inline void
4088 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4090 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4092 return 0;
4095 static inline void
4096 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4098 static inline void
4099 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4100 bool task_sleep) {}
4101 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4103 #endif /* CONFIG_SMP */
4105 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4107 #ifdef CONFIG_SCHED_DEBUG
4108 s64 d = se->vruntime - cfs_rq->min_vruntime;
4110 if (d < 0)
4111 d = -d;
4113 if (d > 3*sysctl_sched_latency)
4114 schedstat_inc(cfs_rq->nr_spread_over);
4115 #endif
4118 static void
4119 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4121 u64 vruntime = cfs_rq->min_vruntime;
4124 * The 'current' period is already promised to the current tasks,
4125 * however the extra weight of the new task will slow them down a
4126 * little, place the new task so that it fits in the slot that
4127 * stays open at the end.
4129 if (initial && sched_feat(START_DEBIT))
4130 vruntime += sched_vslice(cfs_rq, se);
4132 /* sleeps up to a single latency don't count. */
4133 if (!initial) {
4134 unsigned long thresh = sysctl_sched_latency;
4137 * Halve their sleep time's effect, to allow
4138 * for a gentler effect of sleepers:
4140 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4141 thresh >>= 1;
4143 vruntime -= thresh;
4146 /* ensure we never gain time by being placed backwards. */
4147 se->vruntime = max_vruntime(se->vruntime, vruntime);
4150 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4152 static inline void check_schedstat_required(void)
4154 #ifdef CONFIG_SCHEDSTATS
4155 if (schedstat_enabled())
4156 return;
4158 /* Force schedstat enabled if a dependent tracepoint is active */
4159 if (trace_sched_stat_wait_enabled() ||
4160 trace_sched_stat_sleep_enabled() ||
4161 trace_sched_stat_iowait_enabled() ||
4162 trace_sched_stat_blocked_enabled() ||
4163 trace_sched_stat_runtime_enabled()) {
4164 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4165 "stat_blocked and stat_runtime require the "
4166 "kernel parameter schedstats=enable or "
4167 "kernel.sched_schedstats=1\n");
4169 #endif
4172 static inline bool cfs_bandwidth_used(void);
4175 * MIGRATION
4177 * dequeue
4178 * update_curr()
4179 * update_min_vruntime()
4180 * vruntime -= min_vruntime
4182 * enqueue
4183 * update_curr()
4184 * update_min_vruntime()
4185 * vruntime += min_vruntime
4187 * this way the vruntime transition between RQs is done when both
4188 * min_vruntime are up-to-date.
4190 * WAKEUP (remote)
4192 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4193 * vruntime -= min_vruntime
4195 * enqueue
4196 * update_curr()
4197 * update_min_vruntime()
4198 * vruntime += min_vruntime
4200 * this way we don't have the most up-to-date min_vruntime on the originating
4201 * CPU and an up-to-date min_vruntime on the destination CPU.
4204 static void
4205 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4207 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4208 bool curr = cfs_rq->curr == se;
4211 * If we're the current task, we must renormalise before calling
4212 * update_curr().
4214 if (renorm && curr)
4215 se->vruntime += cfs_rq->min_vruntime;
4217 update_curr(cfs_rq);
4220 * Otherwise, renormalise after, such that we're placed at the current
4221 * moment in time, instead of some random moment in the past. Being
4222 * placed in the past could significantly boost this task to the
4223 * fairness detriment of existing tasks.
4225 if (renorm && !curr)
4226 se->vruntime += cfs_rq->min_vruntime;
4229 * When enqueuing a sched_entity, we must:
4230 * - Update loads to have both entity and cfs_rq synced with now.
4231 * - Add its load to cfs_rq->runnable_avg
4232 * - For group_entity, update its weight to reflect the new share of
4233 * its group cfs_rq
4234 * - Add its new weight to cfs_rq->load.weight
4236 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4237 se_update_runnable(se);
4238 update_cfs_group(se);
4239 account_entity_enqueue(cfs_rq, se);
4241 if (flags & ENQUEUE_WAKEUP)
4242 place_entity(cfs_rq, se, 0);
4244 check_schedstat_required();
4245 update_stats_enqueue(cfs_rq, se, flags);
4246 check_spread(cfs_rq, se);
4247 if (!curr)
4248 __enqueue_entity(cfs_rq, se);
4249 se->on_rq = 1;
4252 * When bandwidth control is enabled, cfs might have been removed
4253 * because of a parent been throttled but cfs->nr_running > 1. Try to
4254 * add it unconditionnally.
4256 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4257 list_add_leaf_cfs_rq(cfs_rq);
4259 if (cfs_rq->nr_running == 1)
4260 check_enqueue_throttle(cfs_rq);
4263 static void __clear_buddies_last(struct sched_entity *se)
4265 for_each_sched_entity(se) {
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267 if (cfs_rq->last != se)
4268 break;
4270 cfs_rq->last = NULL;
4274 static void __clear_buddies_next(struct sched_entity *se)
4276 for_each_sched_entity(se) {
4277 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4278 if (cfs_rq->next != se)
4279 break;
4281 cfs_rq->next = NULL;
4285 static void __clear_buddies_skip(struct sched_entity *se)
4287 for_each_sched_entity(se) {
4288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4289 if (cfs_rq->skip != se)
4290 break;
4292 cfs_rq->skip = NULL;
4296 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4298 if (cfs_rq->last == se)
4299 __clear_buddies_last(se);
4301 if (cfs_rq->next == se)
4302 __clear_buddies_next(se);
4304 if (cfs_rq->skip == se)
4305 __clear_buddies_skip(se);
4308 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4310 static void
4311 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4314 * Update run-time statistics of the 'current'.
4316 update_curr(cfs_rq);
4319 * When dequeuing a sched_entity, we must:
4320 * - Update loads to have both entity and cfs_rq synced with now.
4321 * - Subtract its load from the cfs_rq->runnable_avg.
4322 * - Subtract its previous weight from cfs_rq->load.weight.
4323 * - For group entity, update its weight to reflect the new share
4324 * of its group cfs_rq.
4326 update_load_avg(cfs_rq, se, UPDATE_TG);
4327 se_update_runnable(se);
4329 update_stats_dequeue(cfs_rq, se, flags);
4331 clear_buddies(cfs_rq, se);
4333 if (se != cfs_rq->curr)
4334 __dequeue_entity(cfs_rq, se);
4335 se->on_rq = 0;
4336 account_entity_dequeue(cfs_rq, se);
4339 * Normalize after update_curr(); which will also have moved
4340 * min_vruntime if @se is the one holding it back. But before doing
4341 * update_min_vruntime() again, which will discount @se's position and
4342 * can move min_vruntime forward still more.
4344 if (!(flags & DEQUEUE_SLEEP))
4345 se->vruntime -= cfs_rq->min_vruntime;
4347 /* return excess runtime on last dequeue */
4348 return_cfs_rq_runtime(cfs_rq);
4350 update_cfs_group(se);
4353 * Now advance min_vruntime if @se was the entity holding it back,
4354 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4355 * put back on, and if we advance min_vruntime, we'll be placed back
4356 * further than we started -- ie. we'll be penalized.
4358 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4359 update_min_vruntime(cfs_rq);
4363 * Preempt the current task with a newly woken task if needed:
4365 static void
4366 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4368 unsigned long ideal_runtime, delta_exec;
4369 struct sched_entity *se;
4370 s64 delta;
4372 ideal_runtime = sched_slice(cfs_rq, curr);
4373 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4374 if (delta_exec > ideal_runtime) {
4375 resched_curr(rq_of(cfs_rq));
4377 * The current task ran long enough, ensure it doesn't get
4378 * re-elected due to buddy favours.
4380 clear_buddies(cfs_rq, curr);
4381 return;
4385 * Ensure that a task that missed wakeup preemption by a
4386 * narrow margin doesn't have to wait for a full slice.
4387 * This also mitigates buddy induced latencies under load.
4389 if (delta_exec < sysctl_sched_min_granularity)
4390 return;
4392 se = __pick_first_entity(cfs_rq);
4393 delta = curr->vruntime - se->vruntime;
4395 if (delta < 0)
4396 return;
4398 if (delta > ideal_runtime)
4399 resched_curr(rq_of(cfs_rq));
4402 static void
4403 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4405 /* 'current' is not kept within the tree. */
4406 if (se->on_rq) {
4408 * Any task has to be enqueued before it get to execute on
4409 * a CPU. So account for the time it spent waiting on the
4410 * runqueue.
4412 update_stats_wait_end(cfs_rq, se);
4413 __dequeue_entity(cfs_rq, se);
4414 update_load_avg(cfs_rq, se, UPDATE_TG);
4417 update_stats_curr_start(cfs_rq, se);
4418 cfs_rq->curr = se;
4421 * Track our maximum slice length, if the CPU's load is at
4422 * least twice that of our own weight (i.e. dont track it
4423 * when there are only lesser-weight tasks around):
4425 if (schedstat_enabled() &&
4426 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4427 schedstat_set(se->statistics.slice_max,
4428 max((u64)schedstat_val(se->statistics.slice_max),
4429 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4432 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4435 static int
4436 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4439 * Pick the next process, keeping these things in mind, in this order:
4440 * 1) keep things fair between processes/task groups
4441 * 2) pick the "next" process, since someone really wants that to run
4442 * 3) pick the "last" process, for cache locality
4443 * 4) do not run the "skip" process, if something else is available
4445 static struct sched_entity *
4446 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4448 struct sched_entity *left = __pick_first_entity(cfs_rq);
4449 struct sched_entity *se;
4452 * If curr is set we have to see if its left of the leftmost entity
4453 * still in the tree, provided there was anything in the tree at all.
4455 if (!left || (curr && entity_before(curr, left)))
4456 left = curr;
4458 se = left; /* ideally we run the leftmost entity */
4461 * Avoid running the skip buddy, if running something else can
4462 * be done without getting too unfair.
4464 if (cfs_rq->skip == se) {
4465 struct sched_entity *second;
4467 if (se == curr) {
4468 second = __pick_first_entity(cfs_rq);
4469 } else {
4470 second = __pick_next_entity(se);
4471 if (!second || (curr && entity_before(curr, second)))
4472 second = curr;
4475 if (second && wakeup_preempt_entity(second, left) < 1)
4476 se = second;
4479 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4481 * Someone really wants this to run. If it's not unfair, run it.
4483 se = cfs_rq->next;
4484 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4486 * Prefer last buddy, try to return the CPU to a preempted task.
4488 se = cfs_rq->last;
4491 clear_buddies(cfs_rq, se);
4493 return se;
4496 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4498 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4501 * If still on the runqueue then deactivate_task()
4502 * was not called and update_curr() has to be done:
4504 if (prev->on_rq)
4505 update_curr(cfs_rq);
4507 /* throttle cfs_rqs exceeding runtime */
4508 check_cfs_rq_runtime(cfs_rq);
4510 check_spread(cfs_rq, prev);
4512 if (prev->on_rq) {
4513 update_stats_wait_start(cfs_rq, prev);
4514 /* Put 'current' back into the tree. */
4515 __enqueue_entity(cfs_rq, prev);
4516 /* in !on_rq case, update occurred at dequeue */
4517 update_load_avg(cfs_rq, prev, 0);
4519 cfs_rq->curr = NULL;
4522 static void
4523 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4526 * Update run-time statistics of the 'current'.
4528 update_curr(cfs_rq);
4531 * Ensure that runnable average is periodically updated.
4533 update_load_avg(cfs_rq, curr, UPDATE_TG);
4534 update_cfs_group(curr);
4536 #ifdef CONFIG_SCHED_HRTICK
4538 * queued ticks are scheduled to match the slice, so don't bother
4539 * validating it and just reschedule.
4541 if (queued) {
4542 resched_curr(rq_of(cfs_rq));
4543 return;
4546 * don't let the period tick interfere with the hrtick preemption
4548 if (!sched_feat(DOUBLE_TICK) &&
4549 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4550 return;
4551 #endif
4553 if (cfs_rq->nr_running > 1)
4554 check_preempt_tick(cfs_rq, curr);
4558 /**************************************************
4559 * CFS bandwidth control machinery
4562 #ifdef CONFIG_CFS_BANDWIDTH
4564 #ifdef CONFIG_JUMP_LABEL
4565 static struct static_key __cfs_bandwidth_used;
4567 static inline bool cfs_bandwidth_used(void)
4569 return static_key_false(&__cfs_bandwidth_used);
4572 void cfs_bandwidth_usage_inc(void)
4574 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4577 void cfs_bandwidth_usage_dec(void)
4579 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4581 #else /* CONFIG_JUMP_LABEL */
4582 static bool cfs_bandwidth_used(void)
4584 return true;
4587 void cfs_bandwidth_usage_inc(void) {}
4588 void cfs_bandwidth_usage_dec(void) {}
4589 #endif /* CONFIG_JUMP_LABEL */
4592 * default period for cfs group bandwidth.
4593 * default: 0.1s, units: nanoseconds
4595 static inline u64 default_cfs_period(void)
4597 return 100000000ULL;
4600 static inline u64 sched_cfs_bandwidth_slice(void)
4602 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4606 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4607 * directly instead of rq->clock to avoid adding additional synchronization
4608 * around rq->lock.
4610 * requires cfs_b->lock
4612 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4614 if (cfs_b->quota != RUNTIME_INF)
4615 cfs_b->runtime = cfs_b->quota;
4618 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4620 return &tg->cfs_bandwidth;
4623 /* returns 0 on failure to allocate runtime */
4624 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4625 struct cfs_rq *cfs_rq, u64 target_runtime)
4627 u64 min_amount, amount = 0;
4629 lockdep_assert_held(&cfs_b->lock);
4631 /* note: this is a positive sum as runtime_remaining <= 0 */
4632 min_amount = target_runtime - cfs_rq->runtime_remaining;
4634 if (cfs_b->quota == RUNTIME_INF)
4635 amount = min_amount;
4636 else {
4637 start_cfs_bandwidth(cfs_b);
4639 if (cfs_b->runtime > 0) {
4640 amount = min(cfs_b->runtime, min_amount);
4641 cfs_b->runtime -= amount;
4642 cfs_b->idle = 0;
4646 cfs_rq->runtime_remaining += amount;
4648 return cfs_rq->runtime_remaining > 0;
4651 /* returns 0 on failure to allocate runtime */
4652 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4654 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4655 int ret;
4657 raw_spin_lock(&cfs_b->lock);
4658 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4659 raw_spin_unlock(&cfs_b->lock);
4661 return ret;
4664 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4666 /* dock delta_exec before expiring quota (as it could span periods) */
4667 cfs_rq->runtime_remaining -= delta_exec;
4669 if (likely(cfs_rq->runtime_remaining > 0))
4670 return;
4672 if (cfs_rq->throttled)
4673 return;
4675 * if we're unable to extend our runtime we resched so that the active
4676 * hierarchy can be throttled
4678 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4679 resched_curr(rq_of(cfs_rq));
4682 static __always_inline
4683 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4685 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4686 return;
4688 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4691 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4693 return cfs_bandwidth_used() && cfs_rq->throttled;
4696 /* check whether cfs_rq, or any parent, is throttled */
4697 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4699 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4703 * Ensure that neither of the group entities corresponding to src_cpu or
4704 * dest_cpu are members of a throttled hierarchy when performing group
4705 * load-balance operations.
4707 static inline int throttled_lb_pair(struct task_group *tg,
4708 int src_cpu, int dest_cpu)
4710 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4712 src_cfs_rq = tg->cfs_rq[src_cpu];
4713 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4715 return throttled_hierarchy(src_cfs_rq) ||
4716 throttled_hierarchy(dest_cfs_rq);
4719 static int tg_unthrottle_up(struct task_group *tg, void *data)
4721 struct rq *rq = data;
4722 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4724 cfs_rq->throttle_count--;
4725 if (!cfs_rq->throttle_count) {
4726 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4727 cfs_rq->throttled_clock_task;
4729 /* Add cfs_rq with already running entity in the list */
4730 if (cfs_rq->nr_running >= 1)
4731 list_add_leaf_cfs_rq(cfs_rq);
4734 return 0;
4737 static int tg_throttle_down(struct task_group *tg, void *data)
4739 struct rq *rq = data;
4740 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4742 /* group is entering throttled state, stop time */
4743 if (!cfs_rq->throttle_count) {
4744 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4745 list_del_leaf_cfs_rq(cfs_rq);
4747 cfs_rq->throttle_count++;
4749 return 0;
4752 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4754 struct rq *rq = rq_of(cfs_rq);
4755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4756 struct sched_entity *se;
4757 long task_delta, idle_task_delta, dequeue = 1;
4759 raw_spin_lock(&cfs_b->lock);
4760 /* This will start the period timer if necessary */
4761 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4763 * We have raced with bandwidth becoming available, and if we
4764 * actually throttled the timer might not unthrottle us for an
4765 * entire period. We additionally needed to make sure that any
4766 * subsequent check_cfs_rq_runtime calls agree not to throttle
4767 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4768 * for 1ns of runtime rather than just check cfs_b.
4770 dequeue = 0;
4771 } else {
4772 list_add_tail_rcu(&cfs_rq->throttled_list,
4773 &cfs_b->throttled_cfs_rq);
4775 raw_spin_unlock(&cfs_b->lock);
4777 if (!dequeue)
4778 return false; /* Throttle no longer required. */
4780 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4782 /* freeze hierarchy runnable averages while throttled */
4783 rcu_read_lock();
4784 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4785 rcu_read_unlock();
4787 task_delta = cfs_rq->h_nr_running;
4788 idle_task_delta = cfs_rq->idle_h_nr_running;
4789 for_each_sched_entity(se) {
4790 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4791 /* throttled entity or throttle-on-deactivate */
4792 if (!se->on_rq)
4793 goto done;
4795 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4797 qcfs_rq->h_nr_running -= task_delta;
4798 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4800 if (qcfs_rq->load.weight) {
4801 /* Avoid re-evaluating load for this entity: */
4802 se = parent_entity(se);
4803 break;
4807 for_each_sched_entity(se) {
4808 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4809 /* throttled entity or throttle-on-deactivate */
4810 if (!se->on_rq)
4811 goto done;
4813 update_load_avg(qcfs_rq, se, 0);
4814 se_update_runnable(se);
4816 qcfs_rq->h_nr_running -= task_delta;
4817 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4820 /* At this point se is NULL and we are at root level*/
4821 sub_nr_running(rq, task_delta);
4823 done:
4825 * Note: distribution will already see us throttled via the
4826 * throttled-list. rq->lock protects completion.
4828 cfs_rq->throttled = 1;
4829 cfs_rq->throttled_clock = rq_clock(rq);
4830 return true;
4833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4835 struct rq *rq = rq_of(cfs_rq);
4836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4837 struct sched_entity *se;
4838 long task_delta, idle_task_delta;
4840 se = cfs_rq->tg->se[cpu_of(rq)];
4842 cfs_rq->throttled = 0;
4844 update_rq_clock(rq);
4846 raw_spin_lock(&cfs_b->lock);
4847 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4848 list_del_rcu(&cfs_rq->throttled_list);
4849 raw_spin_unlock(&cfs_b->lock);
4851 /* update hierarchical throttle state */
4852 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4854 if (!cfs_rq->load.weight)
4855 return;
4857 task_delta = cfs_rq->h_nr_running;
4858 idle_task_delta = cfs_rq->idle_h_nr_running;
4859 for_each_sched_entity(se) {
4860 if (se->on_rq)
4861 break;
4862 cfs_rq = cfs_rq_of(se);
4863 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4865 cfs_rq->h_nr_running += task_delta;
4866 cfs_rq->idle_h_nr_running += idle_task_delta;
4868 /* end evaluation on encountering a throttled cfs_rq */
4869 if (cfs_rq_throttled(cfs_rq))
4870 goto unthrottle_throttle;
4873 for_each_sched_entity(se) {
4874 cfs_rq = cfs_rq_of(se);
4876 update_load_avg(cfs_rq, se, UPDATE_TG);
4877 se_update_runnable(se);
4879 cfs_rq->h_nr_running += task_delta;
4880 cfs_rq->idle_h_nr_running += idle_task_delta;
4883 /* end evaluation on encountering a throttled cfs_rq */
4884 if (cfs_rq_throttled(cfs_rq))
4885 goto unthrottle_throttle;
4888 * One parent has been throttled and cfs_rq removed from the
4889 * list. Add it back to not break the leaf list.
4891 if (throttled_hierarchy(cfs_rq))
4892 list_add_leaf_cfs_rq(cfs_rq);
4895 /* At this point se is NULL and we are at root level*/
4896 add_nr_running(rq, task_delta);
4898 unthrottle_throttle:
4900 * The cfs_rq_throttled() breaks in the above iteration can result in
4901 * incomplete leaf list maintenance, resulting in triggering the
4902 * assertion below.
4904 for_each_sched_entity(se) {
4905 cfs_rq = cfs_rq_of(se);
4907 if (list_add_leaf_cfs_rq(cfs_rq))
4908 break;
4911 assert_list_leaf_cfs_rq(rq);
4913 /* Determine whether we need to wake up potentially idle CPU: */
4914 if (rq->curr == rq->idle && rq->cfs.nr_running)
4915 resched_curr(rq);
4918 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4920 struct cfs_rq *cfs_rq;
4921 u64 runtime, remaining = 1;
4923 rcu_read_lock();
4924 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4925 throttled_list) {
4926 struct rq *rq = rq_of(cfs_rq);
4927 struct rq_flags rf;
4929 rq_lock_irqsave(rq, &rf);
4930 if (!cfs_rq_throttled(cfs_rq))
4931 goto next;
4933 /* By the above check, this should never be true */
4934 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4936 raw_spin_lock(&cfs_b->lock);
4937 runtime = -cfs_rq->runtime_remaining + 1;
4938 if (runtime > cfs_b->runtime)
4939 runtime = cfs_b->runtime;
4940 cfs_b->runtime -= runtime;
4941 remaining = cfs_b->runtime;
4942 raw_spin_unlock(&cfs_b->lock);
4944 cfs_rq->runtime_remaining += runtime;
4946 /* we check whether we're throttled above */
4947 if (cfs_rq->runtime_remaining > 0)
4948 unthrottle_cfs_rq(cfs_rq);
4950 next:
4951 rq_unlock_irqrestore(rq, &rf);
4953 if (!remaining)
4954 break;
4956 rcu_read_unlock();
4960 * Responsible for refilling a task_group's bandwidth and unthrottling its
4961 * cfs_rqs as appropriate. If there has been no activity within the last
4962 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4963 * used to track this state.
4965 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4967 int throttled;
4969 /* no need to continue the timer with no bandwidth constraint */
4970 if (cfs_b->quota == RUNTIME_INF)
4971 goto out_deactivate;
4973 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4974 cfs_b->nr_periods += overrun;
4977 * idle depends on !throttled (for the case of a large deficit), and if
4978 * we're going inactive then everything else can be deferred
4980 if (cfs_b->idle && !throttled)
4981 goto out_deactivate;
4983 __refill_cfs_bandwidth_runtime(cfs_b);
4985 if (!throttled) {
4986 /* mark as potentially idle for the upcoming period */
4987 cfs_b->idle = 1;
4988 return 0;
4991 /* account preceding periods in which throttling occurred */
4992 cfs_b->nr_throttled += overrun;
4995 * This check is repeated as we release cfs_b->lock while we unthrottle.
