1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
26 * Targeted preemption latency for CPU-bound tasks:
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 unsigned int sysctl_sched_latency
= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
55 * Minimal preemption granularity for CPU-bound tasks:
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
59 unsigned int sysctl_sched_min_granularity
= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
65 static unsigned int sched_nr_latency
= 8;
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
71 unsigned int sysctl_sched_child_runs_first __read_mostly
;
74 * SCHED_OTHER wake-up granularity.
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
85 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
87 int sched_thermal_decay_shift
;
88 static int __init
setup_sched_thermal_decay_shift(char *str
)
92 if (kstrtoint(str
, 0, &_shift
))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
95 sched_thermal_decay_shift
= clamp(_shift
, 0, 10);
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift
);
102 * For asym packing, by default the lower numbered CPU has higher priority.
104 int __weak
arch_asym_cpu_priority(int cpu
)
110 * The margin used when comparing utilization with CPU capacity.
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
118 #ifdef CONFIG_CFS_BANDWIDTH
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
127 * (default: 5 msec, units: microseconds)
129 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
132 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
138 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
144 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
157 * This idea comes from the SD scheduler of Con Kolivas:
159 static unsigned int get_update_sysctl_factor(void)
161 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
164 switch (sysctl_sched_tunable_scaling
) {
165 case SCHED_TUNABLESCALING_NONE
:
168 case SCHED_TUNABLESCALING_LINEAR
:
171 case SCHED_TUNABLESCALING_LOG
:
173 factor
= 1 + ilog2(cpus
);
180 static void update_sysctl(void)
182 unsigned int factor
= get_update_sysctl_factor();
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity
);
187 SET_SYSCTL(sched_latency
);
188 SET_SYSCTL(sched_wakeup_granularity
);
192 void __init
sched_init_granularity(void)
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
200 static void __update_inv_weight(struct load_weight
*lw
)
204 if (likely(lw
->inv_weight
))
207 w
= scale_load_down(lw
->weight
);
209 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
211 else if (unlikely(!w
))
212 lw
->inv_weight
= WMULT_CONST
;
214 lw
->inv_weight
= WMULT_CONST
/ w
;
218 * delta_exec * weight / lw.weight
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
229 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
231 u64 fact
= scale_load_down(weight
);
232 int shift
= WMULT_SHIFT
;
234 __update_inv_weight(lw
);
236 if (unlikely(fact
>> 32)) {
243 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
250 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
254 const struct sched_class fair_sched_class
;
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct
*task_of(struct sched_entity
*se
)
263 SCHED_WARN_ON(!entity_is_task(se
));
264 return container_of(se
, struct task_struct
, se
);
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
271 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
288 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
293 if (cfs_rq
&& task_group_is_autogroup(cfs_rq
->tg
))
294 autogroup_path(cfs_rq
->tg
, path
, len
);
295 else if (cfs_rq
&& cfs_rq
->tg
->css
.cgroup
)
296 cgroup_path(cfs_rq
->tg
->css
.cgroup
, path
, len
);
298 strlcpy(path
, "(null)", len
);
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
303 struct rq
*rq
= rq_of(cfs_rq
);
304 int cpu
= cpu_of(rq
);
307 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
320 if (cfs_rq
->tg
->parent
&&
321 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
328 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
329 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
335 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
339 if (!cfs_rq
->tg
->parent
) {
341 * cfs rq without parent should be put
342 * at the tail of the list.
344 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
345 &rq
->leaf_cfs_rq_list
);
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
350 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
360 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
362 * update tmp_alone_branch to points to the new begin
365 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
371 if (cfs_rq
->on_list
) {
372 struct rq
*rq
= rq_of(cfs_rq
);
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
381 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
382 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
384 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
389 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
391 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq
*
401 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
403 if (se
->cfs_rq
== pse
->cfs_rq
)
409 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
415 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
417 int se_depth
, pse_depth
;
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
426 /* First walk up until both entities are at same depth */
427 se_depth
= (*se
)->depth
;
428 pse_depth
= (*pse
)->depth
;
430 while (se_depth
> pse_depth
) {
432 *se
= parent_entity(*se
);
435 while (pse_depth
> se_depth
) {
437 *pse
= parent_entity(*pse
);
440 while (!is_same_group(*se
, *pse
)) {
441 *se
= parent_entity(*se
);
442 *pse
= parent_entity(*pse
);
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
448 static inline struct task_struct
*task_of(struct sched_entity
*se
)
450 return container_of(se
, struct task_struct
, se
);
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
456 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
458 return &task_rq(p
)->cfs
;
461 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
463 struct task_struct
*p
= task_of(se
);
464 struct rq
*rq
= task_rq(p
);
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
475 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
478 strlcpy(path
, "(null)", len
);
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
490 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
497 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
503 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
516 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
518 s64 delta
= (s64
)(vruntime
- max_vruntime
);
520 max_vruntime
= vruntime
;
525 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
527 s64 delta
= (s64
)(vruntime
- min_vruntime
);
529 min_vruntime
= vruntime
;
534 static inline int entity_before(struct sched_entity
*a
,
535 struct sched_entity
*b
)
537 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
540 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
542 struct sched_entity
*curr
= cfs_rq
->curr
;
543 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
545 u64 vruntime
= cfs_rq
->min_vruntime
;
549 vruntime
= curr
->vruntime
;
554 if (leftmost
) { /* non-empty tree */
555 struct sched_entity
*se
;
556 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
559 vruntime
= se
->vruntime
;
561 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
568 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
573 * Enqueue an entity into the rb-tree:
575 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
577 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
578 struct rb_node
*parent
= NULL
;
579 struct sched_entity
*entry
;
580 bool leftmost
= true;
583 * Find the right place in the rbtree:
587 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
592 if (entity_before(se
, entry
)) {
593 link
= &parent
->rb_left
;
595 link
= &parent
->rb_right
;
600 rb_link_node(&se
->run_node
, parent
, link
);
601 rb_insert_color_cached(&se
->run_node
,
602 &cfs_rq
->tasks_timeline
, leftmost
);
605 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
607 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
610 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
612 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
617 return rb_entry(left
, struct sched_entity
, run_node
);
620 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
622 struct rb_node
*next
= rb_next(&se
->run_node
);
627 return rb_entry(next
, struct sched_entity
, run_node
);
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
633 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
638 return rb_entry(last
, struct sched_entity
, run_node
);
641 /**************************************************************
642 * Scheduling class statistics methods:
645 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
646 void *buffer
, size_t *lenp
, loff_t
*ppos
)
648 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
649 unsigned int factor
= get_update_sysctl_factor();
654 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
655 sysctl_sched_min_granularity
);
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity
);
660 WRT_SYSCTL(sched_latency
);
661 WRT_SYSCTL(sched_wakeup_granularity
);
671 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
673 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
674 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
680 * The idea is to set a period in which each task runs once.
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
685 * p = (nr <= nl) ? l : l*nr/nl
687 static u64
__sched_period(unsigned long nr_running
)
689 if (unlikely(nr_running
> sched_nr_latency
))
690 return nr_running
* sysctl_sched_min_granularity
;
692 return sysctl_sched_latency
;
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
701 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
703 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
705 for_each_sched_entity(se
) {
706 struct load_weight
*load
;
707 struct load_weight lw
;
709 cfs_rq
= cfs_rq_of(se
);
710 load
= &cfs_rq
->load
;
712 if (unlikely(!se
->on_rq
)) {
715 update_load_add(&lw
, se
->load
.weight
);
718 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
724 * We calculate the vruntime slice of a to-be-inserted task.
728 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
730 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
736 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
737 static unsigned long task_h_load(struct task_struct
*p
);
738 static unsigned long capacity_of(int cpu
);
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity
*se
)
743 struct sched_avg
*sa
= &se
->avg
;
745 memset(sa
, 0, sizeof(*sa
));
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
753 if (entity_is_task(se
))
754 sa
->load_avg
= scale_load_down(se
->load
.weight
);
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 static void attach_entity_cfs_rq(struct sched_entity
*se
);
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
776 * where n denotes the nth task and cpu_scale the CPU capacity.
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
787 void post_init_entity_util_avg(struct task_struct
*p
)
789 struct sched_entity
*se
= &p
->se
;
790 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
791 struct sched_avg
*sa
= &se
->avg
;
792 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
793 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
796 if (cfs_rq
->avg
.util_avg
!= 0) {
797 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
798 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
800 if (sa
->util_avg
> cap
)
807 sa
->runnable_avg
= sa
->util_avg
;
809 if (p
->sched_class
!= &fair_sched_class
) {
811 * For !fair tasks do:
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
817 * such that the next switched_to_fair() has the
820 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
824 attach_entity_cfs_rq(se
);
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity
*se
)
831 void post_init_entity_util_avg(struct task_struct
*p
)
834 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
)
837 #endif /* CONFIG_SMP */
840 * Update the current task's runtime statistics.
842 static void update_curr(struct cfs_rq
*cfs_rq
)
844 struct sched_entity
*curr
= cfs_rq
->curr
;
845 u64 now
= rq_clock_task(rq_of(cfs_rq
));
851 delta_exec
= now
- curr
->exec_start
;
852 if (unlikely((s64
)delta_exec
<= 0))
855 curr
->exec_start
= now
;
857 schedstat_set(curr
->statistics
.exec_max
,
858 max(delta_exec
, curr
->statistics
.exec_max
));
860 curr
->sum_exec_runtime
+= delta_exec
;
861 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
863 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
864 update_min_vruntime(cfs_rq
);
866 if (entity_is_task(curr
)) {
867 struct task_struct
*curtask
= task_of(curr
);
869 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
870 cgroup_account_cputime(curtask
, delta_exec
);
871 account_group_exec_runtime(curtask
, delta_exec
);
874 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
877 static void update_curr_fair(struct rq
*rq
)
879 update_curr(cfs_rq_of(&rq
->curr
->se
));
883 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
885 u64 wait_start
, prev_wait_start
;
887 if (!schedstat_enabled())
890 wait_start
= rq_clock(rq_of(cfs_rq
));
891 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
893 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
894 likely(wait_start
> prev_wait_start
))
895 wait_start
-= prev_wait_start
;
897 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
901 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
903 struct task_struct
*p
;
906 if (!schedstat_enabled())
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
915 if (unlikely(!schedstat_val(se
->statistics
.wait_start
)))
918 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
920 if (entity_is_task(se
)) {
922 if (task_on_rq_migrating(p
)) {
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
928 __schedstat_set(se
->statistics
.wait_start
, delta
);
931 trace_sched_stat_wait(p
, delta
);
934 __schedstat_set(se
->statistics
.wait_max
,
935 max(schedstat_val(se
->statistics
.wait_max
), delta
));
936 __schedstat_inc(se
->statistics
.wait_count
);
937 __schedstat_add(se
->statistics
.wait_sum
, delta
);
938 __schedstat_set(se
->statistics
.wait_start
, 0);
942 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
944 struct task_struct
*tsk
= NULL
;
945 u64 sleep_start
, block_start
;
947 if (!schedstat_enabled())
950 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
951 block_start
= schedstat_val(se
->statistics
.block_start
);
953 if (entity_is_task(se
))
957 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
962 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
963 __schedstat_set(se
->statistics
.sleep_max
, delta
);
965 __schedstat_set(se
->statistics
.sleep_start
, 0);
966 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
969 account_scheduler_latency(tsk
, delta
>> 10, 1);
970 trace_sched_stat_sleep(tsk
, delta
);
974 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
979 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
980 __schedstat_set(se
->statistics
.block_max
, delta
);
982 __schedstat_set(se
->statistics
.block_start
, 0);
983 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
986 if (tsk
->in_iowait
) {
987 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
988 __schedstat_inc(se
->statistics
.iowait_count
);
989 trace_sched_stat_iowait(tsk
, delta
);
992 trace_sched_stat_blocked(tsk
, delta
);
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
999 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
1000 profile_hits(SLEEP_PROFILING
,
1001 (void *)get_wchan(tsk
),
1004 account_scheduler_latency(tsk
, delta
>> 10, 0);
1010 * Task is being enqueued - update stats:
1013 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1015 if (!schedstat_enabled())
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1022 if (se
!= cfs_rq
->curr
)
1023 update_stats_wait_start(cfs_rq
, se
);
1025 if (flags
& ENQUEUE_WAKEUP
)
1026 update_stats_enqueue_sleeper(cfs_rq
, se
);
1030 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1033 if (!schedstat_enabled())
1037 * Mark the end of the wait period if dequeueing a
1040 if (se
!= cfs_rq
->curr
)
1041 update_stats_wait_end(cfs_rq
, se
);
1043 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1044 struct task_struct
*tsk
= task_of(se
);
1046 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1047 __schedstat_set(se
->statistics
.sleep_start
,
1048 rq_clock(rq_of(cfs_rq
)));
1049 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1050 __schedstat_set(se
->statistics
.block_start
,
1051 rq_clock(rq_of(cfs_rq
)));
1056 * We are picking a new current task - update its stats:
1059 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1062 * We are starting a new run period:
1064 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1067 /**************************************************
1068 * Scheduling class queueing methods:
1071 #ifdef CONFIG_NUMA_BALANCING
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
1077 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1078 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1080 /* Portion of address space to scan in MB */
1081 unsigned int sysctl_numa_balancing_scan_size
= 256;
1083 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1087 refcount_t refcount
;
1089 spinlock_t lock
; /* nr_tasks, tasks */
1094 struct rcu_head rcu
;
1095 unsigned long total_faults
;
1096 unsigned long max_faults_cpu
;
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1102 unsigned long *faults_cpu
;
1103 unsigned long faults
[];
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1110 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1112 return rcu_dereference_check(p
->numa_group
, p
== current
||
1113 (lockdep_is_held(&task_rq(p
)->lock
) && !READ_ONCE(p
->on_cpu
)));
1116 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1118 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1121 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1122 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1124 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1126 unsigned long rss
= 0;
1127 unsigned long nr_scan_pages
;
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1134 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1135 rss
= get_mm_rss(p
->mm
);
1137 rss
= nr_scan_pages
;
1139 rss
= round_up(rss
, nr_scan_pages
);
1140 return rss
/ nr_scan_pages
;
1143 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144 #define MAX_SCAN_WINDOW 2560
1146 static unsigned int task_scan_min(struct task_struct
*p
)
1148 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1149 unsigned int scan
, floor
;
1150 unsigned int windows
= 1;
1152 if (scan_size
< MAX_SCAN_WINDOW
)
1153 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1154 floor
= 1000 / windows
;
1156 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1157 return max_t(unsigned int, floor
, scan
);
1160 static unsigned int task_scan_start(struct task_struct
*p
)
1162 unsigned long smin
= task_scan_min(p
);
1163 unsigned long period
= smin
;
1164 struct numa_group
*ng
;
1166 /* Scale the maximum scan period with the amount of shared memory. */
1168 ng
= rcu_dereference(p
->numa_group
);
1170 unsigned long shared
= group_faults_shared(ng
);
1171 unsigned long private = group_faults_priv(ng
);
1173 period
*= refcount_read(&ng
->refcount
);
1174 period
*= shared
+ 1;
1175 period
/= private + shared
+ 1;
1179 return max(smin
, period
);
1182 static unsigned int task_scan_max(struct task_struct
*p
)
1184 unsigned long smin
= task_scan_min(p
);
1186 struct numa_group
*ng
;
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1191 /* Scale the maximum scan period with the amount of shared memory. */
1192 ng
= deref_curr_numa_group(p
);
1194 unsigned long shared
= group_faults_shared(ng
);
1195 unsigned long private = group_faults_priv(ng
);
1196 unsigned long period
= smax
;
1198 period
*= refcount_read(&ng
->refcount
);
1199 period
*= shared
+ 1;
1200 period
/= private + shared
+ 1;
1202 smax
= max(smax
, period
);
1205 return max(smin
, smax
);
1208 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1210 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1211 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1214 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1216 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1217 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1220 /* Shared or private faults. */
1221 #define NR_NUMA_HINT_FAULT_TYPES 2
1223 /* Memory and CPU locality */
1224 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1226 /* Averaged statistics, and temporary buffers. */
1227 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1229 pid_t
task_numa_group_id(struct task_struct
*p
)
1231 struct numa_group
*ng
;
1235 ng
= rcu_dereference(p
->numa_group
);
1244 * The averaged statistics, shared & private, memory & CPU,
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1249 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1251 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1254 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1256 if (!p
->numa_faults
)
1259 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1260 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1263 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1265 struct numa_group
*ng
= deref_task_numa_group(p
);
1270 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1271 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1274 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1276 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1277 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1280 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1282 unsigned long faults
= 0;
1285 for_each_online_node(node
) {
1286 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1292 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1294 unsigned long faults
= 0;
1297 for_each_online_node(node
) {
1298 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1309 #define ACTIVE_NODE_FRACTION 3
1311 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1313 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1316 /* Handle placement on systems where not all nodes are directly connected. */
1317 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1318 int maxdist
, bool task
)
1320 unsigned long score
= 0;
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1327 if (sched_numa_topology_type
== NUMA_DIRECT
)
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1334 for_each_online_node(node
) {
1335 unsigned long faults
;
1336 int dist
= node_distance(nid
, node
);
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1342 if (dist
== sched_max_numa_distance
|| node
== nid
)
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1352 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1356 /* Add up the faults from nearby nodes. */
1358 faults
= task_faults(p
, node
);
1360 faults
= group_faults(p
, node
);
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1370 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1371 faults
*= (sched_max_numa_distance
- dist
);
1372 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1387 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1390 unsigned long faults
, total_faults
;
1392 if (!p
->numa_faults
)
1395 total_faults
= p
->total_numa_faults
;
1400 faults
= task_faults(p
, nid
);
1401 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1403 return 1000 * faults
/ total_faults
;
1406 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1409 struct numa_group
*ng
= deref_task_numa_group(p
);
1410 unsigned long faults
, total_faults
;
1415 total_faults
= ng
->total_faults
;
1420 faults
= group_faults(p
, nid
);
1421 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1423 return 1000 * faults
/ total_faults
;
1426 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1427 int src_nid
, int dst_cpu
)
1429 struct numa_group
*ng
= deref_curr_numa_group(p
);
1430 int dst_nid
= cpu_to_node(dst_cpu
);
1431 int last_cpupid
, this_cpupid
;
1433 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1434 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1442 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1443 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1463 if (!cpupid_pid_unset(last_cpupid
) &&
1464 cpupid_to_nid(last_cpupid
) != dst_nid
)
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p
, last_cpupid
))
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
1479 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1480 ACTIVE_NODE_FRACTION
)
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
1491 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1492 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1496 * 'numa_type' describes the node at the moment of load balancing.
1499 /* The node has spare capacity that can be used to run more tasks. */
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1507 * The node is overloaded and can't provide expected CPU cycles to all
1513 /* Cached statistics for all CPUs within a node */
1516 unsigned long runnable
;
1518 /* Total compute capacity of CPUs on a node */
1519 unsigned long compute_capacity
;
1520 unsigned int nr_running
;
1521 unsigned int weight
;
1522 enum numa_type node_type
;
1526 static inline bool is_core_idle(int cpu
)
1528 #ifdef CONFIG_SCHED_SMT
1531 for_each_cpu(sibling
, cpu_smt_mask(cpu
)) {
1543 struct task_numa_env
{
1544 struct task_struct
*p
;
1546 int src_cpu
, src_nid
;
1547 int dst_cpu
, dst_nid
;
1549 struct numa_stats src_stats
, dst_stats
;
1554 struct task_struct
*best_task
;
1559 static unsigned long cpu_load(struct rq
*rq
);
1560 static unsigned long cpu_runnable(struct rq
*rq
);
1561 static unsigned long cpu_util(int cpu
);
1562 static inline long adjust_numa_imbalance(int imbalance
,
1563 int dst_running
, int dst_weight
);
1566 numa_type
numa_classify(unsigned int imbalance_pct
,
1567 struct numa_stats
*ns
)
1569 if ((ns
->nr_running
> ns
->weight
) &&
1570 (((ns
->compute_capacity
* 100) < (ns
->util
* imbalance_pct
)) ||
1571 ((ns
->compute_capacity
* imbalance_pct
) < (ns
->runnable
* 100))))
1572 return node_overloaded
;
1574 if ((ns
->nr_running
< ns
->weight
) ||
1575 (((ns
->compute_capacity
* 100) > (ns
->util
* imbalance_pct
)) &&
1576 ((ns
->compute_capacity
* imbalance_pct
) > (ns
->runnable
* 100))))
1577 return node_has_spare
;
1579 return node_fully_busy
;
1582 #ifdef CONFIG_SCHED_SMT
1583 /* Forward declarations of select_idle_sibling helpers */
1584 static inline bool test_idle_cores(int cpu
, bool def
);
1585 static inline int numa_idle_core(int idle_core
, int cpu
)
1587 if (!static_branch_likely(&sched_smt_present
) ||
1588 idle_core
>= 0 || !test_idle_cores(cpu
, false))
1592 * Prefer cores instead of packing HT siblings
1593 * and triggering future load balancing.
1595 if (is_core_idle(cpu
))
1601 static inline int numa_idle_core(int idle_core
, int cpu
)
1608 * Gather all necessary information to make NUMA balancing placement
1609 * decisions that are compatible with standard load balancer. This
1610 * borrows code and logic from update_sg_lb_stats but sharing a
1611 * common implementation is impractical.
1613 static void update_numa_stats(struct task_numa_env
*env
,
1614 struct numa_stats
*ns
, int nid
,
1617 int cpu
, idle_core
= -1;
1619 memset(ns
, 0, sizeof(*ns
));
1623 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1624 struct rq
*rq
= cpu_rq(cpu
);
1626 ns
->load
+= cpu_load(rq
);
1627 ns
->runnable
+= cpu_runnable(rq
);
1628 ns
->util
+= cpu_util(cpu
);
1629 ns
->nr_running
+= rq
->cfs
.h_nr_running
;
1630 ns
->compute_capacity
+= capacity_of(cpu
);
1632 if (find_idle
&& !rq
->nr_running
&& idle_cpu(cpu
)) {
1633 if (READ_ONCE(rq
->numa_migrate_on
) ||
1634 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1637 if (ns
->idle_cpu
== -1)
1640 idle_core
= numa_idle_core(idle_core
, cpu
);
1645 ns
->weight
= cpumask_weight(cpumask_of_node(nid
));
1647 ns
->node_type
= numa_classify(env
->imbalance_pct
, ns
);
1650 ns
->idle_cpu
= idle_core
;
1653 static void task_numa_assign(struct task_numa_env
*env
,
1654 struct task_struct
*p
, long imp
)
1656 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1658 /* Check if run-queue part of active NUMA balance. */
1659 if (env
->best_cpu
!= env
->dst_cpu
&& xchg(&rq
->numa_migrate_on
, 1)) {
1661 int start
= env
->dst_cpu
;
1663 /* Find alternative idle CPU. */
1664 for_each_cpu_wrap(cpu
, cpumask_of_node(env
->dst_nid
), start
) {
1665 if (cpu
== env
->best_cpu
|| !idle_cpu(cpu
) ||
1666 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
)) {
1671 rq
= cpu_rq(env
->dst_cpu
);
1672 if (!xchg(&rq
->numa_migrate_on
, 1))
1676 /* Failed to find an alternative idle CPU */
1682 * Clear previous best_cpu/rq numa-migrate flag, since task now
1683 * found a better CPU to move/swap.
1685 if (env
->best_cpu
!= -1 && env
->best_cpu
!= env
->dst_cpu
) {
1686 rq
= cpu_rq(env
->best_cpu
);
1687 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1691 put_task_struct(env
->best_task
);
1696 env
->best_imp
= imp
;
1697 env
->best_cpu
= env
->dst_cpu
;
1700 static bool load_too_imbalanced(long src_load
, long dst_load
,
1701 struct task_numa_env
*env
)
1704 long orig_src_load
, orig_dst_load
;
1705 long src_capacity
, dst_capacity
;
1708 * The load is corrected for the CPU capacity available on each node.
1711 * ------------ vs ---------
1712 * src_capacity dst_capacity
1714 src_capacity
= env
->src_stats
.compute_capacity
;
1715 dst_capacity
= env
->dst_stats
.compute_capacity
;
1717 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1719 orig_src_load
= env
->src_stats
.load
;
1720 orig_dst_load
= env
->dst_stats
.load
;
1722 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1724 /* Would this change make things worse? */
1725 return (imb
> old_imb
);
1729 * Maximum NUMA importance can be 1998 (2*999);
1730 * SMALLIMP @ 30 would be close to 1998/64.
1731 * Used to deter task migration.
1736 * This checks if the overall compute and NUMA accesses of the system would
1737 * be improved if the source tasks was migrated to the target dst_cpu taking
1738 * into account that it might be best if task running on the dst_cpu should
1739 * be exchanged with the source task
1741 static bool task_numa_compare(struct task_numa_env
*env
,
1742 long taskimp
, long groupimp
, bool maymove
)
1744 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
1745 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1746 long imp
= p_ng
? groupimp
: taskimp
;
1747 struct task_struct
*cur
;
1748 long src_load
, dst_load
;
1749 int dist
= env
->dist
;
1752 bool stopsearch
= false;
1754 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1758 cur
= rcu_dereference(dst_rq
->curr
);
1759 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1763 * Because we have preemption enabled we can get migrated around and
1764 * end try selecting ourselves (current == env->p) as a swap candidate.
1766 if (cur
== env
->p
) {
1772 if (maymove
&& moveimp
>= env
->best_imp
)
1778 /* Skip this swap candidate if cannot move to the source cpu. */
1779 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
1783 * Skip this swap candidate if it is not moving to its preferred
1784 * node and the best task is.
1786 if (env
->best_task
&&
1787 env
->best_task
->numa_preferred_nid
== env
->src_nid
&&
1788 cur
->numa_preferred_nid
!= env
->src_nid
) {
1793 * "imp" is the fault differential for the source task between the
1794 * source and destination node. Calculate the total differential for
1795 * the source task and potential destination task. The more negative
1796 * the value is, the more remote accesses that would be expected to
1797 * be incurred if the tasks were swapped.
1799 * If dst and source tasks are in the same NUMA group, or not
1800 * in any group then look only at task weights.
1802 cur_ng
= rcu_dereference(cur
->numa_group
);
1803 if (cur_ng
== p_ng
) {
1804 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1805 task_weight(cur
, env
->dst_nid
, dist
);
1807 * Add some hysteresis to prevent swapping the
1808 * tasks within a group over tiny differences.
1814 * Compare the group weights. If a task is all by itself
1815 * (not part of a group), use the task weight instead.
1818 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1819 group_weight(cur
, env
->dst_nid
, dist
);
1821 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1822 task_weight(cur
, env
->dst_nid
, dist
);
1825 /* Discourage picking a task already on its preferred node */
1826 if (cur
->numa_preferred_nid
== env
->dst_nid
)
1830 * Encourage picking a task that moves to its preferred node.
1831 * This potentially makes imp larger than it's maximum of
1832 * 1998 (see SMALLIMP and task_weight for why) but in this
1833 * case, it does not matter.
1835 if (cur
->numa_preferred_nid
== env
->src_nid
)
1838 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1845 * Prefer swapping with a task moving to its preferred node over a
1848 if (env
->best_task
&& cur
->numa_preferred_nid
== env
->src_nid
&&
1849 env
->best_task
->numa_preferred_nid
!= env
->src_nid
) {
1854 * If the NUMA importance is less than SMALLIMP,
1855 * task migration might only result in ping pong
1856 * of tasks and also hurt performance due to cache
1859 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1863 * In the overloaded case, try and keep the load balanced.
1865 load
= task_h_load(env
->p
) - task_h_load(cur
);
1869 dst_load
= env
->dst_stats
.load
+ load
;
1870 src_load
= env
->src_stats
.load
- load
;
1872 if (load_too_imbalanced(src_load
, dst_load
, env
))
1876 /* Evaluate an idle CPU for a task numa move. */
1878 int cpu
= env
->dst_stats
.idle_cpu
;
1880 /* Nothing cached so current CPU went idle since the search. */
1885 * If the CPU is no longer truly idle and the previous best CPU
1886 * is, keep using it.
1888 if (!idle_cpu(cpu
) && env
->best_cpu
>= 0 &&
1889 idle_cpu(env
->best_cpu
)) {
1890 cpu
= env
->best_cpu
;
1896 task_numa_assign(env
, cur
, imp
);
1899 * If a move to idle is allowed because there is capacity or load
1900 * balance improves then stop the search. While a better swap
1901 * candidate may exist, a search is not free.
1903 if (maymove
&& !cur
&& env
->best_cpu
>= 0 && idle_cpu(env
->best_cpu
))
1907 * If a swap candidate must be identified and the current best task
1908 * moves its preferred node then stop the search.
1910 if (!maymove
&& env
->best_task
&&
1911 env
->best_task
->numa_preferred_nid
== env
->src_nid
) {
1920 static void task_numa_find_cpu(struct task_numa_env
*env
,
1921 long taskimp
, long groupimp
)
1923 bool maymove
= false;
1927 * If dst node has spare capacity, then check if there is an
1928 * imbalance that would be overruled by the load balancer.
1930 if (env
->dst_stats
.node_type
== node_has_spare
) {
1931 unsigned int imbalance
;
1932 int src_running
, dst_running
;
1935 * Would movement cause an imbalance? Note that if src has
1936 * more running tasks that the imbalance is ignored as the
1937 * move improves the imbalance from the perspective of the
1938 * CPU load balancer.
1940 src_running
= env
->src_stats
.nr_running
- 1;
1941 dst_running
= env
->dst_stats
.nr_running
+ 1;
1942 imbalance
= max(0, dst_running
- src_running
);
1943 imbalance
= adjust_numa_imbalance(imbalance
, dst_running
,
1944 env
->dst_stats
.weight
);
1946 /* Use idle CPU if there is no imbalance */
1949 if (env
->dst_stats
.idle_cpu
>= 0) {
1950 env
->dst_cpu
= env
->dst_stats
.idle_cpu
;
1951 task_numa_assign(env
, NULL
, 0);
1956 long src_load
, dst_load
, load
;
1958 * If the improvement from just moving env->p direction is better
1959 * than swapping tasks around, check if a move is possible.