4997 while (throttled && cfs_b->runtime > 0) {
4998 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4999 /* we can't nest cfs_b->lock while distributing bandwidth */
5000 distribute_cfs_runtime(cfs_b);
5001 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5003 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5007 * While we are ensured activity in the period following an
5008 * unthrottle, this also covers the case in which the new bandwidth is
5009 * insufficient to cover the existing bandwidth deficit. (Forcing the
5010 * timer to remain active while there are any throttled entities.)
5012 cfs_b->idle = 0;
5014 return 0;
5016 out_deactivate:
5017 return 1;
5020 /* a cfs_rq won't donate quota below this amount */
5021 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5022 /* minimum remaining period time to redistribute slack quota */
5023 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5024 /* how long we wait to gather additional slack before distributing */
5025 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5028 * Are we near the end of the current quota period?
5030 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5031 * hrtimer base being cleared by hrtimer_start. In the case of
5032 * migrate_hrtimers, base is never cleared, so we are fine.
5034 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5036 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5037 u64 remaining;
5039 /* if the call-back is running a quota refresh is already occurring */
5040 if (hrtimer_callback_running(refresh_timer))
5041 return 1;
5043 /* is a quota refresh about to occur? */
5044 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5045 if (remaining < min_expire)
5046 return 1;
5048 return 0;
5051 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5053 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5055 /* if there's a quota refresh soon don't bother with slack */
5056 if (runtime_refresh_within(cfs_b, min_left))
5057 return;
5059 /* don't push forwards an existing deferred unthrottle */
5060 if (cfs_b->slack_started)
5061 return;
5062 cfs_b->slack_started = true;
5064 hrtimer_start(&cfs_b->slack_timer,
5065 ns_to_ktime(cfs_bandwidth_slack_period),
5066 HRTIMER_MODE_REL);
5069 /* we know any runtime found here is valid as update_curr() precedes return */
5070 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5073 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5075 if (slack_runtime <= 0)
5076 return;
5078 raw_spin_lock(&cfs_b->lock);
5079 if (cfs_b->quota != RUNTIME_INF) {
5080 cfs_b->runtime += slack_runtime;
5082 /* we are under rq->lock, defer unthrottling using a timer */
5083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5084 !list_empty(&cfs_b->throttled_cfs_rq))
5085 start_cfs_slack_bandwidth(cfs_b);
5087 raw_spin_unlock(&cfs_b->lock);
5089 /* even if it's not valid for return we don't want to try again */
5090 cfs_rq->runtime_remaining -= slack_runtime;
5093 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5095 if (!cfs_bandwidth_used())
5096 return;
5098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5099 return;
5101 __return_cfs_rq_runtime(cfs_rq);
5105 * This is done with a timer (instead of inline with bandwidth return) since
5106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5108 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5111 unsigned long flags;
5113 /* confirm we're still not at a refresh boundary */
5114 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5115 cfs_b->slack_started = false;
5117 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5119 return;
5122 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5123 runtime = cfs_b->runtime;
5125 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5127 if (!runtime)
5128 return;
5130 distribute_cfs_runtime(cfs_b);
5134 * When a group wakes up we want to make sure that its quota is not already
5135 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5136 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5138 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5140 if (!cfs_bandwidth_used())
5141 return;
5143 /* an active group must be handled by the update_curr()->put() path */
5144 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5145 return;
5147 /* ensure the group is not already throttled */
5148 if (cfs_rq_throttled(cfs_rq))
5149 return;
5151 /* update runtime allocation */
5152 account_cfs_rq_runtime(cfs_rq, 0);
5153 if (cfs_rq->runtime_remaining <= 0)
5154 throttle_cfs_rq(cfs_rq);
5157 static void sync_throttle(struct task_group *tg, int cpu)
5159 struct cfs_rq *pcfs_rq, *cfs_rq;
5161 if (!cfs_bandwidth_used())
5162 return;
5164 if (!tg->parent)
5165 return;
5167 cfs_rq = tg->cfs_rq[cpu];
5168 pcfs_rq = tg->parent->cfs_rq[cpu];
5170 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5171 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5174 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5175 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5177 if (!cfs_bandwidth_used())
5178 return false;
5180 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5181 return false;
5184 * it's possible for a throttled entity to be forced into a running
5185 * state (e.g. set_curr_task), in this case we're finished.
5187 if (cfs_rq_throttled(cfs_rq))
5188 return true;
5190 return throttle_cfs_rq(cfs_rq);
5193 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5195 struct cfs_bandwidth *cfs_b =
5196 container_of(timer, struct cfs_bandwidth, slack_timer);
5198 do_sched_cfs_slack_timer(cfs_b);
5200 return HRTIMER_NORESTART;
5203 extern const u64 max_cfs_quota_period;
5205 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5207 struct cfs_bandwidth *cfs_b =
5208 container_of(timer, struct cfs_bandwidth, period_timer);
5209 unsigned long flags;
5210 int overrun;
5211 int idle = 0;
5212 int count = 0;
5214 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5215 for (;;) {
5216 overrun = hrtimer_forward_now(timer, cfs_b->period);
5217 if (!overrun)
5218 break;
5220 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5222 if (++count > 3) {
5223 u64 new, old = ktime_to_ns(cfs_b->period);
5226 * Grow period by a factor of 2 to avoid losing precision.
5227 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5228 * to fail.
5230 new = old * 2;
5231 if (new < max_cfs_quota_period) {
5232 cfs_b->period = ns_to_ktime(new);
5233 cfs_b->quota *= 2;
5235 pr_warn_ratelimited(
5236 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5237 smp_processor_id(),
5238 div_u64(new, NSEC_PER_USEC),
5239 div_u64(cfs_b->quota, NSEC_PER_USEC));
5240 } else {
5241 pr_warn_ratelimited(
5242 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5243 smp_processor_id(),
5244 div_u64(old, NSEC_PER_USEC),
5245 div_u64(cfs_b->quota, NSEC_PER_USEC));
5248 /* reset count so we don't come right back in here */
5249 count = 0;
5252 if (idle)
5253 cfs_b->period_active = 0;
5254 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5256 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5259 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5261 raw_spin_lock_init(&cfs_b->lock);
5262 cfs_b->runtime = 0;
5263 cfs_b->quota = RUNTIME_INF;
5264 cfs_b->period = ns_to_ktime(default_cfs_period());
5266 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5267 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5268 cfs_b->period_timer.function = sched_cfs_period_timer;
5269 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5270 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5271 cfs_b->slack_started = false;
5274 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5276 cfs_rq->runtime_enabled = 0;
5277 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5280 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5282 lockdep_assert_held(&cfs_b->lock);
5284 if (cfs_b->period_active)
5285 return;
5287 cfs_b->period_active = 1;
5288 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5289 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5292 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5294 /* init_cfs_bandwidth() was not called */
5295 if (!cfs_b->throttled_cfs_rq.next)
5296 return;
5298 hrtimer_cancel(&cfs_b->period_timer);
5299 hrtimer_cancel(&cfs_b->slack_timer);
5303 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5305 * The race is harmless, since modifying bandwidth settings of unhooked group
5306 * bits doesn't do much.
5309 /* cpu online calback */
5310 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5312 struct task_group *tg;
5314 lockdep_assert_held(&rq->lock);
5316 rcu_read_lock();
5317 list_for_each_entry_rcu(tg, &task_groups, list) {
5318 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5319 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5321 raw_spin_lock(&cfs_b->lock);
5322 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5323 raw_spin_unlock(&cfs_b->lock);
5325 rcu_read_unlock();
5328 /* cpu offline callback */
5329 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5331 struct task_group *tg;
5333 lockdep_assert_held(&rq->lock);
5335 rcu_read_lock();
5336 list_for_each_entry_rcu(tg, &task_groups, list) {
5337 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5339 if (!cfs_rq->runtime_enabled)
5340 continue;
5343 * clock_task is not advancing so we just need to make sure
5344 * there's some valid quota amount
5346 cfs_rq->runtime_remaining = 1;
5348 * Offline rq is schedulable till CPU is completely disabled
5349 * in take_cpu_down(), so we prevent new cfs throttling here.
5351 cfs_rq->runtime_enabled = 0;
5353 if (cfs_rq_throttled(cfs_rq))
5354 unthrottle_cfs_rq(cfs_rq);
5356 rcu_read_unlock();
5359 #else /* CONFIG_CFS_BANDWIDTH */
5361 static inline bool cfs_bandwidth_used(void)
5363 return false;
5366 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5367 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5368 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5369 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5370 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5372 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5374 return 0;
5377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5379 return 0;
5382 static inline int throttled_lb_pair(struct task_group *tg,
5383 int src_cpu, int dest_cpu)
5385 return 0;
5388 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5390 #ifdef CONFIG_FAIR_GROUP_SCHED
5391 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5392 #endif
5394 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5396 return NULL;
5398 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5399 static inline void update_runtime_enabled(struct rq *rq) {}
5400 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5402 #endif /* CONFIG_CFS_BANDWIDTH */
5404 /**************************************************
5405 * CFS operations on tasks:
5408 #ifdef CONFIG_SCHED_HRTICK
5409 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5411 struct sched_entity *se = &p->se;
5412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5414 SCHED_WARN_ON(task_rq(p) != rq);
5416 if (rq->cfs.h_nr_running > 1) {
5417 u64 slice = sched_slice(cfs_rq, se);
5418 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5419 s64 delta = slice - ran;
5421 if (delta < 0) {
5422 if (rq->curr == p)
5423 resched_curr(rq);
5424 return;
5426 hrtick_start(rq, delta);
5431 * called from enqueue/dequeue and updates the hrtick when the
5432 * current task is from our class and nr_running is low enough
5433 * to matter.
5435 static void hrtick_update(struct rq *rq)
5437 struct task_struct *curr = rq->curr;
5439 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5440 return;
5442 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5443 hrtick_start_fair(rq, curr);
5445 #else /* !CONFIG_SCHED_HRTICK */
5446 static inline void
5447 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5451 static inline void hrtick_update(struct rq *rq)
5454 #endif
5456 #ifdef CONFIG_SMP
5457 static inline unsigned long cpu_util(int cpu);
5459 static inline bool cpu_overutilized(int cpu)
5461 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5464 static inline void update_overutilized_status(struct rq *rq)
5466 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5467 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5468 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5471 #else
5472 static inline void update_overutilized_status(struct rq *rq) { }
5473 #endif
5475 /* Runqueue only has SCHED_IDLE tasks enqueued */
5476 static int sched_idle_rq(struct rq *rq)
5478 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5479 rq->nr_running);
5482 #ifdef CONFIG_SMP
5483 static int sched_idle_cpu(int cpu)
5485 return sched_idle_rq(cpu_rq(cpu));
5487 #endif
5490 * The enqueue_task method is called before nr_running is
5491 * increased. Here we update the fair scheduling stats and
5492 * then put the task into the rbtree:
5494 static void
5495 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5497 struct cfs_rq *cfs_rq;
5498 struct sched_entity *se = &p->se;
5499 int idle_h_nr_running = task_has_idle_policy(p);
5500 int task_new = !(flags & ENQUEUE_WAKEUP);
5503 * The code below (indirectly) updates schedutil which looks at
5504 * the cfs_rq utilization to select a frequency.
5505 * Let's add the task's estimated utilization to the cfs_rq's
5506 * estimated utilization, before we update schedutil.
5508 util_est_enqueue(&rq->cfs, p);
5511 * If in_iowait is set, the code below may not trigger any cpufreq
5512 * utilization updates, so do it here explicitly with the IOWAIT flag
5513 * passed.
5515 if (p->in_iowait)
5516 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5518 for_each_sched_entity(se) {
5519 if (se->on_rq)
5520 break;
5521 cfs_rq = cfs_rq_of(se);
5522 enqueue_entity(cfs_rq, se, flags);
5524 cfs_rq->h_nr_running++;
5525 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5527 /* end evaluation on encountering a throttled cfs_rq */
5528 if (cfs_rq_throttled(cfs_rq))
5529 goto enqueue_throttle;
5531 flags = ENQUEUE_WAKEUP;
5534 for_each_sched_entity(se) {
5535 cfs_rq = cfs_rq_of(se);
5537 update_load_avg(cfs_rq, se, UPDATE_TG);
5538 se_update_runnable(se);
5539 update_cfs_group(se);
5541 cfs_rq->h_nr_running++;
5542 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5544 /* end evaluation on encountering a throttled cfs_rq */
5545 if (cfs_rq_throttled(cfs_rq))
5546 goto enqueue_throttle;
5549 * One parent has been throttled and cfs_rq removed from the
5550 * list. Add it back to not break the leaf list.
5552 if (throttled_hierarchy(cfs_rq))
5553 list_add_leaf_cfs_rq(cfs_rq);
5556 /* At this point se is NULL and we are at root level*/
5557 add_nr_running(rq, 1);
5560 * Since new tasks are assigned an initial util_avg equal to
5561 * half of the spare capacity of their CPU, tiny tasks have the
5562 * ability to cross the overutilized threshold, which will
5563 * result in the load balancer ruining all the task placement
5564 * done by EAS. As a way to mitigate that effect, do not account
5565 * for the first enqueue operation of new tasks during the
5566 * overutilized flag detection.
5568 * A better way of solving this problem would be to wait for
5569 * the PELT signals of tasks to converge before taking them
5570 * into account, but that is not straightforward to implement,
5571 * and the following generally works well enough in practice.
5573 if (!task_new)
5574 update_overutilized_status(rq);
5576 enqueue_throttle:
5577 if (cfs_bandwidth_used()) {
5579 * When bandwidth control is enabled; the cfs_rq_throttled()
5580 * breaks in the above iteration can result in incomplete
5581 * leaf list maintenance, resulting in triggering the assertion
5582 * below.
5584 for_each_sched_entity(se) {
5585 cfs_rq = cfs_rq_of(se);
5587 if (list_add_leaf_cfs_rq(cfs_rq))
5588 break;
5592 assert_list_leaf_cfs_rq(rq);
5594 hrtick_update(rq);
5597 static void set_next_buddy(struct sched_entity *se);
5600 * The dequeue_task method is called before nr_running is
5601 * decreased. We remove the task from the rbtree and
5602 * update the fair scheduling stats:
5604 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5606 struct cfs_rq *cfs_rq;
5607 struct sched_entity *se = &p->se;
5608 int task_sleep = flags & DEQUEUE_SLEEP;
5609 int idle_h_nr_running = task_has_idle_policy(p);
5610 bool was_sched_idle = sched_idle_rq(rq);
5612 for_each_sched_entity(se) {
5613 cfs_rq = cfs_rq_of(se);
5614 dequeue_entity(cfs_rq, se, flags);
5616 cfs_rq->h_nr_running--;
5617 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5619 /* end evaluation on encountering a throttled cfs_rq */
5620 if (cfs_rq_throttled(cfs_rq))
5621 goto dequeue_throttle;
5623 /* Don't dequeue parent if it has other entities besides us */
5624 if (cfs_rq->load.weight) {
5625 /* Avoid re-evaluating load for this entity: */
5626 se = parent_entity(se);
5628 * Bias pick_next to pick a task from this cfs_rq, as
5629 * p is sleeping when it is within its sched_slice.
5631 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5632 set_next_buddy(se);
5633 break;
5635 flags |= DEQUEUE_SLEEP;
5638 for_each_sched_entity(se) {
5639 cfs_rq = cfs_rq_of(se);
5641 update_load_avg(cfs_rq, se, UPDATE_TG);
5642 se_update_runnable(se);
5643 update_cfs_group(se);
5645 cfs_rq->h_nr_running--;
5646 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5648 /* end evaluation on encountering a throttled cfs_rq */
5649 if (cfs_rq_throttled(cfs_rq))
5650 goto dequeue_throttle;
5654 /* At this point se is NULL and we are at root level*/
5655 sub_nr_running(rq, 1);
5657 /* balance early to pull high priority tasks */
5658 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5659 rq->next_balance = jiffies;
5661 dequeue_throttle:
5662 util_est_dequeue(&rq->cfs, p, task_sleep);
5663 hrtick_update(rq);
5666 #ifdef CONFIG_SMP
5668 /* Working cpumask for: load_balance, load_balance_newidle. */
5669 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5670 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5672 #ifdef CONFIG_NO_HZ_COMMON
5674 static struct {
5675 cpumask_var_t idle_cpus_mask;
5676 atomic_t nr_cpus;
5677 int has_blocked; /* Idle CPUS has blocked load */
5678 unsigned long next_balance; /* in jiffy units */
5679 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5680 } nohz ____cacheline_aligned;
5682 #endif /* CONFIG_NO_HZ_COMMON */
5684 static unsigned long cpu_load(struct rq *rq)
5686 return cfs_rq_load_avg(&rq->cfs);
5690 * cpu_load_without - compute CPU load without any contributions from *p
5691 * @cpu: the CPU which load is requested
5692 * @p: the task which load should be discounted
5694 * The load of a CPU is defined by the load of tasks currently enqueued on that
5695 * CPU as well as tasks which are currently sleeping after an execution on that
5696 * CPU.
5698 * This method returns the load of the specified CPU by discounting the load of
5699 * the specified task, whenever the task is currently contributing to the CPU
5700 * load.
5702 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5704 struct cfs_rq *cfs_rq;
5705 unsigned int load;
5707 /* Task has no contribution or is new */
5708 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5709 return cpu_load(rq);
5711 cfs_rq = &rq->cfs;
5712 load = READ_ONCE(cfs_rq->avg.load_avg);
5714 /* Discount task's util from CPU's util */
5715 lsub_positive(&load, task_h_load(p));
5717 return load;
5720 static unsigned long cpu_runnable(struct rq *rq)
5722 return cfs_rq_runnable_avg(&rq->cfs);
5725 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5727 struct cfs_rq *cfs_rq;
5728 unsigned int runnable;
5730 /* Task has no contribution or is new */
5731 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5732 return cpu_runnable(rq);
5734 cfs_rq = &rq->cfs;
5735 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5737 /* Discount task's runnable from CPU's runnable */
5738 lsub_positive(&runnable, p->se.avg.runnable_avg);
5740 return runnable;
5743 static unsigned long capacity_of(int cpu)
5745 return cpu_rq(cpu)->cpu_capacity;
5748 static void record_wakee(struct task_struct *p)
5751 * Only decay a single time; tasks that have less then 1 wakeup per
5752 * jiffy will not have built up many flips.
5754 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5755 current->wakee_flips >>= 1;
5756 current->wakee_flip_decay_ts = jiffies;
5759 if (current->last_wakee != p) {
5760 current->last_wakee = p;
5761 current->wakee_flips++;
5766 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5768 * A waker of many should wake a different task than the one last awakened
5769 * at a frequency roughly N times higher than one of its wakees.
5771 * In order to determine whether we should let the load spread vs consolidating
5772 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5773 * partner, and a factor of lls_size higher frequency in the other.
5775 * With both conditions met, we can be relatively sure that the relationship is
5776 * non-monogamous, with partner count exceeding socket size.
5778 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5779 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5780 * socket size.
5782 static int wake_wide(struct task_struct *p)
5784 unsigned int master = current->wakee_flips;
5785 unsigned int slave = p->wakee_flips;
5786 int factor = __this_cpu_read(sd_llc_size);
5788 if (master < slave)
5789 swap(master, slave);
5790 if (slave < factor || master < slave * factor)
5791 return 0;
5792 return 1;
5796 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5797 * soonest. For the purpose of speed we only consider the waking and previous
5798 * CPU.
5800 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5801 * cache-affine and is (or will be) idle.
5803 * wake_affine_weight() - considers the weight to reflect the average
5804 * scheduling latency of the CPUs. This seems to work
5805 * for the overloaded case.
5807 static int
5808 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5811 * If this_cpu is idle, it implies the wakeup is from interrupt
5812 * context. Only allow the move if cache is shared. Otherwise an
5813 * interrupt intensive workload could force all tasks onto one
5814 * node depending on the IO topology or IRQ affinity settings.
5816 * If the prev_cpu is idle and cache affine then avoid a migration.
5817 * There is no guarantee that the cache hot data from an interrupt
5818 * is more important than cache hot data on the prev_cpu and from
5819 * a cpufreq perspective, it's better to have higher utilisation
5820 * on one CPU.
5822 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5823 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5825 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5826 return this_cpu;
5828 if (available_idle_cpu(prev_cpu))
5829 return prev_cpu;
5831 return nr_cpumask_bits;
5834 static int
5835 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5836 int this_cpu, int prev_cpu, int sync)
5838 s64 this_eff_load, prev_eff_load;
5839 unsigned long task_load;
5841 this_eff_load = cpu_load(cpu_rq(this_cpu));
5843 if (sync) {
5844 unsigned long current_load = task_h_load(current);
5846 if (current_load > this_eff_load)
5847 return this_cpu;
5849 this_eff_load -= current_load;
5852 task_load = task_h_load(p);
5854 this_eff_load += task_load;
5855 if (sched_feat(WA_BIAS))
5856 this_eff_load *= 100;
5857 this_eff_load *= capacity_of(prev_cpu);
5859 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5860 prev_eff_load -= task_load;
5861 if (sched_feat(WA_BIAS))
5862 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5863 prev_eff_load *= capacity_of(this_cpu);
5866 * If sync, adjust the weight of prev_eff_load such that if
5867 * prev_eff == this_eff that select_idle_sibling() will consider
5868 * stacking the wakee on top of the waker if no other CPU is
5869 * idle.
5871 if (sync)
5872 prev_eff_load += 1;
5874 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5877 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5878 int this_cpu, int prev_cpu, int sync)
5880 int target = nr_cpumask_bits;
5882 if (sched_feat(WA_IDLE))
5883 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5885 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5886 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5888 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5889 if (target == nr_cpumask_bits)
5890 return prev_cpu;
5892 schedstat_inc(sd->ttwu_move_affine);
5893 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5894 return target;
5897 static struct sched_group *
5898 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5901 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5903 static int
5904 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5906 unsigned long load, min_load = ULONG_MAX;
5907 unsigned int min_exit_latency = UINT_MAX;
5908 u64 latest_idle_timestamp = 0;
5909 int least_loaded_cpu = this_cpu;
5910 int shallowest_idle_cpu = -1;
5911 int i;
5913 /* Check if we have any choice: */
5914 if (group->group_weight == 1)
5915 return cpumask_first(sched_group_span(group));
5917 /* Traverse only the allowed CPUs */
5918 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5919 if (sched_idle_cpu(i))
5920 return i;
5922 if (available_idle_cpu(i)) {
5923 struct rq *rq = cpu_rq(i);
5924 struct cpuidle_state *idle = idle_get_state(rq);
5925 if (idle && idle->exit_latency < min_exit_latency) {
5927 * We give priority to a CPU whose idle state
5928 * has the smallest exit latency irrespective
5929 * of any idle timestamp.
5931 min_exit_latency = idle->exit_latency;
5932 latest_idle_timestamp = rq->idle_stamp;
5933 shallowest_idle_cpu = i;
5934 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5935 rq->idle_stamp > latest_idle_timestamp) {
5937 * If equal or no active idle state, then
5938 * the most recently idled CPU might have
5939 * a warmer cache.
5941 latest_idle_timestamp = rq->idle_stamp;
5942 shallowest_idle_cpu = i;
5944 } else if (shallowest_idle_cpu == -1) {
5945 load = cpu_load(cpu_rq(i));
5946 if (load < min_load) {
5947 min_load = load;
5948 least_loaded_cpu = i;
5953 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5956 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5957 int cpu, int prev_cpu, int sd_flag)
5959 int new_cpu = cpu;
5961 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5962 return prev_cpu;
5965 * We need task's util for cpu_util_without, sync it up to
5966 * prev_cpu's last_update_time.
5968 if (!(sd_flag & SD_BALANCE_FORK))
5969 sync_entity_load_avg(&p->se);
5971 while (sd) {
5972 struct sched_group *group;
5973 struct sched_domain *tmp;
5974 int weight;
5976 if (!(sd->flags & sd_flag)) {
5977 sd = sd->child;
5978 continue;
5981 group = find_idlest_group(sd, p, cpu);
5982 if (!group) {
5983 sd = sd->child;
5984 continue;
5987 new_cpu = find_idlest_group_cpu(group, p, cpu);
5988 if (new_cpu == cpu) {
5989 /* Now try balancing at a lower domain level of 'cpu': */
5990 sd = sd->child;
5991 continue;
5994 /* Now try balancing at a lower domain level of 'new_cpu': */
5995 cpu = new_cpu;
5996 weight = sd->span_weight;
5997 sd = NULL;
5998 for_each_domain(cpu, tmp) {
5999 if (weight <= tmp->span_weight)
6000 break;
6001 if (tmp->flags & sd_flag)
6002 sd = tmp;
6006 return new_cpu;
6009 #ifdef CONFIG_SCHED_SMT
6010 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6011 EXPORT_SYMBOL_GPL(sched_smt_present);
6013 static inline void set_idle_cores(int cpu, int val)
6015 struct sched_domain_shared *sds;
6017 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6018 if (sds)
6019 WRITE_ONCE(sds->has_idle_cores, val);
6022 static inline bool test_idle_cores(int cpu, bool def)
6024 struct sched_domain_shared *sds;
6026 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6027 if (sds)
6028 return READ_ONCE(sds->has_idle_cores);
6030 return def;
6034 * Scans the local SMT mask to see if the entire core is idle, and records this
6035 * information in sd_llc_shared->has_idle_cores.
6037 * Since SMT siblings share all cache levels, inspecting this limited remote
6038 * state should be fairly cheap.
6040 void __update_idle_core(struct rq *rq)
6042 int core = cpu_of(rq);
6043 int cpu;
6045 rcu_read_lock();
6046 if (test_idle_cores(core, true))
6047 goto unlock;
6049 for_each_cpu(cpu, cpu_smt_mask(core)) {
6050 if (cpu == core)
6051 continue;
6053 if (!available_idle_cpu(cpu))
6054 goto unlock;
6057 set_idle_cores(core, 1);
6058 unlock:
6059 rcu_read_unlock();
6063 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6064 * there are no idle cores left in the system; tracked through
6065 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6067 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6069 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6070 int core, cpu;
6072 if (!static_branch_likely(&sched_smt_present))
6073 return -1;
6075 if (!test_idle_cores(target, false))
6076 return -1;
6078 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6080 for_each_cpu_wrap(core, cpus, target) {
6081 bool idle = true;
6083 for_each_cpu(cpu, cpu_smt_mask(core)) {
6084 if (!available_idle_cpu(cpu)) {
6085 idle = false;
6086 break;
6090 if (idle)
6091 return core;
6093 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6097 * Failed to find an idle core; stop looking for one.
6099 set_idle_cores(target, 0);
6101 return -1;
6105 * Scan the local SMT mask for idle CPUs.
6107 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6109 int cpu;
6111 if (!static_branch_likely(&sched_smt_present))
6112 return -1;
6114 for_each_cpu(cpu, cpu_smt_mask(target)) {
6115 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6116 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6117 continue;
6118 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6119 return cpu;
6122 return -1;
6125 #else /* CONFIG_SCHED_SMT */
6127 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6129 return -1;
6132 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6134 return -1;
6137 #endif /* CONFIG_SCHED_SMT */
6140 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6141 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6142 * average idle time for this rq (as found in rq->avg_idle).
6144 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6146 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6147 struct sched_domain *this_sd;
6148 u64 avg_cost, avg_idle;
6149 u64 time;
6150 int this = smp_processor_id();
6151 int cpu, nr = INT_MAX;
6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 if (!this_sd)
6155 return -1;
6158 * Due to large variance we need a large fuzz factor; hackbench in
6159 * particularly is sensitive here.
6161 avg_idle = this_rq()->avg_idle / 512;
6162 avg_cost = this_sd->avg_scan_cost + 1;
6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6165 return -1;
6167 if (sched_feat(SIS_PROP)) {
6168 u64 span_avg = sd->span_weight * avg_idle;
6169 if (span_avg > 4*avg_cost)
6170 nr = div_u64(span_avg, avg_cost);
6171 else
6172 nr = 4;
6175 time = cpu_clock(this);
6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6179 for_each_cpu_wrap(cpu, cpus, target) {
6180 if (!--nr)
6181 return -1;
6182 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6183 break;
6186 time = cpu_clock(this) - time;
6187 update_avg(&this_sd->avg_scan_cost, time);
6189 return cpu;
6193 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6194 * the task fits. If no CPU is big enough, but there are idle ones, try to
6195 * maximize capacity.
6197 static int
6198 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6200 unsigned long task_util, best_cap = 0;
6201 int cpu, best_cpu = -1;
6202 struct cpumask *cpus;
6204 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6205 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6207 task_util = uclamp_task_util(p);
6209 for_each_cpu_wrap(cpu, cpus, target) {
6210 unsigned long cpu_cap = capacity_of(cpu);
6212 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6213 continue;
6214 if (fits_capacity(task_util, cpu_cap))
6215 return cpu;
6217 if (cpu_cap > best_cap) {
6218 best_cap = cpu_cap;
6219 best_cpu = cpu;
6223 return best_cpu;
6226 static inline bool asym_fits_capacity(int task_util, int cpu)
6228 if (static_branch_unlikely(&sched_asym_cpucapacity))
6229 return fits_capacity(task_util, capacity_of(cpu));
6231 return true;
6235 * Try and locate an idle core/thread in the LLC cache domain.
6237 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6239 struct sched_domain *sd;
6240 unsigned long task_util;
6241 int i, recent_used_cpu;
6244 * On asymmetric system, update task utilization because we will check
6245 * that the task fits with cpu's capacity.
6247 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6248 sync_entity_load_avg(&p->se);
6249 task_util = uclamp_task_util(p);
6252 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6253 asym_fits_capacity(task_util, target))
6254 return target;
6257 * If the previous CPU is cache affine and idle, don't be stupid:
6259 if (prev != target && cpus_share_cache(prev, target) &&
6260 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6261 asym_fits_capacity(task_util, prev))
6262 return prev;
6265 * Allow a per-cpu kthread to stack with the wakee if the
6266 * kworker thread and the tasks previous CPUs are the same.
6267 * The assumption is that the wakee queued work for the
6268 * per-cpu kthread that is now complete and the wakeup is
6269 * essentially a sync wakeup. An obvious example of this
6270 * pattern is IO completions.
6272 if (is_per_cpu_kthread(current) &&
6273 prev == smp_processor_id() &&
6274 this_rq()->nr_running <= 1) {
6275 return prev;
6278 /* Check a recently used CPU as a potential idle candidate: */
6279 recent_used_cpu = p->recent_used_cpu;
6280 if (recent_used_cpu != prev &&
6281 recent_used_cpu != target &&
6282 cpus_share_cache(recent_used_cpu, target) &&
6283 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6284 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6285 asym_fits_capacity(task_util, recent_used_cpu)) {
6287 * Replace recent_used_cpu with prev as it is a potential
6288 * candidate for the next wake:
6290 p->recent_used_cpu = prev;
6291 return recent_used_cpu;
6295 * For asymmetric CPU capacity systems, our domain of interest is
6296 * sd_asym_cpucapacity rather than sd_llc.
6298 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6299 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6301 * On an asymmetric CPU capacity system where an exclusive
6302 * cpuset defines a symmetric island (i.e. one unique
6303 * capacity_orig value through the cpuset), the key will be set
6304 * but the CPUs within that cpuset will not have a domain with
6305 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6306 * capacity path.
6308 if (sd) {
6309 i = select_idle_capacity(p, sd, target);
6310 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6314 sd = rcu_dereference(per_cpu(sd_llc, target));
6315 if (!sd)
6316 return target;
6318 i = select_idle_core(p, sd, target);
6319 if ((unsigned)i < nr_cpumask_bits)
6320 return i;
6322 i = select_idle_cpu(p, sd, target);
6323 if ((unsigned)i < nr_cpumask_bits)
6324 return i;
6326 i = select_idle_smt(p, sd, target);
6327 if ((unsigned)i < nr_cpumask_bits)
6328 return i;
6330 return target;
6334 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6335 * @cpu: the CPU to get the utilization of
6337 * The unit of the return value must be the one of capacity so we can compare
6338 * the utilization with the capacity of the CPU that is available for CFS task
6339 * (ie cpu_capacity).
6341 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6342 * recent utilization of currently non-runnable tasks on a CPU. It represents
6343 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6344 * capacity_orig is the cpu_capacity available at the highest frequency
6345 * (arch_scale_freq_capacity()).
6346 * The utilization of a CPU converges towards a sum equal to or less than the
6347 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6348 * the running time on this CPU scaled by capacity_curr.
6350 * The estimated utilization of a CPU is defined to be the maximum between its
6351 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6352 * currently RUNNABLE on that CPU.
6353 * This allows to properly represent the expected utilization of a CPU which
6354 * has just got a big task running since a long sleep period. At the same time
6355 * however it preserves the benefits of the "blocked utilization" in
6356 * describing the potential for other tasks waking up on the same CPU.
6358 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6359 * higher than capacity_orig because of unfortunate rounding in
6360 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6361 * the average stabilizes with the new running time. We need to check that the
6362 * utilization stays within the range of [0..capacity_orig] and cap it if
6363 * necessary. Without utilization capping, a group could be seen as overloaded
6364 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6365 * available capacity. We allow utilization to overshoot capacity_curr (but not
6366 * capacity_orig) as it useful for predicting the capacity required after task
6367 * migrations (scheduler-driven DVFS).
6369 * Return: the (estimated) utilization for the specified CPU
6371 static inline unsigned long cpu_util(int cpu)
6373 struct cfs_rq *cfs_rq;
6374 unsigned int util;
6376 cfs_rq = &cpu_rq(cpu)->cfs;
6377 util = READ_ONCE(cfs_rq->avg.util_avg);
6379 if (sched_feat(UTIL_EST))
6380 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6382 return min_t(unsigned long, util, capacity_orig_of(cpu));
6386 * cpu_util_without: compute cpu utilization without any contributions from *p
6387 * @cpu: the CPU which utilization is requested
6388 * @p: the task which utilization should be discounted
6390 * The utilization of a CPU is defined by the utilization of tasks currently
6391 * enqueued on that CPU as well as tasks which are currently sleeping after an
6392 * execution on that CPU.
6394 * This method returns the utilization of the specified CPU by discounting the
6395 * utilization of the specified task, whenever the task is currently
6396 * contributing to the CPU utilization.
6398 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6400 struct cfs_rq *cfs_rq;
6401 unsigned int util;
6403 /* Task has no contribution or is new */
6404 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6405 return cpu_util(cpu);
6407 cfs_rq = &cpu_rq(cpu)->cfs;
6408 util = READ_ONCE(cfs_rq->avg.util_avg);
6410 /* Discount task's util from CPU's util */
6411 lsub_positive(&util, task_util(p));
6414 * Covered cases:
6416 * a) if *p is the only task sleeping on this CPU, then:
6417 * cpu_util (== task_util) > util_est (== 0)
6418 * and thus we return:
6419 * cpu_util_without = (cpu_util - task_util) = 0
6421 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6422 * IDLE, then:
6423 * cpu_util >= task_util
6424 * cpu_util > util_est (== 0)
6425 * and thus we discount *p's blocked utilization to return:
6426 * cpu_util_without = (cpu_util - task_util) >= 0
6428 * c) if other tasks are RUNNABLE on that CPU and
6429 * util_est > cpu_util
6430 * then we use util_est since it returns a more restrictive
6431 * estimation of the spare capacity on that CPU, by just
6432 * considering the expected utilization of tasks already
6433 * runnable on that CPU.
6435 * Cases a) and b) are covered by the above code, while case c) is
6436 * covered by the following code when estimated utilization is
6437 * enabled.
6439 if (sched_feat(UTIL_EST)) {
6440 unsigned int estimated =
6441 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6444 * Despite the following checks we still have a small window
6445 * for a possible race, when an execl's select_task_rq_fair()
6446 * races with LB's detach_task():
6448 * detach_task()
6449 * p->on_rq = TASK_ON_RQ_MIGRATING;
6450 * ---------------------------------- A
6451 * deactivate_task() \
6452 * dequeue_task() + RaceTime
6453 * util_est_dequeue() /
6454 * ---------------------------------- B
6456 * The additional check on "current == p" it's required to
6457 * properly fix the execl regression and it helps in further
6458 * reducing the chances for the above race.
6460 if (unlikely(task_on_rq_queued(p) || current == p))
6461 lsub_positive(&estimated, _task_util_est(p));
6463 util = max(util, estimated);
6467 * Utilization (estimated) can exceed the CPU capacity, thus let's
6468 * clamp to the maximum CPU capacity to ensure consistency with
6469 * the cpu_util call.
6471 return min_t(unsigned long, util, capacity_orig_of(cpu));
6475 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6476 * to @dst_cpu.
6478 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6480 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6481 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6484 * If @p migrates from @cpu to another, remove its contribution. Or,
6485 * if @p migrates from another CPU to @cpu, add its contribution. In
6486 * the other cases, @cpu is not impacted by the migration, so the
6487 * util_avg should already be correct.
6489 if (task_cpu(p) == cpu && dst_cpu != cpu)
6490 sub_positive(&util, task_util(p));
6491 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6492 util += task_util(p);
6494 if (sched_feat(UTIL_EST)) {
6495 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6498 * During wake-up, the task isn't enqueued yet and doesn't
6499 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6500 * so just add it (if needed) to "simulate" what will be
6501 * cpu_util() after the task has been enqueued.
6503 if (dst_cpu == cpu)
6504 util_est += _task_util_est(p);
6506 util = max(util, util_est);
6509 return min(util, capacity_orig_of(cpu));
6513 * compute_energy(): Estimates the energy that @pd would consume if @p was
6514 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6515 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6516 * to compute what would be the energy if we decided to actually migrate that
6517 * task.
6519 static long
6520 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6522 struct cpumask *pd_mask = perf_domain_span(pd);
6523 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6524 unsigned long max_util = 0, sum_util = 0;
6525 int cpu;
6528 * The capacity state of CPUs of the current rd can be driven by CPUs
6529 * of another rd if they belong to the same pd. So, account for the
6530 * utilization of these CPUs too by masking pd with cpu_online_mask
6531 * instead of the rd span.
6533 * If an entire pd is outside of the current rd, it will not appear in
6534 * its pd list and will not be accounted by compute_energy().
6536 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6537 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6538 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6541 * Busy time computation: utilization clamping is not
6542 * required since the ratio (sum_util / cpu_capacity)
6543 * is already enough to scale the EM reported power
6544 * consumption at the (eventually clamped) cpu_capacity.
6546 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6547 ENERGY_UTIL, NULL);
6550 * Performance domain frequency: utilization clamping
6551 * must be considered since it affects the selection
6552 * of the performance domain frequency.
6553 * NOTE: in case RT tasks are running, by default the
6554 * FREQUENCY_UTIL's utilization can be max OPP.
6556 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6557 FREQUENCY_UTIL, tsk);
6558 max_util = max(max_util, cpu_util);
6561 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6565 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6566 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6567 * spare capacity in each performance domain and uses it as a potential
6568 * candidate to execute the task. Then, it uses the Energy Model to figure
6569 * out which of the CPU candidates is the most energy-efficient.
6571 * The rationale for this heuristic is as follows. In a performance domain,
6572 * all the most energy efficient CPU candidates (according to the Energy
6573 * Model) are those for which we'll request a low frequency. When there are
6574 * several CPUs for which the frequency request will be the same, we don't
6575 * have enough data to break the tie between them, because the Energy Model
6576 * only includes active power costs. With this model, if we assume that
6577 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6578 * the maximum spare capacity in a performance domain is guaranteed to be among
6579 * the best candidates of the performance domain.
6581 * In practice, it could be preferable from an energy standpoint to pack
6582 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6583 * but that could also hurt our chances to go cluster idle, and we have no
6584 * ways to tell with the current Energy Model if this is actually a good
6585 * idea or not. So, find_energy_efficient_cpu() basically favors
6586 * cluster-packing, and spreading inside a cluster. That should at least be
6587 * a good thing for latency, and this is consistent with the idea that most
6588 * of the energy savings of EAS come from the asymmetry of the system, and
6589 * not so much from breaking the tie between identical CPUs. That's also the
6590 * reason why EAS is enabled in the topology code only for systems where
6591 * SD_ASYM_CPUCAPACITY is set.
6593 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6594 * they don't have any useful utilization data yet and it's not possible to
6595 * forecast their impact on energy consumption. Consequently, they will be
6596 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6597 * to be energy-inefficient in some use-cases. The alternative would be to
6598 * bias new tasks towards specific types of CPUs first, or to try to infer
6599 * their util_avg from the parent task, but those heuristics could hurt
6600 * other use-cases too. So, until someone finds a better way to solve this,
6601 * let's keep things simple by re-using the existing slow path.
6603 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6605 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6606 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6607 unsigned long cpu_cap, util, base_energy = 0;
6608 int cpu, best_energy_cpu = prev_cpu;
6609 struct sched_domain *sd;
6610 struct perf_domain *pd;
6612 rcu_read_lock();
6613 pd = rcu_dereference(rd->pd);
6614 if (!pd || READ_ONCE(rd->overutilized))
6615 goto fail;
6618 * Energy-aware wake-up happens on the lowest sched_domain starting
6619 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6621 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6622 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6623 sd = sd->parent;
6624 if (!sd)
6625 goto fail;
6627 sync_entity_load_avg(&p->se);
6628 if (!task_util_est(p))
6629 goto unlock;
6631 for (; pd; pd = pd->next) {
6632 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6633 unsigned long base_energy_pd;
6634 int max_spare_cap_cpu = -1;
6636 /* Compute the 'base' energy of the pd, without @p */
6637 base_energy_pd = compute_energy(p, -1, pd);
6638 base_energy += base_energy_pd;
6640 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6641 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6642 continue;
6644 util = cpu_util_next(cpu, p, cpu);
6645 cpu_cap = capacity_of(cpu);
6646 spare_cap = cpu_cap;
6647 lsub_positive(&spare_cap, util);
6650 * Skip CPUs that cannot satisfy the capacity request.
6651 * IOW, placing the task there would make the CPU
6652 * overutilized. Take uclamp into account to see how
6653 * much capacity we can get out of the CPU; this is
6654 * aligned with schedutil_cpu_util().
6656 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6657 if (!fits_capacity(util, cpu_cap))
6658 continue;
6660 /* Always use prev_cpu as a candidate. */
6661 if (cpu == prev_cpu) {
6662 prev_delta = compute_energy(p, prev_cpu, pd);
6663 prev_delta -= base_energy_pd;
6664 best_delta = min(best_delta, prev_delta);
6668 * Find the CPU with the maximum spare capacity in
6669 * the performance domain
6671 if (spare_cap > max_spare_cap) {
6672 max_spare_cap = spare_cap;
6673 max_spare_cap_cpu = cpu;
6677 /* Evaluate the energy impact of using this CPU. */
6678 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6679 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6680 cur_delta -= base_energy_pd;
6681 if (cur_delta < best_delta) {
6682 best_delta = cur_delta;
6683 best_energy_cpu = max_spare_cap_cpu;
6687 unlock:
6688 rcu_read_unlock();
6691 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6692 * least 6% of the energy used by prev_cpu.
6694 if (prev_delta == ULONG_MAX)
6695 return best_energy_cpu;
6697 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6698 return best_energy_cpu;
6700 return prev_cpu;
6702 fail:
6703 rcu_read_unlock();
6705 return -1;
6709 * select_task_rq_fair: Select target runqueue for the waking task in domains
6710 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6711 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6713 * Balances load by selecting the idlest CPU in the idlest group, or under
6714 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6716 * Returns the target CPU number.
6718 * preempt must be disabled.
6720 static int
6721 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6723 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6724 struct sched_domain *tmp, *sd = NULL;
6725 int cpu = smp_processor_id();
6726 int new_cpu = prev_cpu;
6727 int want_affine = 0;
6728 /* SD_flags and WF_flags share the first nibble */
6729 int sd_flag = wake_flags & 0xF;
6731 if (wake_flags & WF_TTWU) {
6732 record_wakee(p);
6734 if (sched_energy_enabled()) {
6735 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6736 if (new_cpu >= 0)
6737 return new_cpu;
6738 new_cpu = prev_cpu;
6741 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6744 rcu_read_lock();
6745 for_each_domain(cpu, tmp) {
6747 * If both 'cpu' and 'prev_cpu' are part of this domain,
6748 * cpu is a valid SD_WAKE_AFFINE target.
6750 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6751 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6752 if (cpu != prev_cpu)
6753 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6755 sd = NULL; /* Prefer wake_affine over balance flags */
6756 break;
6759 if (tmp->flags & sd_flag)
6760 sd = tmp;
6761 else if (!want_affine)
6762 break;
6765 if (unlikely(sd)) {
6766 /* Slow path */
6767 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6768 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6769 /* Fast path */
6770 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6772 if (want_affine)
6773 current->recent_used_cpu = cpu;
6775 rcu_read_unlock();
6777 return new_cpu;
6780 static void detach_entity_cfs_rq(struct sched_entity *se);
6783 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6784 * cfs_rq_of(p) references at time of call are still valid and identify the
6785 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6787 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6790 * As blocked tasks retain absolute vruntime the migration needs to
6791 * deal with this by subtracting the old and adding the new
6792 * min_vruntime -- the latter is done by enqueue_entity() when placing
6793 * the task on the new runqueue.
6795 if (p->state == TASK_WAKING) {
6796 struct sched_entity *se = &p->se;
6797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6798 u64 min_vruntime;
6800 #ifndef CONFIG_64BIT
6801 u64 min_vruntime_copy;
6803 do {
6804 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6805 smp_rmb();
6806 min_vruntime = cfs_rq->min_vruntime;
6807 } while (min_vruntime != min_vruntime_copy);
6808 #else
6809 min_vruntime = cfs_rq->min_vruntime;
6810 #endif
6812 se->vruntime -= min_vruntime;
6815 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6817 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6818 * rq->lock and can modify state directly.
6820 lockdep_assert_held(&task_rq(p)->lock);
6821 detach_entity_cfs_rq(&p->se);
6823 } else {
6825 * We are supposed to update the task to "current" time, then
6826 * its up to date and ready to go to new CPU/cfs_rq. But we
6827 * have difficulty in getting what current time is, so simply
6828 * throw away the out-of-date time. This will result in the
6829 * wakee task is less decayed, but giving the wakee more load
6830 * sounds not bad.