1961 load
= task_h_load(env
->p
);
1962 dst_load
= env
->dst_stats
.load
+ load
;
1963 src_load
= env
->src_stats
.load
- load
;
1964 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1967 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1968 /* Skip this CPU if the source task cannot migrate */
1969 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1973 if (task_numa_compare(env
, taskimp
, groupimp
, maymove
))
1978 static int task_numa_migrate(struct task_struct
*p
)
1980 struct task_numa_env env
= {
1983 .src_cpu
= task_cpu(p
),
1984 .src_nid
= task_node(p
),
1986 .imbalance_pct
= 112,
1992 unsigned long taskweight
, groupweight
;
1993 struct sched_domain
*sd
;
1994 long taskimp
, groupimp
;
1995 struct numa_group
*ng
;
2000 * Pick the lowest SD_NUMA domain, as that would have the smallest
2001 * imbalance and would be the first to start moving tasks about.
2003 * And we want to avoid any moving of tasks about, as that would create
2004 * random movement of tasks -- counter the numa conditions we're trying
2008 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
2010 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
2014 * Cpusets can break the scheduler domain tree into smaller
2015 * balance domains, some of which do not cross NUMA boundaries.
2016 * Tasks that are "trapped" in such domains cannot be migrated
2017 * elsewhere, so there is no point in (re)trying.
2019 if (unlikely(!sd
)) {
2020 sched_setnuma(p
, task_node(p
));
2024 env
.dst_nid
= p
->numa_preferred_nid
;
2025 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2026 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2027 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2028 update_numa_stats(&env
, &env
.src_stats
, env
.src_nid
, false);
2029 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
2030 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
2031 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2033 /* Try to find a spot on the preferred nid. */
2034 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2037 * Look at other nodes in these cases:
2038 * - there is no space available on the preferred_nid
2039 * - the task is part of a numa_group that is interleaved across
2040 * multiple NUMA nodes; in order to better consolidate the group,
2041 * we need to check other locations.
2043 ng
= deref_curr_numa_group(p
);
2044 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
2045 for_each_online_node(nid
) {
2046 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
2049 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2050 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
2052 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2053 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2056 /* Only consider nodes where both task and groups benefit */
2057 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
2058 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
2059 if (taskimp
< 0 && groupimp
< 0)
2064 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2065 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2070 * If the task is part of a workload that spans multiple NUMA nodes,
2071 * and is migrating into one of the workload's active nodes, remember
2072 * this node as the task's preferred numa node, so the workload can
2074 * A task that migrated to a second choice node will be better off
2075 * trying for a better one later. Do not set the preferred node here.
2078 if (env
.best_cpu
== -1)
2081 nid
= cpu_to_node(env
.best_cpu
);
2083 if (nid
!= p
->numa_preferred_nid
)
2084 sched_setnuma(p
, nid
);
2087 /* No better CPU than the current one was found. */
2088 if (env
.best_cpu
== -1) {
2089 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, -1);
2093 best_rq
= cpu_rq(env
.best_cpu
);
2094 if (env
.best_task
== NULL
) {
2095 ret
= migrate_task_to(p
, env
.best_cpu
);
2096 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2098 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, env
.best_cpu
);
2102 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
2103 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2106 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_task
, env
.best_cpu
);
2107 put_task_struct(env
.best_task
);
2111 /* Attempt to migrate a task to a CPU on the preferred node. */
2112 static void numa_migrate_preferred(struct task_struct
*p
)
2114 unsigned long interval
= HZ
;
2116 /* This task has no NUMA fault statistics yet */
2117 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
2120 /* Periodically retry migrating the task to the preferred node */
2121 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
2122 p
->numa_migrate_retry
= jiffies
+ interval
;
2124 /* Success if task is already running on preferred CPU */
2125 if (task_node(p
) == p
->numa_preferred_nid
)
2128 /* Otherwise, try migrate to a CPU on the preferred node */
2129 task_numa_migrate(p
);
2133 * Find out how many nodes on the workload is actively running on. Do this by
2134 * tracking the nodes from which NUMA hinting faults are triggered. This can
2135 * be different from the set of nodes where the workload's memory is currently
2138 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
2140 unsigned long faults
, max_faults
= 0;
2141 int nid
, active_nodes
= 0;
2143 for_each_online_node(nid
) {
2144 faults
= group_faults_cpu(numa_group
, nid
);
2145 if (faults
> max_faults
)
2146 max_faults
= faults
;
2149 for_each_online_node(nid
) {
2150 faults
= group_faults_cpu(numa_group
, nid
);
2151 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
2155 numa_group
->max_faults_cpu
= max_faults
;
2156 numa_group
->active_nodes
= active_nodes
;
2160 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2161 * increments. The more local the fault statistics are, the higher the scan
2162 * period will be for the next scan window. If local/(local+remote) ratio is
2163 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2164 * the scan period will decrease. Aim for 70% local accesses.
2166 #define NUMA_PERIOD_SLOTS 10
2167 #define NUMA_PERIOD_THRESHOLD 7
2170 * Increase the scan period (slow down scanning) if the majority of
2171 * our memory is already on our local node, or if the majority of
2172 * the page accesses are shared with other processes.
2173 * Otherwise, decrease the scan period.
2175 static void update_task_scan_period(struct task_struct
*p
,
2176 unsigned long shared
, unsigned long private)
2178 unsigned int period_slot
;
2179 int lr_ratio
, ps_ratio
;
2182 unsigned long remote
= p
->numa_faults_locality
[0];
2183 unsigned long local
= p
->numa_faults_locality
[1];
2186 * If there were no record hinting faults then either the task is
2187 * completely idle or all activity is areas that are not of interest
2188 * to automatic numa balancing. Related to that, if there were failed
2189 * migration then it implies we are migrating too quickly or the local
2190 * node is overloaded. In either case, scan slower
2192 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
2193 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
2194 p
->numa_scan_period
<< 1);
2196 p
->mm
->numa_next_scan
= jiffies
+
2197 msecs_to_jiffies(p
->numa_scan_period
);
2203 * Prepare to scale scan period relative to the current period.
2204 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2205 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2206 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2208 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
2209 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
2210 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
2212 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2214 * Most memory accesses are local. There is no need to
2215 * do fast NUMA scanning, since memory is already local.
2217 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
2220 diff
= slot
* period_slot
;
2221 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2223 * Most memory accesses are shared with other tasks.
2224 * There is no point in continuing fast NUMA scanning,
2225 * since other tasks may just move the memory elsewhere.
2227 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
2230 diff
= slot
* period_slot
;
2233 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2234 * yet they are not on the local NUMA node. Speed up
2235 * NUMA scanning to get the memory moved over.
2237 int ratio
= max(lr_ratio
, ps_ratio
);
2238 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2241 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2242 task_scan_min(p
), task_scan_max(p
));
2243 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2247 * Get the fraction of time the task has been running since the last
2248 * NUMA placement cycle. The scheduler keeps similar statistics, but
2249 * decays those on a 32ms period, which is orders of magnitude off
2250 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2251 * stats only if the task is so new there are no NUMA statistics yet.
2253 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2255 u64 runtime
, delta
, now
;
2256 /* Use the start of this time slice to avoid calculations. */
2257 now
= p
->se
.exec_start
;
2258 runtime
= p
->se
.sum_exec_runtime
;
2260 if (p
->last_task_numa_placement
) {
2261 delta
= runtime
- p
->last_sum_exec_runtime
;
2262 *period
= now
- p
->last_task_numa_placement
;
2264 /* Avoid time going backwards, prevent potential divide error: */
2265 if (unlikely((s64
)*period
< 0))
2268 delta
= p
->se
.avg
.load_sum
;
2269 *period
= LOAD_AVG_MAX
;
2272 p
->last_sum_exec_runtime
= runtime
;
2273 p
->last_task_numa_placement
= now
;
2279 * Determine the preferred nid for a task in a numa_group. This needs to
2280 * be done in a way that produces consistent results with group_weight,
2281 * otherwise workloads might not converge.
2283 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2288 /* Direct connections between all NUMA nodes. */
2289 if (sched_numa_topology_type
== NUMA_DIRECT
)
2293 * On a system with glueless mesh NUMA topology, group_weight
2294 * scores nodes according to the number of NUMA hinting faults on
2295 * both the node itself, and on nearby nodes.
2297 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2298 unsigned long score
, max_score
= 0;
2299 int node
, max_node
= nid
;
2301 dist
= sched_max_numa_distance
;
2303 for_each_online_node(node
) {
2304 score
= group_weight(p
, node
, dist
);
2305 if (score
> max_score
) {
2314 * Finding the preferred nid in a system with NUMA backplane
2315 * interconnect topology is more involved. The goal is to locate
2316 * tasks from numa_groups near each other in the system, and
2317 * untangle workloads from different sides of the system. This requires
2318 * searching down the hierarchy of node groups, recursively searching
2319 * inside the highest scoring group of nodes. The nodemask tricks
2320 * keep the complexity of the search down.
2322 nodes
= node_online_map
;
2323 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2324 unsigned long max_faults
= 0;
2325 nodemask_t max_group
= NODE_MASK_NONE
;
2328 /* Are there nodes at this distance from each other? */
2329 if (!find_numa_distance(dist
))
2332 for_each_node_mask(a
, nodes
) {
2333 unsigned long faults
= 0;
2334 nodemask_t this_group
;
2335 nodes_clear(this_group
);
2337 /* Sum group's NUMA faults; includes a==b case. */
2338 for_each_node_mask(b
, nodes
) {
2339 if (node_distance(a
, b
) < dist
) {
2340 faults
+= group_faults(p
, b
);
2341 node_set(b
, this_group
);
2342 node_clear(b
, nodes
);
2346 /* Remember the top group. */
2347 if (faults
> max_faults
) {
2348 max_faults
= faults
;
2349 max_group
= this_group
;
2351 * subtle: at the smallest distance there is
2352 * just one node left in each "group", the
2353 * winner is the preferred nid.
2358 /* Next round, evaluate the nodes within max_group. */
2366 static void task_numa_placement(struct task_struct
*p
)
2368 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2369 unsigned long max_faults
= 0;
2370 unsigned long fault_types
[2] = { 0, 0 };
2371 unsigned long total_faults
;
2372 u64 runtime
, period
;
2373 spinlock_t
*group_lock
= NULL
;
2374 struct numa_group
*ng
;
2377 * The p->mm->numa_scan_seq field gets updated without
2378 * exclusive access. Use READ_ONCE() here to ensure
2379 * that the field is read in a single access:
2381 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2382 if (p
->numa_scan_seq
== seq
)
2384 p
->numa_scan_seq
= seq
;
2385 p
->numa_scan_period_max
= task_scan_max(p
);
2387 total_faults
= p
->numa_faults_locality
[0] +
2388 p
->numa_faults_locality
[1];
2389 runtime
= numa_get_avg_runtime(p
, &period
);
2391 /* If the task is part of a group prevent parallel updates to group stats */
2392 ng
= deref_curr_numa_group(p
);
2394 group_lock
= &ng
->lock
;
2395 spin_lock_irq(group_lock
);
2398 /* Find the node with the highest number of faults */
2399 for_each_online_node(nid
) {
2400 /* Keep track of the offsets in numa_faults array */
2401 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2402 unsigned long faults
= 0, group_faults
= 0;
2405 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2406 long diff
, f_diff
, f_weight
;
2408 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2409 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2410 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2411 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2413 /* Decay existing window, copy faults since last scan */
2414 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2415 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2416 p
->numa_faults
[membuf_idx
] = 0;
2419 * Normalize the faults_from, so all tasks in a group
2420 * count according to CPU use, instead of by the raw
2421 * number of faults. Tasks with little runtime have
2422 * little over-all impact on throughput, and thus their
2423 * faults are less important.
2425 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2426 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2428 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2429 p
->numa_faults
[cpubuf_idx
] = 0;
2431 p
->numa_faults
[mem_idx
] += diff
;
2432 p
->numa_faults
[cpu_idx
] += f_diff
;
2433 faults
+= p
->numa_faults
[mem_idx
];
2434 p
->total_numa_faults
+= diff
;
2437 * safe because we can only change our own group
2439 * mem_idx represents the offset for a given
2440 * nid and priv in a specific region because it
2441 * is at the beginning of the numa_faults array.
2443 ng
->faults
[mem_idx
] += diff
;
2444 ng
->faults_cpu
[mem_idx
] += f_diff
;
2445 ng
->total_faults
+= diff
;
2446 group_faults
+= ng
->faults
[mem_idx
];
2451 if (faults
> max_faults
) {
2452 max_faults
= faults
;
2455 } else if (group_faults
> max_faults
) {
2456 max_faults
= group_faults
;
2462 numa_group_count_active_nodes(ng
);
2463 spin_unlock_irq(group_lock
);
2464 max_nid
= preferred_group_nid(p
, max_nid
);
2468 /* Set the new preferred node */
2469 if (max_nid
!= p
->numa_preferred_nid
)
2470 sched_setnuma(p
, max_nid
);
2473 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2476 static inline int get_numa_group(struct numa_group
*grp
)
2478 return refcount_inc_not_zero(&grp
->refcount
);
2481 static inline void put_numa_group(struct numa_group
*grp
)
2483 if (refcount_dec_and_test(&grp
->refcount
))
2484 kfree_rcu(grp
, rcu
);
2487 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2490 struct numa_group
*grp
, *my_grp
;
2491 struct task_struct
*tsk
;
2493 int cpu
= cpupid_to_cpu(cpupid
);
2496 if (unlikely(!deref_curr_numa_group(p
))) {
2497 unsigned int size
= sizeof(struct numa_group
) +
2498 4*nr_node_ids
*sizeof(unsigned long);
2500 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2504 refcount_set(&grp
->refcount
, 1);
2505 grp
->active_nodes
= 1;
2506 grp
->max_faults_cpu
= 0;
2507 spin_lock_init(&grp
->lock
);
2509 /* Second half of the array tracks nids where faults happen */
2510 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2513 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2514 grp
->faults
[i
] = p
->numa_faults
[i
];
2516 grp
->total_faults
= p
->total_numa_faults
;
2519 rcu_assign_pointer(p
->numa_group
, grp
);
2523 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2525 if (!cpupid_match_pid(tsk
, cpupid
))
2528 grp
= rcu_dereference(tsk
->numa_group
);
2532 my_grp
= deref_curr_numa_group(p
);
2537 * Only join the other group if its bigger; if we're the bigger group,
2538 * the other task will join us.
2540 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2544 * Tie-break on the grp address.
2546 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2549 /* Always join threads in the same process. */
2550 if (tsk
->mm
== current
->mm
)
2553 /* Simple filter to avoid false positives due to PID collisions */
2554 if (flags
& TNF_SHARED
)
2557 /* Update priv based on whether false sharing was detected */
2560 if (join
&& !get_numa_group(grp
))
2568 BUG_ON(irqs_disabled());
2569 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2571 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2572 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2573 grp
->faults
[i
] += p
->numa_faults
[i
];
2575 my_grp
->total_faults
-= p
->total_numa_faults
;
2576 grp
->total_faults
+= p
->total_numa_faults
;
2581 spin_unlock(&my_grp
->lock
);
2582 spin_unlock_irq(&grp
->lock
);
2584 rcu_assign_pointer(p
->numa_group
, grp
);
2586 put_numa_group(my_grp
);
2595 * Get rid of NUMA staticstics associated with a task (either current or dead).
2596 * If @final is set, the task is dead and has reached refcount zero, so we can
2597 * safely free all relevant data structures. Otherwise, there might be
2598 * concurrent reads from places like load balancing and procfs, and we should
2599 * reset the data back to default state without freeing ->numa_faults.
2601 void task_numa_free(struct task_struct
*p
, bool final
)
2603 /* safe: p either is current or is being freed by current */
2604 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
2605 unsigned long *numa_faults
= p
->numa_faults
;
2606 unsigned long flags
;
2613 spin_lock_irqsave(&grp
->lock
, flags
);
2614 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2615 grp
->faults
[i
] -= p
->numa_faults
[i
];
2616 grp
->total_faults
-= p
->total_numa_faults
;
2619 spin_unlock_irqrestore(&grp
->lock
, flags
);
2620 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2621 put_numa_group(grp
);
2625 p
->numa_faults
= NULL
;
2628 p
->total_numa_faults
= 0;
2629 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2635 * Got a PROT_NONE fault for a page on @node.
2637 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2639 struct task_struct
*p
= current
;
2640 bool migrated
= flags
& TNF_MIGRATED
;
2641 int cpu_node
= task_node(current
);
2642 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2643 struct numa_group
*ng
;
2646 if (!static_branch_likely(&sched_numa_balancing
))
2649 /* for example, ksmd faulting in a user's mm */
2653 /* Allocate buffer to track faults on a per-node basis */
2654 if (unlikely(!p
->numa_faults
)) {
2655 int size
= sizeof(*p
->numa_faults
) *
2656 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2658 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2659 if (!p
->numa_faults
)
2662 p
->total_numa_faults
= 0;
2663 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2667 * First accesses are treated as private, otherwise consider accesses
2668 * to be private if the accessing pid has not changed
2670 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2673 priv
= cpupid_match_pid(p
, last_cpupid
);
2674 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2675 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2679 * If a workload spans multiple NUMA nodes, a shared fault that
2680 * occurs wholly within the set of nodes that the workload is
2681 * actively using should be counted as local. This allows the
2682 * scan rate to slow down when a workload has settled down.
2684 ng
= deref_curr_numa_group(p
);
2685 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2686 numa_is_active_node(cpu_node
, ng
) &&
2687 numa_is_active_node(mem_node
, ng
))
2691 * Retry to migrate task to preferred node periodically, in case it
2692 * previously failed, or the scheduler moved us.
2694 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2695 task_numa_placement(p
);
2696 numa_migrate_preferred(p
);
2700 p
->numa_pages_migrated
+= pages
;
2701 if (flags
& TNF_MIGRATE_FAIL
)
2702 p
->numa_faults_locality
[2] += pages
;
2704 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2705 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2706 p
->numa_faults_locality
[local
] += pages
;
2709 static void reset_ptenuma_scan(struct task_struct
*p
)
2712 * We only did a read acquisition of the mmap sem, so
2713 * p->mm->numa_scan_seq is written to without exclusive access
2714 * and the update is not guaranteed to be atomic. That's not
2715 * much of an issue though, since this is just used for
2716 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2717 * expensive, to avoid any form of compiler optimizations:
2719 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2720 p
->mm
->numa_scan_offset
= 0;
2724 * The expensive part of numa migration is done from task_work context.
2725 * Triggered from task_tick_numa().
2727 static void task_numa_work(struct callback_head
*work
)
2729 unsigned long migrate
, next_scan
, now
= jiffies
;
2730 struct task_struct
*p
= current
;
2731 struct mm_struct
*mm
= p
->mm
;
2732 u64 runtime
= p
->se
.sum_exec_runtime
;
2733 struct vm_area_struct
*vma
;
2734 unsigned long start
, end
;
2735 unsigned long nr_pte_updates
= 0;
2736 long pages
, virtpages
;
2738 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2742 * Who cares about NUMA placement when they're dying.
2744 * NOTE: make sure not to dereference p->mm before this check,
2745 * exit_task_work() happens _after_ exit_mm() so we could be called
2746 * without p->mm even though we still had it when we enqueued this
2749 if (p
->flags
& PF_EXITING
)
2752 if (!mm
->numa_next_scan
) {
2753 mm
->numa_next_scan
= now
+
2754 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2758 * Enforce maximal scan/migration frequency..
2760 migrate
= mm
->numa_next_scan
;
2761 if (time_before(now
, migrate
))
2764 if (p
->numa_scan_period
== 0) {
2765 p
->numa_scan_period_max
= task_scan_max(p
);
2766 p
->numa_scan_period
= task_scan_start(p
);
2769 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2770 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2774 * Delay this task enough that another task of this mm will likely win
2775 * the next time around.
2777 p
->node_stamp
+= 2 * TICK_NSEC
;
2779 start
= mm
->numa_scan_offset
;
2780 pages
= sysctl_numa_balancing_scan_size
;
2781 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2782 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2787 if (!mmap_read_trylock(mm
))
2789 vma
= find_vma(mm
, start
);
2791 reset_ptenuma_scan(p
);
2795 for (; vma
; vma
= vma
->vm_next
) {
2796 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2797 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2802 * Shared library pages mapped by multiple processes are not
2803 * migrated as it is expected they are cache replicated. Avoid
2804 * hinting faults in read-only file-backed mappings or the vdso
2805 * as migrating the pages will be of marginal benefit.
2808 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2812 * Skip inaccessible VMAs to avoid any confusion between
2813 * PROT_NONE and NUMA hinting ptes
2815 if (!vma_is_accessible(vma
))
2819 start
= max(start
, vma
->vm_start
);
2820 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2821 end
= min(end
, vma
->vm_end
);
2822 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2825 * Try to scan sysctl_numa_balancing_size worth of
2826 * hpages that have at least one present PTE that
2827 * is not already pte-numa. If the VMA contains
2828 * areas that are unused or already full of prot_numa
2829 * PTEs, scan up to virtpages, to skip through those
2833 pages
-= (end
- start
) >> PAGE_SHIFT
;
2834 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2837 if (pages
<= 0 || virtpages
<= 0)
2841 } while (end
!= vma
->vm_end
);
2846 * It is possible to reach the end of the VMA list but the last few
2847 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2848 * would find the !migratable VMA on the next scan but not reset the
2849 * scanner to the start so check it now.
2852 mm
->numa_scan_offset
= start
;
2854 reset_ptenuma_scan(p
);
2855 mmap_read_unlock(mm
);
2858 * Make sure tasks use at least 32x as much time to run other code
2859 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2860 * Usually update_task_scan_period slows down scanning enough; on an
2861 * overloaded system we need to limit overhead on a per task basis.
2863 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2864 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2865 p
->node_stamp
+= 32 * diff
;
2869 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
2872 struct mm_struct
*mm
= p
->mm
;
2875 mm_users
= atomic_read(&mm
->mm_users
);
2876 if (mm_users
== 1) {
2877 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2878 mm
->numa_scan_seq
= 0;
2882 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
2883 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2884 /* Protect against double add, see task_tick_numa and task_numa_work */
2885 p
->numa_work
.next
= &p
->numa_work
;
2886 p
->numa_faults
= NULL
;
2887 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2888 p
->last_task_numa_placement
= 0;
2889 p
->last_sum_exec_runtime
= 0;
2891 init_task_work(&p
->numa_work
, task_numa_work
);
2893 /* New address space, reset the preferred nid */
2894 if (!(clone_flags
& CLONE_VM
)) {
2895 p
->numa_preferred_nid
= NUMA_NO_NODE
;
2900 * New thread, keep existing numa_preferred_nid which should be copied
2901 * already by arch_dup_task_struct but stagger when scans start.
2906 delay
= min_t(unsigned int, task_scan_max(current
),
2907 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
2908 delay
+= 2 * TICK_NSEC
;
2909 p
->node_stamp
= delay
;
2914 * Drive the periodic memory faults..
2916 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2918 struct callback_head
*work
= &curr
->numa_work
;
2922 * We don't care about NUMA placement if we don't have memory.
2924 if ((curr
->flags
& (PF_EXITING
| PF_KTHREAD
)) || work
->next
!= work
)
2928 * Using runtime rather than walltime has the dual advantage that
2929 * we (mostly) drive the selection from busy threads and that the
2930 * task needs to have done some actual work before we bother with
2933 now
= curr
->se
.sum_exec_runtime
;
2934 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2936 if (now
> curr
->node_stamp
+ period
) {
2937 if (!curr
->node_stamp
)
2938 curr
->numa_scan_period
= task_scan_start(curr
);
2939 curr
->node_stamp
+= period
;
2941 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
2942 task_work_add(curr
, work
, TWA_RESUME
);
2946 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2948 int src_nid
= cpu_to_node(task_cpu(p
));
2949 int dst_nid
= cpu_to_node(new_cpu
);
2951 if (!static_branch_likely(&sched_numa_balancing
))
2954 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2957 if (src_nid
== dst_nid
)
2961 * Allow resets if faults have been trapped before one scan
2962 * has completed. This is most likely due to a new task that
2963 * is pulled cross-node due to wakeups or load balancing.
2965 if (p
->numa_scan_seq
) {
2967 * Avoid scan adjustments if moving to the preferred
2968 * node or if the task was not previously running on
2969 * the preferred node.
2971 if (dst_nid
== p
->numa_preferred_nid
||
2972 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
2973 src_nid
!= p
->numa_preferred_nid
))
2977 p
->numa_scan_period
= task_scan_start(p
);
2981 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2985 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2989 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2993 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2997 #endif /* CONFIG_NUMA_BALANCING */
3000 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3002 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
3004 if (entity_is_task(se
)) {
3005 struct rq
*rq
= rq_of(cfs_rq
);
3007 account_numa_enqueue(rq
, task_of(se
));
3008 list_add(&se
->group_node
, &rq
->cfs_tasks
);
3011 cfs_rq
->nr_running
++;
3015 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3017 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3019 if (entity_is_task(se
)) {
3020 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
3021 list_del_init(&se
->group_node
);
3024 cfs_rq
->nr_running
--;
3028 * Signed add and clamp on underflow.
3030 * Explicitly do a load-store to ensure the intermediate value never hits
3031 * memory. This allows lockless observations without ever seeing the negative
3034 #define add_positive(_ptr, _val) do { \
3035 typeof(_ptr) ptr = (_ptr); \
3036 typeof(_val) val = (_val); \
3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3041 if (val < 0 && res > var) \
3044 WRITE_ONCE(*ptr, res); \
3048 * Unsigned subtract and clamp on underflow.
3050 * Explicitly do a load-store to ensure the intermediate value never hits
3051 * memory. This allows lockless observations without ever seeing the negative
3054 #define sub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 typeof(*ptr) val = (_val); \
3057 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3061 WRITE_ONCE(*ptr, res); \
3065 * Remove and clamp on negative, from a local variable.
3067 * A variant of sub_positive(), which does not use explicit load-store
3068 * and is thus optimized for local variable updates.
3070 #define lsub_positive(_ptr, _val) do { \
3071 typeof(_ptr) ptr = (_ptr); \
3072 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3077 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3079 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3080 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
3084 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3086 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3087 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
3091 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3093 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3096 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
3097 unsigned long weight
)
3100 /* commit outstanding execution time */
3101 if (cfs_rq
->curr
== se
)
3102 update_curr(cfs_rq
);
3103 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3105 dequeue_load_avg(cfs_rq
, se
);
3107 update_load_set(&se
->load
, weight
);
3111 u32 divider
= get_pelt_divider(&se
->avg
);
3113 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
3117 enqueue_load_avg(cfs_rq
, se
);
3119 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
3123 void reweight_task(struct task_struct
*p
, int prio
)
3125 struct sched_entity
*se
= &p
->se
;
3126 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3127 struct load_weight
*load
= &se
->load
;
3128 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
3130 reweight_entity(cfs_rq
, se
, weight
);
3131 load
->inv_weight
= sched_prio_to_wmult
[prio
];
3134 #ifdef CONFIG_FAIR_GROUP_SCHED
3137 * All this does is approximate the hierarchical proportion which includes that
3138 * global sum we all love to hate.
3140 * That is, the weight of a group entity, is the proportional share of the
3141 * group weight based on the group runqueue weights. That is:
3143 * tg->weight * grq->load.weight
3144 * ge->load.weight = ----------------------------- (1)
3145 * \Sum grq->load.weight
3147 * Now, because computing that sum is prohibitively expensive to compute (been
3148 * there, done that) we approximate it with this average stuff. The average
3149 * moves slower and therefore the approximation is cheaper and more stable.
3151 * So instead of the above, we substitute:
3153 * grq->load.weight -> grq->avg.load_avg (2)
3155 * which yields the following:
3157 * tg->weight * grq->avg.load_avg
3158 * ge->load.weight = ------------------------------ (3)
3161 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3163 * That is shares_avg, and it is right (given the approximation (2)).
3165 * The problem with it is that because the average is slow -- it was designed
3166 * to be exactly that of course -- this leads to transients in boundary
3167 * conditions. In specific, the case where the group was idle and we start the
3168 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169 * yielding bad latency etc..
3171 * Now, in that special case (1) reduces to:
3173 * tg->weight * grq->load.weight
3174 * ge->load.weight = ----------------------------- = tg->weight (4)
3177 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3179 * So what we do is modify our approximation (3) to approach (4) in the (near)
3184 * tg->weight * grq->load.weight
3185 * --------------------------------------------------- (5)
3186 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3188 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3192 * tg->weight * grq->load.weight
3193 * ge->load.weight = ----------------------------- (6)
3198 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199 * max(grq->load.weight, grq->avg.load_avg)
3201 * And that is shares_weight and is icky. In the (near) UP case it approaches
3202 * (4) while in the normal case it approaches (3). It consistently
3203 * overestimates the ge->load.weight and therefore:
3205 * \Sum ge->load.weight >= tg->weight
3209 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
3211 long tg_weight
, tg_shares
, load
, shares
;
3212 struct task_group
*tg
= cfs_rq
->tg
;
3214 tg_shares
= READ_ONCE(tg
->shares
);
3216 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
3218 tg_weight
= atomic_long_read(&tg
->load_avg
);
3220 /* Ensure tg_weight >= load */
3221 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
3224 shares
= (tg_shares
* load
);
3226 shares
/= tg_weight
;
3229 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 * of a group with small tg->shares value. It is a floor value which is
3231 * assigned as a minimum load.weight to the sched_entity representing
3232 * the group on a CPU.
3234 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3240 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
3242 #endif /* CONFIG_SMP */
3244 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3247 * Recomputes the group entity based on the current state of its group
3250 static void update_cfs_group(struct sched_entity
*se
)
3252 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3258 if (throttled_hierarchy(gcfs_rq
))
3262 shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3264 if (likely(se
->load
.weight
== shares
))
3267 shares
= calc_group_shares(gcfs_rq
);
3270 reweight_entity(cfs_rq_of(se
), se
, shares
);
3273 #else /* CONFIG_FAIR_GROUP_SCHED */
3274 static inline void update_cfs_group(struct sched_entity
*se
)
3277 #endif /* CONFIG_FAIR_GROUP_SCHED */
3279 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3281 struct rq
*rq
= rq_of(cfs_rq
);
3283 if (&rq
->cfs
== cfs_rq
) {
3285 * There are a few boundary cases this might miss but it should
3286 * get called often enough that that should (hopefully) not be
3289 * It will not get called when we go idle, because the idle
3290 * thread is a different class (!fair), nor will the utilization
3291 * number include things like RT tasks.
3293 * As is, the util number is not freq-invariant (we'd have to
3294 * implement arch_scale_freq_capacity() for that).
3298 cpufreq_update_util(rq
, flags
);
3303 #ifdef CONFIG_FAIR_GROUP_SCHED
3305 * update_tg_load_avg - update the tg's load avg
3306 * @cfs_rq: the cfs_rq whose avg changed
3308 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3309 * However, because tg->load_avg is a global value there are performance
3312 * In order to avoid having to look at the other cfs_rq's, we use a
3313 * differential update where we store the last value we propagated. This in
3314 * turn allows skipping updates if the differential is 'small'.