6832 remove_entity_load_avg(&p->se);
6835 /* Tell new CPU we are migrated */
6836 p->se.avg.last_update_time = 0;
6838 /* We have migrated, no longer consider this task hot */
6839 p->se.exec_start = 0;
6841 update_scan_period(p, new_cpu);
6844 static void task_dead_fair(struct task_struct *p)
6846 remove_entity_load_avg(&p->se);
6849 static int
6850 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6852 if (rq->nr_running)
6853 return 1;
6855 return newidle_balance(rq, rf) != 0;
6857 #endif /* CONFIG_SMP */
6859 static unsigned long wakeup_gran(struct sched_entity *se)
6861 unsigned long gran = sysctl_sched_wakeup_granularity;
6864 * Since its curr running now, convert the gran from real-time
6865 * to virtual-time in his units.
6867 * By using 'se' instead of 'curr' we penalize light tasks, so
6868 * they get preempted easier. That is, if 'se' < 'curr' then
6869 * the resulting gran will be larger, therefore penalizing the
6870 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6871 * be smaller, again penalizing the lighter task.
6873 * This is especially important for buddies when the leftmost
6874 * task is higher priority than the buddy.
6876 return calc_delta_fair(gran, se);
6880 * Should 'se' preempt 'curr'.
6882 * |s1
6883 * |s2
6884 * |s3
6886 * |<--->|c
6888 * w(c, s1) = -1
6889 * w(c, s2) = 0
6890 * w(c, s3) = 1
6893 static int
6894 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6896 s64 gran, vdiff = curr->vruntime - se->vruntime;
6898 if (vdiff <= 0)
6899 return -1;
6901 gran = wakeup_gran(se);
6902 if (vdiff > gran)
6903 return 1;
6905 return 0;
6908 static void set_last_buddy(struct sched_entity *se)
6910 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6911 return;
6913 for_each_sched_entity(se) {
6914 if (SCHED_WARN_ON(!se->on_rq))
6915 return;
6916 cfs_rq_of(se)->last = se;
6920 static void set_next_buddy(struct sched_entity *se)
6922 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6923 return;
6925 for_each_sched_entity(se) {
6926 if (SCHED_WARN_ON(!se->on_rq))
6927 return;
6928 cfs_rq_of(se)->next = se;
6932 static void set_skip_buddy(struct sched_entity *se)
6934 for_each_sched_entity(se)
6935 cfs_rq_of(se)->skip = se;
6939 * Preempt the current task with a newly woken task if needed:
6941 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6943 struct task_struct *curr = rq->curr;
6944 struct sched_entity *se = &curr->se, *pse = &p->se;
6945 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6946 int scale = cfs_rq->nr_running >= sched_nr_latency;
6947 int next_buddy_marked = 0;
6949 if (unlikely(se == pse))
6950 return;
6953 * This is possible from callers such as attach_tasks(), in which we
6954 * unconditionally check_prempt_curr() after an enqueue (which may have
6955 * lead to a throttle). This both saves work and prevents false
6956 * next-buddy nomination below.
6958 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6959 return;
6961 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6962 set_next_buddy(pse);
6963 next_buddy_marked = 1;
6967 * We can come here with TIF_NEED_RESCHED already set from new task
6968 * wake up path.
6970 * Note: this also catches the edge-case of curr being in a throttled
6971 * group (e.g. via set_curr_task), since update_curr() (in the
6972 * enqueue of curr) will have resulted in resched being set. This
6973 * prevents us from potentially nominating it as a false LAST_BUDDY
6974 * below.
6976 if (test_tsk_need_resched(curr))
6977 return;
6979 /* Idle tasks are by definition preempted by non-idle tasks. */
6980 if (unlikely(task_has_idle_policy(curr)) &&
6981 likely(!task_has_idle_policy(p)))
6982 goto preempt;
6985 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6986 * is driven by the tick):
6988 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6989 return;
6991 find_matching_se(&se, &pse);
6992 update_curr(cfs_rq_of(se));
6993 BUG_ON(!pse);
6994 if (wakeup_preempt_entity(se, pse) == 1) {
6996 * Bias pick_next to pick the sched entity that is
6997 * triggering this preemption.
6999 if (!next_buddy_marked)
7000 set_next_buddy(pse);
7001 goto preempt;
7004 return;
7006 preempt:
7007 resched_curr(rq);
7009 * Only set the backward buddy when the current task is still
7010 * on the rq. This can happen when a wakeup gets interleaved
7011 * with schedule on the ->pre_schedule() or idle_balance()
7012 * point, either of which can * drop the rq lock.
7014 * Also, during early boot the idle thread is in the fair class,
7015 * for obvious reasons its a bad idea to schedule back to it.
7017 if (unlikely(!se->on_rq || curr == rq->idle))
7018 return;
7020 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7021 set_last_buddy(se);
7024 struct task_struct *
7025 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7027 struct cfs_rq *cfs_rq = &rq->cfs;
7028 struct sched_entity *se;
7029 struct task_struct *p;
7030 int new_tasks;
7032 again:
7033 if (!sched_fair_runnable(rq))
7034 goto idle;
7036 #ifdef CONFIG_FAIR_GROUP_SCHED
7037 if (!prev || prev->sched_class != &fair_sched_class)
7038 goto simple;
7041 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7042 * likely that a next task is from the same cgroup as the current.
7044 * Therefore attempt to avoid putting and setting the entire cgroup
7045 * hierarchy, only change the part that actually changes.
7048 do {
7049 struct sched_entity *curr = cfs_rq->curr;
7052 * Since we got here without doing put_prev_entity() we also
7053 * have to consider cfs_rq->curr. If it is still a runnable
7054 * entity, update_curr() will update its vruntime, otherwise
7055 * forget we've ever seen it.
7057 if (curr) {
7058 if (curr->on_rq)
7059 update_curr(cfs_rq);
7060 else
7061 curr = NULL;
7064 * This call to check_cfs_rq_runtime() will do the
7065 * throttle and dequeue its entity in the parent(s).
7066 * Therefore the nr_running test will indeed
7067 * be correct.
7069 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7070 cfs_rq = &rq->cfs;
7072 if (!cfs_rq->nr_running)
7073 goto idle;
7075 goto simple;
7079 se = pick_next_entity(cfs_rq, curr);
7080 cfs_rq = group_cfs_rq(se);
7081 } while (cfs_rq);
7083 p = task_of(se);
7086 * Since we haven't yet done put_prev_entity and if the selected task
7087 * is a different task than we started out with, try and touch the
7088 * least amount of cfs_rqs.
7090 if (prev != p) {
7091 struct sched_entity *pse = &prev->se;
7093 while (!(cfs_rq = is_same_group(se, pse))) {
7094 int se_depth = se->depth;
7095 int pse_depth = pse->depth;
7097 if (se_depth <= pse_depth) {
7098 put_prev_entity(cfs_rq_of(pse), pse);
7099 pse = parent_entity(pse);
7101 if (se_depth >= pse_depth) {
7102 set_next_entity(cfs_rq_of(se), se);
7103 se = parent_entity(se);
7107 put_prev_entity(cfs_rq, pse);
7108 set_next_entity(cfs_rq, se);
7111 goto done;
7112 simple:
7113 #endif
7114 if (prev)
7115 put_prev_task(rq, prev);
7117 do {
7118 se = pick_next_entity(cfs_rq, NULL);
7119 set_next_entity(cfs_rq, se);
7120 cfs_rq = group_cfs_rq(se);
7121 } while (cfs_rq);
7123 p = task_of(se);
7125 done: __maybe_unused;
7126 #ifdef CONFIG_SMP
7128 * Move the next running task to the front of
7129 * the list, so our cfs_tasks list becomes MRU
7130 * one.
7132 list_move(&p->se.group_node, &rq->cfs_tasks);
7133 #endif
7135 if (hrtick_enabled(rq))
7136 hrtick_start_fair(rq, p);
7138 update_misfit_status(p, rq);
7140 return p;
7142 idle:
7143 if (!rf)
7144 return NULL;
7146 new_tasks = newidle_balance(rq, rf);
7149 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7150 * possible for any higher priority task to appear. In that case we
7151 * must re-start the pick_next_entity() loop.
7153 if (new_tasks < 0)
7154 return RETRY_TASK;
7156 if (new_tasks > 0)
7157 goto again;
7160 * rq is about to be idle, check if we need to update the
7161 * lost_idle_time of clock_pelt
7163 update_idle_rq_clock_pelt(rq);
7165 return NULL;
7168 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7170 return pick_next_task_fair(rq, NULL, NULL);
7174 * Account for a descheduled task:
7176 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7178 struct sched_entity *se = &prev->se;
7179 struct cfs_rq *cfs_rq;
7181 for_each_sched_entity(se) {
7182 cfs_rq = cfs_rq_of(se);
7183 put_prev_entity(cfs_rq, se);
7188 * sched_yield() is very simple
7190 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7192 static void yield_task_fair(struct rq *rq)
7194 struct task_struct *curr = rq->curr;
7195 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7196 struct sched_entity *se = &curr->se;
7199 * Are we the only task in the tree?
7201 if (unlikely(rq->nr_running == 1))
7202 return;
7204 clear_buddies(cfs_rq, se);
7206 if (curr->policy != SCHED_BATCH) {
7207 update_rq_clock(rq);
7209 * Update run-time statistics of the 'current'.
7211 update_curr(cfs_rq);
7213 * Tell update_rq_clock() that we've just updated,
7214 * so we don't do microscopic update in schedule()
7215 * and double the fastpath cost.
7217 rq_clock_skip_update(rq);
7220 set_skip_buddy(se);
7223 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7225 struct sched_entity *se = &p->se;
7227 /* throttled hierarchies are not runnable */
7228 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7229 return false;
7231 /* Tell the scheduler that we'd really like pse to run next. */
7232 set_next_buddy(se);
7234 yield_task_fair(rq);
7236 return true;
7239 #ifdef CONFIG_SMP
7240 /**************************************************
7241 * Fair scheduling class load-balancing methods.
7243 * BASICS
7245 * The purpose of load-balancing is to achieve the same basic fairness the
7246 * per-CPU scheduler provides, namely provide a proportional amount of compute
7247 * time to each task. This is expressed in the following equation:
7249 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7251 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7252 * W_i,0 is defined as:
7254 * W_i,0 = \Sum_j w_i,j (2)
7256 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7257 * is derived from the nice value as per sched_prio_to_weight[].
7259 * The weight average is an exponential decay average of the instantaneous
7260 * weight:
7262 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7264 * C_i is the compute capacity of CPU i, typically it is the
7265 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7266 * can also include other factors [XXX].
7268 * To achieve this balance we define a measure of imbalance which follows
7269 * directly from (1):
7271 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7273 * We them move tasks around to minimize the imbalance. In the continuous
7274 * function space it is obvious this converges, in the discrete case we get
7275 * a few fun cases generally called infeasible weight scenarios.
7277 * [XXX expand on:
7278 * - infeasible weights;
7279 * - local vs global optima in the discrete case. ]
7282 * SCHED DOMAINS
7284 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7285 * for all i,j solution, we create a tree of CPUs that follows the hardware
7286 * topology where each level pairs two lower groups (or better). This results
7287 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7288 * tree to only the first of the previous level and we decrease the frequency
7289 * of load-balance at each level inv. proportional to the number of CPUs in
7290 * the groups.
7292 * This yields:
7294 * log_2 n 1 n
7295 * \Sum { --- * --- * 2^i } = O(n) (5)
7296 * i = 0 2^i 2^i
7297 * `- size of each group
7298 * | | `- number of CPUs doing load-balance
7299 * | `- freq
7300 * `- sum over all levels
7302 * Coupled with a limit on how many tasks we can migrate every balance pass,
7303 * this makes (5) the runtime complexity of the balancer.
7305 * An important property here is that each CPU is still (indirectly) connected
7306 * to every other CPU in at most O(log n) steps:
7308 * The adjacency matrix of the resulting graph is given by:
7310 * log_2 n
7311 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7312 * k = 0
7314 * And you'll find that:
7316 * A^(log_2 n)_i,j != 0 for all i,j (7)
7318 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7319 * The task movement gives a factor of O(m), giving a convergence complexity
7320 * of:
7322 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7325 * WORK CONSERVING
7327 * In order to avoid CPUs going idle while there's still work to do, new idle
7328 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7329 * tree itself instead of relying on other CPUs to bring it work.
7331 * This adds some complexity to both (5) and (8) but it reduces the total idle
7332 * time.
7334 * [XXX more?]
7337 * CGROUPS
7339 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7341 * s_k,i
7342 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7343 * S_k
7345 * Where
7347 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7349 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7351 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7352 * property.
7354 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7355 * rewrite all of this once again.]
7358 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7360 enum fbq_type { regular, remote, all };
7363 * 'group_type' describes the group of CPUs at the moment of load balancing.
7365 * The enum is ordered by pulling priority, with the group with lowest priority
7366 * first so the group_type can simply be compared when selecting the busiest
7367 * group. See update_sd_pick_busiest().
7369 enum group_type {
7370 /* The group has spare capacity that can be used to run more tasks. */
7371 group_has_spare = 0,
7373 * The group is fully used and the tasks don't compete for more CPU
7374 * cycles. Nevertheless, some tasks might wait before running.
7376 group_fully_busy,
7378 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7379 * and must be migrated to a more powerful CPU.
7381 group_misfit_task,
7383 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7384 * and the task should be migrated to it instead of running on the
7385 * current CPU.
7387 group_asym_packing,
7389 * The tasks' affinity constraints previously prevented the scheduler
7390 * from balancing the load across the system.
7392 group_imbalanced,
7394 * The CPU is overloaded and can't provide expected CPU cycles to all
7395 * tasks.
7397 group_overloaded
7400 enum migration_type {
7401 migrate_load = 0,
7402 migrate_util,
7403 migrate_task,
7404 migrate_misfit
7407 #define LBF_ALL_PINNED 0x01
7408 #define LBF_NEED_BREAK 0x02
7409 #define LBF_DST_PINNED 0x04
7410 #define LBF_SOME_PINNED 0x08
7411 #define LBF_NOHZ_STATS 0x10
7412 #define LBF_NOHZ_AGAIN 0x20
7414 struct lb_env {
7415 struct sched_domain *sd;
7417 struct rq *src_rq;
7418 int src_cpu;
7420 int dst_cpu;
7421 struct rq *dst_rq;
7423 struct cpumask *dst_grpmask;
7424 int new_dst_cpu;
7425 enum cpu_idle_type idle;
7426 long imbalance;
7427 /* The set of CPUs under consideration for load-balancing */
7428 struct cpumask *cpus;
7430 unsigned int flags;
7432 unsigned int loop;
7433 unsigned int loop_break;
7434 unsigned int loop_max;
7436 enum fbq_type fbq_type;
7437 enum migration_type migration_type;
7438 struct list_head tasks;
7442 * Is this task likely cache-hot:
7444 static int task_hot(struct task_struct *p, struct lb_env *env)
7446 s64 delta;
7448 lockdep_assert_held(&env->src_rq->lock);
7450 if (p->sched_class != &fair_sched_class)
7451 return 0;
7453 if (unlikely(task_has_idle_policy(p)))
7454 return 0;
7456 /* SMT siblings share cache */
7457 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7458 return 0;
7461 * Buddy candidates are cache hot:
7463 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7464 (&p->se == cfs_rq_of(&p->se)->next ||
7465 &p->se == cfs_rq_of(&p->se)->last))
7466 return 1;
7468 if (sysctl_sched_migration_cost == -1)
7469 return 1;
7470 if (sysctl_sched_migration_cost == 0)
7471 return 0;
7473 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7475 return delta < (s64)sysctl_sched_migration_cost;
7478 #ifdef CONFIG_NUMA_BALANCING
7480 * Returns 1, if task migration degrades locality
7481 * Returns 0, if task migration improves locality i.e migration preferred.
7482 * Returns -1, if task migration is not affected by locality.
7484 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7486 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7487 unsigned long src_weight, dst_weight;
7488 int src_nid, dst_nid, dist;
7490 if (!static_branch_likely(&sched_numa_balancing))
7491 return -1;
7493 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7494 return -1;
7496 src_nid = cpu_to_node(env->src_cpu);
7497 dst_nid = cpu_to_node(env->dst_cpu);
7499 if (src_nid == dst_nid)
7500 return -1;
7502 /* Migrating away from the preferred node is always bad. */
7503 if (src_nid == p->numa_preferred_nid) {
7504 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7505 return 1;
7506 else
7507 return -1;
7510 /* Encourage migration to the preferred node. */
7511 if (dst_nid == p->numa_preferred_nid)
7512 return 0;
7514 /* Leaving a core idle is often worse than degrading locality. */
7515 if (env->idle == CPU_IDLE)
7516 return -1;
7518 dist = node_distance(src_nid, dst_nid);
7519 if (numa_group) {
7520 src_weight = group_weight(p, src_nid, dist);
7521 dst_weight = group_weight(p, dst_nid, dist);
7522 } else {
7523 src_weight = task_weight(p, src_nid, dist);
7524 dst_weight = task_weight(p, dst_nid, dist);
7527 return dst_weight < src_weight;
7530 #else
7531 static inline int migrate_degrades_locality(struct task_struct *p,
7532 struct lb_env *env)
7534 return -1;
7536 #endif
7539 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7541 static
7542 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7544 int tsk_cache_hot;
7546 lockdep_assert_held(&env->src_rq->lock);
7549 * We do not migrate tasks that are:
7550 * 1) throttled_lb_pair, or
7551 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7552 * 3) running (obviously), or
7553 * 4) are cache-hot on their current CPU.
7555 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7556 return 0;
7558 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7559 int cpu;
7561 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7563 env->flags |= LBF_SOME_PINNED;
7566 * Remember if this task can be migrated to any other CPU in
7567 * our sched_group. We may want to revisit it if we couldn't
7568 * meet load balance goals by pulling other tasks on src_cpu.
7570 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7571 * already computed one in current iteration.
7573 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7574 return 0;
7576 /* Prevent to re-select dst_cpu via env's CPUs: */
7577 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7578 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7579 env->flags |= LBF_DST_PINNED;
7580 env->new_dst_cpu = cpu;
7581 break;
7585 return 0;
7588 /* Record that we found atleast one task that could run on dst_cpu */
7589 env->flags &= ~LBF_ALL_PINNED;
7591 if (task_running(env->src_rq, p)) {
7592 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7593 return 0;
7597 * Aggressive migration if:
7598 * 1) destination numa is preferred
7599 * 2) task is cache cold, or
7600 * 3) too many balance attempts have failed.
7602 tsk_cache_hot = migrate_degrades_locality(p, env);
7603 if (tsk_cache_hot == -1)
7604 tsk_cache_hot = task_hot(p, env);
7606 if (tsk_cache_hot <= 0 ||
7607 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7608 if (tsk_cache_hot == 1) {
7609 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7610 schedstat_inc(p->se.statistics.nr_forced_migrations);
7612 return 1;
7615 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7616 return 0;
7620 * detach_task() -- detach the task for the migration specified in env
7622 static void detach_task(struct task_struct *p, struct lb_env *env)
7624 lockdep_assert_held(&env->src_rq->lock);
7626 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7627 set_task_cpu(p, env->dst_cpu);
7631 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7632 * part of active balancing operations within "domain".
7634 * Returns a task if successful and NULL otherwise.
7636 static struct task_struct *detach_one_task(struct lb_env *env)
7638 struct task_struct *p;
7640 lockdep_assert_held(&env->src_rq->lock);
7642 list_for_each_entry_reverse(p,
7643 &env->src_rq->cfs_tasks, se.group_node) {
7644 if (!can_migrate_task(p, env))
7645 continue;
7647 detach_task(p, env);
7650 * Right now, this is only the second place where
7651 * lb_gained[env->idle] is updated (other is detach_tasks)
7652 * so we can safely collect stats here rather than
7653 * inside detach_tasks().
7655 schedstat_inc(env->sd->lb_gained[env->idle]);
7656 return p;
7658 return NULL;
7661 static const unsigned int sched_nr_migrate_break = 32;
7664 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7665 * busiest_rq, as part of a balancing operation within domain "sd".
7667 * Returns number of detached tasks if successful and 0 otherwise.
7669 static int detach_tasks(struct lb_env *env)
7671 struct list_head *tasks = &env->src_rq->cfs_tasks;
7672 unsigned long util, load;
7673 struct task_struct *p;
7674 int detached = 0;
7676 lockdep_assert_held(&env->src_rq->lock);
7678 if (env->imbalance <= 0)
7679 return 0;
7681 while (!list_empty(tasks)) {
7683 * We don't want to steal all, otherwise we may be treated likewise,
7684 * which could at worst lead to a livelock crash.
7686 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7687 break;
7689 p = list_last_entry(tasks, struct task_struct, se.group_node);
7691 env->loop++;
7692 /* We've more or less seen every task there is, call it quits */
7693 if (env->loop > env->loop_max)
7694 break;
7696 /* take a breather every nr_migrate tasks */
7697 if (env->loop > env->loop_break) {
7698 env->loop_break += sched_nr_migrate_break;
7699 env->flags |= LBF_NEED_BREAK;
7700 break;
7703 if (!can_migrate_task(p, env))
7704 goto next;
7706 switch (env->migration_type) {
7707 case migrate_load:
7709 * Depending of the number of CPUs and tasks and the
7710 * cgroup hierarchy, task_h_load() can return a null
7711 * value. Make sure that env->imbalance decreases
7712 * otherwise detach_tasks() will stop only after
7713 * detaching up to loop_max tasks.
7715 load = max_t(unsigned long, task_h_load(p), 1);
7717 if (sched_feat(LB_MIN) &&
7718 load < 16 && !env->sd->nr_balance_failed)
7719 goto next;
7722 * Make sure that we don't migrate too much load.
7723 * Nevertheless, let relax the constraint if
7724 * scheduler fails to find a good waiting task to
7725 * migrate.
7728 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
7729 goto next;
7731 env->imbalance -= load;
7732 break;
7734 case migrate_util:
7735 util = task_util_est(p);
7737 if (util > env->imbalance)
7738 goto next;
7740 env->imbalance -= util;
7741 break;
7743 case migrate_task:
7744 env->imbalance--;
7745 break;
7747 case migrate_misfit:
7748 /* This is not a misfit task */
7749 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7750 goto next;
7752 env->imbalance = 0;
7753 break;
7756 detach_task(p, env);
7757 list_add(&p->se.group_node, &env->tasks);
7759 detached++;
7761 #ifdef CONFIG_PREEMPTION
7763 * NEWIDLE balancing is a source of latency, so preemptible
7764 * kernels will stop after the first task is detached to minimize
7765 * the critical section.
7767 if (env->idle == CPU_NEWLY_IDLE)
7768 break;
7769 #endif
7772 * We only want to steal up to the prescribed amount of
7773 * load/util/tasks.
7775 if (env->imbalance <= 0)
7776 break;
7778 continue;
7779 next:
7780 list_move(&p->se.group_node, tasks);
7784 * Right now, this is one of only two places we collect this stat
7785 * so we can safely collect detach_one_task() stats here rather
7786 * than inside detach_one_task().
7788 schedstat_add(env->sd->lb_gained[env->idle], detached);
7790 return detached;
7794 * attach_task() -- attach the task detached by detach_task() to its new rq.
7796 static void attach_task(struct rq *rq, struct task_struct *p)
7798 lockdep_assert_held(&rq->lock);
7800 BUG_ON(task_rq(p) != rq);
7801 activate_task(rq, p, ENQUEUE_NOCLOCK);
7802 check_preempt_curr(rq, p, 0);
7806 * attach_one_task() -- attaches the task returned from detach_one_task() to
7807 * its new rq.
7809 static void attach_one_task(struct rq *rq, struct task_struct *p)
7811 struct rq_flags rf;
7813 rq_lock(rq, &rf);
7814 update_rq_clock(rq);
7815 attach_task(rq, p);
7816 rq_unlock(rq, &rf);
7820 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7821 * new rq.
7823 static void attach_tasks(struct lb_env *env)
7825 struct list_head *tasks = &env->tasks;
7826 struct task_struct *p;
7827 struct rq_flags rf;
7829 rq_lock(env->dst_rq, &rf);
7830 update_rq_clock(env->dst_rq);
7832 while (!list_empty(tasks)) {
7833 p = list_first_entry(tasks, struct task_struct, se.group_node);
7834 list_del_init(&p->se.group_node);
7836 attach_task(env->dst_rq, p);
7839 rq_unlock(env->dst_rq, &rf);
7842 #ifdef CONFIG_NO_HZ_COMMON
7843 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7845 if (cfs_rq->avg.load_avg)
7846 return true;
7848 if (cfs_rq->avg.util_avg)
7849 return true;
7851 return false;
7854 static inline bool others_have_blocked(struct rq *rq)
7856 if (READ_ONCE(rq->avg_rt.util_avg))
7857 return true;
7859 if (READ_ONCE(rq->avg_dl.util_avg))
7860 return true;
7862 if (thermal_load_avg(rq))
7863 return true;
7865 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7866 if (READ_ONCE(rq->avg_irq.util_avg))
7867 return true;
7868 #endif
7870 return false;
7873 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7875 rq->last_blocked_load_update_tick = jiffies;
7877 if (!has_blocked)
7878 rq->has_blocked_load = 0;
7880 #else
7881 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7882 static inline bool others_have_blocked(struct rq *rq) { return false; }
7883 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7884 #endif
7886 static bool __update_blocked_others(struct rq *rq, bool *done)
7888 const struct sched_class *curr_class;
7889 u64 now = rq_clock_pelt(rq);
7890 unsigned long thermal_pressure;
7891 bool decayed;
7894 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7895 * DL and IRQ signals have been updated before updating CFS.
7897 curr_class = rq->curr->sched_class;
7899 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7901 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7902 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7903 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7904 update_irq_load_avg(rq, 0);
7906 if (others_have_blocked(rq))
7907 *done = false;
7909 return decayed;
7912 #ifdef CONFIG_FAIR_GROUP_SCHED
7914 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7916 if (cfs_rq->load.weight)
7917 return false;
7919 if (cfs_rq->avg.load_sum)
7920 return false;
7922 if (cfs_rq->avg.util_sum)
7923 return false;
7925 if (cfs_rq->avg.runnable_sum)
7926 return false;
7928 return true;
7931 static bool __update_blocked_fair(struct rq *rq, bool *done)
7933 struct cfs_rq *cfs_rq, *pos;
7934 bool decayed = false;
7935 int cpu = cpu_of(rq);
7938 * Iterates the task_group tree in a bottom up fashion, see
7939 * list_add_leaf_cfs_rq() for details.
7941 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7942 struct sched_entity *se;
7944 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7945 update_tg_load_avg(cfs_rq);
7947 if (cfs_rq == &rq->cfs)
7948 decayed = true;
7951 /* Propagate pending load changes to the parent, if any: */
7952 se = cfs_rq->tg->se[cpu];
7953 if (se && !skip_blocked_update(se))
7954 update_load_avg(cfs_rq_of(se), se, 0);
7957 * There can be a lot of idle CPU cgroups. Don't let fully
7958 * decayed cfs_rqs linger on the list.
7960 if (cfs_rq_is_decayed(cfs_rq))
7961 list_del_leaf_cfs_rq(cfs_rq);
7963 /* Don't need periodic decay once load/util_avg are null */
7964 if (cfs_rq_has_blocked(cfs_rq))
7965 *done = false;
7968 return decayed;
7972 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7973 * This needs to be done in a top-down fashion because the load of a child
7974 * group is a fraction of its parents load.
7976 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7978 struct rq *rq = rq_of(cfs_rq);
7979 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7980 unsigned long now = jiffies;
7981 unsigned long load;
7983 if (cfs_rq->last_h_load_update == now)
7984 return;
7986 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7987 for_each_sched_entity(se) {
7988 cfs_rq = cfs_rq_of(se);
7989 WRITE_ONCE(cfs_rq->h_load_next, se);
7990 if (cfs_rq->last_h_load_update == now)
7991 break;
7994 if (!se) {
7995 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7996 cfs_rq->last_h_load_update = now;
7999 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8000 load = cfs_rq->h_load;
8001 load = div64_ul(load * se->avg.load_avg,
8002 cfs_rq_load_avg(cfs_rq) + 1);
8003 cfs_rq = group_cfs_rq(se);
8004 cfs_rq->h_load = load;
8005 cfs_rq->last_h_load_update = now;
8009 static unsigned long task_h_load(struct task_struct *p)
8011 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8013 update_cfs_rq_h_load(cfs_rq);
8014 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8015 cfs_rq_load_avg(cfs_rq) + 1);
8017 #else
8018 static bool __update_blocked_fair(struct rq *rq, bool *done)
8020 struct cfs_rq *cfs_rq = &rq->cfs;
8021 bool decayed;
8023 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8024 if (cfs_rq_has_blocked(cfs_rq))
8025 *done = false;
8027 return decayed;
8030 static unsigned long task_h_load(struct task_struct *p)
8032 return p->se.avg.load_avg;
8034 #endif
8036 static void update_blocked_averages(int cpu)
8038 bool decayed = false, done = true;
8039 struct rq *rq = cpu_rq(cpu);
8040 struct rq_flags rf;
8042 rq_lock_irqsave(rq, &rf);
8043 update_rq_clock(rq);
8045 decayed |= __update_blocked_others(rq, &done);
8046 decayed |= __update_blocked_fair(rq, &done);
8048 update_blocked_load_status(rq, !done);
8049 if (decayed)
8050 cpufreq_update_util(rq, 0);
8051 rq_unlock_irqrestore(rq, &rf);
8054 /********** Helpers for find_busiest_group ************************/
8057 * sg_lb_stats - stats of a sched_group required for load_balancing
8059 struct sg_lb_stats {
8060 unsigned long avg_load; /*Avg load across the CPUs of the group */
8061 unsigned long group_load; /* Total load over the CPUs of the group */
8062 unsigned long group_capacity;
8063 unsigned long group_util; /* Total utilization over the CPUs of the group */
8064 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8065 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8066 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8067 unsigned int idle_cpus;
8068 unsigned int group_weight;
8069 enum group_type group_type;
8070 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8071 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8072 #ifdef CONFIG_NUMA_BALANCING
8073 unsigned int nr_numa_running;
8074 unsigned int nr_preferred_running;
8075 #endif
8079 * sd_lb_stats - Structure to store the statistics of a sched_domain
8080 * during load balancing.
8082 struct sd_lb_stats {
8083 struct sched_group *busiest; /* Busiest group in this sd */
8084 struct sched_group *local; /* Local group in this sd */
8085 unsigned long total_load; /* Total load of all groups in sd */
8086 unsigned long total_capacity; /* Total capacity of all groups in sd */
8087 unsigned long avg_load; /* Average load across all groups in sd */
8088 unsigned int prefer_sibling; /* tasks should go to sibling first */
8090 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8091 struct sg_lb_stats local_stat; /* Statistics of the local group */
8094 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8097 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8098 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8099 * We must however set busiest_stat::group_type and
8100 * busiest_stat::idle_cpus to the worst busiest group because
8101 * update_sd_pick_busiest() reads these before assignment.
8103 *sds = (struct sd_lb_stats){
8104 .busiest = NULL,
8105 .local = NULL,
8106 .total_load = 0UL,
8107 .total_capacity = 0UL,
8108 .busiest_stat = {
8109 .idle_cpus = UINT_MAX,
8110 .group_type = group_has_spare,
8115 static unsigned long scale_rt_capacity(int cpu)
8117 struct rq *rq = cpu_rq(cpu);
8118 unsigned long max = arch_scale_cpu_capacity(cpu);
8119 unsigned long used, free;
8120 unsigned long irq;
8122 irq = cpu_util_irq(rq);
8124 if (unlikely(irq >= max))
8125 return 1;
8128 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8129 * (running and not running) with weights 0 and 1024 respectively.
8130 * avg_thermal.load_avg tracks thermal pressure and the weighted
8131 * average uses the actual delta max capacity(load).
8133 used = READ_ONCE(rq->avg_rt.util_avg);
8134 used += READ_ONCE(rq->avg_dl.util_avg);
8135 used += thermal_load_avg(rq);
8137 if (unlikely(used >= max))
8138 return 1;
8140 free = max - used;
8142 return scale_irq_capacity(free, irq, max);
8145 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8147 unsigned long capacity = scale_rt_capacity(cpu);
8148 struct sched_group *sdg = sd->groups;
8150 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8152 if (!capacity)
8153 capacity = 1;
8155 cpu_rq(cpu)->cpu_capacity = capacity;
8156 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8158 sdg->sgc->capacity = capacity;
8159 sdg->sgc->min_capacity = capacity;
8160 sdg->sgc->max_capacity = capacity;
8163 void update_group_capacity(struct sched_domain *sd, int cpu)
8165 struct sched_domain *child = sd->child;
8166 struct sched_group *group, *sdg = sd->groups;
8167 unsigned long capacity, min_capacity, max_capacity;
8168 unsigned long interval;
8170 interval = msecs_to_jiffies(sd->balance_interval);
8171 interval = clamp(interval, 1UL, max_load_balance_interval);
8172 sdg->sgc->next_update = jiffies + interval;
8174 if (!child) {
8175 update_cpu_capacity(sd, cpu);
8176 return;
8179 capacity = 0;
8180 min_capacity = ULONG_MAX;
8181 max_capacity = 0;
8183 if (child->flags & SD_OVERLAP) {
8185 * SD_OVERLAP domains cannot assume that child groups
8186 * span the current group.
8189 for_each_cpu(cpu, sched_group_span(sdg)) {
8190 unsigned long cpu_cap = capacity_of(cpu);
8192 capacity += cpu_cap;
8193 min_capacity = min(cpu_cap, min_capacity);
8194 max_capacity = max(cpu_cap, max_capacity);
8196 } else {
8198 * !SD_OVERLAP domains can assume that child groups
8199 * span the current group.
8202 group = child->groups;
8203 do {
8204 struct sched_group_capacity *sgc = group->sgc;
8206 capacity += sgc->capacity;
8207 min_capacity = min(sgc->min_capacity, min_capacity);
8208 max_capacity = max(sgc->max_capacity, max_capacity);
8209 group = group->next;
8210 } while (group != child->groups);
8213 sdg->sgc->capacity = capacity;
8214 sdg->sgc->min_capacity = min_capacity;
8215 sdg->sgc->max_capacity = max_capacity;
8219 * Check whether the capacity of the rq has been noticeably reduced by side
8220 * activity. The imbalance_pct is used for the threshold.
8221 * Return true is the capacity is reduced
8223 static inline int
8224 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8226 return ((rq->cpu_capacity * sd->imbalance_pct) <
8227 (rq->cpu_capacity_orig * 100));
8231 * Check whether a rq has a misfit task and if it looks like we can actually
8232 * help that task: we can migrate the task to a CPU of higher capacity, or
8233 * the task's current CPU is heavily pressured.
8235 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8237 return rq->misfit_task_load &&
8238 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8239 check_cpu_capacity(rq, sd));
8243 * Group imbalance indicates (and tries to solve) the problem where balancing
8244 * groups is inadequate due to ->cpus_ptr constraints.
8246 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8247 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8248 * Something like:
8250 * { 0 1 2 3 } { 4 5 6 7 }
8251 * * * * *
8253 * If we were to balance group-wise we'd place two tasks in the first group and
8254 * two tasks in the second group. Clearly this is undesired as it will overload
8255 * cpu 3 and leave one of the CPUs in the second group unused.
8257 * The current solution to this issue is detecting the skew in the first group
8258 * by noticing the lower domain failed to reach balance and had difficulty
8259 * moving tasks due to affinity constraints.
8261 * When this is so detected; this group becomes a candidate for busiest; see
8262 * update_sd_pick_busiest(). And calculate_imbalance() and
8263 * find_busiest_group() avoid some of the usual balance conditions to allow it
8264 * to create an effective group imbalance.
8266 * This is a somewhat tricky proposition since the next run might not find the
8267 * group imbalance and decide the groups need to be balanced again. A most
8268 * subtle and fragile situation.
8271 static inline int sg_imbalanced(struct sched_group *group)
8273 return group->sgc->imbalance;
8277 * group_has_capacity returns true if the group has spare capacity that could
8278 * be used by some tasks.
8279 * We consider that a group has spare capacity if the * number of task is
8280 * smaller than the number of CPUs or if the utilization is lower than the
8281 * available capacity for CFS tasks.
8282 * For the latter, we use a threshold to stabilize the state, to take into
8283 * account the variance of the tasks' load and to return true if the available
8284 * capacity in meaningful for the load balancer.
8285 * As an example, an available capacity of 1% can appear but it doesn't make
8286 * any benefit for the load balance.
8288 static inline bool
8289 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8291 if (sgs->sum_nr_running < sgs->group_weight)
8292 return true;
8294 if ((sgs->group_capacity * imbalance_pct) <
8295 (sgs->group_runnable * 100))
8296 return false;
8298 if ((sgs->group_capacity * 100) >
8299 (sgs->group_util * imbalance_pct))
8300 return true;
8302 return false;
8306 * group_is_overloaded returns true if the group has more tasks than it can
8307 * handle.
8308 * group_is_overloaded is not equals to !group_has_capacity because a group
8309 * with the exact right number of tasks, has no more spare capacity but is not
8310 * overloaded so both group_has_capacity and group_is_overloaded return
8311 * false.
8313 static inline bool
8314 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8316 if (sgs->sum_nr_running <= sgs->group_weight)
8317 return false;
8319 if ((sgs->group_capacity * 100) <
8320 (sgs->group_util * imbalance_pct))
8321 return true;
8323 if ((sgs->group_capacity * imbalance_pct) <
8324 (sgs->group_runnable * 100))
8325 return true;
8327 return false;
8331 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8332 * per-CPU capacity than sched_group ref.
8334 static inline bool
8335 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8337 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8341 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8342 * per-CPU capacity_orig than sched_group ref.
8344 static inline bool
8345 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8347 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8350 static inline enum
8351 group_type group_classify(unsigned int imbalance_pct,
8352 struct sched_group *group,
8353 struct sg_lb_stats *sgs)
8355 if (group_is_overloaded(imbalance_pct, sgs))
8356 return group_overloaded;
8358 if (sg_imbalanced(group))
8359 return group_imbalanced;
8361 if (sgs->group_asym_packing)
8362 return group_asym_packing;
8364 if (sgs->group_misfit_task_load)
8365 return group_misfit_task;
8367 if (!group_has_capacity(imbalance_pct, sgs))
8368 return group_fully_busy;
8370 return group_has_spare;
8373 static bool update_nohz_stats(struct rq *rq, bool force)
8375 #ifdef CONFIG_NO_HZ_COMMON
8376 unsigned int cpu = rq->cpu;
8378 if (!rq->has_blocked_load)
8379 return false;
8381 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8382 return false;
8384 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8385 return true;
8387 update_blocked_averages(cpu);
8389 return rq->has_blocked_load;
8390 #else
8391 return false;
8392 #endif
8396 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8397 * @env: The load balancing environment.
8398 * @group: sched_group whose statistics are to be updated.
8399 * @sgs: variable to hold the statistics for this group.
8400 * @sg_status: Holds flag indicating the status of the sched_group
8402 static inline void update_sg_lb_stats(struct lb_env *env,
8403 struct sched_group *group,
8404 struct sg_lb_stats *sgs,
8405 int *sg_status)
8407 int i, nr_running, local_group;
8409 memset(sgs, 0, sizeof(*sgs));
8411 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8413 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8414 struct rq *rq = cpu_rq(i);
8416 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8417 env->flags |= LBF_NOHZ_AGAIN;
8419 sgs->group_load += cpu_load(rq);
8420 sgs->group_util += cpu_util(i);
8421 sgs->group_runnable += cpu_runnable(rq);
8422 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8424 nr_running = rq->nr_running;
8425 sgs->sum_nr_running += nr_running;
8427 if (nr_running > 1)
8428 *sg_status |= SG_OVERLOAD;
8430 if (cpu_overutilized(i))
8431 *sg_status |= SG_OVERUTILIZED;
8433 #ifdef CONFIG_NUMA_BALANCING
8434 sgs->nr_numa_running += rq->nr_numa_running;
8435 sgs->nr_preferred_running += rq->nr_preferred_running;
8436 #endif
8438 * No need to call idle_cpu() if nr_running is not 0
8440 if (!nr_running && idle_cpu(i)) {
8441 sgs->idle_cpus++;
8442 /* Idle cpu can't have misfit task */
8443 continue;
8446 if (local_group)
8447 continue;
8449 /* Check for a misfit task on the cpu */
8450 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8451 sgs->group_misfit_task_load < rq->misfit_task_load) {
8452 sgs->group_misfit_task_load = rq->misfit_task_load;
8453 *sg_status |= SG_OVERLOAD;
8457 /* Check if dst CPU is idle and preferred to this group */
8458 if (env->sd->flags & SD_ASYM_PACKING &&
8459 env->idle != CPU_NOT_IDLE &&
8460 sgs->sum_h_nr_running &&
8461 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8462 sgs->group_asym_packing = 1;
8465 sgs->group_capacity = group->sgc->capacity;
8467 sgs->group_weight = group->group_weight;
8469 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8471 /* Computing avg_load makes sense only when group is overloaded */
8472 if (sgs->group_type == group_overloaded)
8473 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8474 sgs->group_capacity;
8478 * update_sd_pick_busiest - return 1 on busiest group
8479 * @env: The load balancing environment.
8480 * @sds: sched_domain statistics
8481 * @sg: sched_group candidate to be checked for being the busiest
8482 * @sgs: sched_group statistics
8484 * Determine if @sg is a busier group than the previously selected
8485 * busiest group.
8487 * Return: %true if @sg is a busier group than the previously selected
8488 * busiest group. %false otherwise.
8490 static bool update_sd_pick_busiest(struct lb_env *env,
8491 struct sd_lb_stats *sds,
8492 struct sched_group *sg,
8493 struct sg_lb_stats *sgs)
8495 struct sg_lb_stats *busiest = &sds->busiest_stat;
8497 /* Make sure that there is at least one task to pull */
8498 if (!sgs->sum_h_nr_running)
8499 return false;
8502 * Don't try to pull misfit tasks we can't help.
8503 * We can use max_capacity here as reduction in capacity on some
8504 * CPUs in the group should either be possible to resolve
8505 * internally or be covered by avg_load imbalance (eventually).
8507 if (sgs->group_type == group_misfit_task &&
8508 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8509 sds->local_stat.group_type != group_has_spare))
8510 return false;
8512 if (sgs->group_type > busiest->group_type)
8513 return true;
8515 if (sgs->group_type < busiest->group_type)
8516 return false;
8519 * The candidate and the current busiest group are the same type of
8520 * group. Let check which one is the busiest according to the type.
8523 switch (sgs->group_type) {
8524 case group_overloaded:
8525 /* Select the overloaded group with highest avg_load. */
8526 if (sgs->avg_load <= busiest->avg_load)
8527 return false;
8528 break;
8530 case group_imbalanced:
8532 * Select the 1st imbalanced group as we don't have any way to
8533 * choose one more than another.
8535 return false;
8537 case group_asym_packing:
8538 /* Prefer to move from lowest priority CPU's work */
8539 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8540 return false;
8541 break;
8543 case group_misfit_task:
8545 * If we have more than one misfit sg go with the biggest
8546 * misfit.
8548 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8549 return false;
8550 break;
8552 case group_fully_busy:
8554 * Select the fully busy group with highest avg_load. In
8555 * theory, there is no need to pull task from such kind of
8556 * group because tasks have all compute capacity that they need
8557 * but we can still improve the overall throughput by reducing
8558 * contention when accessing shared HW resources.
8560 * XXX for now avg_load is not computed and always 0 so we
8561 * select the 1st one.
8563 if (sgs->avg_load <= busiest->avg_load)
8564 return false;
8565 break;
8567 case group_has_spare:
8569 * Select not overloaded group with lowest number of idle cpus
8570 * and highest number of running tasks. We could also compare
8571 * the spare capacity which is more stable but it can end up
8572 * that the group has less spare capacity but finally more idle
8573 * CPUs which means less opportunity to pull tasks.
8575 if (sgs->idle_cpus > busiest->idle_cpus)
8576 return false;
8577 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8578 (sgs->sum_nr_running <= busiest->sum_nr_running))
8579 return false;
8581 break;
8585 * Candidate sg has no more than one task per CPU and has higher
8586 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8587 * throughput. Maximize throughput, power/energy consequences are not
8588 * considered.
8590 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8591 (sgs->group_type <= group_fully_busy) &&
8592 (group_smaller_min_cpu_capacity(sds->local, sg)))
8593 return false;
8595 return true;
8598 #ifdef CONFIG_NUMA_BALANCING
8599 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8601 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8602 return regular;
8603 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8604 return remote;
8605 return all;
8608 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8610 if (rq->nr_running > rq->nr_numa_running)
8611 return regular;
8612 if (rq->nr_running > rq->nr_preferred_running)
8613 return remote;
8614 return all;
8616 #else
8617 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8619 return all;
8622 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8624 return regular;
8626 #endif /* CONFIG_NUMA_BALANCING */
8629 struct sg_lb_stats;
8632 * task_running_on_cpu - return 1 if @p is running on @cpu.
8635 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8637 /* Task has no contribution or is new */
8638 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8639 return 0;
8641 if (task_on_rq_queued(p))
8642 return 1;
8644 return 0;
8648 * idle_cpu_without - would a given CPU be idle without p ?
8649 * @cpu: the processor on which idleness is tested.
8650 * @p: task which should be ignored.
8652 * Return: 1 if the CPU would be idle. 0 otherwise.
8654 static int idle_cpu_without(int cpu, struct task_struct *p)
8656 struct rq *rq = cpu_rq(cpu);
8658 if (rq->curr != rq->idle && rq->curr != p)
8659 return 0;
8662 * rq->nr_running can't be used but an updated version without the
8663 * impact of p on cpu must be used instead. The updated nr_running
8664 * be computed and tested before calling idle_cpu_without().
8667 #ifdef CONFIG_SMP
8668 if (rq->ttwu_pending)
8669 return 0;
8670 #endif
8672 return 1;
8676 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8677 * @sd: The sched_domain level to look for idlest group.
8678 * @group: sched_group whose statistics are to be updated.
8679 * @sgs: variable to hold the statistics for this group.
8680 * @p: The task for which we look for the idlest group/CPU.