3316 * Updating tg's load_avg is necessary before update_cfs_share().
3318 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
)
3320 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3323 * No need to update load_avg for root_task_group as it is not used.
3325 if (cfs_rq
->tg
== &root_task_group
)
3328 if (abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3329 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3330 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3335 * Called within set_task_rq() right before setting a task's CPU. The
3336 * caller only guarantees p->pi_lock is held; no other assumptions,
3337 * including the state of rq->lock, should be made.
3339 void set_task_rq_fair(struct sched_entity
*se
,
3340 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3342 u64 p_last_update_time
;
3343 u64 n_last_update_time
;
3345 if (!sched_feat(ATTACH_AGE_LOAD
))
3349 * We are supposed to update the task to "current" time, then its up to
3350 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3351 * getting what current time is, so simply throw away the out-of-date
3352 * time. This will result in the wakee task is less decayed, but giving
3353 * the wakee more load sounds not bad.
3355 if (!(se
->avg
.last_update_time
&& prev
))
3358 #ifndef CONFIG_64BIT
3360 u64 p_last_update_time_copy
;
3361 u64 n_last_update_time_copy
;
3364 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3365 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3369 p_last_update_time
= prev
->avg
.last_update_time
;
3370 n_last_update_time
= next
->avg
.last_update_time
;
3372 } while (p_last_update_time
!= p_last_update_time_copy
||
3373 n_last_update_time
!= n_last_update_time_copy
);
3376 p_last_update_time
= prev
->avg
.last_update_time
;
3377 n_last_update_time
= next
->avg
.last_update_time
;
3379 __update_load_avg_blocked_se(p_last_update_time
, se
);
3380 se
->avg
.last_update_time
= n_last_update_time
;
3385 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3386 * propagate its contribution. The key to this propagation is the invariant
3387 * that for each group:
3389 * ge->avg == grq->avg (1)
3391 * _IFF_ we look at the pure running and runnable sums. Because they
3392 * represent the very same entity, just at different points in the hierarchy.
3394 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3395 * and simply copies the running/runnable sum over (but still wrong, because
3396 * the group entity and group rq do not have their PELT windows aligned).
3398 * However, update_tg_cfs_load() is more complex. So we have:
3400 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3402 * And since, like util, the runnable part should be directly transferable,
3403 * the following would _appear_ to be the straight forward approach:
3405 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3407 * And per (1) we have:
3409 * ge->avg.runnable_avg == grq->avg.runnable_avg
3413 * ge->load.weight * grq->avg.load_avg
3414 * ge->avg.load_avg = ----------------------------------- (4)
3417 * Except that is wrong!
3419 * Because while for entities historical weight is not important and we
3420 * really only care about our future and therefore can consider a pure
3421 * runnable sum, runqueues can NOT do this.
3423 * We specifically want runqueues to have a load_avg that includes
3424 * historical weights. Those represent the blocked load, the load we expect
3425 * to (shortly) return to us. This only works by keeping the weights as
3426 * integral part of the sum. We therefore cannot decompose as per (3).
3428 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3429 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3430 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3431 * runnable section of these tasks overlap (or not). If they were to perfectly
3432 * align the rq as a whole would be runnable 2/3 of the time. If however we
3433 * always have at least 1 runnable task, the rq as a whole is always runnable.
3435 * So we'll have to approximate.. :/
3437 * Given the constraint:
3439 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3441 * We can construct a rule that adds runnable to a rq by assuming minimal
3444 * On removal, we'll assume each task is equally runnable; which yields:
3446 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3448 * XXX: only do this for the part of runnable > running ?
3453 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3455 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3458 /* Nothing to update */
3463 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3464 * See ___update_load_avg() for details.
3466 divider
= get_pelt_divider(&cfs_rq
->avg
);
3468 /* Set new sched_entity's utilization */
3469 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3470 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3472 /* Update parent cfs_rq utilization */
3473 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3474 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* divider
;
3478 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3480 long delta
= gcfs_rq
->avg
.runnable_avg
- se
->avg
.runnable_avg
;
3483 /* Nothing to update */
3488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3489 * See ___update_load_avg() for details.
3491 divider
= get_pelt_divider(&cfs_rq
->avg
);
3493 /* Set new sched_entity's runnable */
3494 se
->avg
.runnable_avg
= gcfs_rq
->avg
.runnable_avg
;
3495 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3497 /* Update parent cfs_rq runnable */
3498 add_positive(&cfs_rq
->avg
.runnable_avg
, delta
);
3499 cfs_rq
->avg
.runnable_sum
= cfs_rq
->avg
.runnable_avg
* divider
;
3503 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3505 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3506 unsigned long load_avg
;
3514 gcfs_rq
->prop_runnable_sum
= 0;
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3520 divider
= get_pelt_divider(&cfs_rq
->avg
);
3522 if (runnable_sum
>= 0) {
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3527 runnable_sum
+= se
->avg
.load_sum
;
3528 runnable_sum
= min_t(long, runnable_sum
, divider
);
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3534 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3535 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3536 scale_load_down(gcfs_rq
->load
.weight
));
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3544 * runnable_sum can't be lower than running_sum
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
3549 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
3550 runnable_sum
= max(runnable_sum
, running_sum
);
3552 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3553 load_avg
= div_s64(load_sum
, divider
);
3555 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3556 delta_avg
= load_avg
- se
->avg
.load_avg
;
3558 se
->avg
.load_sum
= runnable_sum
;
3559 se
->avg
.load_avg
= load_avg
;
3560 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3561 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3564 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3566 cfs_rq
->propagate
= 1;
3567 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3573 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3575 if (entity_is_task(se
))
3578 gcfs_rq
= group_cfs_rq(se
);
3579 if (!gcfs_rq
->propagate
)
3582 gcfs_rq
->propagate
= 0;
3584 cfs_rq
= cfs_rq_of(se
);
3586 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3588 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3589 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3590 update_tg_cfs_load(cfs_rq
, se
, gcfs_rq
);
3592 trace_pelt_cfs_tp(cfs_rq
);
3593 trace_pelt_se_tp(se
);
3599 * Check if we need to update the load and the utilization of a blocked
3602 static inline bool skip_blocked_update(struct sched_entity
*se
)
3604 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3607 * If sched_entity still have not zero load or utilization, we have to
3610 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3614 * If there is a pending propagation, we have to update the load and
3615 * the utilization of the sched_entity:
3617 if (gcfs_rq
->propagate
)
3621 * Otherwise, the load and the utilization of the sched_entity is
3622 * already zero and there is no pending propagation, so it will be a
3623 * waste of time to try to decay it:
3628 #else /* CONFIG_FAIR_GROUP_SCHED */
3630 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
) {}
3632 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3637 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3639 #endif /* CONFIG_FAIR_GROUP_SCHED */
3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3643 * @now: current time, as per cfs_rq_clock_pelt()
3644 * @cfs_rq: cfs_rq to update
3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648 * post_init_entity_util_avg().
3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3652 * Returns true if the load decayed or we removed load.
3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655 * call update_tg_load_avg() when this function returns true.
3658 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3660 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable
= 0;
3661 struct sched_avg
*sa
= &cfs_rq
->avg
;
3664 if (cfs_rq
->removed
.nr
) {
3666 u32 divider
= get_pelt_divider(&cfs_rq
->avg
);
3668 raw_spin_lock(&cfs_rq
->removed
.lock
);
3669 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3670 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3671 swap(cfs_rq
->removed
.runnable_avg
, removed_runnable
);
3672 cfs_rq
->removed
.nr
= 0;
3673 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3676 sub_positive(&sa
->load_avg
, r
);
3677 sub_positive(&sa
->load_sum
, r
* divider
);
3680 sub_positive(&sa
->util_avg
, r
);
3681 sub_positive(&sa
->util_sum
, r
* divider
);
3683 r
= removed_runnable
;
3684 sub_positive(&sa
->runnable_avg
, r
);
3685 sub_positive(&sa
->runnable_sum
, r
* divider
);
3688 * removed_runnable is the unweighted version of removed_load so we
3689 * can use it to estimate removed_load_sum.
3691 add_tg_cfs_propagate(cfs_rq
,
3692 -(long)(removed_runnable
* divider
) >> SCHED_CAPACITY_SHIFT
);
3697 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
3699 #ifndef CONFIG_64BIT
3701 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3708 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3709 * @cfs_rq: cfs_rq to attach to
3710 * @se: sched_entity to attach
3712 * Must call update_cfs_rq_load_avg() before this, since we rely on
3713 * cfs_rq->avg.last_update_time being current.
3715 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3718 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3719 * See ___update_load_avg() for details.
3721 u32 divider
= get_pelt_divider(&cfs_rq
->avg
);
3724 * When we attach the @se to the @cfs_rq, we must align the decay
3725 * window because without that, really weird and wonderful things can
3730 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3731 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3734 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3735 * period_contrib. This isn't strictly correct, but since we're
3736 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3739 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3741 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3743 se
->avg
.load_sum
= divider
;
3744 if (se_weight(se
)) {
3746 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3749 enqueue_load_avg(cfs_rq
, se
);
3750 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3751 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3752 cfs_rq
->avg
.runnable_avg
+= se
->avg
.runnable_avg
;
3753 cfs_rq
->avg
.runnable_sum
+= se
->avg
.runnable_sum
;
3755 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3757 cfs_rq_util_change(cfs_rq
, 0);
3759 trace_pelt_cfs_tp(cfs_rq
);
3763 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3764 * @cfs_rq: cfs_rq to detach from
3765 * @se: sched_entity to detach
3767 * Must call update_cfs_rq_load_avg() before this, since we rely on
3768 * cfs_rq->avg.last_update_time being current.
3770 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3772 dequeue_load_avg(cfs_rq
, se
);
3773 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3774 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3775 sub_positive(&cfs_rq
->avg
.runnable_avg
, se
->avg
.runnable_avg
);
3776 sub_positive(&cfs_rq
->avg
.runnable_sum
, se
->avg
.runnable_sum
);
3778 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3780 cfs_rq_util_change(cfs_rq
, 0);
3782 trace_pelt_cfs_tp(cfs_rq
);
3786 * Optional action to be done while updating the load average
3788 #define UPDATE_TG 0x1
3789 #define SKIP_AGE_LOAD 0x2
3790 #define DO_ATTACH 0x4
3792 /* Update task and its cfs_rq load average */
3793 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3795 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
3799 * Track task load average for carrying it to new CPU after migrated, and
3800 * track group sched_entity load average for task_h_load calc in migration
3802 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3803 __update_load_avg_se(now
, cfs_rq
, se
);
3805 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3806 decayed
|= propagate_entity_load_avg(se
);
3808 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3811 * DO_ATTACH means we're here from enqueue_entity().
3812 * !last_update_time means we've passed through
3813 * migrate_task_rq_fair() indicating we migrated.
3815 * IOW we're enqueueing a task on a new CPU.
3817 attach_entity_load_avg(cfs_rq
, se
);
3818 update_tg_load_avg(cfs_rq
);
3820 } else if (decayed
) {
3821 cfs_rq_util_change(cfs_rq
, 0);
3823 if (flags
& UPDATE_TG
)
3824 update_tg_load_avg(cfs_rq
);
3828 #ifndef CONFIG_64BIT
3829 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3831 u64 last_update_time_copy
;
3832 u64 last_update_time
;
3835 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3837 last_update_time
= cfs_rq
->avg
.last_update_time
;
3838 } while (last_update_time
!= last_update_time_copy
);
3840 return last_update_time
;
3843 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3845 return cfs_rq
->avg
.last_update_time
;
3850 * Synchronize entity load avg of dequeued entity without locking
3853 static void sync_entity_load_avg(struct sched_entity
*se
)
3855 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3856 u64 last_update_time
;
3858 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3859 __update_load_avg_blocked_se(last_update_time
, se
);
3863 * Task first catches up with cfs_rq, and then subtract
3864 * itself from the cfs_rq (task must be off the queue now).
3866 static void remove_entity_load_avg(struct sched_entity
*se
)
3868 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3869 unsigned long flags
;
3872 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 * post_init_entity_util_avg() which will have added things to the
3874 * cfs_rq, so we can remove unconditionally.
3877 sync_entity_load_avg(se
);
3879 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3880 ++cfs_rq
->removed
.nr
;
3881 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3882 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3883 cfs_rq
->removed
.runnable_avg
+= se
->avg
.runnable_avg
;
3884 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3887 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq
*cfs_rq
)
3889 return cfs_rq
->avg
.runnable_avg
;
3892 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3894 return cfs_rq
->avg
.load_avg
;
3897 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
3899 static inline unsigned long task_util(struct task_struct
*p
)
3901 return READ_ONCE(p
->se
.avg
.util_avg
);
3904 static inline unsigned long _task_util_est(struct task_struct
*p
)
3906 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3908 return (max(ue
.ewma
, ue
.enqueued
) | UTIL_AVG_UNCHANGED
);
3911 static inline unsigned long task_util_est(struct task_struct
*p
)
3913 return max(task_util(p
), _task_util_est(p
));
3916 #ifdef CONFIG_UCLAMP_TASK
3917 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3919 return clamp(task_util_est(p
),
3920 uclamp_eff_value(p
, UCLAMP_MIN
),
3921 uclamp_eff_value(p
, UCLAMP_MAX
));
3924 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3926 return task_util_est(p
);
3930 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3931 struct task_struct
*p
)
3933 unsigned int enqueued
;
3935 if (!sched_feat(UTIL_EST
))
3938 /* Update root cfs_rq's estimated utilization */
3939 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3940 enqueued
+= _task_util_est(p
);
3941 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3943 trace_sched_util_est_cfs_tp(cfs_rq
);
3947 * Check if a (signed) value is within a specified (unsigned) margin,
3948 * based on the observation that:
3950 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3952 * NOTE: this only works when value + maring < INT_MAX.
3954 static inline bool within_margin(int value
, int margin
)
3956 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3960 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3962 long last_ewma_diff
;
3966 if (!sched_feat(UTIL_EST
))
3969 /* Update root cfs_rq's estimated utilization */
3970 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3971 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
, _task_util_est(p
));
3972 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3974 trace_sched_util_est_cfs_tp(cfs_rq
);
3977 * Skip update of task's estimated utilization when the task has not
3978 * yet completed an activation, e.g. being migrated.
3984 * If the PELT values haven't changed since enqueue time,
3985 * skip the util_est update.
3987 ue
= p
->se
.avg
.util_est
;
3988 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3992 * Reset EWMA on utilization increases, the moving average is used only
3993 * to smooth utilization decreases.
3995 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3996 if (sched_feat(UTIL_EST_FASTUP
)) {
3997 if (ue
.ewma
< ue
.enqueued
) {
3998 ue
.ewma
= ue
.enqueued
;
4004 * Skip update of task's estimated utilization when its EWMA is
4005 * already ~1% close to its last activation value.
4007 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
4008 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
4012 * To avoid overestimation of actual task utilization, skip updates if
4013 * we cannot grant there is idle time in this CPU.
4015 cpu
= cpu_of(rq_of(cfs_rq
));
4016 if (task_util(p
) > capacity_orig_of(cpu
))
4020 * Update Task's estimated utilization
4022 * When *p completes an activation we can consolidate another sample
4023 * of the task size. This is done by storing the current PELT value
4024 * as ue.enqueued and by using this value to update the Exponential
4025 * Weighted Moving Average (EWMA):
4027 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4028 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4029 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4030 * = w * ( last_ewma_diff ) + ewma(t-1)
4031 * = w * (last_ewma_diff + ewma(t-1) / w)
4033 * Where 'w' is the weight of new samples, which is configured to be
4034 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4036 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
4037 ue
.ewma
+= last_ewma_diff
;
4038 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
4040 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
4042 trace_sched_util_est_se_tp(&p
->se
);
4045 static inline int task_fits_capacity(struct task_struct
*p
, long capacity
)
4047 return fits_capacity(uclamp_task_util(p
), capacity
);
4050 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
4052 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
4056 rq
->misfit_task_load
= 0;
4060 if (task_fits_capacity(p
, capacity_of(cpu_of(rq
)))) {
4061 rq
->misfit_task_load
= 0;
4066 * Make sure that misfit_task_load will not be null even if
4067 * task_h_load() returns 0.
4069 rq
->misfit_task_load
= max_t(unsigned long, task_h_load(p
), 1);
4072 #else /* CONFIG_SMP */
4074 #define UPDATE_TG 0x0
4075 #define SKIP_AGE_LOAD 0x0
4076 #define DO_ATTACH 0x0
4078 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
4080 cfs_rq_util_change(cfs_rq
, 0);
4083 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
4086 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4088 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4090 static inline int newidle_balance(struct rq
*rq
, struct rq_flags
*rf
)
4096 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
4099 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
4101 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
4103 #endif /* CONFIG_SMP */
4105 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4107 #ifdef CONFIG_SCHED_DEBUG
4108 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
4113 if (d
> 3*sysctl_sched_latency
)
4114 schedstat_inc(cfs_rq
->nr_spread_over
);
4119 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
4121 u64 vruntime
= cfs_rq
->min_vruntime
;
4124 * The 'current' period is already promised to the current tasks,
4125 * however the extra weight of the new task will slow them down a
4126 * little, place the new task so that it fits in the slot that
4127 * stays open at the end.
4129 if (initial
&& sched_feat(START_DEBIT
))
4130 vruntime
+= sched_vslice(cfs_rq
, se
);
4132 /* sleeps up to a single latency don't count. */
4134 unsigned long thresh
= sysctl_sched_latency
;
4137 * Halve their sleep time's effect, to allow
4138 * for a gentler effect of sleepers:
4140 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
4146 /* ensure we never gain time by being placed backwards. */
4147 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
4150 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
4152 static inline void check_schedstat_required(void)
4154 #ifdef CONFIG_SCHEDSTATS
4155 if (schedstat_enabled())
4158 /* Force schedstat enabled if a dependent tracepoint is active */
4159 if (trace_sched_stat_wait_enabled() ||
4160 trace_sched_stat_sleep_enabled() ||
4161 trace_sched_stat_iowait_enabled() ||
4162 trace_sched_stat_blocked_enabled() ||
4163 trace_sched_stat_runtime_enabled()) {
4164 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4165 "stat_blocked and stat_runtime require the "
4166 "kernel parameter schedstats=enable or "
4167 "kernel.sched_schedstats=1\n");
4172 static inline bool cfs_bandwidth_used(void);
4179 * update_min_vruntime()
4180 * vruntime -= min_vruntime
4184 * update_min_vruntime()
4185 * vruntime += min_vruntime
4187 * this way the vruntime transition between RQs is done when both
4188 * min_vruntime are up-to-date.
4192 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4193 * vruntime -= min_vruntime
4197 * update_min_vruntime()
4198 * vruntime += min_vruntime
4200 * this way we don't have the most up-to-date min_vruntime on the originating
4201 * CPU and an up-to-date min_vruntime on the destination CPU.
4205 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4207 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
4208 bool curr
= cfs_rq
->curr
== se
;
4211 * If we're the current task, we must renormalise before calling
4215 se
->vruntime
+= cfs_rq
->min_vruntime
;
4217 update_curr(cfs_rq
);
4220 * Otherwise, renormalise after, such that we're placed at the current
4221 * moment in time, instead of some random moment in the past. Being
4222 * placed in the past could significantly boost this task to the
4223 * fairness detriment of existing tasks.
4225 if (renorm
&& !curr
)
4226 se
->vruntime
+= cfs_rq
->min_vruntime
;
4229 * When enqueuing a sched_entity, we must:
4230 * - Update loads to have both entity and cfs_rq synced with now.
4231 * - Add its load to cfs_rq->runnable_avg
4232 * - For group_entity, update its weight to reflect the new share of
4234 * - Add its new weight to cfs_rq->load.weight
4236 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4237 se_update_runnable(se
);
4238 update_cfs_group(se
);
4239 account_entity_enqueue(cfs_rq
, se
);
4241 if (flags
& ENQUEUE_WAKEUP
)
4242 place_entity(cfs_rq
, se
, 0);
4244 check_schedstat_required();
4245 update_stats_enqueue(cfs_rq
, se
, flags
);
4246 check_spread(cfs_rq
, se
);
4248 __enqueue_entity(cfs_rq
, se
);
4252 * When bandwidth control is enabled, cfs might have been removed
4253 * because of a parent been throttled but cfs->nr_running > 1. Try to
4254 * add it unconditionnally.
4256 if (cfs_rq
->nr_running
== 1 || cfs_bandwidth_used())
4257 list_add_leaf_cfs_rq(cfs_rq
);
4259 if (cfs_rq
->nr_running
== 1)
4260 check_enqueue_throttle(cfs_rq
);
4263 static void __clear_buddies_last(struct sched_entity
*se
)
4265 for_each_sched_entity(se
) {
4266 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4267 if (cfs_rq
->last
!= se
)
4270 cfs_rq
->last
= NULL
;
4274 static void __clear_buddies_next(struct sched_entity
*se
)
4276 for_each_sched_entity(se
) {
4277 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4278 if (cfs_rq
->next
!= se
)
4281 cfs_rq
->next
= NULL
;
4285 static void __clear_buddies_skip(struct sched_entity
*se
)
4287 for_each_sched_entity(se
) {
4288 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4289 if (cfs_rq
->skip
!= se
)
4292 cfs_rq
->skip
= NULL
;
4296 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4298 if (cfs_rq
->last
== se
)
4299 __clear_buddies_last(se
);
4301 if (cfs_rq
->next
== se
)
4302 __clear_buddies_next(se
);
4304 if (cfs_rq
->skip
== se
)
4305 __clear_buddies_skip(se
);
4308 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4311 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4314 * Update run-time statistics of the 'current'.
4316 update_curr(cfs_rq
);
4319 * When dequeuing a sched_entity, we must:
4320 * - Update loads to have both entity and cfs_rq synced with now.
4321 * - Subtract its load from the cfs_rq->runnable_avg.
4322 * - Subtract its previous weight from cfs_rq->load.weight.
4323 * - For group entity, update its weight to reflect the new share
4324 * of its group cfs_rq.
4326 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4327 se_update_runnable(se
);
4329 update_stats_dequeue(cfs_rq
, se
, flags
);
4331 clear_buddies(cfs_rq
, se
);
4333 if (se
!= cfs_rq
->curr
)
4334 __dequeue_entity(cfs_rq
, se
);
4336 account_entity_dequeue(cfs_rq
, se
);
4339 * Normalize after update_curr(); which will also have moved
4340 * min_vruntime if @se is the one holding it back. But before doing
4341 * update_min_vruntime() again, which will discount @se's position and
4342 * can move min_vruntime forward still more.
4344 if (!(flags
& DEQUEUE_SLEEP
))
4345 se
->vruntime
-= cfs_rq
->min_vruntime
;
4347 /* return excess runtime on last dequeue */
4348 return_cfs_rq_runtime(cfs_rq
);
4350 update_cfs_group(se
);
4353 * Now advance min_vruntime if @se was the entity holding it back,
4354 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4355 * put back on, and if we advance min_vruntime, we'll be placed back
4356 * further than we started -- ie. we'll be penalized.
4358 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4359 update_min_vruntime(cfs_rq
);
4363 * Preempt the current task with a newly woken task if needed:
4366 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4368 unsigned long ideal_runtime
, delta_exec
;
4369 struct sched_entity
*se
;
4372 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4373 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4374 if (delta_exec
> ideal_runtime
) {
4375 resched_curr(rq_of(cfs_rq
));
4377 * The current task ran long enough, ensure it doesn't get
4378 * re-elected due to buddy favours.
4380 clear_buddies(cfs_rq
, curr
);
4385 * Ensure that a task that missed wakeup preemption by a
4386 * narrow margin doesn't have to wait for a full slice.
4387 * This also mitigates buddy induced latencies under load.
4389 if (delta_exec
< sysctl_sched_min_granularity
)
4392 se
= __pick_first_entity(cfs_rq
);
4393 delta
= curr
->vruntime
- se
->vruntime
;
4398 if (delta
> ideal_runtime
)
4399 resched_curr(rq_of(cfs_rq
));
4403 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4405 /* 'current' is not kept within the tree. */
4408 * Any task has to be enqueued before it get to execute on
4409 * a CPU. So account for the time it spent waiting on the
4412 update_stats_wait_end(cfs_rq
, se
);
4413 __dequeue_entity(cfs_rq
, se
);
4414 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4417 update_stats_curr_start(cfs_rq
, se
);
4421 * Track our maximum slice length, if the CPU's load is at
4422 * least twice that of our own weight (i.e. dont track it
4423 * when there are only lesser-weight tasks around):
4425 if (schedstat_enabled() &&
4426 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
4427 schedstat_set(se
->statistics
.slice_max
,
4428 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4429 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4432 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4436 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4439 * Pick the next process, keeping these things in mind, in this order:
4440 * 1) keep things fair between processes/task groups
4441 * 2) pick the "next" process, since someone really wants that to run
4442 * 3) pick the "last" process, for cache locality
4443 * 4) do not run the "skip" process, if something else is available
4445 static struct sched_entity
*
4446 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4448 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4449 struct sched_entity
*se
;
4452 * If curr is set we have to see if its left of the leftmost entity
4453 * still in the tree, provided there was anything in the tree at all.
4455 if (!left
|| (curr
&& entity_before(curr
, left
)))
4458 se
= left
; /* ideally we run the leftmost entity */
4461 * Avoid running the skip buddy, if running something else can
4462 * be done without getting too unfair.
4464 if (cfs_rq
->skip
== se
) {
4465 struct sched_entity
*second
;
4468 second
= __pick_first_entity(cfs_rq
);
4470 second
= __pick_next_entity(se
);
4471 if (!second
|| (curr
&& entity_before(curr
, second
)))
4475 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4479 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1) {
4481 * Someone really wants this to run. If it's not unfair, run it.
4484 } else if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1) {
4486 * Prefer last buddy, try to return the CPU to a preempted task.
4491 clear_buddies(cfs_rq
, se
);
4496 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4498 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4501 * If still on the runqueue then deactivate_task()
4502 * was not called and update_curr() has to be done:
4505 update_curr(cfs_rq
);
4507 /* throttle cfs_rqs exceeding runtime */
4508 check_cfs_rq_runtime(cfs_rq
);
4510 check_spread(cfs_rq
, prev
);
4513 update_stats_wait_start(cfs_rq
, prev
);
4514 /* Put 'current' back into the tree. */
4515 __enqueue_entity(cfs_rq
, prev
);
4516 /* in !on_rq case, update occurred at dequeue */
4517 update_load_avg(cfs_rq
, prev
, 0);
4519 cfs_rq
->curr
= NULL
;
4523 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4526 * Update run-time statistics of the 'current'.
4528 update_curr(cfs_rq
);
4531 * Ensure that runnable average is periodically updated.
4533 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4534 update_cfs_group(curr
);
4536 #ifdef CONFIG_SCHED_HRTICK
4538 * queued ticks are scheduled to match the slice, so don't bother
4539 * validating it and just reschedule.
4542 resched_curr(rq_of(cfs_rq
));
4546 * don't let the period tick interfere with the hrtick preemption
4548 if (!sched_feat(DOUBLE_TICK
) &&
4549 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4553 if (cfs_rq
->nr_running
> 1)
4554 check_preempt_tick(cfs_rq
, curr
);
4558 /**************************************************
4559 * CFS bandwidth control machinery
4562 #ifdef CONFIG_CFS_BANDWIDTH
4564 #ifdef CONFIG_JUMP_LABEL
4565 static struct static_key __cfs_bandwidth_used
;
4567 static inline bool cfs_bandwidth_used(void)
4569 return static_key_false(&__cfs_bandwidth_used
);
4572 void cfs_bandwidth_usage_inc(void)
4574 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4577 void cfs_bandwidth_usage_dec(void)
4579 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4581 #else /* CONFIG_JUMP_LABEL */
4582 static bool cfs_bandwidth_used(void)
4587 void cfs_bandwidth_usage_inc(void) {}
4588 void cfs_bandwidth_usage_dec(void) {}
4589 #endif /* CONFIG_JUMP_LABEL */
4592 * default period for cfs group bandwidth.
4593 * default: 0.1s, units: nanoseconds
4595 static inline u64
default_cfs_period(void)
4597 return 100000000ULL;
4600 static inline u64
sched_cfs_bandwidth_slice(void)
4602 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4606 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4607 * directly instead of rq->clock to avoid adding additional synchronization
4610 * requires cfs_b->lock
4612 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4614 if (cfs_b
->quota
!= RUNTIME_INF
)
4615 cfs_b
->runtime
= cfs_b
->quota
;
4618 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4620 return &tg
->cfs_bandwidth
;
4623 /* returns 0 on failure to allocate runtime */
4624 static int __assign_cfs_rq_runtime(struct cfs_bandwidth
*cfs_b
,
4625 struct cfs_rq
*cfs_rq
, u64 target_runtime
)
4627 u64 min_amount
, amount
= 0;
4629 lockdep_assert_held(&cfs_b
->lock
);
4631 /* note: this is a positive sum as runtime_remaining <= 0 */
4632 min_amount
= target_runtime
- cfs_rq
->runtime_remaining
;
4634 if (cfs_b
->quota
== RUNTIME_INF
)
4635 amount
= min_amount
;
4637 start_cfs_bandwidth(cfs_b
);
4639 if (cfs_b
->runtime
> 0) {
4640 amount
= min(cfs_b
->runtime
, min_amount
);
4641 cfs_b
->runtime
-= amount
;
4646 cfs_rq
->runtime_remaining
+= amount
;
4648 return cfs_rq
->runtime_remaining
> 0;
4651 /* returns 0 on failure to allocate runtime */
4652 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4654 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4657 raw_spin_lock(&cfs_b
->lock
);
4658 ret
= __assign_cfs_rq_runtime(cfs_b
, cfs_rq
, sched_cfs_bandwidth_slice());
4659 raw_spin_unlock(&cfs_b
->lock
);
4664 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4666 /* dock delta_exec before expiring quota (as it could span periods) */
4667 cfs_rq
->runtime_remaining
-= delta_exec
;
4669 if (likely(cfs_rq
->runtime_remaining
> 0))
4672 if (cfs_rq
->throttled
)
4675 * if we're unable to extend our runtime we resched so that the active
4676 * hierarchy can be throttled
4678 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4679 resched_curr(rq_of(cfs_rq
));
4682 static __always_inline
4683 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4685 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4688 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4691 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4693 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4696 /* check whether cfs_rq, or any parent, is throttled */
4697 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4699 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4703 * Ensure that neither of the group entities corresponding to src_cpu or
4704 * dest_cpu are members of a throttled hierarchy when performing group
4705 * load-balance operations.