8682 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8683 struct sched_group *group,
8684 struct sg_lb_stats *sgs,
8685 struct task_struct *p)
8687 int i, nr_running;
8689 memset(sgs, 0, sizeof(*sgs));
8691 for_each_cpu(i, sched_group_span(group)) {
8692 struct rq *rq = cpu_rq(i);
8693 unsigned int local;
8695 sgs->group_load += cpu_load_without(rq, p);
8696 sgs->group_util += cpu_util_without(i, p);
8697 sgs->group_runnable += cpu_runnable_without(rq, p);
8698 local = task_running_on_cpu(i, p);
8699 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8701 nr_running = rq->nr_running - local;
8702 sgs->sum_nr_running += nr_running;
8705 * No need to call idle_cpu_without() if nr_running is not 0
8707 if (!nr_running && idle_cpu_without(i, p))
8708 sgs->idle_cpus++;
8712 /* Check if task fits in the group */
8713 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8714 !task_fits_capacity(p, group->sgc->max_capacity)) {
8715 sgs->group_misfit_task_load = 1;
8718 sgs->group_capacity = group->sgc->capacity;
8720 sgs->group_weight = group->group_weight;
8722 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8725 * Computing avg_load makes sense only when group is fully busy or
8726 * overloaded
8728 if (sgs->group_type == group_fully_busy ||
8729 sgs->group_type == group_overloaded)
8730 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8731 sgs->group_capacity;
8734 static bool update_pick_idlest(struct sched_group *idlest,
8735 struct sg_lb_stats *idlest_sgs,
8736 struct sched_group *group,
8737 struct sg_lb_stats *sgs)
8739 if (sgs->group_type < idlest_sgs->group_type)
8740 return true;
8742 if (sgs->group_type > idlest_sgs->group_type)
8743 return false;
8746 * The candidate and the current idlest group are the same type of
8747 * group. Let check which one is the idlest according to the type.
8750 switch (sgs->group_type) {
8751 case group_overloaded:
8752 case group_fully_busy:
8753 /* Select the group with lowest avg_load. */
8754 if (idlest_sgs->avg_load <= sgs->avg_load)
8755 return false;
8756 break;
8758 case group_imbalanced:
8759 case group_asym_packing:
8760 /* Those types are not used in the slow wakeup path */
8761 return false;
8763 case group_misfit_task:
8764 /* Select group with the highest max capacity */
8765 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8766 return false;
8767 break;
8769 case group_has_spare:
8770 /* Select group with most idle CPUs */
8771 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8772 return false;
8774 /* Select group with lowest group_util */
8775 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8776 idlest_sgs->group_util <= sgs->group_util)
8777 return false;
8779 break;
8782 return true;
8786 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8787 * This is an approximation as the number of running tasks may not be
8788 * related to the number of busy CPUs due to sched_setaffinity.
8790 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8792 return (dst_running < (dst_weight >> 2));
8796 * find_idlest_group() finds and returns the least busy CPU group within the
8797 * domain.
8799 * Assumes p is allowed on at least one CPU in sd.
8801 static struct sched_group *
8802 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8804 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8805 struct sg_lb_stats local_sgs, tmp_sgs;
8806 struct sg_lb_stats *sgs;
8807 unsigned long imbalance;
8808 struct sg_lb_stats idlest_sgs = {
8809 .avg_load = UINT_MAX,
8810 .group_type = group_overloaded,
8813 do {
8814 int local_group;
8816 /* Skip over this group if it has no CPUs allowed */
8817 if (!cpumask_intersects(sched_group_span(group),
8818 p->cpus_ptr))
8819 continue;
8821 local_group = cpumask_test_cpu(this_cpu,
8822 sched_group_span(group));
8824 if (local_group) {
8825 sgs = &local_sgs;
8826 local = group;
8827 } else {
8828 sgs = &tmp_sgs;
8831 update_sg_wakeup_stats(sd, group, sgs, p);
8833 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8834 idlest = group;
8835 idlest_sgs = *sgs;
8838 } while (group = group->next, group != sd->groups);
8841 /* There is no idlest group to push tasks to */
8842 if (!idlest)
8843 return NULL;
8845 /* The local group has been skipped because of CPU affinity */
8846 if (!local)
8847 return idlest;
8850 * If the local group is idler than the selected idlest group
8851 * don't try and push the task.
8853 if (local_sgs.group_type < idlest_sgs.group_type)
8854 return NULL;
8857 * If the local group is busier than the selected idlest group
8858 * try and push the task.
8860 if (local_sgs.group_type > idlest_sgs.group_type)
8861 return idlest;
8863 switch (local_sgs.group_type) {
8864 case group_overloaded:
8865 case group_fully_busy:
8867 /* Calculate allowed imbalance based on load */
8868 imbalance = scale_load_down(NICE_0_LOAD) *
8869 (sd->imbalance_pct-100) / 100;
8872 * When comparing groups across NUMA domains, it's possible for
8873 * the local domain to be very lightly loaded relative to the
8874 * remote domains but "imbalance" skews the comparison making
8875 * remote CPUs look much more favourable. When considering
8876 * cross-domain, add imbalance to the load on the remote node
8877 * and consider staying local.
8880 if ((sd->flags & SD_NUMA) &&
8881 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8882 return NULL;
8885 * If the local group is less loaded than the selected
8886 * idlest group don't try and push any tasks.
8888 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8889 return NULL;
8891 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8892 return NULL;
8893 break;
8895 case group_imbalanced:
8896 case group_asym_packing:
8897 /* Those type are not used in the slow wakeup path */
8898 return NULL;
8900 case group_misfit_task:
8901 /* Select group with the highest max capacity */
8902 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8903 return NULL;
8904 break;
8906 case group_has_spare:
8907 if (sd->flags & SD_NUMA) {
8908 #ifdef CONFIG_NUMA_BALANCING
8909 int idlest_cpu;
8911 * If there is spare capacity at NUMA, try to select
8912 * the preferred node
8914 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8915 return NULL;
8917 idlest_cpu = cpumask_first(sched_group_span(idlest));
8918 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8919 return idlest;
8920 #endif
8922 * Otherwise, keep the task on this node to stay close
8923 * its wakeup source and improve locality. If there is
8924 * a real need of migration, periodic load balance will
8925 * take care of it.
8927 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8928 return NULL;
8932 * Select group with highest number of idle CPUs. We could also
8933 * compare the utilization which is more stable but it can end
8934 * up that the group has less spare capacity but finally more
8935 * idle CPUs which means more opportunity to run task.
8937 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8938 return NULL;
8939 break;
8942 return idlest;
8946 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8947 * @env: The load balancing environment.
8948 * @sds: variable to hold the statistics for this sched_domain.
8951 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8953 struct sched_domain *child = env->sd->child;
8954 struct sched_group *sg = env->sd->groups;
8955 struct sg_lb_stats *local = &sds->local_stat;
8956 struct sg_lb_stats tmp_sgs;
8957 int sg_status = 0;
8959 #ifdef CONFIG_NO_HZ_COMMON
8960 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8961 env->flags |= LBF_NOHZ_STATS;
8962 #endif
8964 do {
8965 struct sg_lb_stats *sgs = &tmp_sgs;
8966 int local_group;
8968 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8969 if (local_group) {
8970 sds->local = sg;
8971 sgs = local;
8973 if (env->idle != CPU_NEWLY_IDLE ||
8974 time_after_eq(jiffies, sg->sgc->next_update))
8975 update_group_capacity(env->sd, env->dst_cpu);
8978 update_sg_lb_stats(env, sg, sgs, &sg_status);
8980 if (local_group)
8981 goto next_group;
8984 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8985 sds->busiest = sg;
8986 sds->busiest_stat = *sgs;
8989 next_group:
8990 /* Now, start updating sd_lb_stats */
8991 sds->total_load += sgs->group_load;
8992 sds->total_capacity += sgs->group_capacity;
8994 sg = sg->next;
8995 } while (sg != env->sd->groups);
8997 /* Tag domain that child domain prefers tasks go to siblings first */
8998 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9000 #ifdef CONFIG_NO_HZ_COMMON
9001 if ((env->flags & LBF_NOHZ_AGAIN) &&
9002 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9004 WRITE_ONCE(nohz.next_blocked,
9005 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9007 #endif
9009 if (env->sd->flags & SD_NUMA)
9010 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9012 if (!env->sd->parent) {
9013 struct root_domain *rd = env->dst_rq->rd;
9015 /* update overload indicator if we are at root domain */
9016 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9018 /* Update over-utilization (tipping point, U >= 0) indicator */
9019 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9020 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9021 } else if (sg_status & SG_OVERUTILIZED) {
9022 struct root_domain *rd = env->dst_rq->rd;
9024 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9025 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9029 #define NUMA_IMBALANCE_MIN 2
9031 static inline long adjust_numa_imbalance(int imbalance,
9032 int dst_running, int dst_weight)
9034 if (!allow_numa_imbalance(dst_running, dst_weight))
9035 return imbalance;
9038 * Allow a small imbalance based on a simple pair of communicating
9039 * tasks that remain local when the destination is lightly loaded.
9041 if (imbalance <= NUMA_IMBALANCE_MIN)
9042 return 0;
9044 return imbalance;
9048 * calculate_imbalance - Calculate the amount of imbalance present within the
9049 * groups of a given sched_domain during load balance.
9050 * @env: load balance environment
9051 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9053 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9055 struct sg_lb_stats *local, *busiest;
9057 local = &sds->local_stat;
9058 busiest = &sds->busiest_stat;
9060 if (busiest->group_type == group_misfit_task) {
9061 /* Set imbalance to allow misfit tasks to be balanced. */
9062 env->migration_type = migrate_misfit;
9063 env->imbalance = 1;
9064 return;
9067 if (busiest->group_type == group_asym_packing) {
9069 * In case of asym capacity, we will try to migrate all load to
9070 * the preferred CPU.
9072 env->migration_type = migrate_task;
9073 env->imbalance = busiest->sum_h_nr_running;
9074 return;
9077 if (busiest->group_type == group_imbalanced) {
9079 * In the group_imb case we cannot rely on group-wide averages
9080 * to ensure CPU-load equilibrium, try to move any task to fix
9081 * the imbalance. The next load balance will take care of
9082 * balancing back the system.
9084 env->migration_type = migrate_task;
9085 env->imbalance = 1;
9086 return;
9090 * Try to use spare capacity of local group without overloading it or
9091 * emptying busiest.
9093 if (local->group_type == group_has_spare) {
9094 if ((busiest->group_type > group_fully_busy) &&
9095 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9097 * If busiest is overloaded, try to fill spare
9098 * capacity. This might end up creating spare capacity
9099 * in busiest or busiest still being overloaded but
9100 * there is no simple way to directly compute the
9101 * amount of load to migrate in order to balance the
9102 * system.
9104 env->migration_type = migrate_util;
9105 env->imbalance = max(local->group_capacity, local->group_util) -
9106 local->group_util;
9109 * In some cases, the group's utilization is max or even
9110 * higher than capacity because of migrations but the
9111 * local CPU is (newly) idle. There is at least one
9112 * waiting task in this overloaded busiest group. Let's
9113 * try to pull it.
9115 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9116 env->migration_type = migrate_task;
9117 env->imbalance = 1;
9120 return;
9123 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9124 unsigned int nr_diff = busiest->sum_nr_running;
9126 * When prefer sibling, evenly spread running tasks on
9127 * groups.
9129 env->migration_type = migrate_task;
9130 lsub_positive(&nr_diff, local->sum_nr_running);
9131 env->imbalance = nr_diff >> 1;
9132 } else {
9135 * If there is no overload, we just want to even the number of
9136 * idle cpus.
9138 env->migration_type = migrate_task;
9139 env->imbalance = max_t(long, 0, (local->idle_cpus -
9140 busiest->idle_cpus) >> 1);
9143 /* Consider allowing a small imbalance between NUMA groups */
9144 if (env->sd->flags & SD_NUMA) {
9145 env->imbalance = adjust_numa_imbalance(env->imbalance,
9146 busiest->sum_nr_running, busiest->group_weight);
9149 return;
9153 * Local is fully busy but has to take more load to relieve the
9154 * busiest group
9156 if (local->group_type < group_overloaded) {
9158 * Local will become overloaded so the avg_load metrics are
9159 * finally needed.
9162 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9163 local->group_capacity;
9165 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9166 sds->total_capacity;
9168 * If the local group is more loaded than the selected
9169 * busiest group don't try to pull any tasks.
9171 if (local->avg_load >= busiest->avg_load) {
9172 env->imbalance = 0;
9173 return;
9178 * Both group are or will become overloaded and we're trying to get all
9179 * the CPUs to the average_load, so we don't want to push ourselves
9180 * above the average load, nor do we wish to reduce the max loaded CPU
9181 * below the average load. At the same time, we also don't want to
9182 * reduce the group load below the group capacity. Thus we look for
9183 * the minimum possible imbalance.
9185 env->migration_type = migrate_load;
9186 env->imbalance = min(
9187 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9188 (sds->avg_load - local->avg_load) * local->group_capacity
9189 ) / SCHED_CAPACITY_SCALE;
9192 /******* find_busiest_group() helpers end here *********************/
9195 * Decision matrix according to the local and busiest group type:
9197 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9198 * has_spare nr_idle balanced N/A N/A balanced balanced
9199 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9200 * misfit_task force N/A N/A N/A force force
9201 * asym_packing force force N/A N/A force force
9202 * imbalanced force force N/A N/A force force
9203 * overloaded force force N/A N/A force avg_load
9205 * N/A : Not Applicable because already filtered while updating
9206 * statistics.
9207 * balanced : The system is balanced for these 2 groups.
9208 * force : Calculate the imbalance as load migration is probably needed.
9209 * avg_load : Only if imbalance is significant enough.
9210 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9211 * different in groups.
9215 * find_busiest_group - Returns the busiest group within the sched_domain
9216 * if there is an imbalance.
9218 * Also calculates the amount of runnable load which should be moved
9219 * to restore balance.
9221 * @env: The load balancing environment.
9223 * Return: - The busiest group if imbalance exists.
9225 static struct sched_group *find_busiest_group(struct lb_env *env)
9227 struct sg_lb_stats *local, *busiest;
9228 struct sd_lb_stats sds;
9230 init_sd_lb_stats(&sds);
9233 * Compute the various statistics relevant for load balancing at
9234 * this level.
9236 update_sd_lb_stats(env, &sds);
9238 if (sched_energy_enabled()) {
9239 struct root_domain *rd = env->dst_rq->rd;
9241 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9242 goto out_balanced;
9245 local = &sds.local_stat;
9246 busiest = &sds.busiest_stat;
9248 /* There is no busy sibling group to pull tasks from */
9249 if (!sds.busiest)
9250 goto out_balanced;
9252 /* Misfit tasks should be dealt with regardless of the avg load */
9253 if (busiest->group_type == group_misfit_task)
9254 goto force_balance;
9256 /* ASYM feature bypasses nice load balance check */
9257 if (busiest->group_type == group_asym_packing)
9258 goto force_balance;
9261 * If the busiest group is imbalanced the below checks don't
9262 * work because they assume all things are equal, which typically
9263 * isn't true due to cpus_ptr constraints and the like.
9265 if (busiest->group_type == group_imbalanced)
9266 goto force_balance;
9269 * If the local group is busier than the selected busiest group
9270 * don't try and pull any tasks.
9272 if (local->group_type > busiest->group_type)
9273 goto out_balanced;
9276 * When groups are overloaded, use the avg_load to ensure fairness
9277 * between tasks.
9279 if (local->group_type == group_overloaded) {
9281 * If the local group is more loaded than the selected
9282 * busiest group don't try to pull any tasks.
9284 if (local->avg_load >= busiest->avg_load)
9285 goto out_balanced;
9287 /* XXX broken for overlapping NUMA groups */
9288 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9289 sds.total_capacity;
9292 * Don't pull any tasks if this group is already above the
9293 * domain average load.
9295 if (local->avg_load >= sds.avg_load)
9296 goto out_balanced;
9299 * If the busiest group is more loaded, use imbalance_pct to be
9300 * conservative.
9302 if (100 * busiest->avg_load <=
9303 env->sd->imbalance_pct * local->avg_load)
9304 goto out_balanced;
9307 /* Try to move all excess tasks to child's sibling domain */
9308 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9309 busiest->sum_nr_running > local->sum_nr_running + 1)
9310 goto force_balance;
9312 if (busiest->group_type != group_overloaded) {
9313 if (env->idle == CPU_NOT_IDLE)
9315 * If the busiest group is not overloaded (and as a
9316 * result the local one too) but this CPU is already
9317 * busy, let another idle CPU try to pull task.
9319 goto out_balanced;
9321 if (busiest->group_weight > 1 &&
9322 local->idle_cpus <= (busiest->idle_cpus + 1))
9324 * If the busiest group is not overloaded
9325 * and there is no imbalance between this and busiest
9326 * group wrt idle CPUs, it is balanced. The imbalance
9327 * becomes significant if the diff is greater than 1
9328 * otherwise we might end up to just move the imbalance
9329 * on another group. Of course this applies only if
9330 * there is more than 1 CPU per group.
9332 goto out_balanced;
9334 if (busiest->sum_h_nr_running == 1)
9336 * busiest doesn't have any tasks waiting to run
9338 goto out_balanced;
9341 force_balance:
9342 /* Looks like there is an imbalance. Compute it */
9343 calculate_imbalance(env, &sds);
9344 return env->imbalance ? sds.busiest : NULL;
9346 out_balanced:
9347 env->imbalance = 0;
9348 return NULL;
9352 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9354 static struct rq *find_busiest_queue(struct lb_env *env,
9355 struct sched_group *group)
9357 struct rq *busiest = NULL, *rq;
9358 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9359 unsigned int busiest_nr = 0;
9360 int i;
9362 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9363 unsigned long capacity, load, util;
9364 unsigned int nr_running;
9365 enum fbq_type rt;
9367 rq = cpu_rq(i);
9368 rt = fbq_classify_rq(rq);
9371 * We classify groups/runqueues into three groups:
9372 * - regular: there are !numa tasks
9373 * - remote: there are numa tasks that run on the 'wrong' node
9374 * - all: there is no distinction
9376 * In order to avoid migrating ideally placed numa tasks,
9377 * ignore those when there's better options.
9379 * If we ignore the actual busiest queue to migrate another
9380 * task, the next balance pass can still reduce the busiest
9381 * queue by moving tasks around inside the node.
9383 * If we cannot move enough load due to this classification
9384 * the next pass will adjust the group classification and
9385 * allow migration of more tasks.
9387 * Both cases only affect the total convergence complexity.
9389 if (rt > env->fbq_type)
9390 continue;
9392 capacity = capacity_of(i);
9393 nr_running = rq->cfs.h_nr_running;
9396 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9397 * eventually lead to active_balancing high->low capacity.
9398 * Higher per-CPU capacity is considered better than balancing
9399 * average load.
9401 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9402 capacity_of(env->dst_cpu) < capacity &&
9403 nr_running == 1)
9404 continue;
9406 switch (env->migration_type) {
9407 case migrate_load:
9409 * When comparing with load imbalance, use cpu_load()
9410 * which is not scaled with the CPU capacity.
9412 load = cpu_load(rq);
9414 if (nr_running == 1 && load > env->imbalance &&
9415 !check_cpu_capacity(rq, env->sd))
9416 break;
9419 * For the load comparisons with the other CPUs,
9420 * consider the cpu_load() scaled with the CPU
9421 * capacity, so that the load can be moved away
9422 * from the CPU that is potentially running at a
9423 * lower capacity.
9425 * Thus we're looking for max(load_i / capacity_i),
9426 * crosswise multiplication to rid ourselves of the
9427 * division works out to:
9428 * load_i * capacity_j > load_j * capacity_i;
9429 * where j is our previous maximum.
9431 if (load * busiest_capacity > busiest_load * capacity) {
9432 busiest_load = load;
9433 busiest_capacity = capacity;
9434 busiest = rq;
9436 break;
9438 case migrate_util:
9439 util = cpu_util(cpu_of(rq));
9442 * Don't try to pull utilization from a CPU with one
9443 * running task. Whatever its utilization, we will fail
9444 * detach the task.
9446 if (nr_running <= 1)
9447 continue;
9449 if (busiest_util < util) {
9450 busiest_util = util;
9451 busiest = rq;
9453 break;
9455 case migrate_task:
9456 if (busiest_nr < nr_running) {
9457 busiest_nr = nr_running;
9458 busiest = rq;
9460 break;
9462 case migrate_misfit:
9464 * For ASYM_CPUCAPACITY domains with misfit tasks we
9465 * simply seek the "biggest" misfit task.
9467 if (rq->misfit_task_load > busiest_load) {
9468 busiest_load = rq->misfit_task_load;
9469 busiest = rq;
9472 break;
9477 return busiest;
9481 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9482 * so long as it is large enough.
9484 #define MAX_PINNED_INTERVAL 512
9486 static inline bool
9487 asym_active_balance(struct lb_env *env)
9490 * ASYM_PACKING needs to force migrate tasks from busy but
9491 * lower priority CPUs in order to pack all tasks in the
9492 * highest priority CPUs.
9494 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9495 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9498 static inline bool
9499 voluntary_active_balance(struct lb_env *env)
9501 struct sched_domain *sd = env->sd;
9503 if (asym_active_balance(env))
9504 return 1;
9507 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9508 * It's worth migrating the task if the src_cpu's capacity is reduced
9509 * because of other sched_class or IRQs if more capacity stays
9510 * available on dst_cpu.
9512 if ((env->idle != CPU_NOT_IDLE) &&
9513 (env->src_rq->cfs.h_nr_running == 1)) {
9514 if ((check_cpu_capacity(env->src_rq, sd)) &&
9515 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9516 return 1;
9519 if (env->migration_type == migrate_misfit)
9520 return 1;
9522 return 0;
9525 static int need_active_balance(struct lb_env *env)
9527 struct sched_domain *sd = env->sd;
9529 if (voluntary_active_balance(env))
9530 return 1;
9532 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9535 static int active_load_balance_cpu_stop(void *data);
9537 static int should_we_balance(struct lb_env *env)
9539 struct sched_group *sg = env->sd->groups;
9540 int cpu;
9543 * Ensure the balancing environment is consistent; can happen
9544 * when the softirq triggers 'during' hotplug.
9546 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9547 return 0;
9550 * In the newly idle case, we will allow all the CPUs
9551 * to do the newly idle load balance.
9553 if (env->idle == CPU_NEWLY_IDLE)
9554 return 1;
9556 /* Try to find first idle CPU */
9557 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9558 if (!idle_cpu(cpu))
9559 continue;
9561 /* Are we the first idle CPU? */
9562 return cpu == env->dst_cpu;
9565 /* Are we the first CPU of this group ? */
9566 return group_balance_cpu(sg) == env->dst_cpu;
9570 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9571 * tasks if there is an imbalance.
9573 static int load_balance(int this_cpu, struct rq *this_rq,
9574 struct sched_domain *sd, enum cpu_idle_type idle,
9575 int *continue_balancing)
9577 int ld_moved, cur_ld_moved, active_balance = 0;
9578 struct sched_domain *sd_parent = sd->parent;
9579 struct sched_group *group;
9580 struct rq *busiest;
9581 struct rq_flags rf;
9582 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9584 struct lb_env env = {
9585 .sd = sd,
9586 .dst_cpu = this_cpu,
9587 .dst_rq = this_rq,
9588 .dst_grpmask = sched_group_span(sd->groups),
9589 .idle = idle,
9590 .loop_break = sched_nr_migrate_break,
9591 .cpus = cpus,
9592 .fbq_type = all,
9593 .tasks = LIST_HEAD_INIT(env.tasks),
9596 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9598 schedstat_inc(sd->lb_count[idle]);
9600 redo:
9601 if (!should_we_balance(&env)) {
9602 *continue_balancing = 0;
9603 goto out_balanced;
9606 group = find_busiest_group(&env);
9607 if (!group) {
9608 schedstat_inc(sd->lb_nobusyg[idle]);
9609 goto out_balanced;
9612 busiest = find_busiest_queue(&env, group);
9613 if (!busiest) {
9614 schedstat_inc(sd->lb_nobusyq[idle]);
9615 goto out_balanced;
9618 BUG_ON(busiest == env.dst_rq);
9620 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9622 env.src_cpu = busiest->cpu;
9623 env.src_rq = busiest;
9625 ld_moved = 0;
9626 if (busiest->nr_running > 1) {
9628 * Attempt to move tasks. If find_busiest_group has found
9629 * an imbalance but busiest->nr_running <= 1, the group is
9630 * still unbalanced. ld_moved simply stays zero, so it is
9631 * correctly treated as an imbalance.