4707 static inline int throttled_lb_pair(struct task_group
*tg
,
4708 int src_cpu
, int dest_cpu
)
4710 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4712 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4713 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4715 return throttled_hierarchy(src_cfs_rq
) ||
4716 throttled_hierarchy(dest_cfs_rq
);
4719 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4721 struct rq
*rq
= data
;
4722 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4724 cfs_rq
->throttle_count
--;
4725 if (!cfs_rq
->throttle_count
) {
4726 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4727 cfs_rq
->throttled_clock_task
;
4729 /* Add cfs_rq with already running entity in the list */
4730 if (cfs_rq
->nr_running
>= 1)
4731 list_add_leaf_cfs_rq(cfs_rq
);
4737 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4739 struct rq
*rq
= data
;
4740 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4742 /* group is entering throttled state, stop time */
4743 if (!cfs_rq
->throttle_count
) {
4744 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4745 list_del_leaf_cfs_rq(cfs_rq
);
4747 cfs_rq
->throttle_count
++;
4752 static bool throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4754 struct rq
*rq
= rq_of(cfs_rq
);
4755 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4756 struct sched_entity
*se
;
4757 long task_delta
, idle_task_delta
, dequeue
= 1;
4759 raw_spin_lock(&cfs_b
->lock
);
4760 /* This will start the period timer if necessary */
4761 if (__assign_cfs_rq_runtime(cfs_b
, cfs_rq
, 1)) {
4763 * We have raced with bandwidth becoming available, and if we
4764 * actually throttled the timer might not unthrottle us for an
4765 * entire period. We additionally needed to make sure that any
4766 * subsequent check_cfs_rq_runtime calls agree not to throttle
4767 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4768 * for 1ns of runtime rather than just check cfs_b.
4772 list_add_tail_rcu(&cfs_rq
->throttled_list
,
4773 &cfs_b
->throttled_cfs_rq
);
4775 raw_spin_unlock(&cfs_b
->lock
);
4778 return false; /* Throttle no longer required. */
4780 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4782 /* freeze hierarchy runnable averages while throttled */
4784 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4787 task_delta
= cfs_rq
->h_nr_running
;
4788 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4789 for_each_sched_entity(se
) {
4790 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4791 /* throttled entity or throttle-on-deactivate */
4795 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4797 qcfs_rq
->h_nr_running
-= task_delta
;
4798 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4800 if (qcfs_rq
->load
.weight
) {
4801 /* Avoid re-evaluating load for this entity: */
4802 se
= parent_entity(se
);
4807 for_each_sched_entity(se
) {
4808 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4809 /* throttled entity or throttle-on-deactivate */
4813 update_load_avg(qcfs_rq
, se
, 0);
4814 se_update_runnable(se
);
4816 qcfs_rq
->h_nr_running
-= task_delta
;
4817 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4820 /* At this point se is NULL and we are at root level*/
4821 sub_nr_running(rq
, task_delta
);
4825 * Note: distribution will already see us throttled via the
4826 * throttled-list. rq->lock protects completion.
4828 cfs_rq
->throttled
= 1;
4829 cfs_rq
->throttled_clock
= rq_clock(rq
);
4833 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4835 struct rq
*rq
= rq_of(cfs_rq
);
4836 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4837 struct sched_entity
*se
;
4838 long task_delta
, idle_task_delta
;
4840 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4842 cfs_rq
->throttled
= 0;
4844 update_rq_clock(rq
);
4846 raw_spin_lock(&cfs_b
->lock
);
4847 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4848 list_del_rcu(&cfs_rq
->throttled_list
);
4849 raw_spin_unlock(&cfs_b
->lock
);
4851 /* update hierarchical throttle state */
4852 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4854 if (!cfs_rq
->load
.weight
)
4857 task_delta
= cfs_rq
->h_nr_running
;
4858 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4859 for_each_sched_entity(se
) {
4862 cfs_rq
= cfs_rq_of(se
);
4863 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4865 cfs_rq
->h_nr_running
+= task_delta
;
4866 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4868 /* end evaluation on encountering a throttled cfs_rq */
4869 if (cfs_rq_throttled(cfs_rq
))
4870 goto unthrottle_throttle
;
4873 for_each_sched_entity(se
) {
4874 cfs_rq
= cfs_rq_of(se
);
4876 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4877 se_update_runnable(se
);
4879 cfs_rq
->h_nr_running
+= task_delta
;
4880 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4883 /* end evaluation on encountering a throttled cfs_rq */
4884 if (cfs_rq_throttled(cfs_rq
))
4885 goto unthrottle_throttle
;
4888 * One parent has been throttled and cfs_rq removed from the
4889 * list. Add it back to not break the leaf list.
4891 if (throttled_hierarchy(cfs_rq
))
4892 list_add_leaf_cfs_rq(cfs_rq
);
4895 /* At this point se is NULL and we are at root level*/
4896 add_nr_running(rq
, task_delta
);
4898 unthrottle_throttle
:
4900 * The cfs_rq_throttled() breaks in the above iteration can result in
4901 * incomplete leaf list maintenance, resulting in triggering the
4904 for_each_sched_entity(se
) {
4905 cfs_rq
= cfs_rq_of(se
);
4907 if (list_add_leaf_cfs_rq(cfs_rq
))
4911 assert_list_leaf_cfs_rq(rq
);
4913 /* Determine whether we need to wake up potentially idle CPU: */
4914 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4918 static void distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
)
4920 struct cfs_rq
*cfs_rq
;
4921 u64 runtime
, remaining
= 1;
4924 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4926 struct rq
*rq
= rq_of(cfs_rq
);
4929 rq_lock_irqsave(rq
, &rf
);
4930 if (!cfs_rq_throttled(cfs_rq
))
4933 /* By the above check, this should never be true */
4934 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4936 raw_spin_lock(&cfs_b
->lock
);
4937 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4938 if (runtime
> cfs_b
->runtime
)
4939 runtime
= cfs_b
->runtime
;
4940 cfs_b
->runtime
-= runtime
;
4941 remaining
= cfs_b
->runtime
;
4942 raw_spin_unlock(&cfs_b
->lock
);
4944 cfs_rq
->runtime_remaining
+= runtime
;
4946 /* we check whether we're throttled above */
4947 if (cfs_rq
->runtime_remaining
> 0)
4948 unthrottle_cfs_rq(cfs_rq
);
4951 rq_unlock_irqrestore(rq
, &rf
);
4960 * Responsible for refilling a task_group's bandwidth and unthrottling its
4961 * cfs_rqs as appropriate. If there has been no activity within the last
4962 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4963 * used to track this state.
4965 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
4969 /* no need to continue the timer with no bandwidth constraint */
4970 if (cfs_b
->quota
== RUNTIME_INF
)
4971 goto out_deactivate
;
4973 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4974 cfs_b
->nr_periods
+= overrun
;
4977 * idle depends on !throttled (for the case of a large deficit), and if
4978 * we're going inactive then everything else can be deferred
4980 if (cfs_b
->idle
&& !throttled
)
4981 goto out_deactivate
;
4983 __refill_cfs_bandwidth_runtime(cfs_b
);
4986 /* mark as potentially idle for the upcoming period */
4991 /* account preceding periods in which throttling occurred */
4992 cfs_b
->nr_throttled
+= overrun
;
4995 * This check is repeated as we release cfs_b->lock while we unthrottle.
4997 while (throttled
&& cfs_b
->runtime
> 0) {
4998 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4999 /* we can't nest cfs_b->lock while distributing bandwidth */
5000 distribute_cfs_runtime(cfs_b
);
5001 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5003 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
5007 * While we are ensured activity in the period following an
5008 * unthrottle, this also covers the case in which the new bandwidth is
5009 * insufficient to cover the existing bandwidth deficit. (Forcing the
5010 * timer to remain active while there are any throttled entities.)
5020 /* a cfs_rq won't donate quota below this amount */
5021 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
5022 /* minimum remaining period time to redistribute slack quota */
5023 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
5024 /* how long we wait to gather additional slack before distributing */
5025 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
5028 * Are we near the end of the current quota period?
5030 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5031 * hrtimer base being cleared by hrtimer_start. In the case of
5032 * migrate_hrtimers, base is never cleared, so we are fine.
5034 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
5036 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
5039 /* if the call-back is running a quota refresh is already occurring */
5040 if (hrtimer_callback_running(refresh_timer
))
5043 /* is a quota refresh about to occur? */
5044 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
5045 if (remaining
< min_expire
)
5051 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
5053 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
5055 /* if there's a quota refresh soon don't bother with slack */
5056 if (runtime_refresh_within(cfs_b
, min_left
))
5059 /* don't push forwards an existing deferred unthrottle */
5060 if (cfs_b
->slack_started
)
5062 cfs_b
->slack_started
= true;
5064 hrtimer_start(&cfs_b
->slack_timer
,
5065 ns_to_ktime(cfs_bandwidth_slack_period
),
5069 /* we know any runtime found here is valid as update_curr() precedes return */
5070 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5072 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
5073 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
5075 if (slack_runtime
<= 0)
5078 raw_spin_lock(&cfs_b
->lock
);
5079 if (cfs_b
->quota
!= RUNTIME_INF
) {
5080 cfs_b
->runtime
+= slack_runtime
;
5082 /* we are under rq->lock, defer unthrottling using a timer */
5083 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
5084 !list_empty(&cfs_b
->throttled_cfs_rq
))
5085 start_cfs_slack_bandwidth(cfs_b
);
5087 raw_spin_unlock(&cfs_b
->lock
);
5089 /* even if it's not valid for return we don't want to try again */
5090 cfs_rq
->runtime_remaining
-= slack_runtime
;
5093 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5095 if (!cfs_bandwidth_used())
5098 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
5101 __return_cfs_rq_runtime(cfs_rq
);
5105 * This is done with a timer (instead of inline with bandwidth return) since
5106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5108 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
5110 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
5111 unsigned long flags
;
5113 /* confirm we're still not at a refresh boundary */
5114 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5115 cfs_b
->slack_started
= false;
5117 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
5118 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5122 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
5123 runtime
= cfs_b
->runtime
;
5125 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5130 distribute_cfs_runtime(cfs_b
);
5134 * When a group wakes up we want to make sure that its quota is not already
5135 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5136 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5138 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
5140 if (!cfs_bandwidth_used())
5143 /* an active group must be handled by the update_curr()->put() path */
5144 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
5147 /* ensure the group is not already throttled */
5148 if (cfs_rq_throttled(cfs_rq
))
5151 /* update runtime allocation */
5152 account_cfs_rq_runtime(cfs_rq
, 0);
5153 if (cfs_rq
->runtime_remaining
<= 0)
5154 throttle_cfs_rq(cfs_rq
);
5157 static void sync_throttle(struct task_group
*tg
, int cpu
)
5159 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
5161 if (!cfs_bandwidth_used())
5167 cfs_rq
= tg
->cfs_rq
[cpu
];
5168 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
5170 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
5171 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
5174 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5175 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5177 if (!cfs_bandwidth_used())
5180 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
5184 * it's possible for a throttled entity to be forced into a running
5185 * state (e.g. set_curr_task), in this case we're finished.
5187 if (cfs_rq_throttled(cfs_rq
))
5190 return throttle_cfs_rq(cfs_rq
);
5193 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
5195 struct cfs_bandwidth
*cfs_b
=
5196 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
5198 do_sched_cfs_slack_timer(cfs_b
);
5200 return HRTIMER_NORESTART
;
5203 extern const u64 max_cfs_quota_period
;
5205 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
5207 struct cfs_bandwidth
*cfs_b
=
5208 container_of(timer
, struct cfs_bandwidth
, period_timer
);
5209 unsigned long flags
;
5214 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5216 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
5220 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
5223 u64
new, old
= ktime_to_ns(cfs_b
->period
);
5226 * Grow period by a factor of 2 to avoid losing precision.
5227 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5231 if (new < max_cfs_quota_period
) {
5232 cfs_b
->period
= ns_to_ktime(new);
5235 pr_warn_ratelimited(
5236 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5238 div_u64(new, NSEC_PER_USEC
),
5239 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5241 pr_warn_ratelimited(
5242 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5244 div_u64(old
, NSEC_PER_USEC
),
5245 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5248 /* reset count so we don't come right back in here */
5253 cfs_b
->period_active
= 0;
5254 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5256 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
5259 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5261 raw_spin_lock_init(&cfs_b
->lock
);
5263 cfs_b
->quota
= RUNTIME_INF
;
5264 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5266 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5267 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5268 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5269 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5270 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5271 cfs_b
->slack_started
= false;
5274 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5276 cfs_rq
->runtime_enabled
= 0;
5277 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5280 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5282 lockdep_assert_held(&cfs_b
->lock
);
5284 if (cfs_b
->period_active
)
5287 cfs_b
->period_active
= 1;
5288 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5289 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5292 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5294 /* init_cfs_bandwidth() was not called */
5295 if (!cfs_b
->throttled_cfs_rq
.next
)
5298 hrtimer_cancel(&cfs_b
->period_timer
);
5299 hrtimer_cancel(&cfs_b
->slack_timer
);
5303 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5305 * The race is harmless, since modifying bandwidth settings of unhooked group
5306 * bits doesn't do much.
5309 /* cpu online calback */
5310 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5312 struct task_group
*tg
;
5314 lockdep_assert_held(&rq
->lock
);
5317 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5318 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5319 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5321 raw_spin_lock(&cfs_b
->lock
);
5322 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5323 raw_spin_unlock(&cfs_b
->lock
);
5328 /* cpu offline callback */
5329 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5331 struct task_group
*tg
;
5333 lockdep_assert_held(&rq
->lock
);
5336 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5337 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5339 if (!cfs_rq
->runtime_enabled
)
5343 * clock_task is not advancing so we just need to make sure
5344 * there's some valid quota amount
5346 cfs_rq
->runtime_remaining
= 1;
5348 * Offline rq is schedulable till CPU is completely disabled
5349 * in take_cpu_down(), so we prevent new cfs throttling here.
5351 cfs_rq
->runtime_enabled
= 0;
5353 if (cfs_rq_throttled(cfs_rq
))
5354 unthrottle_cfs_rq(cfs_rq
);
5359 #else /* CONFIG_CFS_BANDWIDTH */
5361 static inline bool cfs_bandwidth_used(void)
5366 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5367 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5368 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5369 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5370 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5372 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5377 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5382 static inline int throttled_lb_pair(struct task_group
*tg
,
5383 int src_cpu
, int dest_cpu
)
5388 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5390 #ifdef CONFIG_FAIR_GROUP_SCHED
5391 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5394 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5398 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5399 static inline void update_runtime_enabled(struct rq
*rq
) {}
5400 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5402 #endif /* CONFIG_CFS_BANDWIDTH */
5404 /**************************************************
5405 * CFS operations on tasks:
5408 #ifdef CONFIG_SCHED_HRTICK
5409 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5411 struct sched_entity
*se
= &p
->se
;
5412 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5414 SCHED_WARN_ON(task_rq(p
) != rq
);
5416 if (rq
->cfs
.h_nr_running
> 1) {
5417 u64 slice
= sched_slice(cfs_rq
, se
);
5418 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5419 s64 delta
= slice
- ran
;
5426 hrtick_start(rq
, delta
);
5431 * called from enqueue/dequeue and updates the hrtick when the
5432 * current task is from our class and nr_running is low enough
5435 static void hrtick_update(struct rq
*rq
)
5437 struct task_struct
*curr
= rq
->curr
;
5439 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5442 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5443 hrtick_start_fair(rq
, curr
);
5445 #else /* !CONFIG_SCHED_HRTICK */
5447 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5451 static inline void hrtick_update(struct rq
*rq
)
5457 static inline unsigned long cpu_util(int cpu
);
5459 static inline bool cpu_overutilized(int cpu
)
5461 return !fits_capacity(cpu_util(cpu
), capacity_of(cpu
));
5464 static inline void update_overutilized_status(struct rq
*rq
)
5466 if (!READ_ONCE(rq
->rd
->overutilized
) && cpu_overutilized(rq
->cpu
)) {
5467 WRITE_ONCE(rq
->rd
->overutilized
, SG_OVERUTILIZED
);
5468 trace_sched_overutilized_tp(rq
->rd
, SG_OVERUTILIZED
);
5472 static inline void update_overutilized_status(struct rq
*rq
) { }
5475 /* Runqueue only has SCHED_IDLE tasks enqueued */
5476 static int sched_idle_rq(struct rq
*rq
)
5478 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
5483 static int sched_idle_cpu(int cpu
)
5485 return sched_idle_rq(cpu_rq(cpu
));
5490 * The enqueue_task method is called before nr_running is
5491 * increased. Here we update the fair scheduling stats and
5492 * then put the task into the rbtree:
5495 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5497 struct cfs_rq
*cfs_rq
;
5498 struct sched_entity
*se
= &p
->se
;
5499 int idle_h_nr_running
= task_has_idle_policy(p
);
5500 int task_new
= !(flags
& ENQUEUE_WAKEUP
);
5503 * The code below (indirectly) updates schedutil which looks at
5504 * the cfs_rq utilization to select a frequency.
5505 * Let's add the task's estimated utilization to the cfs_rq's
5506 * estimated utilization, before we update schedutil.
5508 util_est_enqueue(&rq
->cfs
, p
);
5511 * If in_iowait is set, the code below may not trigger any cpufreq
5512 * utilization updates, so do it here explicitly with the IOWAIT flag
5516 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5518 for_each_sched_entity(se
) {
5521 cfs_rq
= cfs_rq_of(se
);
5522 enqueue_entity(cfs_rq
, se
, flags
);
5524 cfs_rq
->h_nr_running
++;
5525 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5527 /* end evaluation on encountering a throttled cfs_rq */
5528 if (cfs_rq_throttled(cfs_rq
))
5529 goto enqueue_throttle
;
5531 flags
= ENQUEUE_WAKEUP
;
5534 for_each_sched_entity(se
) {
5535 cfs_rq
= cfs_rq_of(se
);
5537 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5538 se_update_runnable(se
);
5539 update_cfs_group(se
);
5541 cfs_rq
->h_nr_running
++;
5542 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5544 /* end evaluation on encountering a throttled cfs_rq */
5545 if (cfs_rq_throttled(cfs_rq
))
5546 goto enqueue_throttle
;
5549 * One parent has been throttled and cfs_rq removed from the
5550 * list. Add it back to not break the leaf list.
5552 if (throttled_hierarchy(cfs_rq
))
5553 list_add_leaf_cfs_rq(cfs_rq
);
5556 /* At this point se is NULL and we are at root level*/
5557 add_nr_running(rq
, 1);
5560 * Since new tasks are assigned an initial util_avg equal to
5561 * half of the spare capacity of their CPU, tiny tasks have the
5562 * ability to cross the overutilized threshold, which will
5563 * result in the load balancer ruining all the task placement
5564 * done by EAS. As a way to mitigate that effect, do not account
5565 * for the first enqueue operation of new tasks during the
5566 * overutilized flag detection.
5568 * A better way of solving this problem would be to wait for
5569 * the PELT signals of tasks to converge before taking them
5570 * into account, but that is not straightforward to implement,
5571 * and the following generally works well enough in practice.
5574 update_overutilized_status(rq
);
5577 if (cfs_bandwidth_used()) {
5579 * When bandwidth control is enabled; the cfs_rq_throttled()
5580 * breaks in the above iteration can result in incomplete
5581 * leaf list maintenance, resulting in triggering the assertion
5584 for_each_sched_entity(se
) {
5585 cfs_rq
= cfs_rq_of(se
);
5587 if (list_add_leaf_cfs_rq(cfs_rq
))
5592 assert_list_leaf_cfs_rq(rq
);
5597 static void set_next_buddy(struct sched_entity
*se
);
5600 * The dequeue_task method is called before nr_running is
5601 * decreased. We remove the task from the rbtree and
5602 * update the fair scheduling stats:
5604 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5606 struct cfs_rq
*cfs_rq
;
5607 struct sched_entity
*se
= &p
->se
;
5608 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5609 int idle_h_nr_running
= task_has_idle_policy(p
);
5610 bool was_sched_idle
= sched_idle_rq(rq
);
5612 for_each_sched_entity(se
) {
5613 cfs_rq
= cfs_rq_of(se
);
5614 dequeue_entity(cfs_rq
, se
, flags
);
5616 cfs_rq
->h_nr_running
--;
5617 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5619 /* end evaluation on encountering a throttled cfs_rq */
5620 if (cfs_rq_throttled(cfs_rq
))
5621 goto dequeue_throttle
;
5623 /* Don't dequeue parent if it has other entities besides us */
5624 if (cfs_rq
->load
.weight
) {
5625 /* Avoid re-evaluating load for this entity: */
5626 se
= parent_entity(se
);
5628 * Bias pick_next to pick a task from this cfs_rq, as
5629 * p is sleeping when it is within its sched_slice.
5631 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5635 flags
|= DEQUEUE_SLEEP
;
5638 for_each_sched_entity(se
) {
5639 cfs_rq
= cfs_rq_of(se
);
5641 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5642 se_update_runnable(se
);
5643 update_cfs_group(se
);
5645 cfs_rq
->h_nr_running
--;
5646 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5648 /* end evaluation on encountering a throttled cfs_rq */
5649 if (cfs_rq_throttled(cfs_rq
))
5650 goto dequeue_throttle
;
5654 /* At this point se is NULL and we are at root level*/
5655 sub_nr_running(rq
, 1);
5657 /* balance early to pull high priority tasks */
5658 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
5659 rq
->next_balance
= jiffies
;
5662 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5668 /* Working cpumask for: load_balance, load_balance_newidle. */
5669 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5670 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5672 #ifdef CONFIG_NO_HZ_COMMON
5675 cpumask_var_t idle_cpus_mask
;
5677 int has_blocked
; /* Idle CPUS has blocked load */
5678 unsigned long next_balance
; /* in jiffy units */
5679 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5680 } nohz ____cacheline_aligned
;
5682 #endif /* CONFIG_NO_HZ_COMMON */
5684 static unsigned long cpu_load(struct rq
*rq
)
5686 return cfs_rq_load_avg(&rq
->cfs
);
5690 * cpu_load_without - compute CPU load without any contributions from *p
5691 * @cpu: the CPU which load is requested
5692 * @p: the task which load should be discounted
5694 * The load of a CPU is defined by the load of tasks currently enqueued on that
5695 * CPU as well as tasks which are currently sleeping after an execution on that
5698 * This method returns the load of the specified CPU by discounting the load of
5699 * the specified task, whenever the task is currently contributing to the CPU
5702 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
5704 struct cfs_rq
*cfs_rq
;
5707 /* Task has no contribution or is new */
5708 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5709 return cpu_load(rq
);
5712 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
5714 /* Discount task's util from CPU's util */
5715 lsub_positive(&load
, task_h_load(p
));
5720 static unsigned long cpu_runnable(struct rq
*rq
)
5722 return cfs_rq_runnable_avg(&rq
->cfs
);
5725 static unsigned long cpu_runnable_without(struct rq
*rq
, struct task_struct
*p
)
5727 struct cfs_rq
*cfs_rq
;
5728 unsigned int runnable
;
5730 /* Task has no contribution or is new */
5731 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5732 return cpu_runnable(rq
);
5735 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
5737 /* Discount task's runnable from CPU's runnable */
5738 lsub_positive(&runnable
, p
->se
.avg
.runnable_avg
);
5743 static unsigned long capacity_of(int cpu
)
5745 return cpu_rq(cpu
)->cpu_capacity
;
5748 static void record_wakee(struct task_struct
*p
)
5751 * Only decay a single time; tasks that have less then 1 wakeup per
5752 * jiffy will not have built up many flips.
5754 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5755 current
->wakee_flips
>>= 1;
5756 current
->wakee_flip_decay_ts
= jiffies
;
5759 if (current
->last_wakee
!= p
) {
5760 current
->last_wakee
= p
;
5761 current
->wakee_flips
++;
5766 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5768 * A waker of many should wake a different task than the one last awakened
5769 * at a frequency roughly N times higher than one of its wakees.
5771 * In order to determine whether we should let the load spread vs consolidating
5772 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5773 * partner, and a factor of lls_size higher frequency in the other.
5775 * With both conditions met, we can be relatively sure that the relationship is
5776 * non-monogamous, with partner count exceeding socket size.
5778 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5779 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5782 static int wake_wide(struct task_struct
*p
)
5784 unsigned int master
= current
->wakee_flips
;
5785 unsigned int slave
= p
->wakee_flips
;
5786 int factor
= __this_cpu_read(sd_llc_size
);
5789 swap(master
, slave
);
5790 if (slave
< factor
|| master
< slave
* factor
)
5796 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5797 * soonest. For the purpose of speed we only consider the waking and previous
5800 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5801 * cache-affine and is (or will be) idle.
5803 * wake_affine_weight() - considers the weight to reflect the average
5804 * scheduling latency of the CPUs. This seems to work
5805 * for the overloaded case.
5808 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5811 * If this_cpu is idle, it implies the wakeup is from interrupt
5812 * context. Only allow the move if cache is shared. Otherwise an
5813 * interrupt intensive workload could force all tasks onto one
5814 * node depending on the IO topology or IRQ affinity settings.
5816 * If the prev_cpu is idle and cache affine then avoid a migration.
5817 * There is no guarantee that the cache hot data from an interrupt
5818 * is more important than cache hot data on the prev_cpu and from
5819 * a cpufreq perspective, it's better to have higher utilisation
5822 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5823 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5825 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5828 if (available_idle_cpu(prev_cpu
))
5831 return nr_cpumask_bits
;
5835 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5836 int this_cpu
, int prev_cpu
, int sync
)
5838 s64 this_eff_load
, prev_eff_load
;
5839 unsigned long task_load
;
5841 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
5844 unsigned long current_load
= task_h_load(current
);
5846 if (current_load
> this_eff_load
)
5849 this_eff_load
-= current_load
;
5852 task_load
= task_h_load(p
);
5854 this_eff_load
+= task_load
;
5855 if (sched_feat(WA_BIAS
))
5856 this_eff_load
*= 100;
5857 this_eff_load
*= capacity_of(prev_cpu
);
5859 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
5860 prev_eff_load
-= task_load
;
5861 if (sched_feat(WA_BIAS
))
5862 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5863 prev_eff_load
*= capacity_of(this_cpu
);
5866 * If sync, adjust the weight of prev_eff_load such that if
5867 * prev_eff == this_eff that select_idle_sibling() will consider
5868 * stacking the wakee on top of the waker if no other CPU is
5874 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5877 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5878 int this_cpu
, int prev_cpu
, int sync
)
5880 int target
= nr_cpumask_bits
;
5882 if (sched_feat(WA_IDLE
))
5883 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5885 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5886 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5888 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5889 if (target
== nr_cpumask_bits
)
5892 schedstat_inc(sd
->ttwu_move_affine
);
5893 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5897 static struct sched_group
*
5898 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
);
5901 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5904 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5906 unsigned long load
, min_load
= ULONG_MAX
;
5907 unsigned int min_exit_latency
= UINT_MAX
;
5908 u64 latest_idle_timestamp
= 0;
5909 int least_loaded_cpu
= this_cpu
;
5910 int shallowest_idle_cpu
= -1;
5913 /* Check if we have any choice: */
5914 if (group
->group_weight
== 1)
5915 return cpumask_first(sched_group_span(group
));
5917 /* Traverse only the allowed CPUs */
5918 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
5919 if (sched_idle_cpu(i
))
5922 if (available_idle_cpu(i
)) {
5923 struct rq
*rq
= cpu_rq(i
);
5924 struct cpuidle_state
*idle
= idle_get_state(rq
);
5925 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5927 * We give priority to a CPU whose idle state
5928 * has the smallest exit latency irrespective
5929 * of any idle timestamp.
5931 min_exit_latency
= idle
->exit_latency
;
5932 latest_idle_timestamp
= rq
->idle_stamp
;
5933 shallowest_idle_cpu
= i
;
5934 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5935 rq
->idle_stamp
> latest_idle_timestamp
) {
5937 * If equal or no active idle state, then
5938 * the most recently idled CPU might have
5941 latest_idle_timestamp
= rq
->idle_stamp
;
5942 shallowest_idle_cpu
= i
;
5944 } else if (shallowest_idle_cpu
== -1) {
5945 load
= cpu_load(cpu_rq(i
));
5946 if (load
< min_load
) {
5948 least_loaded_cpu
= i
;
5953 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5956 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5957 int cpu
, int prev_cpu
, int sd_flag
)
5961 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
5965 * We need task's util for cpu_util_without, sync it up to
5966 * prev_cpu's last_update_time.
5968 if (!(sd_flag
& SD_BALANCE_FORK
))
5969 sync_entity_load_avg(&p
->se
);
5972 struct sched_group
*group
;
5973 struct sched_domain
*tmp
;
5976 if (!(sd
->flags
& sd_flag
)) {
5981 group
= find_idlest_group(sd
, p
, cpu
);
5987 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5988 if (new_cpu
== cpu
) {
5989 /* Now try balancing at a lower domain level of 'cpu': */
5994 /* Now try balancing at a lower domain level of 'new_cpu': */
5996 weight
= sd
->span_weight
;
5998 for_each_domain(cpu
, tmp
) {
5999 if (weight
<= tmp
->span_weight
)
6001 if (tmp
->flags
& sd_flag
)
6009 #ifdef CONFIG_SCHED_SMT
6010 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
6011 EXPORT_SYMBOL_GPL(sched_smt_present
);
6013 static inline void set_idle_cores(int cpu
, int val
)
6015 struct sched_domain_shared
*sds
;
6017 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
6019 WRITE_ONCE(sds
->has_idle_cores
, val
);
6022 static inline bool test_idle_cores(int cpu
, bool def
)
6024 struct sched_domain_shared
*sds
;
6026 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
6028 return READ_ONCE(sds
->has_idle_cores
);
6034 * Scans the local SMT mask to see if the entire core is idle, and records this
6035 * information in sd_llc_shared->has_idle_cores.
6037 * Since SMT siblings share all cache levels, inspecting this limited remote
6038 * state should be fairly cheap.
6040 void __update_idle_core(struct rq
*rq
)
6042 int core
= cpu_of(rq
);
6046 if (test_idle_cores(core
, true))
6049 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6053 if (!available_idle_cpu(cpu
))
6057 set_idle_cores(core
, 1);
6063 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6064 * there are no idle cores left in the system; tracked through
6065 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6067 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6069 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6072 if (!static_branch_likely(&sched_smt_present
))
6075 if (!test_idle_cores(target
, false))
6078 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6080 for_each_cpu_wrap(core
, cpus
, target
) {
6083 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6084 if (!available_idle_cpu(cpu
)) {
6093 cpumask_andnot(cpus
, cpus
, cpu_smt_mask(core
));
6097 * Failed to find an idle core; stop looking for one.