9633 env.flags |= LBF_ALL_PINNED;
9634 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9636 more_balance:
9637 rq_lock_irqsave(busiest, &rf);
9638 update_rq_clock(busiest);
9641 * cur_ld_moved - load moved in current iteration
9642 * ld_moved - cumulative load moved across iterations
9644 cur_ld_moved = detach_tasks(&env);
9647 * We've detached some tasks from busiest_rq. Every
9648 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9649 * unlock busiest->lock, and we are able to be sure
9650 * that nobody can manipulate the tasks in parallel.
9651 * See task_rq_lock() family for the details.
9654 rq_unlock(busiest, &rf);
9656 if (cur_ld_moved) {
9657 attach_tasks(&env);
9658 ld_moved += cur_ld_moved;
9661 local_irq_restore(rf.flags);
9663 if (env.flags & LBF_NEED_BREAK) {
9664 env.flags &= ~LBF_NEED_BREAK;
9665 goto more_balance;
9669 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9670 * us and move them to an alternate dst_cpu in our sched_group
9671 * where they can run. The upper limit on how many times we
9672 * iterate on same src_cpu is dependent on number of CPUs in our
9673 * sched_group.
9675 * This changes load balance semantics a bit on who can move
9676 * load to a given_cpu. In addition to the given_cpu itself
9677 * (or a ilb_cpu acting on its behalf where given_cpu is
9678 * nohz-idle), we now have balance_cpu in a position to move
9679 * load to given_cpu. In rare situations, this may cause
9680 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9681 * _independently_ and at _same_ time to move some load to
9682 * given_cpu) causing exceess load to be moved to given_cpu.
9683 * This however should not happen so much in practice and
9684 * moreover subsequent load balance cycles should correct the
9685 * excess load moved.
9687 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9689 /* Prevent to re-select dst_cpu via env's CPUs */
9690 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9692 env.dst_rq = cpu_rq(env.new_dst_cpu);
9693 env.dst_cpu = env.new_dst_cpu;
9694 env.flags &= ~LBF_DST_PINNED;
9695 env.loop = 0;
9696 env.loop_break = sched_nr_migrate_break;
9699 * Go back to "more_balance" rather than "redo" since we
9700 * need to continue with same src_cpu.
9702 goto more_balance;
9706 * We failed to reach balance because of affinity.
9708 if (sd_parent) {
9709 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9711 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9712 *group_imbalance = 1;
9715 /* All tasks on this runqueue were pinned by CPU affinity */
9716 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9717 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9719 * Attempting to continue load balancing at the current
9720 * sched_domain level only makes sense if there are
9721 * active CPUs remaining as possible busiest CPUs to
9722 * pull load from which are not contained within the
9723 * destination group that is receiving any migrated
9724 * load.
9726 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9727 env.loop = 0;
9728 env.loop_break = sched_nr_migrate_break;
9729 goto redo;
9731 goto out_all_pinned;
9735 if (!ld_moved) {
9736 schedstat_inc(sd->lb_failed[idle]);
9738 * Increment the failure counter only on periodic balance.
9739 * We do not want newidle balance, which can be very
9740 * frequent, pollute the failure counter causing
9741 * excessive cache_hot migrations and active balances.
9743 if (idle != CPU_NEWLY_IDLE)
9744 sd->nr_balance_failed++;
9746 if (need_active_balance(&env)) {
9747 unsigned long flags;
9749 raw_spin_lock_irqsave(&busiest->lock, flags);
9752 * Don't kick the active_load_balance_cpu_stop,
9753 * if the curr task on busiest CPU can't be
9754 * moved to this_cpu:
9756 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9757 raw_spin_unlock_irqrestore(&busiest->lock,
9758 flags);
9759 env.flags |= LBF_ALL_PINNED;
9760 goto out_one_pinned;
9764 * ->active_balance synchronizes accesses to
9765 * ->active_balance_work. Once set, it's cleared
9766 * only after active load balance is finished.
9768 if (!busiest->active_balance) {
9769 busiest->active_balance = 1;
9770 busiest->push_cpu = this_cpu;
9771 active_balance = 1;
9773 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9775 if (active_balance) {
9776 stop_one_cpu_nowait(cpu_of(busiest),
9777 active_load_balance_cpu_stop, busiest,
9778 &busiest->active_balance_work);
9781 /* We've kicked active balancing, force task migration. */
9782 sd->nr_balance_failed = sd->cache_nice_tries+1;
9784 } else
9785 sd->nr_balance_failed = 0;
9787 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9788 /* We were unbalanced, so reset the balancing interval */
9789 sd->balance_interval = sd->min_interval;
9790 } else {
9792 * If we've begun active balancing, start to back off. This
9793 * case may not be covered by the all_pinned logic if there
9794 * is only 1 task on the busy runqueue (because we don't call
9795 * detach_tasks).
9797 if (sd->balance_interval < sd->max_interval)
9798 sd->balance_interval *= 2;
9801 goto out;
9803 out_balanced:
9805 * We reach balance although we may have faced some affinity
9806 * constraints. Clear the imbalance flag only if other tasks got
9807 * a chance to move and fix the imbalance.
9809 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9810 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9812 if (*group_imbalance)
9813 *group_imbalance = 0;
9816 out_all_pinned:
9818 * We reach balance because all tasks are pinned at this level so
9819 * we can't migrate them. Let the imbalance flag set so parent level
9820 * can try to migrate them.
9822 schedstat_inc(sd->lb_balanced[idle]);
9824 sd->nr_balance_failed = 0;
9826 out_one_pinned:
9827 ld_moved = 0;
9830 * newidle_balance() disregards balance intervals, so we could
9831 * repeatedly reach this code, which would lead to balance_interval
9832 * skyrocketting in a short amount of time. Skip the balance_interval
9833 * increase logic to avoid that.
9835 if (env.idle == CPU_NEWLY_IDLE)
9836 goto out;
9838 /* tune up the balancing interval */
9839 if ((env.flags & LBF_ALL_PINNED &&
9840 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9841 sd->balance_interval < sd->max_interval)
9842 sd->balance_interval *= 2;
9843 out:
9844 return ld_moved;
9847 static inline unsigned long
9848 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9850 unsigned long interval = sd->balance_interval;
9852 if (cpu_busy)
9853 interval *= sd->busy_factor;
9855 /* scale ms to jiffies */
9856 interval = msecs_to_jiffies(interval);
9859 * Reduce likelihood of busy balancing at higher domains racing with
9860 * balancing at lower domains by preventing their balancing periods
9861 * from being multiples of each other.
9863 if (cpu_busy)
9864 interval -= 1;
9866 interval = clamp(interval, 1UL, max_load_balance_interval);
9868 return interval;
9871 static inline void
9872 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9874 unsigned long interval, next;
9876 /* used by idle balance, so cpu_busy = 0 */
9877 interval = get_sd_balance_interval(sd, 0);
9878 next = sd->last_balance + interval;
9880 if (time_after(*next_balance, next))
9881 *next_balance = next;
9885 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9886 * running tasks off the busiest CPU onto idle CPUs. It requires at
9887 * least 1 task to be running on each physical CPU where possible, and
9888 * avoids physical / logical imbalances.
9890 static int active_load_balance_cpu_stop(void *data)
9892 struct rq *busiest_rq = data;
9893 int busiest_cpu = cpu_of(busiest_rq);
9894 int target_cpu = busiest_rq->push_cpu;
9895 struct rq *target_rq = cpu_rq(target_cpu);
9896 struct sched_domain *sd;
9897 struct task_struct *p = NULL;
9898 struct rq_flags rf;
9900 rq_lock_irq(busiest_rq, &rf);
9902 * Between queueing the stop-work and running it is a hole in which
9903 * CPUs can become inactive. We should not move tasks from or to
9904 * inactive CPUs.
9906 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9907 goto out_unlock;
9909 /* Make sure the requested CPU hasn't gone down in the meantime: */
9910 if (unlikely(busiest_cpu != smp_processor_id() ||
9911 !busiest_rq->active_balance))
9912 goto out_unlock;
9914 /* Is there any task to move? */
9915 if (busiest_rq->nr_running <= 1)
9916 goto out_unlock;
9919 * This condition is "impossible", if it occurs
9920 * we need to fix it. Originally reported by
9921 * Bjorn Helgaas on a 128-CPU setup.
9923 BUG_ON(busiest_rq == target_rq);
9925 /* Search for an sd spanning us and the target CPU. */
9926 rcu_read_lock();
9927 for_each_domain(target_cpu, sd) {
9928 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9929 break;
9932 if (likely(sd)) {
9933 struct lb_env env = {
9934 .sd = sd,
9935 .dst_cpu = target_cpu,
9936 .dst_rq = target_rq,
9937 .src_cpu = busiest_rq->cpu,
9938 .src_rq = busiest_rq,
9939 .idle = CPU_IDLE,
9941 * can_migrate_task() doesn't need to compute new_dst_cpu
9942 * for active balancing. Since we have CPU_IDLE, but no
9943 * @dst_grpmask we need to make that test go away with lying
9944 * about DST_PINNED.
9946 .flags = LBF_DST_PINNED,
9949 schedstat_inc(sd->alb_count);
9950 update_rq_clock(busiest_rq);
9952 p = detach_one_task(&env);
9953 if (p) {
9954 schedstat_inc(sd->alb_pushed);
9955 /* Active balancing done, reset the failure counter. */
9956 sd->nr_balance_failed = 0;
9957 } else {
9958 schedstat_inc(sd->alb_failed);
9961 rcu_read_unlock();
9962 out_unlock:
9963 busiest_rq->active_balance = 0;
9964 rq_unlock(busiest_rq, &rf);
9966 if (p)
9967 attach_one_task(target_rq, p);
9969 local_irq_enable();
9971 return 0;
9974 static DEFINE_SPINLOCK(balancing);
9977 * Scale the max load_balance interval with the number of CPUs in the system.
9978 * This trades load-balance latency on larger machines for less cross talk.
9980 void update_max_interval(void)
9982 max_load_balance_interval = HZ*num_online_cpus()/10;
9986 * It checks each scheduling domain to see if it is due to be balanced,
9987 * and initiates a balancing operation if so.
9989 * Balancing parameters are set up in init_sched_domains.
9991 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9993 int continue_balancing = 1;
9994 int cpu = rq->cpu;
9995 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9996 unsigned long interval;
9997 struct sched_domain *sd;
9998 /* Earliest time when we have to do rebalance again */
9999 unsigned long next_balance = jiffies + 60*HZ;
10000 int update_next_balance = 0;
10001 int need_serialize, need_decay = 0;
10002 u64 max_cost = 0;
10004 rcu_read_lock();
10005 for_each_domain(cpu, sd) {
10007 * Decay the newidle max times here because this is a regular
10008 * visit to all the domains. Decay ~1% per second.
10010 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10011 sd->max_newidle_lb_cost =
10012 (sd->max_newidle_lb_cost * 253) / 256;
10013 sd->next_decay_max_lb_cost = jiffies + HZ;
10014 need_decay = 1;
10016 max_cost += sd->max_newidle_lb_cost;
10019 * Stop the load balance at this level. There is another
10020 * CPU in our sched group which is doing load balancing more
10021 * actively.
10023 if (!continue_balancing) {
10024 if (need_decay)
10025 continue;
10026 break;
10029 interval = get_sd_balance_interval(sd, busy);
10031 need_serialize = sd->flags & SD_SERIALIZE;
10032 if (need_serialize) {
10033 if (!spin_trylock(&balancing))
10034 goto out;
10037 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10038 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10040 * The LBF_DST_PINNED logic could have changed
10041 * env->dst_cpu, so we can't know our idle
10042 * state even if we migrated tasks. Update it.
10044 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10045 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10047 sd->last_balance = jiffies;
10048 interval = get_sd_balance_interval(sd, busy);
10050 if (need_serialize)
10051 spin_unlock(&balancing);
10052 out:
10053 if (time_after(next_balance, sd->last_balance + interval)) {
10054 next_balance = sd->last_balance + interval;
10055 update_next_balance = 1;
10058 if (need_decay) {
10060 * Ensure the rq-wide value also decays but keep it at a
10061 * reasonable floor to avoid funnies with rq->avg_idle.
10063 rq->max_idle_balance_cost =
10064 max((u64)sysctl_sched_migration_cost, max_cost);
10066 rcu_read_unlock();
10069 * next_balance will be updated only when there is a need.
10070 * When the cpu is attached to null domain for ex, it will not be
10071 * updated.
10073 if (likely(update_next_balance)) {
10074 rq->next_balance = next_balance;
10076 #ifdef CONFIG_NO_HZ_COMMON
10078 * If this CPU has been elected to perform the nohz idle
10079 * balance. Other idle CPUs have already rebalanced with
10080 * nohz_idle_balance() and nohz.next_balance has been
10081 * updated accordingly. This CPU is now running the idle load
10082 * balance for itself and we need to update the
10083 * nohz.next_balance accordingly.
10085 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10086 nohz.next_balance = rq->next_balance;
10087 #endif
10091 static inline int on_null_domain(struct rq *rq)
10093 return unlikely(!rcu_dereference_sched(rq->sd));
10096 #ifdef CONFIG_NO_HZ_COMMON
10098 * idle load balancing details
10099 * - When one of the busy CPUs notice that there may be an idle rebalancing
10100 * needed, they will kick the idle load balancer, which then does idle
10101 * load balancing for all the idle CPUs.
10102 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10103 * anywhere yet.
10106 static inline int find_new_ilb(void)
10108 int ilb;
10110 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10111 housekeeping_cpumask(HK_FLAG_MISC)) {
10113 if (ilb == smp_processor_id())
10114 continue;
10116 if (idle_cpu(ilb))
10117 return ilb;
10120 return nr_cpu_ids;
10124 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10125 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10127 static void kick_ilb(unsigned int flags)
10129 int ilb_cpu;
10132 * Increase nohz.next_balance only when if full ilb is triggered but
10133 * not if we only update stats.
10135 if (flags & NOHZ_BALANCE_KICK)
10136 nohz.next_balance = jiffies+1;
10138 ilb_cpu = find_new_ilb();
10140 if (ilb_cpu >= nr_cpu_ids)
10141 return;
10144 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10145 * the first flag owns it; cleared by nohz_csd_func().
10147 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10148 if (flags & NOHZ_KICK_MASK)
10149 return;
10152 * This way we generate an IPI on the target CPU which
10153 * is idle. And the softirq performing nohz idle load balance
10154 * will be run before returning from the IPI.
10156 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10160 * Current decision point for kicking the idle load balancer in the presence
10161 * of idle CPUs in the system.
10163 static void nohz_balancer_kick(struct rq *rq)
10165 unsigned long now = jiffies;
10166 struct sched_domain_shared *sds;
10167 struct sched_domain *sd;
10168 int nr_busy, i, cpu = rq->cpu;
10169 unsigned int flags = 0;
10171 if (unlikely(rq->idle_balance))
10172 return;
10175 * We may be recently in ticked or tickless idle mode. At the first
10176 * busy tick after returning from idle, we will update the busy stats.
10178 nohz_balance_exit_idle(rq);
10181 * None are in tickless mode and hence no need for NOHZ idle load
10182 * balancing.
10184 if (likely(!atomic_read(&nohz.nr_cpus)))
10185 return;
10187 if (READ_ONCE(nohz.has_blocked) &&
10188 time_after(now, READ_ONCE(nohz.next_blocked)))
10189 flags = NOHZ_STATS_KICK;
10191 if (time_before(now, nohz.next_balance))
10192 goto out;
10194 if (rq->nr_running >= 2) {
10195 flags = NOHZ_KICK_MASK;
10196 goto out;
10199 rcu_read_lock();
10201 sd = rcu_dereference(rq->sd);
10202 if (sd) {
10204 * If there's a CFS task and the current CPU has reduced
10205 * capacity; kick the ILB to see if there's a better CPU to run
10206 * on.
10208 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10209 flags = NOHZ_KICK_MASK;
10210 goto unlock;
10214 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10215 if (sd) {
10217 * When ASYM_PACKING; see if there's a more preferred CPU
10218 * currently idle; in which case, kick the ILB to move tasks
10219 * around.
10221 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10222 if (sched_asym_prefer(i, cpu)) {
10223 flags = NOHZ_KICK_MASK;
10224 goto unlock;
10229 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10230 if (sd) {
10232 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10233 * to run the misfit task on.
10235 if (check_misfit_status(rq, sd)) {
10236 flags = NOHZ_KICK_MASK;
10237 goto unlock;
10241 * For asymmetric systems, we do not want to nicely balance
10242 * cache use, instead we want to embrace asymmetry and only
10243 * ensure tasks have enough CPU capacity.
10245 * Skip the LLC logic because it's not relevant in that case.
10247 goto unlock;
10250 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10251 if (sds) {
10253 * If there is an imbalance between LLC domains (IOW we could
10254 * increase the overall cache use), we need some less-loaded LLC
10255 * domain to pull some load. Likewise, we may need to spread
10256 * load within the current LLC domain (e.g. packed SMT cores but
10257 * other CPUs are idle). We can't really know from here how busy
10258 * the others are - so just get a nohz balance going if it looks
10259 * like this LLC domain has tasks we could move.
10261 nr_busy = atomic_read(&sds->nr_busy_cpus);
10262 if (nr_busy > 1) {
10263 flags = NOHZ_KICK_MASK;
10264 goto unlock;
10267 unlock:
10268 rcu_read_unlock();
10269 out:
10270 if (flags)
10271 kick_ilb(flags);
10274 static void set_cpu_sd_state_busy(int cpu)
10276 struct sched_domain *sd;
10278 rcu_read_lock();
10279 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10281 if (!sd || !sd->nohz_idle)
10282 goto unlock;
10283 sd->nohz_idle = 0;
10285 atomic_inc(&sd->shared->nr_busy_cpus);
10286 unlock:
10287 rcu_read_unlock();
10290 void nohz_balance_exit_idle(struct rq *rq)
10292 SCHED_WARN_ON(rq != this_rq());
10294 if (likely(!rq->nohz_tick_stopped))
10295 return;
10297 rq->nohz_tick_stopped = 0;
10298 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10299 atomic_dec(&nohz.nr_cpus);
10301 set_cpu_sd_state_busy(rq->cpu);
10304 static void set_cpu_sd_state_idle(int cpu)
10306 struct sched_domain *sd;
10308 rcu_read_lock();
10309 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10311 if (!sd || sd->nohz_idle)
10312 goto unlock;
10313 sd->nohz_idle = 1;
10315 atomic_dec(&sd->shared->nr_busy_cpus);
10316 unlock:
10317 rcu_read_unlock();
10321 * This routine will record that the CPU is going idle with tick stopped.
10322 * This info will be used in performing idle load balancing in the future.
10324 void nohz_balance_enter_idle(int cpu)
10326 struct rq *rq = cpu_rq(cpu);
10328 SCHED_WARN_ON(cpu != smp_processor_id());
10330 /* If this CPU is going down, then nothing needs to be done: */
10331 if (!cpu_active(cpu))
10332 return;
10334 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10335 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10336 return;
10339 * Can be set safely without rq->lock held
10340 * If a clear happens, it will have evaluated last additions because
10341 * rq->lock is held during the check and the clear
10343 rq->has_blocked_load = 1;
10346 * The tick is still stopped but load could have been added in the
10347 * meantime. We set the nohz.has_blocked flag to trig a check of the
10348 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10349 * of nohz.has_blocked can only happen after checking the new load
10351 if (rq->nohz_tick_stopped)
10352 goto out;
10354 /* If we're a completely isolated CPU, we don't play: */
10355 if (on_null_domain(rq))
10356 return;
10358 rq->nohz_tick_stopped = 1;
10360 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10361 atomic_inc(&nohz.nr_cpus);
10364 * Ensures that if nohz_idle_balance() fails to observe our
10365 * @idle_cpus_mask store, it must observe the @has_blocked
10366 * store.
10368 smp_mb__after_atomic();
10370 set_cpu_sd_state_idle(cpu);
10372 out:
10374 * Each time a cpu enter idle, we assume that it has blocked load and
10375 * enable the periodic update of the load of idle cpus
10377 WRITE_ONCE(nohz.has_blocked, 1);
10381 * Internal function that runs load balance for all idle cpus. The load balance
10382 * can be a simple update of blocked load or a complete load balance with
10383 * tasks movement depending of flags.
10384 * The function returns false if the loop has stopped before running
10385 * through all idle CPUs.
10387 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10388 enum cpu_idle_type idle)
10390 /* Earliest time when we have to do rebalance again */
10391 unsigned long now = jiffies;
10392 unsigned long next_balance = now + 60*HZ;
10393 bool has_blocked_load = false;
10394 int update_next_balance = 0;
10395 int this_cpu = this_rq->cpu;
10396 int balance_cpu;
10397 int ret = false;
10398 struct rq *rq;
10400 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10403 * We assume there will be no idle load after this update and clear
10404 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10405 * set the has_blocked flag and trig another update of idle load.
10406 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10407 * setting the flag, we are sure to not clear the state and not
10408 * check the load of an idle cpu.
10410 WRITE_ONCE(nohz.has_blocked, 0);
10413 * Ensures that if we miss the CPU, we must see the has_blocked
10414 * store from nohz_balance_enter_idle().
10416 smp_mb();
10418 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10419 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10420 continue;
10423 * If this CPU gets work to do, stop the load balancing
10424 * work being done for other CPUs. Next load
10425 * balancing owner will pick it up.
10427 if (need_resched()) {
10428 has_blocked_load = true;
10429 goto abort;
10432 rq = cpu_rq(balance_cpu);
10434 has_blocked_load |= update_nohz_stats(rq, true);
10437 * If time for next balance is due,
10438 * do the balance.
10440 if (time_after_eq(jiffies, rq->next_balance)) {
10441 struct rq_flags rf;
10443 rq_lock_irqsave(rq, &rf);
10444 update_rq_clock(rq);
10445 rq_unlock_irqrestore(rq, &rf);
10447 if (flags & NOHZ_BALANCE_KICK)
10448 rebalance_domains(rq, CPU_IDLE);
10451 if (time_after(next_balance, rq->next_balance)) {
10452 next_balance = rq->next_balance;
10453 update_next_balance = 1;
10458 * next_balance will be updated only when there is a need.
10459 * When the CPU is attached to null domain for ex, it will not be
10460 * updated.
10462 if (likely(update_next_balance))
10463 nohz.next_balance = next_balance;
10465 /* Newly idle CPU doesn't need an update */
10466 if (idle != CPU_NEWLY_IDLE) {
10467 update_blocked_averages(this_cpu);
10468 has_blocked_load |= this_rq->has_blocked_load;
10471 if (flags & NOHZ_BALANCE_KICK)
10472 rebalance_domains(this_rq, CPU_IDLE);
10474 WRITE_ONCE(nohz.next_blocked,
10475 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10477 /* The full idle balance loop has been done */
10478 ret = true;
10480 abort:
10481 /* There is still blocked load, enable periodic update */
10482 if (has_blocked_load)
10483 WRITE_ONCE(nohz.has_blocked, 1);
10485 return ret;
10489 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10490 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10492 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10494 unsigned int flags = this_rq->nohz_idle_balance;
10496 if (!flags)
10497 return false;
10499 this_rq->nohz_idle_balance = 0;
10501 if (idle != CPU_IDLE)
10502 return false;
10504 _nohz_idle_balance(this_rq, flags, idle);
10506 return true;
10509 static void nohz_newidle_balance(struct rq *this_rq)
10511 int this_cpu = this_rq->cpu;
10514 * This CPU doesn't want to be disturbed by scheduler
10515 * housekeeping
10517 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10518 return;
10520 /* Will wake up very soon. No time for doing anything else*/
10521 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10522 return;
10524 /* Don't need to update blocked load of idle CPUs*/
10525 if (!READ_ONCE(nohz.has_blocked) ||
10526 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10527 return;
10529 raw_spin_unlock(&this_rq->lock);
10531 * This CPU is going to be idle and blocked load of idle CPUs
10532 * need to be updated. Run the ilb locally as it is a good
10533 * candidate for ilb instead of waking up another idle CPU.
10534 * Kick an normal ilb if we failed to do the update.
10536 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10537 kick_ilb(NOHZ_STATS_KICK);
10538 raw_spin_lock(&this_rq->lock);
10541 #else /* !CONFIG_NO_HZ_COMMON */
10542 static inline void nohz_balancer_kick(struct rq *rq) { }
10544 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10546 return false;
10549 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10550 #endif /* CONFIG_NO_HZ_COMMON */
10553 * newidle_balance is called by schedule() if this_cpu is about to become
10554 * idle. Attempts to pull tasks from other CPUs.
10556 * Returns:
10557 * < 0 - we released the lock and there are !fair tasks present
10558 * 0 - failed, no new tasks
10559 * > 0 - success, new (fair) tasks present
10561 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10563 unsigned long next_balance = jiffies + HZ;
10564 int this_cpu = this_rq->cpu;
10565 struct sched_domain *sd;
10566 int pulled_task = 0;
10567 u64 curr_cost = 0;
10569 update_misfit_status(NULL, this_rq);
10571 * We must set idle_stamp _before_ calling idle_balance(), such that we
10572 * measure the duration of idle_balance() as idle time.
10574 this_rq->idle_stamp = rq_clock(this_rq);
10577 * Do not pull tasks towards !active CPUs...
10579 if (!cpu_active(this_cpu))
10580 return 0;
10583 * This is OK, because current is on_cpu, which avoids it being picked
10584 * for load-balance and preemption/IRQs are still disabled avoiding
10585 * further scheduler activity on it and we're being very careful to
10586 * re-start the picking loop.
10588 rq_unpin_lock(this_rq, rf);
10590 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10591 !READ_ONCE(this_rq->rd->overload)) {
10593 rcu_read_lock();
10594 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10595 if (sd)
10596 update_next_balance(sd, &next_balance);
10597 rcu_read_unlock();
10599 nohz_newidle_balance(this_rq);
10601 goto out;
10604 raw_spin_unlock(&this_rq->lock);
10606 update_blocked_averages(this_cpu);
10607 rcu_read_lock();
10608 for_each_domain(this_cpu, sd) {
10609 int continue_balancing = 1;
10610 u64 t0, domain_cost;
10612 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10613 update_next_balance(sd, &next_balance);
10614 break;
10617 if (sd->flags & SD_BALANCE_NEWIDLE) {
10618 t0 = sched_clock_cpu(this_cpu);
10620 pulled_task = load_balance(this_cpu, this_rq,
10621 sd, CPU_NEWLY_IDLE,
10622 &continue_balancing);
10624 domain_cost = sched_clock_cpu(this_cpu) - t0;
10625 if (domain_cost > sd->max_newidle_lb_cost)
10626 sd->max_newidle_lb_cost = domain_cost;
10628 curr_cost += domain_cost;
10631 update_next_balance(sd, &next_balance);
10634 * Stop searching for tasks to pull if there are
10635 * now runnable tasks on this rq.
10637 if (pulled_task || this_rq->nr_running > 0)
10638 break;
10640 rcu_read_unlock();
10642 raw_spin_lock(&this_rq->lock);
10644 if (curr_cost > this_rq->max_idle_balance_cost)
10645 this_rq->max_idle_balance_cost = curr_cost;
10647 out:
10649 * While browsing the domains, we released the rq lock, a task could
10650 * have been enqueued in the meantime. Since we're not going idle,
10651 * pretend we pulled a task.
10653 if (this_rq->cfs.h_nr_running && !pulled_task)
10654 pulled_task = 1;
10656 /* Move the next balance forward */
10657 if (time_after(this_rq->next_balance, next_balance))
10658 this_rq->next_balance = next_balance;
10660 /* Is there a task of a high priority class? */
10661 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10662 pulled_task = -1;
10664 if (pulled_task)
10665 this_rq->idle_stamp = 0;
10667 rq_repin_lock(this_rq, rf);
10669 return pulled_task;
10673 * run_rebalance_domains is triggered when needed from the scheduler tick.
10674 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10676 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10678 struct rq *this_rq = this_rq();
10679 enum cpu_idle_type idle = this_rq->idle_balance ?
10680 CPU_IDLE : CPU_NOT_IDLE;
10683 * If this CPU has a pending nohz_balance_kick, then do the
10684 * balancing on behalf of the other idle CPUs whose ticks are
10685 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10686 * give the idle CPUs a chance to load balance. Else we may
10687 * load balance only within the local sched_domain hierarchy
10688 * and abort nohz_idle_balance altogether if we pull some load.
10690 if (nohz_idle_balance(this_rq, idle))
10691 return;
10693 /* normal load balance */
10694 update_blocked_averages(this_rq->cpu);
10695 rebalance_domains(this_rq, idle);
10699 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10701 void trigger_load_balance(struct rq *rq)
10703 /* Don't need to rebalance while attached to NULL domain */
10704 if (unlikely(on_null_domain(rq)))
10705 return;
10707 if (time_after_eq(jiffies, rq->next_balance))
10708 raise_softirq(SCHED_SOFTIRQ);
10710 nohz_balancer_kick(rq);
10713 static void rq_online_fair(struct rq *rq)
10715 update_sysctl();
10717 update_runtime_enabled(rq);
10720 static void rq_offline_fair(struct rq *rq)
10722 update_sysctl();
10724 /* Ensure any throttled groups are reachable by pick_next_task */
10725 unthrottle_offline_cfs_rqs(rq);
10728 #endif /* CONFIG_SMP */
10731 * scheduler tick hitting a task of our scheduling class.
10733 * NOTE: This function can be called remotely by the tick offload that
10734 * goes along full dynticks. Therefore no local assumption can be made
10735 * and everything must be accessed through the @rq and @curr passed in
10736 * parameters.
10738 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10740 struct cfs_rq *cfs_rq;
10741 struct sched_entity *se = &curr->se;
10743 for_each_sched_entity(se) {
10744 cfs_rq = cfs_rq_of(se);
10745 entity_tick(cfs_rq, se, queued);
10748 if (static_branch_unlikely(&sched_numa_balancing))
10749 task_tick_numa(rq, curr);
10751 update_misfit_status(curr, rq);
10752 update_overutilized_status(task_rq(curr));
10756 * called on fork with the child task as argument from the parent's context
10757 * - child not yet on the tasklist
10758 * - preemption disabled
10760 static void task_fork_fair(struct task_struct *p)
10762 struct cfs_rq *cfs_rq;
10763 struct sched_entity *se = &p->se, *curr;
10764 struct rq *rq = this_rq();
10765 struct rq_flags rf;
10767 rq_lock(rq, &rf);
10768 update_rq_clock(rq);
10770 cfs_rq = task_cfs_rq(current);
10771 curr = cfs_rq->curr;
10772 if (curr) {
10773 update_curr(cfs_rq);
10774 se->vruntime = curr->vruntime;
10776 place_entity(cfs_rq, se, 1);
10778 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10780 * Upon rescheduling, sched_class::put_prev_task() will place
10781 * 'current' within the tree based on its new key value.
10783 swap(curr->vruntime, se->vruntime);
10784 resched_curr(rq);
10787 se->vruntime -= cfs_rq->min_vruntime;
10788 rq_unlock(rq, &rf);
10792 * Priority of the task has changed. Check to see if we preempt
10793 * the current task.
10795 static void
10796 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10798 if (!task_on_rq_queued(p))
10799 return;
10801 if (rq->cfs.nr_running == 1)
10802 return;
10805 * Reschedule if we are currently running on this runqueue and
10806 * our priority decreased, or if we are not currently running on
10807 * this runqueue and our priority is higher than the current's
10809 if (rq->curr == p) {
10810 if (p->prio > oldprio)
10811 resched_curr(rq);
10812 } else
10813 check_preempt_curr(rq, p, 0);
10816 static inline bool vruntime_normalized(struct task_struct *p)
10818 struct sched_entity *se = &p->se;
10821 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10822 * the dequeue_entity(.flags=0) will already have normalized the
10823 * vruntime.
10825 if (p->on_rq)
10826 return true;
10829 * When !on_rq, vruntime of the task has usually NOT been normalized.
10830 * But there are some cases where it has already been normalized:
10832 * - A forked child which is waiting for being woken up by
10833 * wake_up_new_task().
10834 * - A task which has been woken up by try_to_wake_up() and
10835 * waiting for actually being woken up by sched_ttwu_pending().
10837 if (!se->sum_exec_runtime ||
10838 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10839 return true;
10841 return false;
10844 #ifdef CONFIG_FAIR_GROUP_SCHED
10846 * Propagate the changes of the sched_entity across the tg tree to make it
10847 * visible to the root
10849 static void propagate_entity_cfs_rq(struct sched_entity *se)
10851 struct cfs_rq *cfs_rq;
10853 /* Start to propagate at parent */
10854 se = se->parent;
10856 for_each_sched_entity(se) {
10857 cfs_rq = cfs_rq_of(se);
10859 if (cfs_rq_throttled(cfs_rq))
10860 break;
10862 update_load_avg(cfs_rq, se, UPDATE_TG);
10865 #else
10866 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10867 #endif
10869 static void detach_entity_cfs_rq(struct sched_entity *se)
10871 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10873 /* Catch up with the cfs_rq and remove our load when we leave */
10874 update_load_avg(cfs_rq, se, 0);
10875 detach_entity_load_avg(cfs_rq, se);
10876 update_tg_load_avg(cfs_rq);
10877 propagate_entity_cfs_rq(se);
10880 static void attach_entity_cfs_rq(struct sched_entity *se)
10882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10884 #ifdef CONFIG_FAIR_GROUP_SCHED
10886 * Since the real-depth could have been changed (only FAIR
10887 * class maintain depth value), reset depth properly.
10889 se->depth = se->parent ? se->parent->depth + 1 : 0;
10890 #endif
10892 /* Synchronize entity with its cfs_rq */
10893 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10894 attach_entity_load_avg(cfs_rq, se);
10895 update_tg_load_avg(cfs_rq);
10896 propagate_entity_cfs_rq(se);
10899 static void detach_task_cfs_rq(struct task_struct *p)
10901 struct sched_entity *se = &p->se;
10902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10904 if (!vruntime_normalized(p)) {
10906 * Fix up our vruntime so that the current sleep doesn't
10907 * cause 'unlimited' sleep bonus.
10909 place_entity(cfs_rq, se, 0);
10910 se->vruntime -= cfs_rq->min_vruntime;
10913 detach_entity_cfs_rq(se);
10916 static void attach_task_cfs_rq(struct task_struct *p)
10918 struct sched_entity *se = &p->se;
10919 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10921 attach_entity_cfs_rq(se);
10923 if (!vruntime_normalized(p))
10924 se->vruntime += cfs_rq->min_vruntime;
10927 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10929 detach_task_cfs_rq(p);
10932 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10934 attach_task_cfs_rq(p);
10936 if (task_on_rq_queued(p)) {
10938 * We were most likely switched from sched_rt, so
10939 * kick off the schedule if running, otherwise just see
10940 * if we can still preempt the current task.
10942 if (rq->curr == p)
10943 resched_curr(rq);
10944 else
10945 check_preempt_curr(rq, p, 0);
10949 /* Account for a task changing its policy or group.
10951 * This routine is mostly called to set cfs_rq->curr field when a task
10952 * migrates between groups/classes.
10954 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10956 struct sched_entity *se = &p->se;
10958 #ifdef CONFIG_SMP
10959 if (task_on_rq_queued(p)) {
10961 * Move the next running task to the front of the list, so our
10962 * cfs_tasks list becomes MRU one.
10964 list_move(&se->group_node, &rq->cfs_tasks);
10966 #endif
10968 for_each_sched_entity(se) {
10969 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10971 set_next_entity(cfs_rq, se);
10972 /* ensure bandwidth has been allocated on our new cfs_rq */
10973 account_cfs_rq_runtime(cfs_rq, 0);
10977 void init_cfs_rq(struct cfs_rq *cfs_rq)
10979 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10980 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10981 #ifndef CONFIG_64BIT
10982 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10983 #endif
10984 #ifdef CONFIG_SMP
10985 raw_spin_lock_init(&cfs_rq->removed.lock);
10986 #endif
10989 #ifdef CONFIG_FAIR_GROUP_SCHED
10990 static void task_set_group_fair(struct task_struct *p)
10992 struct sched_entity *se = &p->se;
10994 set_task_rq(p, task_cpu(p));
10995 se->depth = se->parent ? se->parent->depth + 1 : 0;
10998 static void task_move_group_fair(struct task_struct *p)
11000 detach_task_cfs_rq(p);
11001 set_task_rq(p, task_cpu(p));
11003 #ifdef CONFIG_SMP
11004 /* Tell se's cfs_rq has been changed -- migrated */
11005 p->se.avg.last_update_time = 0;
11006 #endif
11007 attach_task_cfs_rq(p);
11010 static void task_change_group_fair(struct task_struct *p, int type)
11012 switch (type) {
11013 case TASK_SET_GROUP:
11014 task_set_group_fair(p);
11015 break;
11017 case TASK_MOVE_GROUP:
11018 task_move_group_fair(p);
11019 break;
11023 void free_fair_sched_group(struct task_group *tg)
11025 int i;
11027 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11029 for_each_possible_cpu(i) {
11030 if (tg->cfs_rq)
11031 kfree(tg->cfs_rq[i]);
11032 if (tg->se)
11033 kfree(tg->se[i]);
11036 kfree(tg->cfs_rq);
11037 kfree(tg->se);
11040 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11042 struct sched_entity *se;
11043 struct cfs_rq *cfs_rq;
11044 int i;
11046 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11047 if (!tg->cfs_rq)
11048 goto err;
11049 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11050 if (!tg->se)
11051 goto err;
11053 tg->shares = NICE_0_LOAD;
11055 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11057 for_each_possible_cpu(i) {
11058 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11059 GFP_KERNEL, cpu_to_node(i));
11060 if (!cfs_rq)
11061 goto err;
11063 se = kzalloc_node(sizeof(struct sched_entity),
11064 GFP_KERNEL, cpu_to_node(i));
11065 if (!se)
11066 goto err_free_rq;
11068 init_cfs_rq(cfs_rq);
11069 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11070 init_entity_runnable_average(se);
11073 return 1;
11075 err_free_rq:
11076 kfree(cfs_rq);
11077 err:
11078 return 0;
11081 void online_fair_sched_group(struct task_group *tg)
11083 struct sched_entity *se;
11084 struct rq_flags rf;
11085 struct rq *rq;
11086 int i;
11088 for_each_possible_cpu(i) {
11089 rq = cpu_rq(i);
11090 se = tg->se[i];
11091 rq_lock_irq(rq, &rf);
11092 update_rq_clock(rq);
11093 attach_entity_cfs_rq(se);
11094 sync_throttle(tg, i);
11095 rq_unlock_irq(rq, &rf);
11099 void unregister_fair_sched_group(struct task_group *tg)
11101 unsigned long flags;
11102 struct rq *rq;
11103 int cpu;
11105 for_each_possible_cpu(cpu) {
11106 if (tg->se[cpu])
11107 remove_entity_load_avg(tg->se[cpu]);
11110 * Only empty task groups can be destroyed; so we can speculatively
11111 * check on_list without danger of it being re-added.
11113 if (!tg->cfs_rq[cpu]->on_list)
11114 continue;
11116 rq = cpu_rq(cpu);
11118 raw_spin_lock_irqsave(&rq->lock, flags);
11119 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11120 raw_spin_unlock_irqrestore(&rq->lock, flags);
11124 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11125 struct sched_entity *se, int cpu,
11126 struct sched_entity *parent)
11128 struct rq *rq = cpu_rq(cpu);
11130 cfs_rq->tg = tg;
11131 cfs_rq->rq = rq;
11132 init_cfs_rq_runtime(cfs_rq);
11134 tg->cfs_rq[cpu] = cfs_rq;
11135 tg->se[cpu] = se;
11137 /* se could be NULL for root_task_group */
11138 if (!se)
11139 return;
11141 if (!parent) {
11142 se->cfs_rq = &rq->cfs;
11143 se->depth = 0;
11144 } else {
11145 se->cfs_rq = parent->my_q;
11146 se->depth = parent->depth + 1;
11149 se->my_q = cfs_rq;
11150 /* guarantee group entities always have weight */
11151 update_load_set(&se->load, NICE_0_LOAD);
11152 se->parent = parent;
11155 static DEFINE_MUTEX(shares_mutex);
11157 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11159 int i;
11162 * We can't change the weight of the root cgroup.
11164 if (!tg->se[0])
11165 return -EINVAL;
11167 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11169 mutex_lock(&shares_mutex);
11170 if (tg->shares == shares)
11171 goto done;
11173 tg->shares = shares;
11174 for_each_possible_cpu(i) {
11175 struct rq *rq = cpu_rq(i);
11176 struct sched_entity *se = tg->se[i];
11177 struct rq_flags rf;
11179 /* Propagate contribution to hierarchy */
11180 rq_lock_irqsave(rq, &rf);
11181 update_rq_clock(rq);
11182 for_each_sched_entity(se) {
11183 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11184 update_cfs_group(se);
11186 rq_unlock_irqrestore(rq, &rf);
11189 done:
11190 mutex_unlock(&shares_mutex);
11191 return 0;
11193 #else /* CONFIG_FAIR_GROUP_SCHED */
11195 void free_fair_sched_group(struct task_group *tg) { }
11197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11199 return 1;
11202 void online_fair_sched_group(struct task_group *tg) { }
11204 void unregister_fair_sched_group(struct task_group *tg) { }
11206 #endif /* CONFIG_FAIR_GROUP_SCHED */
11209 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11211 struct sched_entity *se = &task->se;
11212 unsigned int rr_interval = 0;
11215 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11216 * idle runqueue:
11218 if (rq->cfs.load.weight)
11219 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11221 return rr_interval;
11225 * All the scheduling class methods:
11227 DEFINE_SCHED_CLASS(fair) = {
11229 .enqueue_task = enqueue_task_fair,
11230 .dequeue_task = dequeue_task_fair,
11231 .yield_task = yield_task_fair,
11232 .yield_to_task = yield_to_task_fair,
11234 .check_preempt_curr = check_preempt_wakeup,
11236 .pick_next_task = __pick_next_task_fair,
11237 .put_prev_task = put_prev_task_fair,
11238 .set_next_task = set_next_task_fair,
11240 #ifdef CONFIG_SMP
11241 .balance = balance_fair,
11242 .select_task_rq = select_task_rq_fair,
11243 .migrate_task_rq = migrate_task_rq_fair,
11245 .rq_online = rq_online_fair,
11246 .rq_offline = rq_offline_fair,
11248 .task_dead = task_dead_fair,
11249 .set_cpus_allowed = set_cpus_allowed_common,
11250 #endif
11252 .task_tick = task_tick_fair,
11253 .task_fork = task_fork_fair,
11255 .prio_changed = prio_changed_fair,
11256 .switched_from = switched_from_fair,
11257 .switched_to = switched_to_fair,
11259 .get_rr_interval = get_rr_interval_fair,
11261 .update_curr = update_curr_fair,
11263 #ifdef CONFIG_FAIR_GROUP_SCHED
11264 .task_change_group = task_change_group_fair,
11265 #endif
11267 #ifdef CONFIG_UCLAMP_TASK
11268 .uclamp_enabled = 1,
11269 #endif
11272 #ifdef CONFIG_SCHED_DEBUG
11273 void print_cfs_stats(struct seq_file *m, int cpu)
11275 struct cfs_rq *cfs_rq, *pos;
11277 rcu_read_lock();
11278 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11279 print_cfs_rq(m, cpu, cfs_rq);
11280 rcu_read_unlock();
11283 #ifdef CONFIG_NUMA_BALANCING
11284 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11286 int node;
11287 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11288 struct numa_group *ng;
11290 rcu_read_lock();
11291 ng = rcu_dereference(p->numa_group);
11292 for_each_online_node(node) {
11293 if (p->numa_faults) {
11294 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11295 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11297 if (ng) {
11298 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11299 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11301 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11303 rcu_read_unlock();
11305 #endif /* CONFIG_NUMA_BALANCING */
11306 #endif /* CONFIG_SCHED_DEBUG */
11308 __init void init_sched_fair_class(void)
11310 #ifdef CONFIG_SMP
11311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11313 #ifdef CONFIG_NO_HZ_COMMON
11314 nohz.next_balance = jiffies;
11315 nohz.next_blocked = jiffies;
11316 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11317 #endif
11318 #endif /* SMP */
11323 * Helper functions to facilitate extracting info from tracepoints.
11326 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11328 #ifdef CONFIG_SMP
11329 return cfs_rq ? &cfs_rq->avg : NULL;
11330 #else
11331 return NULL;
11332 #endif
11334 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11336 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11338 if (!cfs_rq) {
11339 if (str)
11340 strlcpy(str, "(null)", len);
11341 else
11342 return NULL;
11345 cfs_rq_tg_path(cfs_rq, str, len);
11346 return str;
11348 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11350 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11352 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11354 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11356 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11358 #ifdef CONFIG_SMP
11359 return rq ? &rq->avg_rt : NULL;
11360 #else
11361 return NULL;
11362 #endif
11364 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11366 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11368 #ifdef CONFIG_SMP
11369 return rq ? &rq->avg_dl : NULL;
11370 #else
11371 return NULL;
11372 #endif
11374 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11376 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11378 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11379 return rq ? &rq->avg_irq : NULL;
11380 #else
11381 return NULL;
11382 #endif
11384 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11386 int sched_trace_rq_cpu(struct rq *rq)
11388 return rq ? cpu_of(rq) : -1;
11390 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11392 int sched_trace_rq_cpu_capacity(struct rq *rq)
11394 return rq ?
11395 #ifdef CONFIG_SMP
11396 rq->cpu_capacity
11397 #else
11398 SCHED_CAPACITY_SCALE
11399 #endif
11400 : -1;
11402 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11404 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11406 #ifdef CONFIG_SMP
11407 return rd ? rd->span : NULL;
11408 #else
11409 return NULL;
11410 #endif
11412 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11414 int sched_trace_rq_nr_running(struct rq *rq)
11416 return rq ? rq->nr_running : -1;
11418 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);