6099 set_idle_cores(target
, 0);
6105 * Scan the local SMT mask for idle CPUs.
6107 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6111 if (!static_branch_likely(&sched_smt_present
))
6114 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6115 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
) ||
6116 !cpumask_test_cpu(cpu
, sched_domain_span(sd
)))
6118 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6125 #else /* CONFIG_SCHED_SMT */
6127 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6132 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6137 #endif /* CONFIG_SCHED_SMT */
6140 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6141 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6142 * average idle time for this rq (as found in rq->avg_idle).
6144 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6146 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6147 struct sched_domain
*this_sd
;
6148 u64 avg_cost
, avg_idle
;
6150 int this = smp_processor_id();
6151 int cpu
, nr
= INT_MAX
;
6153 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6158 * Due to large variance we need a large fuzz factor; hackbench in
6159 * particularly is sensitive here.
6161 avg_idle
= this_rq()->avg_idle
/ 512;
6162 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6164 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6167 if (sched_feat(SIS_PROP
)) {
6168 u64 span_avg
= sd
->span_weight
* avg_idle
;
6169 if (span_avg
> 4*avg_cost
)
6170 nr
= div_u64(span_avg
, avg_cost
);
6175 time
= cpu_clock(this);
6177 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6179 for_each_cpu_wrap(cpu
, cpus
, target
) {
6182 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6186 time
= cpu_clock(this) - time
;
6187 update_avg(&this_sd
->avg_scan_cost
, time
);
6193 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6194 * the task fits. If no CPU is big enough, but there are idle ones, try to
6195 * maximize capacity.
6198 select_idle_capacity(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6200 unsigned long task_util
, best_cap
= 0;
6201 int cpu
, best_cpu
= -1;
6202 struct cpumask
*cpus
;
6204 cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6205 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6207 task_util
= uclamp_task_util(p
);
6209 for_each_cpu_wrap(cpu
, cpus
, target
) {
6210 unsigned long cpu_cap
= capacity_of(cpu
);
6212 if (!available_idle_cpu(cpu
) && !sched_idle_cpu(cpu
))
6214 if (fits_capacity(task_util
, cpu_cap
))
6217 if (cpu_cap
> best_cap
) {
6226 static inline bool asym_fits_capacity(int task_util
, int cpu
)
6228 if (static_branch_unlikely(&sched_asym_cpucapacity
))
6229 return fits_capacity(task_util
, capacity_of(cpu
));
6235 * Try and locate an idle core/thread in the LLC cache domain.
6237 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6239 struct sched_domain
*sd
;
6240 unsigned long task_util
;
6241 int i
, recent_used_cpu
;
6244 * On asymmetric system, update task utilization because we will check
6245 * that the task fits with cpu's capacity.
6247 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
6248 sync_entity_load_avg(&p
->se
);
6249 task_util
= uclamp_task_util(p
);
6252 if ((available_idle_cpu(target
) || sched_idle_cpu(target
)) &&
6253 asym_fits_capacity(task_util
, target
))
6257 * If the previous CPU is cache affine and idle, don't be stupid:
6259 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
6260 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)) &&
6261 asym_fits_capacity(task_util
, prev
))
6265 * Allow a per-cpu kthread to stack with the wakee if the
6266 * kworker thread and the tasks previous CPUs are the same.
6267 * The assumption is that the wakee queued work for the
6268 * per-cpu kthread that is now complete and the wakeup is
6269 * essentially a sync wakeup. An obvious example of this
6270 * pattern is IO completions.
6272 if (is_per_cpu_kthread(current
) &&
6273 prev
== smp_processor_id() &&
6274 this_rq()->nr_running
<= 1) {
6278 /* Check a recently used CPU as a potential idle candidate: */
6279 recent_used_cpu
= p
->recent_used_cpu
;
6280 if (recent_used_cpu
!= prev
&&
6281 recent_used_cpu
!= target
&&
6282 cpus_share_cache(recent_used_cpu
, target
) &&
6283 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
6284 cpumask_test_cpu(p
->recent_used_cpu
, p
->cpus_ptr
) &&
6285 asym_fits_capacity(task_util
, recent_used_cpu
)) {
6287 * Replace recent_used_cpu with prev as it is a potential
6288 * candidate for the next wake:
6290 p
->recent_used_cpu
= prev
;
6291 return recent_used_cpu
;
6295 * For asymmetric CPU capacity systems, our domain of interest is
6296 * sd_asym_cpucapacity rather than sd_llc.
6298 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
6299 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, target
));
6301 * On an asymmetric CPU capacity system where an exclusive
6302 * cpuset defines a symmetric island (i.e. one unique
6303 * capacity_orig value through the cpuset), the key will be set
6304 * but the CPUs within that cpuset will not have a domain with
6305 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6309 i
= select_idle_capacity(p
, sd
, target
);
6310 return ((unsigned)i
< nr_cpumask_bits
) ? i
: target
;
6314 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6318 i
= select_idle_core(p
, sd
, target
);
6319 if ((unsigned)i
< nr_cpumask_bits
)
6322 i
= select_idle_cpu(p
, sd
, target
);
6323 if ((unsigned)i
< nr_cpumask_bits
)
6326 i
= select_idle_smt(p
, sd
, target
);
6327 if ((unsigned)i
< nr_cpumask_bits
)
6334 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6335 * @cpu: the CPU to get the utilization of
6337 * The unit of the return value must be the one of capacity so we can compare
6338 * the utilization with the capacity of the CPU that is available for CFS task
6339 * (ie cpu_capacity).
6341 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6342 * recent utilization of currently non-runnable tasks on a CPU. It represents
6343 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6344 * capacity_orig is the cpu_capacity available at the highest frequency
6345 * (arch_scale_freq_capacity()).
6346 * The utilization of a CPU converges towards a sum equal to or less than the
6347 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6348 * the running time on this CPU scaled by capacity_curr.
6350 * The estimated utilization of a CPU is defined to be the maximum between its
6351 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6352 * currently RUNNABLE on that CPU.
6353 * This allows to properly represent the expected utilization of a CPU which
6354 * has just got a big task running since a long sleep period. At the same time
6355 * however it preserves the benefits of the "blocked utilization" in
6356 * describing the potential for other tasks waking up on the same CPU.
6358 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6359 * higher than capacity_orig because of unfortunate rounding in
6360 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6361 * the average stabilizes with the new running time. We need to check that the
6362 * utilization stays within the range of [0..capacity_orig] and cap it if
6363 * necessary. Without utilization capping, a group could be seen as overloaded
6364 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6365 * available capacity. We allow utilization to overshoot capacity_curr (but not
6366 * capacity_orig) as it useful for predicting the capacity required after task
6367 * migrations (scheduler-driven DVFS).
6369 * Return: the (estimated) utilization for the specified CPU
6371 static inline unsigned long cpu_util(int cpu
)
6373 struct cfs_rq
*cfs_rq
;
6376 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6377 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6379 if (sched_feat(UTIL_EST
))
6380 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
6382 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6386 * cpu_util_without: compute cpu utilization without any contributions from *p
6387 * @cpu: the CPU which utilization is requested
6388 * @p: the task which utilization should be discounted
6390 * The utilization of a CPU is defined by the utilization of tasks currently
6391 * enqueued on that CPU as well as tasks which are currently sleeping after an
6392 * execution on that CPU.
6394 * This method returns the utilization of the specified CPU by discounting the
6395 * utilization of the specified task, whenever the task is currently
6396 * contributing to the CPU utilization.
6398 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6400 struct cfs_rq
*cfs_rq
;
6403 /* Task has no contribution or is new */
6404 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6405 return cpu_util(cpu
);
6407 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6408 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6410 /* Discount task's util from CPU's util */
6411 lsub_positive(&util
, task_util(p
));
6416 * a) if *p is the only task sleeping on this CPU, then:
6417 * cpu_util (== task_util) > util_est (== 0)
6418 * and thus we return:
6419 * cpu_util_without = (cpu_util - task_util) = 0
6421 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6423 * cpu_util >= task_util
6424 * cpu_util > util_est (== 0)
6425 * and thus we discount *p's blocked utilization to return:
6426 * cpu_util_without = (cpu_util - task_util) >= 0
6428 * c) if other tasks are RUNNABLE on that CPU and
6429 * util_est > cpu_util
6430 * then we use util_est since it returns a more restrictive
6431 * estimation of the spare capacity on that CPU, by just
6432 * considering the expected utilization of tasks already
6433 * runnable on that CPU.
6435 * Cases a) and b) are covered by the above code, while case c) is
6436 * covered by the following code when estimated utilization is
6439 if (sched_feat(UTIL_EST
)) {
6440 unsigned int estimated
=
6441 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6444 * Despite the following checks we still have a small window
6445 * for a possible race, when an execl's select_task_rq_fair()
6446 * races with LB's detach_task():
6449 * p->on_rq = TASK_ON_RQ_MIGRATING;
6450 * ---------------------------------- A
6451 * deactivate_task() \
6452 * dequeue_task() + RaceTime
6453 * util_est_dequeue() /
6454 * ---------------------------------- B
6456 * The additional check on "current == p" it's required to
6457 * properly fix the execl regression and it helps in further
6458 * reducing the chances for the above race.
6460 if (unlikely(task_on_rq_queued(p
) || current
== p
))
6461 lsub_positive(&estimated
, _task_util_est(p
));
6463 util
= max(util
, estimated
);
6467 * Utilization (estimated) can exceed the CPU capacity, thus let's
6468 * clamp to the maximum CPU capacity to ensure consistency with
6469 * the cpu_util call.
6471 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6475 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6478 static unsigned long cpu_util_next(int cpu
, struct task_struct
*p
, int dst_cpu
)
6480 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
6481 unsigned long util_est
, util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6484 * If @p migrates from @cpu to another, remove its contribution. Or,
6485 * if @p migrates from another CPU to @cpu, add its contribution. In
6486 * the other cases, @cpu is not impacted by the migration, so the
6487 * util_avg should already be correct.
6489 if (task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
6490 sub_positive(&util
, task_util(p
));
6491 else if (task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
6492 util
+= task_util(p
);
6494 if (sched_feat(UTIL_EST
)) {
6495 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6498 * During wake-up, the task isn't enqueued yet and doesn't
6499 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6500 * so just add it (if needed) to "simulate" what will be
6501 * cpu_util() after the task has been enqueued.
6504 util_est
+= _task_util_est(p
);
6506 util
= max(util
, util_est
);
6509 return min(util
, capacity_orig_of(cpu
));
6513 * compute_energy(): Estimates the energy that @pd would consume if @p was
6514 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6515 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6516 * to compute what would be the energy if we decided to actually migrate that
6520 compute_energy(struct task_struct
*p
, int dst_cpu
, struct perf_domain
*pd
)
6522 struct cpumask
*pd_mask
= perf_domain_span(pd
);
6523 unsigned long cpu_cap
= arch_scale_cpu_capacity(cpumask_first(pd_mask
));
6524 unsigned long max_util
= 0, sum_util
= 0;
6528 * The capacity state of CPUs of the current rd can be driven by CPUs
6529 * of another rd if they belong to the same pd. So, account for the
6530 * utilization of these CPUs too by masking pd with cpu_online_mask
6531 * instead of the rd span.
6533 * If an entire pd is outside of the current rd, it will not appear in
6534 * its pd list and will not be accounted by compute_energy().
6536 for_each_cpu_and(cpu
, pd_mask
, cpu_online_mask
) {
6537 unsigned long cpu_util
, util_cfs
= cpu_util_next(cpu
, p
, dst_cpu
);
6538 struct task_struct
*tsk
= cpu
== dst_cpu
? p
: NULL
;
6541 * Busy time computation: utilization clamping is not
6542 * required since the ratio (sum_util / cpu_capacity)
6543 * is already enough to scale the EM reported power
6544 * consumption at the (eventually clamped) cpu_capacity.
6546 sum_util
+= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6550 * Performance domain frequency: utilization clamping
6551 * must be considered since it affects the selection
6552 * of the performance domain frequency.
6553 * NOTE: in case RT tasks are running, by default the
6554 * FREQUENCY_UTIL's utilization can be max OPP.
6556 cpu_util
= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6557 FREQUENCY_UTIL
, tsk
);
6558 max_util
= max(max_util
, cpu_util
);
6561 return em_cpu_energy(pd
->em_pd
, max_util
, sum_util
);
6565 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6566 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6567 * spare capacity in each performance domain and uses it as a potential
6568 * candidate to execute the task. Then, it uses the Energy Model to figure
6569 * out which of the CPU candidates is the most energy-efficient.
6571 * The rationale for this heuristic is as follows. In a performance domain,
6572 * all the most energy efficient CPU candidates (according to the Energy
6573 * Model) are those for which we'll request a low frequency. When there are
6574 * several CPUs for which the frequency request will be the same, we don't
6575 * have enough data to break the tie between them, because the Energy Model
6576 * only includes active power costs. With this model, if we assume that
6577 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6578 * the maximum spare capacity in a performance domain is guaranteed to be among
6579 * the best candidates of the performance domain.
6581 * In practice, it could be preferable from an energy standpoint to pack
6582 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6583 * but that could also hurt our chances to go cluster idle, and we have no
6584 * ways to tell with the current Energy Model if this is actually a good
6585 * idea or not. So, find_energy_efficient_cpu() basically favors
6586 * cluster-packing, and spreading inside a cluster. That should at least be
6587 * a good thing for latency, and this is consistent with the idea that most
6588 * of the energy savings of EAS come from the asymmetry of the system, and
6589 * not so much from breaking the tie between identical CPUs. That's also the
6590 * reason why EAS is enabled in the topology code only for systems where
6591 * SD_ASYM_CPUCAPACITY is set.
6593 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6594 * they don't have any useful utilization data yet and it's not possible to
6595 * forecast their impact on energy consumption. Consequently, they will be
6596 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6597 * to be energy-inefficient in some use-cases. The alternative would be to
6598 * bias new tasks towards specific types of CPUs first, or to try to infer
6599 * their util_avg from the parent task, but those heuristics could hurt
6600 * other use-cases too. So, until someone finds a better way to solve this,
6601 * let's keep things simple by re-using the existing slow path.
6603 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
6605 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
6606 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
6607 unsigned long cpu_cap
, util
, base_energy
= 0;
6608 int cpu
, best_energy_cpu
= prev_cpu
;
6609 struct sched_domain
*sd
;
6610 struct perf_domain
*pd
;
6613 pd
= rcu_dereference(rd
->pd
);
6614 if (!pd
|| READ_ONCE(rd
->overutilized
))
6618 * Energy-aware wake-up happens on the lowest sched_domain starting
6619 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6621 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
6622 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
6627 sync_entity_load_avg(&p
->se
);
6628 if (!task_util_est(p
))
6631 for (; pd
; pd
= pd
->next
) {
6632 unsigned long cur_delta
, spare_cap
, max_spare_cap
= 0;
6633 unsigned long base_energy_pd
;
6634 int max_spare_cap_cpu
= -1;
6636 /* Compute the 'base' energy of the pd, without @p */
6637 base_energy_pd
= compute_energy(p
, -1, pd
);
6638 base_energy
+= base_energy_pd
;
6640 for_each_cpu_and(cpu
, perf_domain_span(pd
), sched_domain_span(sd
)) {
6641 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6644 util
= cpu_util_next(cpu
, p
, cpu
);
6645 cpu_cap
= capacity_of(cpu
);
6646 spare_cap
= cpu_cap
;
6647 lsub_positive(&spare_cap
, util
);
6650 * Skip CPUs that cannot satisfy the capacity request.
6651 * IOW, placing the task there would make the CPU
6652 * overutilized. Take uclamp into account to see how
6653 * much capacity we can get out of the CPU; this is
6654 * aligned with schedutil_cpu_util().
6656 util
= uclamp_rq_util_with(cpu_rq(cpu
), util
, p
);
6657 if (!fits_capacity(util
, cpu_cap
))
6660 /* Always use prev_cpu as a candidate. */
6661 if (cpu
== prev_cpu
) {
6662 prev_delta
= compute_energy(p
, prev_cpu
, pd
);
6663 prev_delta
-= base_energy_pd
;
6664 best_delta
= min(best_delta
, prev_delta
);
6668 * Find the CPU with the maximum spare capacity in
6669 * the performance domain
6671 if (spare_cap
> max_spare_cap
) {
6672 max_spare_cap
= spare_cap
;
6673 max_spare_cap_cpu
= cpu
;
6677 /* Evaluate the energy impact of using this CPU. */
6678 if (max_spare_cap_cpu
>= 0 && max_spare_cap_cpu
!= prev_cpu
) {
6679 cur_delta
= compute_energy(p
, max_spare_cap_cpu
, pd
);
6680 cur_delta
-= base_energy_pd
;
6681 if (cur_delta
< best_delta
) {
6682 best_delta
= cur_delta
;
6683 best_energy_cpu
= max_spare_cap_cpu
;
6691 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6692 * least 6% of the energy used by prev_cpu.
6694 if (prev_delta
== ULONG_MAX
)
6695 return best_energy_cpu
;
6697 if ((prev_delta
- best_delta
) > ((prev_delta
+ base_energy
) >> 4))
6698 return best_energy_cpu
;
6709 * select_task_rq_fair: Select target runqueue for the waking task in domains
6710 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6711 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6713 * Balances load by selecting the idlest CPU in the idlest group, or under
6714 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6716 * Returns the target CPU number.
6718 * preempt must be disabled.
6721 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int wake_flags
)
6723 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6724 struct sched_domain
*tmp
, *sd
= NULL
;
6725 int cpu
= smp_processor_id();
6726 int new_cpu
= prev_cpu
;
6727 int want_affine
= 0;
6728 /* SD_flags and WF_flags share the first nibble */
6729 int sd_flag
= wake_flags
& 0xF;
6731 if (wake_flags
& WF_TTWU
) {
6734 if (sched_energy_enabled()) {
6735 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
6741 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, p
->cpus_ptr
);
6745 for_each_domain(cpu
, tmp
) {
6747 * If both 'cpu' and 'prev_cpu' are part of this domain,
6748 * cpu is a valid SD_WAKE_AFFINE target.
6750 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6751 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6752 if (cpu
!= prev_cpu
)
6753 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6755 sd
= NULL
; /* Prefer wake_affine over balance flags */
6759 if (tmp
->flags
& sd_flag
)
6761 else if (!want_affine
)
6767 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6768 } else if (wake_flags
& WF_TTWU
) { /* XXX always ? */
6770 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6773 current
->recent_used_cpu
= cpu
;
6780 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6783 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6784 * cfs_rq_of(p) references at time of call are still valid and identify the
6785 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6787 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6790 * As blocked tasks retain absolute vruntime the migration needs to
6791 * deal with this by subtracting the old and adding the new
6792 * min_vruntime -- the latter is done by enqueue_entity() when placing
6793 * the task on the new runqueue.
6795 if (p
->state
== TASK_WAKING
) {
6796 struct sched_entity
*se
= &p
->se
;
6797 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6800 #ifndef CONFIG_64BIT
6801 u64 min_vruntime_copy
;
6804 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6806 min_vruntime
= cfs_rq
->min_vruntime
;
6807 } while (min_vruntime
!= min_vruntime_copy
);
6809 min_vruntime
= cfs_rq
->min_vruntime
;
6812 se
->vruntime
-= min_vruntime
;
6815 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6817 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6818 * rq->lock and can modify state directly.
6820 lockdep_assert_held(&task_rq(p
)->lock
);
6821 detach_entity_cfs_rq(&p
->se
);
6825 * We are supposed to update the task to "current" time, then
6826 * its up to date and ready to go to new CPU/cfs_rq. But we
6827 * have difficulty in getting what current time is, so simply
6828 * throw away the out-of-date time. This will result in the
6829 * wakee task is less decayed, but giving the wakee more load
6832 remove_entity_load_avg(&p
->se
);
6835 /* Tell new CPU we are migrated */
6836 p
->se
.avg
.last_update_time
= 0;
6838 /* We have migrated, no longer consider this task hot */
6839 p
->se
.exec_start
= 0;
6841 update_scan_period(p
, new_cpu
);
6844 static void task_dead_fair(struct task_struct
*p
)
6846 remove_entity_load_avg(&p
->se
);
6850 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6855 return newidle_balance(rq
, rf
) != 0;
6857 #endif /* CONFIG_SMP */
6859 static unsigned long wakeup_gran(struct sched_entity
*se
)
6861 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6864 * Since its curr running now, convert the gran from real-time
6865 * to virtual-time in his units.
6867 * By using 'se' instead of 'curr' we penalize light tasks, so
6868 * they get preempted easier. That is, if 'se' < 'curr' then
6869 * the resulting gran will be larger, therefore penalizing the
6870 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6871 * be smaller, again penalizing the lighter task.
6873 * This is especially important for buddies when the leftmost
6874 * task is higher priority than the buddy.
6876 return calc_delta_fair(gran
, se
);
6880 * Should 'se' preempt 'curr'.
6894 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6896 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6901 gran
= wakeup_gran(se
);
6908 static void set_last_buddy(struct sched_entity
*se
)
6910 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6913 for_each_sched_entity(se
) {
6914 if (SCHED_WARN_ON(!se
->on_rq
))
6916 cfs_rq_of(se
)->last
= se
;
6920 static void set_next_buddy(struct sched_entity
*se
)
6922 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6925 for_each_sched_entity(se
) {
6926 if (SCHED_WARN_ON(!se
->on_rq
))
6928 cfs_rq_of(se
)->next
= se
;
6932 static void set_skip_buddy(struct sched_entity
*se
)
6934 for_each_sched_entity(se
)
6935 cfs_rq_of(se
)->skip
= se
;
6939 * Preempt the current task with a newly woken task if needed:
6941 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6943 struct task_struct
*curr
= rq
->curr
;
6944 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6945 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6946 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6947 int next_buddy_marked
= 0;
6949 if (unlikely(se
== pse
))
6953 * This is possible from callers such as attach_tasks(), in which we
6954 * unconditionally check_prempt_curr() after an enqueue (which may have
6955 * lead to a throttle). This both saves work and prevents false
6956 * next-buddy nomination below.
6958 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6961 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6962 set_next_buddy(pse
);
6963 next_buddy_marked
= 1;
6967 * We can come here with TIF_NEED_RESCHED already set from new task
6970 * Note: this also catches the edge-case of curr being in a throttled
6971 * group (e.g. via set_curr_task), since update_curr() (in the
6972 * enqueue of curr) will have resulted in resched being set. This
6973 * prevents us from potentially nominating it as a false LAST_BUDDY
6976 if (test_tsk_need_resched(curr
))
6979 /* Idle tasks are by definition preempted by non-idle tasks. */
6980 if (unlikely(task_has_idle_policy(curr
)) &&
6981 likely(!task_has_idle_policy(p
)))
6985 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6986 * is driven by the tick):
6988 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6991 find_matching_se(&se
, &pse
);
6992 update_curr(cfs_rq_of(se
));
6994 if (wakeup_preempt_entity(se
, pse
) == 1) {
6996 * Bias pick_next to pick the sched entity that is
6997 * triggering this preemption.
6999 if (!next_buddy_marked
)
7000 set_next_buddy(pse
);
7009 * Only set the backward buddy when the current task is still
7010 * on the rq. This can happen when a wakeup gets interleaved
7011 * with schedule on the ->pre_schedule() or idle_balance()
7012 * point, either of which can * drop the rq lock.
7014 * Also, during early boot the idle thread is in the fair class,
7015 * for obvious reasons its a bad idea to schedule back to it.
7017 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
7020 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
7024 struct task_struct
*
7025 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
7027 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7028 struct sched_entity
*se
;
7029 struct task_struct
*p
;
7033 if (!sched_fair_runnable(rq
))
7036 #ifdef CONFIG_FAIR_GROUP_SCHED
7037 if (!prev
|| prev
->sched_class
!= &fair_sched_class
)
7041 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7042 * likely that a next task is from the same cgroup as the current.
7044 * Therefore attempt to avoid putting and setting the entire cgroup
7045 * hierarchy, only change the part that actually changes.
7049 struct sched_entity
*curr
= cfs_rq
->curr
;
7052 * Since we got here without doing put_prev_entity() we also
7053 * have to consider cfs_rq->curr. If it is still a runnable
7054 * entity, update_curr() will update its vruntime, otherwise
7055 * forget we've ever seen it.
7059 update_curr(cfs_rq
);
7064 * This call to check_cfs_rq_runtime() will do the
7065 * throttle and dequeue its entity in the parent(s).
7066 * Therefore the nr_running test will indeed
7069 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
7072 if (!cfs_rq
->nr_running
)
7079 se
= pick_next_entity(cfs_rq
, curr
);
7080 cfs_rq
= group_cfs_rq(se
);
7086 * Since we haven't yet done put_prev_entity and if the selected task
7087 * is a different task than we started out with, try and touch the
7088 * least amount of cfs_rqs.
7091 struct sched_entity
*pse
= &prev
->se
;
7093 while (!(cfs_rq
= is_same_group(se
, pse
))) {
7094 int se_depth
= se
->depth
;
7095 int pse_depth
= pse
->depth
;
7097 if (se_depth
<= pse_depth
) {
7098 put_prev_entity(cfs_rq_of(pse
), pse
);
7099 pse
= parent_entity(pse
);
7101 if (se_depth
>= pse_depth
) {
7102 set_next_entity(cfs_rq_of(se
), se
);
7103 se
= parent_entity(se
);
7107 put_prev_entity(cfs_rq
, pse
);
7108 set_next_entity(cfs_rq
, se
);
7115 put_prev_task(rq
, prev
);
7118 se
= pick_next_entity(cfs_rq
, NULL
);
7119 set_next_entity(cfs_rq
, se
);
7120 cfs_rq
= group_cfs_rq(se
);
7125 done
: __maybe_unused
;
7128 * Move the next running task to the front of
7129 * the list, so our cfs_tasks list becomes MRU
7132 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
7135 if (hrtick_enabled(rq
))
7136 hrtick_start_fair(rq
, p
);
7138 update_misfit_status(p
, rq
);
7146 new_tasks
= newidle_balance(rq
, rf
);
7149 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7150 * possible for any higher priority task to appear. In that case we
7151 * must re-start the pick_next_entity() loop.
7160 * rq is about to be idle, check if we need to update the
7161 * lost_idle_time of clock_pelt
7163 update_idle_rq_clock_pelt(rq
);
7168 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
)
7170 return pick_next_task_fair(rq
, NULL
, NULL
);
7174 * Account for a descheduled task:
7176 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
7178 struct sched_entity
*se
= &prev
->se
;
7179 struct cfs_rq
*cfs_rq
;
7181 for_each_sched_entity(se
) {
7182 cfs_rq
= cfs_rq_of(se
);
7183 put_prev_entity(cfs_rq
, se
);
7188 * sched_yield() is very simple
7190 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7192 static void yield_task_fair(struct rq
*rq
)
7194 struct task_struct
*curr
= rq
->curr
;
7195 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
7196 struct sched_entity
*se
= &curr
->se
;
7199 * Are we the only task in the tree?
7201 if (unlikely(rq
->nr_running
== 1))
7204 clear_buddies(cfs_rq
, se
);
7206 if (curr
->policy
!= SCHED_BATCH
) {
7207 update_rq_clock(rq
);
7209 * Update run-time statistics of the 'current'.
7211 update_curr(cfs_rq
);
7213 * Tell update_rq_clock() that we've just updated,
7214 * so we don't do microscopic update in schedule()
7215 * and double the fastpath cost.
7217 rq_clock_skip_update(rq
);
7223 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
)
7225 struct sched_entity
*se
= &p
->se
;
7227 /* throttled hierarchies are not runnable */
7228 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
7231 /* Tell the scheduler that we'd really like pse to run next. */
7234 yield_task_fair(rq
);
7240 /**************************************************
7241 * Fair scheduling class load-balancing methods.
7245 * The purpose of load-balancing is to achieve the same basic fairness the
7246 * per-CPU scheduler provides, namely provide a proportional amount of compute
7247 * time to each task. This is expressed in the following equation:
7249 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7251 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7252 * W_i,0 is defined as:
7254 * W_i,0 = \Sum_j w_i,j (2)
7256 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7257 * is derived from the nice value as per sched_prio_to_weight[].
7259 * The weight average is an exponential decay average of the instantaneous
7262 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7264 * C_i is the compute capacity of CPU i, typically it is the
7265 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7266 * can also include other factors [XXX].
7268 * To achieve this balance we define a measure of imbalance which follows
7269 * directly from (1):
7271 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7273 * We them move tasks around to minimize the imbalance. In the continuous
7274 * function space it is obvious this converges, in the discrete case we get
7275 * a few fun cases generally called infeasible weight scenarios.
7278 * - infeasible weights;
7279 * - local vs global optima in the discrete case. ]
7284 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7285 * for all i,j solution, we create a tree of CPUs that follows the hardware
7286 * topology where each level pairs two lower groups (or better). This results
7287 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7288 * tree to only the first of the previous level and we decrease the frequency
7289 * of load-balance at each level inv. proportional to the number of CPUs in
7295 * \Sum { --- * --- * 2^i } = O(n) (5)
7297 * `- size of each group
7298 * | | `- number of CPUs doing load-balance
7300 * `- sum over all levels
7302 * Coupled with a limit on how many tasks we can migrate every balance pass,
7303 * this makes (5) the runtime complexity of the balancer.
7305 * An important property here is that each CPU is still (indirectly) connected
7306 * to every other CPU in at most O(log n) steps:
7308 * The adjacency matrix of the resulting graph is given by:
7311 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7314 * And you'll find that:
7316 * A^(log_2 n)_i,j != 0 for all i,j (7)
7318 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7319 * The task movement gives a factor of O(m), giving a convergence complexity
7322 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7327 * In order to avoid CPUs going idle while there's still work to do, new idle
7328 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7329 * tree itself instead of relying on other CPUs to bring it work.
7331 * This adds some complexity to both (5) and (8) but it reduces the total idle
7339 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7342 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7347 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7349 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7351 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7354 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7355 * rewrite all of this once again.]
7358 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
7360 enum fbq_type
{ regular
, remote
, all
};
7363 * 'group_type' describes the group of CPUs at the moment of load balancing.
7365 * The enum is ordered by pulling priority, with the group with lowest priority
7366 * first so the group_type can simply be compared when selecting the busiest
7367 * group. See update_sd_pick_busiest().
7370 /* The group has spare capacity that can be used to run more tasks. */
7371 group_has_spare
= 0,
7373 * The group is fully used and the tasks don't compete for more CPU
7374 * cycles. Nevertheless, some tasks might wait before running.
7378 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7379 * and must be migrated to a more powerful CPU.
7383 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7384 * and the task should be migrated to it instead of running on the
7389 * The tasks' affinity constraints previously prevented the scheduler
7390 * from balancing the load across the system.
7394 * The CPU is overloaded and can't provide expected CPU cycles to all
7400 enum migration_type
{
7407 #define LBF_ALL_PINNED 0x01
7408 #define LBF_NEED_BREAK 0x02
7409 #define LBF_DST_PINNED 0x04
7410 #define LBF_SOME_PINNED 0x08
7411 #define LBF_NOHZ_STATS 0x10
7412 #define LBF_NOHZ_AGAIN 0x20
7415 struct sched_domain
*sd
;
7423 struct cpumask
*dst_grpmask
;
7425 enum cpu_idle_type idle
;
7427 /* The set of CPUs under consideration for load-balancing */
7428 struct cpumask
*cpus
;
7433 unsigned int loop_break
;
7434 unsigned int loop_max
;
7436 enum fbq_type fbq_type
;
7437 enum migration_type migration_type
;
7438 struct list_head tasks
;
7442 * Is this task likely cache-hot:
7444 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
7448 lockdep_assert_held(&env
->src_rq
->lock
);
7450 if (p
->sched_class
!= &fair_sched_class
)
7453 if (unlikely(task_has_idle_policy(p
)))
7456 /* SMT siblings share cache */
7457 if (env
->sd
->flags
& SD_SHARE_CPUCAPACITY
)
7461 * Buddy candidates are cache hot:
7463 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7464 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7465 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7468 if (sysctl_sched_migration_cost
== -1)
7470 if (sysctl_sched_migration_cost
== 0)
7473 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7475 return delta
< (s64
)sysctl_sched_migration_cost
;
7478 #ifdef CONFIG_NUMA_BALANCING
7480 * Returns 1, if task migration degrades locality
7481 * Returns 0, if task migration improves locality i.e migration preferred.
7482 * Returns -1, if task migration is not affected by locality.
7484 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7486 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7487 unsigned long src_weight
, dst_weight
;
7488 int src_nid
, dst_nid
, dist
;
7490 if (!static_branch_likely(&sched_numa_balancing
))
7493 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7496 src_nid
= cpu_to_node(env
->src_cpu
);
7497 dst_nid
= cpu_to_node(env
->dst_cpu
);
7499 if (src_nid
== dst_nid
)
7502 /* Migrating away from the preferred node is always bad. */
7503 if (src_nid
== p
->numa_preferred_nid
) {
7504 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7510 /* Encourage migration to the preferred node. */
7511 if (dst_nid
== p
->numa_preferred_nid
)
7514 /* Leaving a core idle is often worse than degrading locality. */
7515 if (env
->idle
== CPU_IDLE
)
7518 dist
= node_distance(src_nid
, dst_nid
);
7520 src_weight
= group_weight(p
, src_nid
, dist
);
7521 dst_weight
= group_weight(p
, dst_nid
, dist
);
7523 src_weight
= task_weight(p
, src_nid
, dist
);
7524 dst_weight
= task_weight(p
, dst_nid
, dist
);
7527 return dst_weight
< src_weight
;
7531 static inline int migrate_degrades_locality(struct task_struct
*p
,
7539 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7542 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7546 lockdep_assert_held(&env
->src_rq
->lock
);
7549 * We do not migrate tasks that are:
7550 * 1) throttled_lb_pair, or
7551 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7552 * 3) running (obviously), or
7553 * 4) are cache-hot on their current CPU.
7555 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7558 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
7561 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7563 env
->flags
|= LBF_SOME_PINNED
;
7566 * Remember if this task can be migrated to any other CPU in
7567 * our sched_group. We may want to revisit it if we couldn't
7568 * meet load balance goals by pulling other tasks on src_cpu.
7570 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7571 * already computed one in current iteration.
7573 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7576 /* Prevent to re-select dst_cpu via env's CPUs: */
7577 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7578 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
7579 env
->flags
|= LBF_DST_PINNED
;
7580 env
->new_dst_cpu
= cpu
;
7588 /* Record that we found atleast one task that could run on dst_cpu */
7589 env
->flags
&= ~LBF_ALL_PINNED
;
7591 if (task_running(env
->src_rq
, p
)) {
7592 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7597 * Aggressive migration if:
7598 * 1) destination numa is preferred
7599 * 2) task is cache cold, or
7600 * 3) too many balance attempts have failed.
7602 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7603 if (tsk_cache_hot
== -1)
7604 tsk_cache_hot
= task_hot(p
, env
);
7606 if (tsk_cache_hot
<= 0 ||
7607 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7608 if (tsk_cache_hot
== 1) {
7609 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7610 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7615 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7620 * detach_task() -- detach the task for the migration specified in env
7622 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7624 lockdep_assert_held(&env
->src_rq
->lock
);
7626 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7627 set_task_cpu(p
, env
->dst_cpu
);
7631 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7632 * part of active balancing operations within "domain".
7634 * Returns a task if successful and NULL otherwise.
7636 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7638 struct task_struct
*p
;
7640 lockdep_assert_held(&env
->src_rq
->lock
);
7642 list_for_each_entry_reverse(p
,
7643 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7644 if (!can_migrate_task(p
, env
))
7647 detach_task(p
, env
);
7650 * Right now, this is only the second place where
7651 * lb_gained[env->idle] is updated (other is detach_tasks)
7652 * so we can safely collect stats here rather than
7653 * inside detach_tasks().
7655 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7661 static const unsigned int sched_nr_migrate_break
= 32;
7664 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7665 * busiest_rq, as part of a balancing operation within domain "sd".
7667 * Returns number of detached tasks if successful and 0 otherwise.
7669 static int detach_tasks(struct lb_env
*env
)
7671 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7672 unsigned long util
, load
;
7673 struct task_struct
*p
;
7676 lockdep_assert_held(&env
->src_rq
->lock
);
7678 if (env
->imbalance
<= 0)
7681 while (!list_empty(tasks
)) {
7683 * We don't want to steal all, otherwise we may be treated likewise,
7684 * which could at worst lead to a livelock crash.
7686 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7689 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7692 /* We've more or less seen every task there is, call it quits */
7693 if (env
->loop
> env
->loop_max
)
7696 /* take a breather every nr_migrate tasks */
7697 if (env
->loop
> env
->loop_break
) {
7698 env
->loop_break
+= sched_nr_migrate_break
;
7699 env
->flags
|= LBF_NEED_BREAK
;
7703 if (!can_migrate_task(p
, env
))
7706 switch (env
->migration_type
) {
7709 * Depending of the number of CPUs and tasks and the
7710 * cgroup hierarchy, task_h_load() can return a null
7711 * value. Make sure that env->imbalance decreases
7712 * otherwise detach_tasks() will stop only after
7713 * detaching up to loop_max tasks.
7715 load
= max_t(unsigned long, task_h_load(p
), 1);
7717 if (sched_feat(LB_MIN
) &&
7718 load
< 16 && !env
->sd
->nr_balance_failed
)
7722 * Make sure that we don't migrate too much load.
7723 * Nevertheless, let relax the constraint if
7724 * scheduler fails to find a good waiting task to
7728 if ((load
>> env
->sd
->nr_balance_failed
) > env
->imbalance
)
7731 env
->imbalance
-= load
;
7735 util
= task_util_est(p
);
7737 if (util
> env
->imbalance
)
7740 env
->imbalance
-= util
;
7747 case migrate_misfit
:
7748 /* This is not a misfit task */
7749 if (task_fits_capacity(p
, capacity_of(env
->src_cpu
)))
7756 detach_task(p
, env
);
7757 list_add(&p
->se
.group_node
, &env
->tasks
);
7761 #ifdef CONFIG_PREEMPTION
7763 * NEWIDLE balancing is a source of latency, so preemptible
7764 * kernels will stop after the first task is detached to minimize
7765 * the critical section.
7767 if (env
->idle
== CPU_NEWLY_IDLE
)
7772 * We only want to steal up to the prescribed amount of
7775 if (env
->imbalance
<= 0)
7780 list_move(&p
->se
.group_node
, tasks
);
7784 * Right now, this is one of only two places we collect this stat
7785 * so we can safely collect detach_one_task() stats here rather
7786 * than inside detach_one_task().
7788 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7794 * attach_task() -- attach the task detached by detach_task() to its new rq.
7796 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7798 lockdep_assert_held(&rq
->lock
);
7800 BUG_ON(task_rq(p
) != rq
);
7801 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7802 check_preempt_curr(rq
, p
, 0);
7806 * attach_one_task() -- attaches the task returned from detach_one_task() to
7809 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7814 update_rq_clock(rq
);
7820 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7823 static void attach_tasks(struct lb_env
*env
)
7825 struct list_head
*tasks
= &env
->tasks
;
7826 struct task_struct
*p
;
7829 rq_lock(env
->dst_rq
, &rf
);
7830 update_rq_clock(env
->dst_rq
);
7832 while (!list_empty(tasks
)) {
7833 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7834 list_del_init(&p
->se
.group_node
);
7836 attach_task(env
->dst_rq
, p
);
7839 rq_unlock(env
->dst_rq
, &rf
);
7842 #ifdef CONFIG_NO_HZ_COMMON
7843 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7845 if (cfs_rq
->avg
.load_avg
)
7848 if (cfs_rq
->avg
.util_avg
)
7854 static inline bool others_have_blocked(struct rq
*rq
)
7856 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7859 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7862 if (thermal_load_avg(rq
))
7865 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7866 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7873 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
7875 rq
->last_blocked_load_update_tick
= jiffies
;
7878 rq
->has_blocked_load
= 0;
7881 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
7882 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
7883 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
7886 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
7888 const struct sched_class
*curr_class
;
7889 u64 now
= rq_clock_pelt(rq
);
7890 unsigned long thermal_pressure
;
7894 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7895 * DL and IRQ signals have been updated before updating CFS.
7897 curr_class
= rq
->curr
->sched_class
;
7899 thermal_pressure
= arch_scale_thermal_pressure(cpu_of(rq
));
7901 decayed
= update_rt_rq_load_avg(now
, rq
, curr_class
== &rt_sched_class
) |
7902 update_dl_rq_load_avg(now
, rq
, curr_class
== &dl_sched_class
) |
7903 update_thermal_load_avg(rq_clock_thermal(rq
), rq
, thermal_pressure
) |
7904 update_irq_load_avg(rq
, 0);
7906 if (others_have_blocked(rq
))
7912 #ifdef CONFIG_FAIR_GROUP_SCHED
7914 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7916 if (cfs_rq
->load
.weight
)
7919 if (cfs_rq
->avg
.load_sum
)
7922 if (cfs_rq
->avg
.util_sum
)
7925 if (cfs_rq
->avg
.runnable_sum
)
7931 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7933 struct cfs_rq
*cfs_rq
, *pos
;
7934 bool decayed
= false;
7935 int cpu
= cpu_of(rq
);
7938 * Iterates the task_group tree in a bottom up fashion, see
7939 * list_add_leaf_cfs_rq() for details.
7941 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7942 struct sched_entity
*se
;
7944 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
7945 update_tg_load_avg(cfs_rq
);
7947 if (cfs_rq
== &rq
->cfs
)
7951 /* Propagate pending load changes to the parent, if any: */
7952 se
= cfs_rq
->tg
->se
[cpu
];
7953 if (se
&& !skip_blocked_update(se
))
7954 update_load_avg(cfs_rq_of(se
), se
, 0);
7957 * There can be a lot of idle CPU cgroups. Don't let fully
7958 * decayed cfs_rqs linger on the list.
7960 if (cfs_rq_is_decayed(cfs_rq
))
7961 list_del_leaf_cfs_rq(cfs_rq
);
7963 /* Don't need periodic decay once load/util_avg are null */
7964 if (cfs_rq_has_blocked(cfs_rq
))
7972 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7973 * This needs to be done in a top-down fashion because the load of a child
7974 * group is a fraction of its parents load.
7976 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7978 struct rq
*rq
= rq_of(cfs_rq
);
7979 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7980 unsigned long now
= jiffies
;
7983 if (cfs_rq
->last_h_load_update
== now
)
7986 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
7987 for_each_sched_entity(se
) {
7988 cfs_rq
= cfs_rq_of(se
);
7989 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
7990 if (cfs_rq
->last_h_load_update
== now
)
7995 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7996 cfs_rq
->last_h_load_update
= now
;
7999 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
8000 load
= cfs_rq
->h_load
;
8001 load
= div64_ul(load
* se
->avg
.load_avg
,
8002 cfs_rq_load_avg(cfs_rq
) + 1);
8003 cfs_rq
= group_cfs_rq(se
);
8004 cfs_rq
->h_load
= load
;
8005 cfs_rq
->last_h_load_update
= now
;
8009 static unsigned long task_h_load(struct task_struct
*p
)
8011 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
8013 update_cfs_rq_h_load(cfs_rq
);
8014 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
8015 cfs_rq_load_avg(cfs_rq
) + 1);
8018 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
8020 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
8023 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
8024 if (cfs_rq_has_blocked(cfs_rq
))
8030 static unsigned long task_h_load(struct task_struct
*p
)
8032 return p
->se
.avg
.load_avg
;
8036 static void update_blocked_averages(int cpu
)
8038 bool decayed
= false, done
= true;
8039 struct rq
*rq
= cpu_rq(cpu
);
8042 rq_lock_irqsave(rq
, &rf
);
8043 update_rq_clock(rq
);
8045 decayed
|= __update_blocked_others(rq
, &done
);
8046 decayed
|= __update_blocked_fair(rq
, &done
);
8048 update_blocked_load_status(rq
, !done
);
8050 cpufreq_update_util(rq
, 0);
8051 rq_unlock_irqrestore(rq
, &rf
);
8054 /********** Helpers for find_busiest_group ************************/
8057 * sg_lb_stats - stats of a sched_group required for load_balancing
8059 struct sg_lb_stats
{
8060 unsigned long avg_load
; /*Avg load across the CPUs of the group */
8061 unsigned long group_load
; /* Total load over the CPUs of the group */
8062 unsigned long group_capacity
;
8063 unsigned long group_util
; /* Total utilization over the CPUs of the group */
8064 unsigned long group_runnable
; /* Total runnable time over the CPUs of the group */
8065 unsigned int sum_nr_running
; /* Nr of tasks running in the group */
8066 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
8067 unsigned int idle_cpus
;
8068 unsigned int group_weight
;
8069 enum group_type group_type
;
8070 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
8071 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
8072 #ifdef CONFIG_NUMA_BALANCING
8073 unsigned int nr_numa_running
;
8074 unsigned int nr_preferred_running
;
8079 * sd_lb_stats - Structure to store the statistics of a sched_domain
8080 * during load balancing.
8082 struct sd_lb_stats
{
8083 struct sched_group
*busiest
; /* Busiest group in this sd */
8084 struct sched_group
*local
; /* Local group in this sd */
8085 unsigned long total_load
; /* Total load of all groups in sd */
8086 unsigned long total_capacity
; /* Total capacity of all groups in sd */
8087 unsigned long avg_load
; /* Average load across all groups in sd */
8088 unsigned int prefer_sibling
; /* tasks should go to sibling first */
8090 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
8091 struct sg_lb_stats local_stat
; /* Statistics of the local group */
8094 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
8097 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8098 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8099 * We must however set busiest_stat::group_type and
8100 * busiest_stat::idle_cpus to the worst busiest group because
8101 * update_sd_pick_busiest() reads these before assignment.
8103 *sds
= (struct sd_lb_stats
){
8107 .total_capacity
= 0UL,
8109 .idle_cpus
= UINT_MAX
,
8110 .group_type
= group_has_spare
,
8115 static unsigned long scale_rt_capacity(int cpu
)
8117 struct rq
*rq
= cpu_rq(cpu
);
8118 unsigned long max
= arch_scale_cpu_capacity(cpu
);
8119 unsigned long used
, free
;
8122 irq
= cpu_util_irq(rq
);
8124 if (unlikely(irq
>= max
))
8128 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8129 * (running and not running) with weights 0 and 1024 respectively.
8130 * avg_thermal.load_avg tracks thermal pressure and the weighted
8131 * average uses the actual delta max capacity(load).
8133 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
8134 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
8135 used
+= thermal_load_avg(rq
);
8137 if (unlikely(used
>= max
))
8142 return scale_irq_capacity(free
, irq
, max
);
8145 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
8147 unsigned long capacity
= scale_rt_capacity(cpu
);
8148 struct sched_group
*sdg
= sd
->groups
;
8150 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(cpu
);
8155 cpu_rq(cpu
)->cpu_capacity
= capacity
;
8156 trace_sched_cpu_capacity_tp(cpu_rq(cpu
));
8158 sdg
->sgc
->capacity
= capacity
;
8159 sdg
->sgc
->min_capacity
= capacity
;
8160 sdg
->sgc
->max_capacity
= capacity
;
8163 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
8165 struct sched_domain
*child
= sd
->child
;
8166 struct sched_group
*group
, *sdg
= sd
->groups
;
8167 unsigned long capacity
, min_capacity
, max_capacity
;
8168 unsigned long interval
;
8170 interval
= msecs_to_jiffies(sd
->balance_interval
);
8171 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8172 sdg
->sgc
->next_update
= jiffies
+ interval
;
8175 update_cpu_capacity(sd
, cpu
);
8180 min_capacity
= ULONG_MAX
;
8183 if (child
->flags
& SD_OVERLAP
) {
8185 * SD_OVERLAP domains cannot assume that child groups
8186 * span the current group.
8189 for_each_cpu(cpu
, sched_group_span(sdg
)) {
8190 unsigned long cpu_cap
= capacity_of(cpu
);
8192 capacity
+= cpu_cap
;
8193 min_capacity
= min(cpu_cap
, min_capacity
);
8194 max_capacity
= max(cpu_cap
, max_capacity
);
8198 * !SD_OVERLAP domains can assume that child groups
8199 * span the current group.
8202 group
= child
->groups
;
8204 struct sched_group_capacity
*sgc
= group
->sgc
;
8206 capacity
+= sgc
->capacity
;
8207 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
8208 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
8209 group
= group
->next
;
8210 } while (group
!= child
->groups
);
8213 sdg
->sgc
->capacity
= capacity
;
8214 sdg
->sgc
->min_capacity
= min_capacity
;
8215 sdg
->sgc
->max_capacity
= max_capacity
;
8219 * Check whether the capacity of the rq has been noticeably reduced by side
8220 * activity. The imbalance_pct is used for the threshold.
8221 * Return true is the capacity is reduced
8224 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
8226 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
8227 (rq
->cpu_capacity_orig
* 100));
8231 * Check whether a rq has a misfit task and if it looks like we can actually
8232 * help that task: we can migrate the task to a CPU of higher capacity, or
8233 * the task's current CPU is heavily pressured.
8235 static inline int check_misfit_status(struct rq
*rq
, struct sched_domain
*sd
)
8237 return rq
->misfit_task_load
&&
8238 (rq
->cpu_capacity_orig
< rq
->rd
->max_cpu_capacity
||
8239 check_cpu_capacity(rq
, sd
));
8243 * Group imbalance indicates (and tries to solve) the problem where balancing
8244 * groups is inadequate due to ->cpus_ptr constraints.
8246 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8247 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8250 * { 0 1 2 3 } { 4 5 6 7 }
8253 * If we were to balance group-wise we'd place two tasks in the first group and
8254 * two tasks in the second group. Clearly this is undesired as it will overload
8255 * cpu 3 and leave one of the CPUs in the second group unused.
8257 * The current solution to this issue is detecting the skew in the first group
8258 * by noticing the lower domain failed to reach balance and had difficulty
8259 * moving tasks due to affinity constraints.
8261 * When this is so detected; this group becomes a candidate for busiest; see
8262 * update_sd_pick_busiest(). And calculate_imbalance() and
8263 * find_busiest_group() avoid some of the usual balance conditions to allow it
8264 * to create an effective group imbalance.
8266 * This is a somewhat tricky proposition since the next run might not find the
8267 * group imbalance and decide the groups need to be balanced again. A most
8268 * subtle and fragile situation.
8271 static inline int sg_imbalanced(struct sched_group
*group
)
8273 return group
->sgc
->imbalance
;
8277 * group_has_capacity returns true if the group has spare capacity that could
8278 * be used by some tasks.
8279 * We consider that a group has spare capacity if the * number of task is
8280 * smaller than the number of CPUs or if the utilization is lower than the
8281 * available capacity for CFS tasks.
8282 * For the latter, we use a threshold to stabilize the state, to take into
8283 * account the variance of the tasks' load and to return true if the available
8284 * capacity in meaningful for the load balancer.
8285 * As an example, an available capacity of 1% can appear but it doesn't make
8286 * any benefit for the load balance.
8289 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8291 if (sgs
->sum_nr_running
< sgs
->group_weight
)
8294 if ((sgs
->group_capacity
* imbalance_pct
) <
8295 (sgs
->group_runnable
* 100))
8298 if ((sgs
->group_capacity
* 100) >
8299 (sgs
->group_util
* imbalance_pct
))
8306 * group_is_overloaded returns true if the group has more tasks than it can
8308 * group_is_overloaded is not equals to !group_has_capacity because a group
8309 * with the exact right number of tasks, has no more spare capacity but is not
8310 * overloaded so both group_has_capacity and group_is_overloaded return
8314 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8316 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
8319 if ((sgs
->group_capacity
* 100) <
8320 (sgs
->group_util
* imbalance_pct
))
8323 if ((sgs
->group_capacity
* imbalance_pct
) <
8324 (sgs
->group_runnable
* 100))
8331 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8332 * per-CPU capacity than sched_group ref.
8335 group_smaller_min_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8337 return fits_capacity(sg
->sgc
->min_capacity
, ref
->sgc
->min_capacity
);
8341 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8342 * per-CPU capacity_orig than sched_group ref.
8345 group_smaller_max_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8347 return fits_capacity(sg
->sgc
->max_capacity
, ref
->sgc
->max_capacity
);
8351 group_type
group_classify(unsigned int imbalance_pct
,
8352 struct sched_group
*group
,
8353 struct sg_lb_stats
*sgs
)
8355 if (group_is_overloaded(imbalance_pct
, sgs
))
8356 return group_overloaded
;
8358 if (sg_imbalanced(group
))
8359 return group_imbalanced
;
8361 if (sgs
->group_asym_packing
)
8362 return group_asym_packing
;
8364 if (sgs
->group_misfit_task_load
)
8365 return group_misfit_task
;
8367 if (!group_has_capacity(imbalance_pct
, sgs
))
8368 return group_fully_busy
;
8370 return group_has_spare
;
8373 static bool update_nohz_stats(struct rq
*rq
, bool force
)
8375 #ifdef CONFIG_NO_HZ_COMMON
8376 unsigned int cpu
= rq
->cpu
;
8378 if (!rq
->has_blocked_load
)
8381 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
8384 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
8387 update_blocked_averages(cpu
);
8389 return rq
->has_blocked_load
;
8396 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8397 * @env: The load balancing environment.
8398 * @group: sched_group whose statistics are to be updated.
8399 * @sgs: variable to hold the statistics for this group.
8400 * @sg_status: Holds flag indicating the status of the sched_group
8402 static inline void update_sg_lb_stats(struct lb_env
*env
,
8403 struct sched_group
*group
,
8404 struct sg_lb_stats
*sgs
,
8407 int i
, nr_running
, local_group
;
8409 memset(sgs
, 0, sizeof(*sgs
));
8411 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(group
));
8413 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8414 struct rq
*rq
= cpu_rq(i
);
8416 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
8417 env
->flags
|= LBF_NOHZ_AGAIN
;
8419 sgs
->group_load
+= cpu_load(rq
);
8420 sgs
->group_util
+= cpu_util(i
);
8421 sgs
->group_runnable
+= cpu_runnable(rq
);
8422 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
8424 nr_running
= rq
->nr_running
;
8425 sgs
->sum_nr_running
+= nr_running
;
8428 *sg_status
|= SG_OVERLOAD
;
8430 if (cpu_overutilized(i
))
8431 *sg_status
|= SG_OVERUTILIZED
;
8433 #ifdef CONFIG_NUMA_BALANCING
8434 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
8435 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
8438 * No need to call idle_cpu() if nr_running is not 0
8440 if (!nr_running
&& idle_cpu(i
)) {
8442 /* Idle cpu can't have misfit task */
8449 /* Check for a misfit task on the cpu */
8450 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8451 sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
8452 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
8453 *sg_status
|= SG_OVERLOAD
;
8457 /* Check if dst CPU is idle and preferred to this group */
8458 if (env
->sd
->flags
& SD_ASYM_PACKING
&&
8459 env
->idle
!= CPU_NOT_IDLE
&&
8460 sgs
->sum_h_nr_running
&&
8461 sched_asym_prefer(env
->dst_cpu
, group
->asym_prefer_cpu
)) {
8462 sgs
->group_asym_packing
= 1;
8465 sgs
->group_capacity
= group
->sgc
->capacity
;
8467 sgs
->group_weight
= group
->group_weight
;
8469 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
8471 /* Computing avg_load makes sense only when group is overloaded */
8472 if (sgs
->group_type
== group_overloaded
)
8473 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8474 sgs
->group_capacity
;
8478 * update_sd_pick_busiest - return 1 on busiest group
8479 * @env: The load balancing environment.
8480 * @sds: sched_domain statistics
8481 * @sg: sched_group candidate to be checked for being the busiest
8482 * @sgs: sched_group statistics
8484 * Determine if @sg is a busier group than the previously selected
8487 * Return: %true if @sg is a busier group than the previously selected
8488 * busiest group. %false otherwise.
8490 static bool update_sd_pick_busiest(struct lb_env
*env
,
8491 struct sd_lb_stats
*sds
,
8492 struct sched_group
*sg
,
8493 struct sg_lb_stats
*sgs
)
8495 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
8497 /* Make sure that there is at least one task to pull */
8498 if (!sgs
->sum_h_nr_running
)
8502 * Don't try to pull misfit tasks we can't help.
8503 * We can use max_capacity here as reduction in capacity on some
8504 * CPUs in the group should either be possible to resolve
8505 * internally or be covered by avg_load imbalance (eventually).
8507 if (sgs
->group_type
== group_misfit_task
&&
8508 (!group_smaller_max_cpu_capacity(sg
, sds
->local
) ||
8509 sds
->local_stat
.group_type
!= group_has_spare
))
8512 if (sgs
->group_type
> busiest
->group_type
)
8515 if (sgs
->group_type
< busiest
->group_type
)
8519 * The candidate and the current busiest group are the same type of
8520 * group. Let check which one is the busiest according to the type.
8523 switch (sgs
->group_type
) {
8524 case group_overloaded
:
8525 /* Select the overloaded group with highest avg_load. */
8526 if (sgs
->avg_load
<= busiest
->avg_load
)
8530 case group_imbalanced
:
8532 * Select the 1st imbalanced group as we don't have any way to
8533 * choose one more than another.
8537 case group_asym_packing
:
8538 /* Prefer to move from lowest priority CPU's work */
8539 if (sched_asym_prefer(sg
->asym_prefer_cpu
, sds
->busiest
->asym_prefer_cpu
))
8543 case group_misfit_task
:
8545 * If we have more than one misfit sg go with the biggest
8548 if (sgs
->group_misfit_task_load
< busiest
->group_misfit_task_load
)
8552 case group_fully_busy
:
8554 * Select the fully busy group with highest avg_load. In
8555 * theory, there is no need to pull task from such kind of
8556 * group because tasks have all compute capacity that they need
8557 * but we can still improve the overall throughput by reducing
8558 * contention when accessing shared HW resources.
8560 * XXX for now avg_load is not computed and always 0 so we
8561 * select the 1st one.
8563 if (sgs
->avg_load
<= busiest
->avg_load
)
8567 case group_has_spare
:
8569 * Select not overloaded group with lowest number of idle cpus
8570 * and highest number of running tasks. We could also compare
8571 * the spare capacity which is more stable but it can end up
8572 * that the group has less spare capacity but finally more idle
8573 * CPUs which means less opportunity to pull tasks.
8575 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
8577 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
8578 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
8585 * Candidate sg has no more than one task per CPU and has higher
8586 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8587 * throughput. Maximize throughput, power/energy consequences are not
8590 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
8591 (sgs
->group_type
<= group_fully_busy
) &&
8592 (group_smaller_min_cpu_capacity(sds
->local
, sg
)))
8598 #ifdef CONFIG_NUMA_BALANCING
8599 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8601 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
8603 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
8608 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8610 if (rq
->nr_running
> rq
->nr_numa_running
)
8612 if (rq
->nr_running
> rq
->nr_preferred_running
)
8617 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8622 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8626 #endif /* CONFIG_NUMA_BALANCING */
8632 * task_running_on_cpu - return 1 if @p is running on @cpu.
8635 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
8637 /* Task has no contribution or is new */
8638 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8641 if (task_on_rq_queued(p
))
8648 * idle_cpu_without - would a given CPU be idle without p ?
8649 * @cpu: the processor on which idleness is tested.
8650 * @p: task which should be ignored.
8652 * Return: 1 if the CPU would be idle. 0 otherwise.
8654 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
8656 struct rq
*rq
= cpu_rq(cpu
);
8658 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
8662 * rq->nr_running can't be used but an updated version without the
8663 * impact of p on cpu must be used instead. The updated nr_running
8664 * be computed and tested before calling idle_cpu_without().
8668 if (rq
->ttwu_pending
)
8676 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8677 * @sd: The sched_domain level to look for idlest group.
8678 * @group: sched_group whose statistics are to be updated.
8679 * @sgs: variable to hold the statistics for this group.
8680 * @p: The task for which we look for the idlest group/CPU.
8682 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
8683 struct sched_group
*group
,
8684 struct sg_lb_stats
*sgs
,
8685 struct task_struct
*p
)
8689 memset(sgs
, 0, sizeof(*sgs
));
8691 for_each_cpu(i
, sched_group_span(group
)) {
8692 struct rq
*rq
= cpu_rq(i
);
8695 sgs
->group_load
+= cpu_load_without(rq
, p
);
8696 sgs
->group_util
+= cpu_util_without(i
, p
);
8697 sgs
->group_runnable
+= cpu_runnable_without(rq
, p
);
8698 local
= task_running_on_cpu(i
, p
);
8699 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
8701 nr_running
= rq
->nr_running
- local
;
8702 sgs
->sum_nr_running
+= nr_running
;
8705 * No need to call idle_cpu_without() if nr_running is not 0
8707 if (!nr_running
&& idle_cpu_without(i
, p
))
8712 /* Check if task fits in the group */
8713 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8714 !task_fits_capacity(p
, group
->sgc
->max_capacity
)) {
8715 sgs
->group_misfit_task_load
= 1;
8718 sgs
->group_capacity
= group
->sgc
->capacity
;
8720 sgs
->group_weight
= group
->group_weight
;
8722 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
8725 * Computing avg_load makes sense only when group is fully busy or
8728 if (sgs
->group_type
== group_fully_busy
||
8729 sgs
->group_type
== group_overloaded
)
8730 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8731 sgs
->group_capacity
;
8734 static bool update_pick_idlest(struct sched_group
*idlest
,
8735 struct sg_lb_stats
*idlest_sgs
,
8736 struct sched_group
*group
,
8737 struct sg_lb_stats
*sgs
)
8739 if (sgs
->group_type
< idlest_sgs
->group_type
)
8742 if (sgs
->group_type
> idlest_sgs
->group_type
)
8746 * The candidate and the current idlest group are the same type of
8747 * group. Let check which one is the idlest according to the type.
8750 switch (sgs
->group_type
) {
8751 case group_overloaded
:
8752 case group_fully_busy
:
8753 /* Select the group with lowest avg_load. */
8754 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
8758 case group_imbalanced
:
8759 case group_asym_packing
:
8760 /* Those types are not used in the slow wakeup path */
8763 case group_misfit_task
:
8764 /* Select group with the highest max capacity */
8765 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
8769 case group_has_spare
:
8770 /* Select group with most idle CPUs */
8771 if (idlest_sgs
->idle_cpus
> sgs
->idle_cpus
)
8774 /* Select group with lowest group_util */
8775 if (idlest_sgs
->idle_cpus
== sgs
->idle_cpus
&&
8776 idlest_sgs
->group_util
<= sgs
->group_util
)
8786 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8787 * This is an approximation as the number of running tasks may not be
8788 * related to the number of busy CPUs due to sched_setaffinity.
8790 static inline bool allow_numa_imbalance(int dst_running
, int dst_weight
)
8792 return (dst_running
< (dst_weight
>> 2));
8796 * find_idlest_group() finds and returns the least busy CPU group within the
8799 * Assumes p is allowed on at least one CPU in sd.
8801 static struct sched_group
*
8802 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
8804 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
8805 struct sg_lb_stats local_sgs
, tmp_sgs
;
8806 struct sg_lb_stats
*sgs
;
8807 unsigned long imbalance
;
8808 struct sg_lb_stats idlest_sgs
= {
8809 .avg_load
= UINT_MAX
,
8810 .group_type
= group_overloaded
,
8816 /* Skip over this group if it has no CPUs allowed */
8817 if (!cpumask_intersects(sched_group_span(group
),
8821 local_group
= cpumask_test_cpu(this_cpu
,
8822 sched_group_span(group
));
8831 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
8833 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
8838 } while (group
= group
->next
, group
!= sd
->groups
);
8841 /* There is no idlest group to push tasks to */
8845 /* The local group has been skipped because of CPU affinity */
8850 * If the local group is idler than the selected idlest group
8851 * don't try and push the task.
8853 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
8857 * If the local group is busier than the selected idlest group
8858 * try and push the task.
8860 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
8863 switch (local_sgs
.group_type
) {
8864 case group_overloaded
:
8865 case group_fully_busy
:
8867 /* Calculate allowed imbalance based on load */
8868 imbalance
= scale_load_down(NICE_0_LOAD
) *
8869 (sd
->imbalance_pct
-100) / 100;
8872 * When comparing groups across NUMA domains, it's possible for
8873 * the local domain to be very lightly loaded relative to the
8874 * remote domains but "imbalance" skews the comparison making
8875 * remote CPUs look much more favourable. When considering
8876 * cross-domain, add imbalance to the load on the remote node
8877 * and consider staying local.
8880 if ((sd
->flags
& SD_NUMA
) &&
8881 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
8885 * If the local group is less loaded than the selected
8886 * idlest group don't try and push any tasks.
8888 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
8891 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
8895 case group_imbalanced
:
8896 case group_asym_packing
:
8897 /* Those type are not used in the slow wakeup path */
8900 case group_misfit_task
:
8901 /* Select group with the highest max capacity */
8902 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
8906 case group_has_spare
:
8907 if (sd
->flags
& SD_NUMA
) {
8908 #ifdef CONFIG_NUMA_BALANCING
8911 * If there is spare capacity at NUMA, try to select
8912 * the preferred node
8914 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
8917 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
8918 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
8922 * Otherwise, keep the task on this node to stay close
8923 * its wakeup source and improve locality. If there is
8924 * a real need of migration, periodic load balance will
8927 if (allow_numa_imbalance(local_sgs
.sum_nr_running
, sd
->span_weight
))
8932 * Select group with highest number of idle CPUs. We could also
8933 * compare the utilization which is more stable but it can end
8934 * up that the group has less spare capacity but finally more
8935 * idle CPUs which means more opportunity to run task.
8937 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
8946 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8947 * @env: The load balancing environment.
8948 * @sds: variable to hold the statistics for this sched_domain.
8951 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8953 struct sched_domain
*child
= env
->sd
->child
;
8954 struct sched_group
*sg
= env
->sd
->groups
;
8955 struct sg_lb_stats
*local
= &sds
->local_stat
;
8956 struct sg_lb_stats tmp_sgs
;
8959 #ifdef CONFIG_NO_HZ_COMMON
8960 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8961 env
->flags
|= LBF_NOHZ_STATS
;
8965 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8968 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8973 if (env
->idle
!= CPU_NEWLY_IDLE
||
8974 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8975 update_group_capacity(env
->sd
, env
->dst_cpu
);
8978 update_sg_lb_stats(env
, sg
, sgs
, &sg_status
);
8984 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8986 sds
->busiest_stat
= *sgs
;
8990 /* Now, start updating sd_lb_stats */
8991 sds
->total_load
+= sgs
->group_load
;
8992 sds
->total_capacity
+= sgs
->group_capacity
;
8995 } while (sg
!= env
->sd
->groups
);
8997 /* Tag domain that child domain prefers tasks go to siblings first */
8998 sds
->prefer_sibling
= child
&& child
->flags
& SD_PREFER_SIBLING
;
9000 #ifdef CONFIG_NO_HZ_COMMON
9001 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
9002 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
9004 WRITE_ONCE(nohz
.next_blocked
,
9005 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
9009 if (env
->sd
->flags
& SD_NUMA
)
9010 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
9012 if (!env
->sd
->parent
) {
9013 struct root_domain
*rd
= env
->dst_rq
->rd
;
9015 /* update overload indicator if we are at root domain */
9016 WRITE_ONCE(rd
->overload
, sg_status
& SG_OVERLOAD
);
9018 /* Update over-utilization (tipping point, U >= 0) indicator */
9019 WRITE_ONCE(rd
->overutilized
, sg_status
& SG_OVERUTILIZED
);
9020 trace_sched_overutilized_tp(rd
, sg_status
& SG_OVERUTILIZED
);
9021 } else if (sg_status
& SG_OVERUTILIZED
) {
9022 struct root_domain
*rd
= env
->dst_rq
->rd
;
9024 WRITE_ONCE(rd
->overutilized
, SG_OVERUTILIZED
);
9025 trace_sched_overutilized_tp(rd
, SG_OVERUTILIZED
);
9029 #define NUMA_IMBALANCE_MIN 2
9031 static inline long adjust_numa_imbalance(int imbalance
,
9032 int dst_running
, int dst_weight
)
9034 if (!allow_numa_imbalance(dst_running
, dst_weight
))
9038 * Allow a small imbalance based on a simple pair of communicating
9039 * tasks that remain local when the destination is lightly loaded.
9041 if (imbalance
<= NUMA_IMBALANCE_MIN
)
9048 * calculate_imbalance - Calculate the amount of imbalance present within the
9049 * groups of a given sched_domain during load balance.
9050 * @env: load balance environment
9051 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9053 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
9055 struct sg_lb_stats
*local
, *busiest
;
9057 local
= &sds
->local_stat
;
9058 busiest
= &sds
->busiest_stat
;
9060 if (busiest
->group_type
== group_misfit_task
) {
9061 /* Set imbalance to allow misfit tasks to be balanced. */
9062 env
->migration_type
= migrate_misfit
;
9067 if (busiest
->group_type
== group_asym_packing
) {
9069 * In case of asym capacity, we will try to migrate all load to
9070 * the preferred CPU.
9072 env
->migration_type
= migrate_task
;
9073 env
->imbalance
= busiest
->sum_h_nr_running
;
9077 if (busiest
->group_type
== group_imbalanced
) {
9079 * In the group_imb case we cannot rely on group-wide averages
9080 * to ensure CPU-load equilibrium, try to move any task to fix
9081 * the imbalance. The next load balance will take care of
9082 * balancing back the system.
9084 env
->migration_type
= migrate_task
;
9090 * Try to use spare capacity of local group without overloading it or
9093 if (local
->group_type
== group_has_spare
) {
9094 if ((busiest
->group_type
> group_fully_busy
) &&
9095 !(env
->sd
->flags
& SD_SHARE_PKG_RESOURCES
)) {
9097 * If busiest is overloaded, try to fill spare
9098 * capacity. This might end up creating spare capacity
9099 * in busiest or busiest still being overloaded but
9100 * there is no simple way to directly compute the
9101 * amount of load to migrate in order to balance the
9104 env
->migration_type
= migrate_util
;
9105 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
9109 * In some cases, the group's utilization is max or even
9110 * higher than capacity because of migrations but the
9111 * local CPU is (newly) idle. There is at least one
9112 * waiting task in this overloaded busiest group. Let's
9115 if (env
->idle
!= CPU_NOT_IDLE
&& env
->imbalance
== 0) {
9116 env
->migration_type
= migrate_task
;
9123 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
9124 unsigned int nr_diff
= busiest
->sum_nr_running
;
9126 * When prefer sibling, evenly spread running tasks on
9129 env
->migration_type
= migrate_task
;
9130 lsub_positive(&nr_diff
, local
->sum_nr_running
);
9131 env
->imbalance
= nr_diff
>> 1;
9135 * If there is no overload, we just want to even the number of
9138 env
->migration_type
= migrate_task
;
9139 env
->imbalance
= max_t(long, 0, (local
->idle_cpus
-
9140 busiest
->idle_cpus
) >> 1);
9143 /* Consider allowing a small imbalance between NUMA groups */
9144 if (env
->sd
->flags
& SD_NUMA
) {
9145 env
->imbalance
= adjust_numa_imbalance(env
->imbalance
,
9146 busiest
->sum_nr_running
, busiest
->group_weight
);
9153 * Local is fully busy but has to take more load to relieve the
9156 if (local
->group_type
< group_overloaded
) {
9158 * Local will become overloaded so the avg_load metrics are
9162 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
9163 local
->group_capacity
;
9165 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
9166 sds
->total_capacity
;
9168 * If the local group is more loaded than the selected
9169 * busiest group don't try to pull any tasks.
9171 if (local
->avg_load
>= busiest
->avg_load
) {
9178 * Both group are or will become overloaded and we're trying to get all
9179 * the CPUs to the average_load, so we don't want to push ourselves
9180 * above the average load, nor do we wish to reduce the max loaded CPU
9181 * below the average load. At the same time, we also don't want to
9182 * reduce the group load below the group capacity. Thus we look for
9183 * the minimum possible imbalance.
9185 env
->migration_type
= migrate_load
;
9186 env
->imbalance
= min(
9187 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
9188 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
9189 ) / SCHED_CAPACITY_SCALE
;
9192 /******* find_busiest_group() helpers end here *********************/
9195 * Decision matrix according to the local and busiest group type:
9197 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9198 * has_spare nr_idle balanced N/A N/A balanced balanced
9199 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9200 * misfit_task force N/A N/A N/A force force
9201 * asym_packing force force N/A N/A force force
9202 * imbalanced force force N/A N/A force force
9203 * overloaded force force N/A N/A force avg_load
9205 * N/A : Not Applicable because already filtered while updating
9207 * balanced : The system is balanced for these 2 groups.
9208 * force : Calculate the imbalance as load migration is probably needed.
9209 * avg_load : Only if imbalance is significant enough.
9210 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9211 * different in groups.
9215 * find_busiest_group - Returns the busiest group within the sched_domain
9216 * if there is an imbalance.
9218 * Also calculates the amount of runnable load which should be moved
9219 * to restore balance.
9221 * @env: The load balancing environment.
9223 * Return: - The busiest group if imbalance exists.
9225 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
9227 struct sg_lb_stats
*local
, *busiest
;
9228 struct sd_lb_stats sds
;
9230 init_sd_lb_stats(&sds
);
9233 * Compute the various statistics relevant for load balancing at
9236 update_sd_lb_stats(env
, &sds
);
9238 if (sched_energy_enabled()) {
9239 struct root_domain
*rd
= env
->dst_rq
->rd
;
9241 if (rcu_dereference(rd
->pd
) && !READ_ONCE(rd
->overutilized
))
9245 local
= &sds
.local_stat
;
9246 busiest
= &sds
.busiest_stat
;
9248 /* There is no busy sibling group to pull tasks from */
9252 /* Misfit tasks should be dealt with regardless of the avg load */
9253 if (busiest
->group_type
== group_misfit_task
)
9256 /* ASYM feature bypasses nice load balance check */
9257 if (busiest
->group_type
== group_asym_packing
)
9261 * If the busiest group is imbalanced the below checks don't
9262 * work because they assume all things are equal, which typically
9263 * isn't true due to cpus_ptr constraints and the like.
9265 if (busiest
->group_type
== group_imbalanced
)
9269 * If the local group is busier than the selected busiest group
9270 * don't try and pull any tasks.
9272 if (local
->group_type
> busiest
->group_type
)
9276 * When groups are overloaded, use the avg_load to ensure fairness
9279 if (local
->group_type
== group_overloaded
) {
9281 * If the local group is more loaded than the selected
9282 * busiest group don't try to pull any tasks.
9284 if (local
->avg_load
>= busiest
->avg_load
)
9287 /* XXX broken for overlapping NUMA groups */
9288 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
9292 * Don't pull any tasks if this group is already above the
9293 * domain average load.
9295 if (local
->avg_load
>= sds
.avg_load
)
9299 * If the busiest group is more loaded, use imbalance_pct to be
9302 if (100 * busiest
->avg_load
<=
9303 env
->sd
->imbalance_pct
* local
->avg_load
)
9307 /* Try to move all excess tasks to child's sibling domain */
9308 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
9309 busiest
->sum_nr_running
> local
->sum_nr_running
+ 1)
9312 if (busiest
->group_type
!= group_overloaded
) {
9313 if (env
->idle
== CPU_NOT_IDLE
)
9315 * If the busiest group is not overloaded (and as a
9316 * result the local one too) but this CPU is already
9317 * busy, let another idle CPU try to pull task.
9321 if (busiest
->group_weight
> 1 &&
9322 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1))
9324 * If the busiest group is not overloaded
9325 * and there is no imbalance between this and busiest
9326 * group wrt idle CPUs, it is balanced. The imbalance
9327 * becomes significant if the diff is greater than 1
9328 * otherwise we might end up to just move the imbalance
9329 * on another group. Of course this applies only if
9330 * there is more than 1 CPU per group.
9334 if (busiest
->sum_h_nr_running
== 1)
9336 * busiest doesn't have any tasks waiting to run
9342 /* Looks like there is an imbalance. Compute it */
9343 calculate_imbalance(env
, &sds
);
9344 return env
->imbalance
? sds
.busiest
: NULL
;
9352 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9354 static struct rq
*find_busiest_queue(struct lb_env
*env
,
9355 struct sched_group
*group
)
9357 struct rq
*busiest
= NULL
, *rq
;
9358 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
9359 unsigned int busiest_nr
= 0;
9362 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
9363 unsigned long capacity
, load
, util
;
9364 unsigned int nr_running
;
9368 rt
= fbq_classify_rq(rq
);
9371 * We classify groups/runqueues into three groups:
9372 * - regular: there are !numa tasks
9373 * - remote: there are numa tasks that run on the 'wrong' node
9374 * - all: there is no distinction
9376 * In order to avoid migrating ideally placed numa tasks,
9377 * ignore those when there's better options.
9379 * If we ignore the actual busiest queue to migrate another
9380 * task, the next balance pass can still reduce the busiest
9381 * queue by moving tasks around inside the node.
9383 * If we cannot move enough load due to this classification
9384 * the next pass will adjust the group classification and
9385 * allow migration of more tasks.
9387 * Both cases only affect the total convergence complexity.
9389 if (rt
> env
->fbq_type
)
9392 capacity
= capacity_of(i
);
9393 nr_running
= rq
->cfs
.h_nr_running
;
9396 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9397 * eventually lead to active_balancing high->low capacity.
9398 * Higher per-CPU capacity is considered better than balancing
9401 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
9402 capacity_of(env
->dst_cpu
) < capacity
&&
9406 switch (env
->migration_type
) {
9409 * When comparing with load imbalance, use cpu_load()
9410 * which is not scaled with the CPU capacity.
9412 load
= cpu_load(rq
);
9414 if (nr_running
== 1 && load
> env
->imbalance
&&
9415 !check_cpu_capacity(rq
, env
->sd
))
9419 * For the load comparisons with the other CPUs,
9420 * consider the cpu_load() scaled with the CPU
9421 * capacity, so that the load can be moved away
9422 * from the CPU that is potentially running at a
9425 * Thus we're looking for max(load_i / capacity_i),
9426 * crosswise multiplication to rid ourselves of the
9427 * division works out to:
9428 * load_i * capacity_j > load_j * capacity_i;
9429 * where j is our previous maximum.
9431 if (load
* busiest_capacity
> busiest_load
* capacity
) {
9432 busiest_load
= load
;
9433 busiest_capacity
= capacity
;
9439 util
= cpu_util(cpu_of(rq
));
9442 * Don't try to pull utilization from a CPU with one
9443 * running task. Whatever its utilization, we will fail
9446 if (nr_running
<= 1)
9449 if (busiest_util
< util
) {
9450 busiest_util
= util
;
9456 if (busiest_nr
< nr_running
) {
9457 busiest_nr
= nr_running
;
9462 case migrate_misfit
:
9464 * For ASYM_CPUCAPACITY domains with misfit tasks we
9465 * simply seek the "biggest" misfit task.
9467 if (rq
->misfit_task_load
> busiest_load
) {
9468 busiest_load
= rq
->misfit_task_load
;
9481 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9482 * so long as it is large enough.
9484 #define MAX_PINNED_INTERVAL 512
9487 asym_active_balance(struct lb_env
*env
)
9490 * ASYM_PACKING needs to force migrate tasks from busy but
9491 * lower priority CPUs in order to pack all tasks in the
9492 * highest priority CPUs.
9494 return env
->idle
!= CPU_NOT_IDLE
&& (env
->sd
->flags
& SD_ASYM_PACKING
) &&
9495 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
);
9499 voluntary_active_balance(struct lb_env
*env
)
9501 struct sched_domain
*sd
= env
->sd
;
9503 if (asym_active_balance(env
))
9507 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9508 * It's worth migrating the task if the src_cpu's capacity is reduced
9509 * because of other sched_class or IRQs if more capacity stays
9510 * available on dst_cpu.
9512 if ((env
->idle
!= CPU_NOT_IDLE
) &&
9513 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
9514 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
9515 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
9519 if (env
->migration_type
== migrate_misfit
)
9525 static int need_active_balance(struct lb_env
*env
)
9527 struct sched_domain
*sd
= env
->sd
;
9529 if (voluntary_active_balance(env
))
9532 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
9535 static int active_load_balance_cpu_stop(void *data
);
9537 static int should_we_balance(struct lb_env
*env
)
9539 struct sched_group
*sg
= env
->sd
->groups
;
9543 * Ensure the balancing environment is consistent; can happen
9544 * when the softirq triggers 'during' hotplug.
9546 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
9550 * In the newly idle case, we will allow all the CPUs
9551 * to do the newly idle load balance.
9553 if (env
->idle
== CPU_NEWLY_IDLE
)
9556 /* Try to find first idle CPU */
9557 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
9561 /* Are we the first idle CPU? */
9562 return cpu
== env
->dst_cpu
;
9565 /* Are we the first CPU of this group ? */
9566 return group_balance_cpu(sg
) == env
->dst_cpu
;
9570 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9571 * tasks if there is an imbalance.
9573 static int load_balance(int this_cpu
, struct rq
*this_rq
,
9574 struct sched_domain
*sd
, enum cpu_idle_type idle
,
9575 int *continue_balancing
)
9577 int ld_moved
, cur_ld_moved
, active_balance
= 0;
9578 struct sched_domain
*sd_parent
= sd
->parent
;
9579 struct sched_group
*group
;
9582 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
9584 struct lb_env env
= {
9586 .dst_cpu
= this_cpu
,
9588 .dst_grpmask
= sched_group_span(sd
->groups
),
9590 .loop_break
= sched_nr_migrate_break
,
9593 .tasks
= LIST_HEAD_INIT(env
.tasks
),
9596 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
9598 schedstat_inc(sd
->lb_count
[idle
]);
9601 if (!should_we_balance(&env
)) {
9602 *continue_balancing
= 0;
9606 group
= find_busiest_group(&env
);
9608 schedstat_inc(sd
->lb_nobusyg
[idle
]);
9612 busiest
= find_busiest_queue(&env
, group
);
9614 schedstat_inc(sd
->lb_nobusyq
[idle
]);
9618 BUG_ON(busiest
== env
.dst_rq
);
9620 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
9622 env
.src_cpu
= busiest
->cpu
;
9623 env
.src_rq
= busiest
;
9626 if (busiest
->nr_running
> 1) {
9628 * Attempt to move tasks. If find_busiest_group has found
9629 * an imbalance but busiest->nr_running <= 1, the group is
9630 * still unbalanced. ld_moved simply stays zero, so it is
9631 * correctly treated as an imbalance.
9633 env
.flags
|= LBF_ALL_PINNED
;
9634 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
9637 rq_lock_irqsave(busiest
, &rf
);
9638 update_rq_clock(busiest
);
9641 * cur_ld_moved - load moved in current iteration
9642 * ld_moved - cumulative load moved across iterations
9644 cur_ld_moved
= detach_tasks(&env
);
9647 * We've detached some tasks from busiest_rq. Every
9648 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9649 * unlock busiest->lock, and we are able to be sure
9650 * that nobody can manipulate the tasks in parallel.
9651 * See task_rq_lock() family for the details.
9654 rq_unlock(busiest
, &rf
);
9658 ld_moved
+= cur_ld_moved
;
9661 local_irq_restore(rf
.flags
);
9663 if (env
.flags
& LBF_NEED_BREAK
) {
9664 env
.flags
&= ~LBF_NEED_BREAK
;
9669 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9670 * us and move them to an alternate dst_cpu in our sched_group
9671 * where they can run. The upper limit on how many times we
9672 * iterate on same src_cpu is dependent on number of CPUs in our
9675 * This changes load balance semantics a bit on who can move
9676 * load to a given_cpu. In addition to the given_cpu itself
9677 * (or a ilb_cpu acting on its behalf where given_cpu is
9678 * nohz-idle), we now have balance_cpu in a position to move
9679 * load to given_cpu. In rare situations, this may cause
9680 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9681 * _independently_ and at _same_ time to move some load to
9682 * given_cpu) causing exceess load to be moved to given_cpu.
9683 * This however should not happen so much in practice and
9684 * moreover subsequent load balance cycles should correct the
9685 * excess load moved.
9687 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
9689 /* Prevent to re-select dst_cpu via env's CPUs */
9690 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
9692 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
9693 env
.dst_cpu
= env
.new_dst_cpu
;
9694 env
.flags
&= ~LBF_DST_PINNED
;
9696 env
.loop_break
= sched_nr_migrate_break
;
9699 * Go back to "more_balance" rather than "redo" since we
9700 * need to continue with same src_cpu.
9706 * We failed to reach balance because of affinity.
9709 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9711 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
9712 *group_imbalance
= 1;
9715 /* All tasks on this runqueue were pinned by CPU affinity */
9716 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
9717 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
9719 * Attempting to continue load balancing at the current
9720 * sched_domain level only makes sense if there are
9721 * active CPUs remaining as possible busiest CPUs to
9722 * pull load from which are not contained within the
9723 * destination group that is receiving any migrated
9726 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
9728 env
.loop_break
= sched_nr_migrate_break
;
9731 goto out_all_pinned
;
9736 schedstat_inc(sd
->lb_failed
[idle
]);
9738 * Increment the failure counter only on periodic balance.
9739 * We do not want newidle balance, which can be very
9740 * frequent, pollute the failure counter causing
9741 * excessive cache_hot migrations and active balances.
9743 if (idle
!= CPU_NEWLY_IDLE
)
9744 sd
->nr_balance_failed
++;
9746 if (need_active_balance(&env
)) {
9747 unsigned long flags
;
9749 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
9752 * Don't kick the active_load_balance_cpu_stop,
9753 * if the curr task on busiest CPU can't be
9754 * moved to this_cpu:
9756 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
9757 raw_spin_unlock_irqrestore(&busiest
->lock
,
9759 env
.flags
|= LBF_ALL_PINNED
;
9760 goto out_one_pinned
;
9764 * ->active_balance synchronizes accesses to
9765 * ->active_balance_work. Once set, it's cleared
9766 * only after active load balance is finished.
9768 if (!busiest
->active_balance
) {
9769 busiest
->active_balance
= 1;
9770 busiest
->push_cpu
= this_cpu
;
9773 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
9775 if (active_balance
) {
9776 stop_one_cpu_nowait(cpu_of(busiest
),
9777 active_load_balance_cpu_stop
, busiest
,
9778 &busiest
->active_balance_work
);
9781 /* We've kicked active balancing, force task migration. */
9782 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
9785 sd
->nr_balance_failed
= 0;
9787 if (likely(!active_balance
) || voluntary_active_balance(&env
)) {
9788 /* We were unbalanced, so reset the balancing interval */
9789 sd
->balance_interval
= sd
->min_interval
;
9792 * If we've begun active balancing, start to back off. This
9793 * case may not be covered by the all_pinned logic if there
9794 * is only 1 task on the busy runqueue (because we don't call
9797 if (sd
->balance_interval
< sd
->max_interval
)
9798 sd
->balance_interval
*= 2;
9805 * We reach balance although we may have faced some affinity
9806 * constraints. Clear the imbalance flag only if other tasks got
9807 * a chance to move and fix the imbalance.
9809 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
9810 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9812 if (*group_imbalance
)
9813 *group_imbalance
= 0;
9818 * We reach balance because all tasks are pinned at this level so
9819 * we can't migrate them. Let the imbalance flag set so parent level
9820 * can try to migrate them.
9822 schedstat_inc(sd
->lb_balanced
[idle
]);
9824 sd
->nr_balance_failed
= 0;
9830 * newidle_balance() disregards balance intervals, so we could
9831 * repeatedly reach this code, which would lead to balance_interval
9832 * skyrocketting in a short amount of time. Skip the balance_interval
9833 * increase logic to avoid that.
9835 if (env
.idle
== CPU_NEWLY_IDLE
)
9838 /* tune up the balancing interval */
9839 if ((env
.flags
& LBF_ALL_PINNED
&&
9840 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
9841 sd
->balance_interval
< sd
->max_interval
)
9842 sd
->balance_interval
*= 2;
9847 static inline unsigned long
9848 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
9850 unsigned long interval
= sd
->balance_interval
;
9853 interval
*= sd
->busy_factor
;
9855 /* scale ms to jiffies */
9856 interval
= msecs_to_jiffies(interval
);
9859 * Reduce likelihood of busy balancing at higher domains racing with
9860 * balancing at lower domains by preventing their balancing periods
9861 * from being multiples of each other.
9866 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9872 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
9874 unsigned long interval
, next
;
9876 /* used by idle balance, so cpu_busy = 0 */
9877 interval
= get_sd_balance_interval(sd
, 0);
9878 next
= sd
->last_balance
+ interval
;
9880 if (time_after(*next_balance
, next
))
9881 *next_balance
= next
;
9885 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9886 * running tasks off the busiest CPU onto idle CPUs. It requires at
9887 * least 1 task to be running on each physical CPU where possible, and
9888 * avoids physical / logical imbalances.
9890 static int active_load_balance_cpu_stop(void *data
)
9892 struct rq
*busiest_rq
= data
;
9893 int busiest_cpu
= cpu_of(busiest_rq
);
9894 int target_cpu
= busiest_rq
->push_cpu
;
9895 struct rq
*target_rq
= cpu_rq(target_cpu
);
9896 struct sched_domain
*sd
;
9897 struct task_struct
*p
= NULL
;
9900 rq_lock_irq(busiest_rq
, &rf
);
9902 * Between queueing the stop-work and running it is a hole in which
9903 * CPUs can become inactive. We should not move tasks from or to
9906 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
9909 /* Make sure the requested CPU hasn't gone down in the meantime: */
9910 if (unlikely(busiest_cpu
!= smp_processor_id() ||
9911 !busiest_rq
->active_balance
))
9914 /* Is there any task to move? */
9915 if (busiest_rq
->nr_running
<= 1)
9919 * This condition is "impossible", if it occurs
9920 * we need to fix it. Originally reported by
9921 * Bjorn Helgaas on a 128-CPU setup.
9923 BUG_ON(busiest_rq
== target_rq
);
9925 /* Search for an sd spanning us and the target CPU. */
9927 for_each_domain(target_cpu
, sd
) {
9928 if (cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
9933 struct lb_env env
= {
9935 .dst_cpu
= target_cpu
,
9936 .dst_rq
= target_rq
,
9937 .src_cpu
= busiest_rq
->cpu
,
9938 .src_rq
= busiest_rq
,
9941 * can_migrate_task() doesn't need to compute new_dst_cpu
9942 * for active balancing. Since we have CPU_IDLE, but no
9943 * @dst_grpmask we need to make that test go away with lying
9946 .flags
= LBF_DST_PINNED
,
9949 schedstat_inc(sd
->alb_count
);
9950 update_rq_clock(busiest_rq
);
9952 p
= detach_one_task(&env
);
9954 schedstat_inc(sd
->alb_pushed
);
9955 /* Active balancing done, reset the failure counter. */
9956 sd
->nr_balance_failed
= 0;
9958 schedstat_inc(sd
->alb_failed
);
9963 busiest_rq
->active_balance
= 0;
9964 rq_unlock(busiest_rq
, &rf
);
9967 attach_one_task(target_rq
, p
);
9974 static DEFINE_SPINLOCK(balancing
);
9977 * Scale the max load_balance interval with the number of CPUs in the system.
9978 * This trades load-balance latency on larger machines for less cross talk.
9980 void update_max_interval(void)
9982 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9986 * It checks each scheduling domain to see if it is due to be balanced,
9987 * and initiates a balancing operation if so.
9989 * Balancing parameters are set up in init_sched_domains.
9991 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9993 int continue_balancing
= 1;
9995 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9996 unsigned long interval
;
9997 struct sched_domain
*sd
;
9998 /* Earliest time when we have to do rebalance again */
9999 unsigned long next_balance
= jiffies
+ 60*HZ
;
10000 int update_next_balance
= 0;
10001 int need_serialize
, need_decay
= 0;
10005 for_each_domain(cpu
, sd
) {
10007 * Decay the newidle max times here because this is a regular
10008 * visit to all the domains. Decay ~1% per second.
10010 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
10011 sd
->max_newidle_lb_cost
=
10012 (sd
->max_newidle_lb_cost
* 253) / 256;
10013 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
10016 max_cost
+= sd
->max_newidle_lb_cost
;
10019 * Stop the load balance at this level. There is another
10020 * CPU in our sched group which is doing load balancing more
10023 if (!continue_balancing
) {
10029 interval
= get_sd_balance_interval(sd
, busy
);
10031 need_serialize
= sd
->flags
& SD_SERIALIZE
;
10032 if (need_serialize
) {
10033 if (!spin_trylock(&balancing
))
10037 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
10038 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
10040 * The LBF_DST_PINNED logic could have changed
10041 * env->dst_cpu, so we can't know our idle
10042 * state even if we migrated tasks. Update it.
10044 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
10045 busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
10047 sd
->last_balance
= jiffies
;
10048 interval
= get_sd_balance_interval(sd
, busy
);
10050 if (need_serialize
)
10051 spin_unlock(&balancing
);
10053 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
10054 next_balance
= sd
->last_balance
+ interval
;
10055 update_next_balance
= 1;
10060 * Ensure the rq-wide value also decays but keep it at a
10061 * reasonable floor to avoid funnies with rq->avg_idle.
10063 rq
->max_idle_balance_cost
=
10064 max((u64
)sysctl_sched_migration_cost
, max_cost
);
10069 * next_balance will be updated only when there is a need.
10070 * When the cpu is attached to null domain for ex, it will not be
10073 if (likely(update_next_balance
)) {
10074 rq
->next_balance
= next_balance
;
10076 #ifdef CONFIG_NO_HZ_COMMON
10078 * If this CPU has been elected to perform the nohz idle
10079 * balance. Other idle CPUs have already rebalanced with
10080 * nohz_idle_balance() and nohz.next_balance has been
10081 * updated accordingly. This CPU is now running the idle load
10082 * balance for itself and we need to update the
10083 * nohz.next_balance accordingly.
10085 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
10086 nohz
.next_balance
= rq
->next_balance
;
10091 static inline int on_null_domain(struct rq
*rq
)
10093 return unlikely(!rcu_dereference_sched(rq
->sd
));
10096 #ifdef CONFIG_NO_HZ_COMMON
10098 * idle load balancing details
10099 * - When one of the busy CPUs notice that there may be an idle rebalancing
10100 * needed, they will kick the idle load balancer, which then does idle
10101 * load balancing for all the idle CPUs.
10102 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10106 static inline int find_new_ilb(void)
10110 for_each_cpu_and(ilb
, nohz
.idle_cpus_mask
,
10111 housekeeping_cpumask(HK_FLAG_MISC
)) {
10113 if (ilb
== smp_processor_id())
10124 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10125 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10127 static void kick_ilb(unsigned int flags
)
10132 * Increase nohz.next_balance only when if full ilb is triggered but
10133 * not if we only update stats.
10135 if (flags
& NOHZ_BALANCE_KICK
)
10136 nohz
.next_balance
= jiffies
+1;
10138 ilb_cpu
= find_new_ilb();
10140 if (ilb_cpu
>= nr_cpu_ids
)
10144 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10145 * the first flag owns it; cleared by nohz_csd_func().
10147 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
10148 if (flags
& NOHZ_KICK_MASK
)
10152 * This way we generate an IPI on the target CPU which
10153 * is idle. And the softirq performing nohz idle load balance
10154 * will be run before returning from the IPI.
10156 smp_call_function_single_async(ilb_cpu
, &cpu_rq(ilb_cpu
)->nohz_csd
);
10160 * Current decision point for kicking the idle load balancer in the presence
10161 * of idle CPUs in the system.
10163 static void nohz_balancer_kick(struct rq
*rq
)
10165 unsigned long now
= jiffies
;
10166 struct sched_domain_shared
*sds
;
10167 struct sched_domain
*sd
;
10168 int nr_busy
, i
, cpu
= rq
->cpu
;
10169 unsigned int flags
= 0;
10171 if (unlikely(rq
->idle_balance
))
10175 * We may be recently in ticked or tickless idle mode. At the first
10176 * busy tick after returning from idle, we will update the busy stats.
10178 nohz_balance_exit_idle(rq
);
10181 * None are in tickless mode and hence no need for NOHZ idle load
10184 if (likely(!atomic_read(&nohz
.nr_cpus
)))
10187 if (READ_ONCE(nohz
.has_blocked
) &&
10188 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
10189 flags
= NOHZ_STATS_KICK
;
10191 if (time_before(now
, nohz
.next_balance
))
10194 if (rq
->nr_running
>= 2) {
10195 flags
= NOHZ_KICK_MASK
;
10201 sd
= rcu_dereference(rq
->sd
);
10204 * If there's a CFS task and the current CPU has reduced
10205 * capacity; kick the ILB to see if there's a better CPU to run
10208 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
10209 flags
= NOHZ_KICK_MASK
;
10214 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
10217 * When ASYM_PACKING; see if there's a more preferred CPU
10218 * currently idle; in which case, kick the ILB to move tasks
10221 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
10222 if (sched_asym_prefer(i
, cpu
)) {
10223 flags
= NOHZ_KICK_MASK
;
10229 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
10232 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10233 * to run the misfit task on.
10235 if (check_misfit_status(rq
, sd
)) {
10236 flags
= NOHZ_KICK_MASK
;
10241 * For asymmetric systems, we do not want to nicely balance
10242 * cache use, instead we want to embrace asymmetry and only
10243 * ensure tasks have enough CPU capacity.
10245 * Skip the LLC logic because it's not relevant in that case.
10250 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
10253 * If there is an imbalance between LLC domains (IOW we could
10254 * increase the overall cache use), we need some less-loaded LLC
10255 * domain to pull some load. Likewise, we may need to spread
10256 * load within the current LLC domain (e.g. packed SMT cores but
10257 * other CPUs are idle). We can't really know from here how busy
10258 * the others are - so just get a nohz balance going if it looks
10259 * like this LLC domain has tasks we could move.
10261 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
10263 flags
= NOHZ_KICK_MASK
;
10274 static void set_cpu_sd_state_busy(int cpu
)
10276 struct sched_domain
*sd
;
10279 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10281 if (!sd
|| !sd
->nohz_idle
)
10285 atomic_inc(&sd
->shared
->nr_busy_cpus
);
10290 void nohz_balance_exit_idle(struct rq
*rq
)
10292 SCHED_WARN_ON(rq
!= this_rq());
10294 if (likely(!rq
->nohz_tick_stopped
))
10297 rq
->nohz_tick_stopped
= 0;
10298 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
10299 atomic_dec(&nohz
.nr_cpus
);
10301 set_cpu_sd_state_busy(rq
->cpu
);
10304 static void set_cpu_sd_state_idle(int cpu
)
10306 struct sched_domain
*sd
;
10309 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10311 if (!sd
|| sd
->nohz_idle
)
10315 atomic_dec(&sd
->shared
->nr_busy_cpus
);
10321 * This routine will record that the CPU is going idle with tick stopped.
10322 * This info will be used in performing idle load balancing in the future.
10324 void nohz_balance_enter_idle(int cpu
)
10326 struct rq
*rq
= cpu_rq(cpu
);
10328 SCHED_WARN_ON(cpu
!= smp_processor_id());
10330 /* If this CPU is going down, then nothing needs to be done: */
10331 if (!cpu_active(cpu
))
10334 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10335 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
10339 * Can be set safely without rq->lock held
10340 * If a clear happens, it will have evaluated last additions because
10341 * rq->lock is held during the check and the clear
10343 rq
->has_blocked_load
= 1;
10346 * The tick is still stopped but load could have been added in the
10347 * meantime. We set the nohz.has_blocked flag to trig a check of the
10348 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10349 * of nohz.has_blocked can only happen after checking the new load
10351 if (rq
->nohz_tick_stopped
)
10354 /* If we're a completely isolated CPU, we don't play: */
10355 if (on_null_domain(rq
))
10358 rq
->nohz_tick_stopped
= 1;
10360 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
10361 atomic_inc(&nohz
.nr_cpus
);
10364 * Ensures that if nohz_idle_balance() fails to observe our
10365 * @idle_cpus_mask store, it must observe the @has_blocked
10368 smp_mb__after_atomic();
10370 set_cpu_sd_state_idle(cpu
);
10374 * Each time a cpu enter idle, we assume that it has blocked load and
10375 * enable the periodic update of the load of idle cpus
10377 WRITE_ONCE(nohz
.has_blocked
, 1);
10381 * Internal function that runs load balance for all idle cpus. The load balance
10382 * can be a simple update of blocked load or a complete load balance with
10383 * tasks movement depending of flags.
10384 * The function returns false if the loop has stopped before running
10385 * through all idle CPUs.
10387 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
10388 enum cpu_idle_type idle
)
10390 /* Earliest time when we have to do rebalance again */
10391 unsigned long now
= jiffies
;
10392 unsigned long next_balance
= now
+ 60*HZ
;
10393 bool has_blocked_load
= false;
10394 int update_next_balance
= 0;
10395 int this_cpu
= this_rq
->cpu
;
10400 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
10403 * We assume there will be no idle load after this update and clear
10404 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10405 * set the has_blocked flag and trig another update of idle load.
10406 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10407 * setting the flag, we are sure to not clear the state and not
10408 * check the load of an idle cpu.
10410 WRITE_ONCE(nohz
.has_blocked
, 0);
10413 * Ensures that if we miss the CPU, we must see the has_blocked
10414 * store from nohz_balance_enter_idle().
10418 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
10419 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
10423 * If this CPU gets work to do, stop the load balancing
10424 * work being done for other CPUs. Next load
10425 * balancing owner will pick it up.
10427 if (need_resched()) {
10428 has_blocked_load
= true;
10432 rq
= cpu_rq(balance_cpu
);
10434 has_blocked_load
|= update_nohz_stats(rq
, true);
10437 * If time for next balance is due,
10440 if (time_after_eq(jiffies
, rq
->next_balance
)) {
10441 struct rq_flags rf
;
10443 rq_lock_irqsave(rq
, &rf
);
10444 update_rq_clock(rq
);
10445 rq_unlock_irqrestore(rq
, &rf
);
10447 if (flags
& NOHZ_BALANCE_KICK
)
10448 rebalance_domains(rq
, CPU_IDLE
);
10451 if (time_after(next_balance
, rq
->next_balance
)) {
10452 next_balance
= rq
->next_balance
;
10453 update_next_balance
= 1;
10458 * next_balance will be updated only when there is a need.
10459 * When the CPU is attached to null domain for ex, it will not be
10462 if (likely(update_next_balance
))
10463 nohz
.next_balance
= next_balance
;
10465 /* Newly idle CPU doesn't need an update */
10466 if (idle
!= CPU_NEWLY_IDLE
) {
10467 update_blocked_averages(this_cpu
);
10468 has_blocked_load
|= this_rq
->has_blocked_load
;
10471 if (flags
& NOHZ_BALANCE_KICK
)
10472 rebalance_domains(this_rq
, CPU_IDLE
);
10474 WRITE_ONCE(nohz
.next_blocked
,
10475 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
10477 /* The full idle balance loop has been done */
10481 /* There is still blocked load, enable periodic update */
10482 if (has_blocked_load
)
10483 WRITE_ONCE(nohz
.has_blocked
, 1);
10489 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10490 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10492 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10494 unsigned int flags
= this_rq
->nohz_idle_balance
;
10499 this_rq
->nohz_idle_balance
= 0;
10501 if (idle
!= CPU_IDLE
)
10504 _nohz_idle_balance(this_rq
, flags
, idle
);
10509 static void nohz_newidle_balance(struct rq
*this_rq
)
10511 int this_cpu
= this_rq
->cpu
;
10514 * This CPU doesn't want to be disturbed by scheduler
10517 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
10520 /* Will wake up very soon. No time for doing anything else*/
10521 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
10524 /* Don't need to update blocked load of idle CPUs*/
10525 if (!READ_ONCE(nohz
.has_blocked
) ||
10526 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
10529 raw_spin_unlock(&this_rq
->lock
);
10531 * This CPU is going to be idle and blocked load of idle CPUs
10532 * need to be updated. Run the ilb locally as it is a good
10533 * candidate for ilb instead of waking up another idle CPU.
10534 * Kick an normal ilb if we failed to do the update.
10536 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
10537 kick_ilb(NOHZ_STATS_KICK
);
10538 raw_spin_lock(&this_rq
->lock
);
10541 #else /* !CONFIG_NO_HZ_COMMON */
10542 static inline void nohz_balancer_kick(struct rq
*rq
) { }
10544 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10549 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
10550 #endif /* CONFIG_NO_HZ_COMMON */
10553 * newidle_balance is called by schedule() if this_cpu is about to become
10554 * idle. Attempts to pull tasks from other CPUs.
10557 * < 0 - we released the lock and there are !fair tasks present
10558 * 0 - failed, no new tasks
10559 * > 0 - success, new (fair) tasks present
10561 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
10563 unsigned long next_balance
= jiffies
+ HZ
;
10564 int this_cpu
= this_rq
->cpu
;
10565 struct sched_domain
*sd
;
10566 int pulled_task
= 0;
10569 update_misfit_status(NULL
, this_rq
);
10571 * We must set idle_stamp _before_ calling idle_balance(), such that we
10572 * measure the duration of idle_balance() as idle time.
10574 this_rq
->idle_stamp
= rq_clock(this_rq
);
10577 * Do not pull tasks towards !active CPUs...
10579 if (!cpu_active(this_cpu
))
10583 * This is OK, because current is on_cpu, which avoids it being picked
10584 * for load-balance and preemption/IRQs are still disabled avoiding
10585 * further scheduler activity on it and we're being very careful to
10586 * re-start the picking loop.
10588 rq_unpin_lock(this_rq
, rf
);
10590 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
10591 !READ_ONCE(this_rq
->rd
->overload
)) {
10594 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
10596 update_next_balance(sd
, &next_balance
);
10599 nohz_newidle_balance(this_rq
);
10604 raw_spin_unlock(&this_rq
->lock
);
10606 update_blocked_averages(this_cpu
);
10608 for_each_domain(this_cpu
, sd
) {
10609 int continue_balancing
= 1;
10610 u64 t0
, domain_cost
;
10612 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
10613 update_next_balance(sd
, &next_balance
);
10617 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
10618 t0
= sched_clock_cpu(this_cpu
);
10620 pulled_task
= load_balance(this_cpu
, this_rq
,
10621 sd
, CPU_NEWLY_IDLE
,
10622 &continue_balancing
);
10624 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
10625 if (domain_cost
> sd
->max_newidle_lb_cost
)
10626 sd
->max_newidle_lb_cost
= domain_cost
;
10628 curr_cost
+= domain_cost
;
10631 update_next_balance(sd
, &next_balance
);
10634 * Stop searching for tasks to pull if there are
10635 * now runnable tasks on this rq.
10637 if (pulled_task
|| this_rq
->nr_running
> 0)
10642 raw_spin_lock(&this_rq
->lock
);
10644 if (curr_cost
> this_rq
->max_idle_balance_cost
)
10645 this_rq
->max_idle_balance_cost
= curr_cost
;
10649 * While browsing the domains, we released the rq lock, a task could
10650 * have been enqueued in the meantime. Since we're not going idle,
10651 * pretend we pulled a task.
10653 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
10656 /* Move the next balance forward */
10657 if (time_after(this_rq
->next_balance
, next_balance
))
10658 this_rq
->next_balance
= next_balance
;
10660 /* Is there a task of a high priority class? */
10661 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
10665 this_rq
->idle_stamp
= 0;
10667 rq_repin_lock(this_rq
, rf
);
10669 return pulled_task
;
10673 * run_rebalance_domains is triggered when needed from the scheduler tick.
10674 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10676 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
10678 struct rq
*this_rq
= this_rq();
10679 enum cpu_idle_type idle
= this_rq
->idle_balance
?
10680 CPU_IDLE
: CPU_NOT_IDLE
;
10683 * If this CPU has a pending nohz_balance_kick, then do the
10684 * balancing on behalf of the other idle CPUs whose ticks are
10685 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10686 * give the idle CPUs a chance to load balance. Else we may
10687 * load balance only within the local sched_domain hierarchy
10688 * and abort nohz_idle_balance altogether if we pull some load.
10690 if (nohz_idle_balance(this_rq
, idle
))
10693 /* normal load balance */
10694 update_blocked_averages(this_rq
->cpu
);
10695 rebalance_domains(this_rq
, idle
);
10699 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10701 void trigger_load_balance(struct rq
*rq
)
10703 /* Don't need to rebalance while attached to NULL domain */
10704 if (unlikely(on_null_domain(rq
)))
10707 if (time_after_eq(jiffies
, rq
->next_balance
))
10708 raise_softirq(SCHED_SOFTIRQ
);
10710 nohz_balancer_kick(rq
);
10713 static void rq_online_fair(struct rq
*rq
)
10717 update_runtime_enabled(rq
);
10720 static void rq_offline_fair(struct rq
*rq
)
10724 /* Ensure any throttled groups are reachable by pick_next_task */
10725 unthrottle_offline_cfs_rqs(rq
);
10728 #endif /* CONFIG_SMP */
10731 * scheduler tick hitting a task of our scheduling class.
10733 * NOTE: This function can be called remotely by the tick offload that
10734 * goes along full dynticks. Therefore no local assumption can be made
10735 * and everything must be accessed through the @rq and @curr passed in
10738 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
10740 struct cfs_rq
*cfs_rq
;
10741 struct sched_entity
*se
= &curr
->se
;
10743 for_each_sched_entity(se
) {
10744 cfs_rq
= cfs_rq_of(se
);
10745 entity_tick(cfs_rq
, se
, queued
);
10748 if (static_branch_unlikely(&sched_numa_balancing
))
10749 task_tick_numa(rq
, curr
);
10751 update_misfit_status(curr
, rq
);
10752 update_overutilized_status(task_rq(curr
));
10756 * called on fork with the child task as argument from the parent's context
10757 * - child not yet on the tasklist
10758 * - preemption disabled
10760 static void task_fork_fair(struct task_struct
*p
)
10762 struct cfs_rq
*cfs_rq
;
10763 struct sched_entity
*se
= &p
->se
, *curr
;
10764 struct rq
*rq
= this_rq();
10765 struct rq_flags rf
;
10768 update_rq_clock(rq
);
10770 cfs_rq
= task_cfs_rq(current
);
10771 curr
= cfs_rq
->curr
;
10773 update_curr(cfs_rq
);
10774 se
->vruntime
= curr
->vruntime
;
10776 place_entity(cfs_rq
, se
, 1);
10778 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
10780 * Upon rescheduling, sched_class::put_prev_task() will place
10781 * 'current' within the tree based on its new key value.
10783 swap(curr
->vruntime
, se
->vruntime
);
10787 se
->vruntime
-= cfs_rq
->min_vruntime
;
10788 rq_unlock(rq
, &rf
);
10792 * Priority of the task has changed. Check to see if we preempt
10793 * the current task.
10796 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
10798 if (!task_on_rq_queued(p
))
10801 if (rq
->cfs
.nr_running
== 1)
10805 * Reschedule if we are currently running on this runqueue and
10806 * our priority decreased, or if we are not currently running on
10807 * this runqueue and our priority is higher than the current's
10809 if (rq
->curr
== p
) {
10810 if (p
->prio
> oldprio
)
10813 check_preempt_curr(rq
, p
, 0);
10816 static inline bool vruntime_normalized(struct task_struct
*p
)
10818 struct sched_entity
*se
= &p
->se
;
10821 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10822 * the dequeue_entity(.flags=0) will already have normalized the
10829 * When !on_rq, vruntime of the task has usually NOT been normalized.
10830 * But there are some cases where it has already been normalized:
10832 * - A forked child which is waiting for being woken up by
10833 * wake_up_new_task().
10834 * - A task which has been woken up by try_to_wake_up() and
10835 * waiting for actually being woken up by sched_ttwu_pending().
10837 if (!se
->sum_exec_runtime
||
10838 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
10844 #ifdef CONFIG_FAIR_GROUP_SCHED
10846 * Propagate the changes of the sched_entity across the tg tree to make it
10847 * visible to the root
10849 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
10851 struct cfs_rq
*cfs_rq
;
10853 /* Start to propagate at parent */
10856 for_each_sched_entity(se
) {
10857 cfs_rq
= cfs_rq_of(se
);
10859 if (cfs_rq_throttled(cfs_rq
))
10862 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
10866 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
10869 static void detach_entity_cfs_rq(struct sched_entity
*se
)
10871 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10873 /* Catch up with the cfs_rq and remove our load when we leave */
10874 update_load_avg(cfs_rq
, se
, 0);
10875 detach_entity_load_avg(cfs_rq
, se
);
10876 update_tg_load_avg(cfs_rq
);
10877 propagate_entity_cfs_rq(se
);
10880 static void attach_entity_cfs_rq(struct sched_entity
*se
)
10882 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10884 #ifdef CONFIG_FAIR_GROUP_SCHED
10886 * Since the real-depth could have been changed (only FAIR
10887 * class maintain depth value), reset depth properly.
10889 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10892 /* Synchronize entity with its cfs_rq */
10893 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
10894 attach_entity_load_avg(cfs_rq
, se
);
10895 update_tg_load_avg(cfs_rq
);
10896 propagate_entity_cfs_rq(se
);
10899 static void detach_task_cfs_rq(struct task_struct
*p
)
10901 struct sched_entity
*se
= &p
->se
;
10902 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10904 if (!vruntime_normalized(p
)) {
10906 * Fix up our vruntime so that the current sleep doesn't
10907 * cause 'unlimited' sleep bonus.
10909 place_entity(cfs_rq
, se
, 0);
10910 se
->vruntime
-= cfs_rq
->min_vruntime
;
10913 detach_entity_cfs_rq(se
);
10916 static void attach_task_cfs_rq(struct task_struct
*p
)
10918 struct sched_entity
*se
= &p
->se
;
10919 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10921 attach_entity_cfs_rq(se
);
10923 if (!vruntime_normalized(p
))
10924 se
->vruntime
+= cfs_rq
->min_vruntime
;
10927 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
10929 detach_task_cfs_rq(p
);
10932 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
10934 attach_task_cfs_rq(p
);
10936 if (task_on_rq_queued(p
)) {
10938 * We were most likely switched from sched_rt, so
10939 * kick off the schedule if running, otherwise just see
10940 * if we can still preempt the current task.
10945 check_preempt_curr(rq
, p
, 0);
10949 /* Account for a task changing its policy or group.
10951 * This routine is mostly called to set cfs_rq->curr field when a task
10952 * migrates between groups/classes.
10954 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
10956 struct sched_entity
*se
= &p
->se
;
10959 if (task_on_rq_queued(p
)) {
10961 * Move the next running task to the front of the list, so our
10962 * cfs_tasks list becomes MRU one.
10964 list_move(&se
->group_node
, &rq
->cfs_tasks
);
10968 for_each_sched_entity(se
) {
10969 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10971 set_next_entity(cfs_rq
, se
);
10972 /* ensure bandwidth has been allocated on our new cfs_rq */
10973 account_cfs_rq_runtime(cfs_rq
, 0);
10977 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
10979 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
10980 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
10981 #ifndef CONFIG_64BIT
10982 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
10985 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
10989 #ifdef CONFIG_FAIR_GROUP_SCHED
10990 static void task_set_group_fair(struct task_struct
*p
)
10992 struct sched_entity
*se
= &p
->se
;
10994 set_task_rq(p
, task_cpu(p
));
10995 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10998 static void task_move_group_fair(struct task_struct
*p
)
11000 detach_task_cfs_rq(p
);
11001 set_task_rq(p
, task_cpu(p
));
11004 /* Tell se's cfs_rq has been changed -- migrated */
11005 p
->se
.avg
.last_update_time
= 0;
11007 attach_task_cfs_rq(p
);
11010 static void task_change_group_fair(struct task_struct
*p
, int type
)
11013 case TASK_SET_GROUP
:
11014 task_set_group_fair(p
);
11017 case TASK_MOVE_GROUP
:
11018 task_move_group_fair(p
);
11023 void free_fair_sched_group(struct task_group
*tg
)
11027 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
11029 for_each_possible_cpu(i
) {
11031 kfree(tg
->cfs_rq
[i
]);
11040 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
11042 struct sched_entity
*se
;
11043 struct cfs_rq
*cfs_rq
;
11046 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
11049 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
11053 tg
->shares
= NICE_0_LOAD
;
11055 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
11057 for_each_possible_cpu(i
) {
11058 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
11059 GFP_KERNEL
, cpu_to_node(i
));
11063 se
= kzalloc_node(sizeof(struct sched_entity
),
11064 GFP_KERNEL
, cpu_to_node(i
));
11068 init_cfs_rq(cfs_rq
);
11069 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
11070 init_entity_runnable_average(se
);
11081 void online_fair_sched_group(struct task_group
*tg
)
11083 struct sched_entity
*se
;
11084 struct rq_flags rf
;
11088 for_each_possible_cpu(i
) {
11091 rq_lock_irq(rq
, &rf
);
11092 update_rq_clock(rq
);
11093 attach_entity_cfs_rq(se
);
11094 sync_throttle(tg
, i
);
11095 rq_unlock_irq(rq
, &rf
);
11099 void unregister_fair_sched_group(struct task_group
*tg
)
11101 unsigned long flags
;
11105 for_each_possible_cpu(cpu
) {
11107 remove_entity_load_avg(tg
->se
[cpu
]);
11110 * Only empty task groups can be destroyed; so we can speculatively
11111 * check on_list without danger of it being re-added.
11113 if (!tg
->cfs_rq
[cpu
]->on_list
)
11118 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11119 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
11120 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11124 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
11125 struct sched_entity
*se
, int cpu
,
11126 struct sched_entity
*parent
)
11128 struct rq
*rq
= cpu_rq(cpu
);
11132 init_cfs_rq_runtime(cfs_rq
);
11134 tg
->cfs_rq
[cpu
] = cfs_rq
;
11137 /* se could be NULL for root_task_group */
11142 se
->cfs_rq
= &rq
->cfs
;
11145 se
->cfs_rq
= parent
->my_q
;
11146 se
->depth
= parent
->depth
+ 1;
11150 /* guarantee group entities always have weight */
11151 update_load_set(&se
->load
, NICE_0_LOAD
);
11152 se
->parent
= parent
;
11155 static DEFINE_MUTEX(shares_mutex
);
11157 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
11162 * We can't change the weight of the root cgroup.
11167 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
11169 mutex_lock(&shares_mutex
);
11170 if (tg
->shares
== shares
)
11173 tg
->shares
= shares
;
11174 for_each_possible_cpu(i
) {
11175 struct rq
*rq
= cpu_rq(i
);
11176 struct sched_entity
*se
= tg
->se
[i
];
11177 struct rq_flags rf
;
11179 /* Propagate contribution to hierarchy */
11180 rq_lock_irqsave(rq
, &rf
);
11181 update_rq_clock(rq
);
11182 for_each_sched_entity(se
) {
11183 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
11184 update_cfs_group(se
);
11186 rq_unlock_irqrestore(rq
, &rf
);
11190 mutex_unlock(&shares_mutex
);
11193 #else /* CONFIG_FAIR_GROUP_SCHED */
11195 void free_fair_sched_group(struct task_group
*tg
) { }
11197 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
11202 void online_fair_sched_group(struct task_group
*tg
) { }
11204 void unregister_fair_sched_group(struct task_group
*tg
) { }
11206 #endif /* CONFIG_FAIR_GROUP_SCHED */
11209 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
11211 struct sched_entity
*se
= &task
->se
;
11212 unsigned int rr_interval
= 0;
11215 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11218 if (rq
->cfs
.load
.weight
)
11219 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
11221 return rr_interval
;
11225 * All the scheduling class methods:
11227 DEFINE_SCHED_CLASS(fair
) = {
11229 .enqueue_task
= enqueue_task_fair
,
11230 .dequeue_task
= dequeue_task_fair
,
11231 .yield_task
= yield_task_fair
,
11232 .yield_to_task
= yield_to_task_fair
,
11234 .check_preempt_curr
= check_preempt_wakeup
,
11236 .pick_next_task
= __pick_next_task_fair
,
11237 .put_prev_task
= put_prev_task_fair
,
11238 .set_next_task
= set_next_task_fair
,
11241 .balance
= balance_fair
,
11242 .select_task_rq
= select_task_rq_fair
,
11243 .migrate_task_rq
= migrate_task_rq_fair
,
11245 .rq_online
= rq_online_fair
,
11246 .rq_offline
= rq_offline_fair
,
11248 .task_dead
= task_dead_fair
,
11249 .set_cpus_allowed
= set_cpus_allowed_common
,
11252 .task_tick
= task_tick_fair
,
11253 .task_fork
= task_fork_fair
,
11255 .prio_changed
= prio_changed_fair
,
11256 .switched_from
= switched_from_fair
,
11257 .switched_to
= switched_to_fair
,
11259 .get_rr_interval
= get_rr_interval_fair
,
11261 .update_curr
= update_curr_fair
,
11263 #ifdef CONFIG_FAIR_GROUP_SCHED
11264 .task_change_group
= task_change_group_fair
,
11267 #ifdef CONFIG_UCLAMP_TASK
11268 .uclamp_enabled
= 1,
11272 #ifdef CONFIG_SCHED_DEBUG
11273 void print_cfs_stats(struct seq_file
*m
, int cpu
)
11275 struct cfs_rq
*cfs_rq
, *pos
;
11278 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
11279 print_cfs_rq(m
, cpu
, cfs_rq
);
11283 #ifdef CONFIG_NUMA_BALANCING
11284 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
11287 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
11288 struct numa_group
*ng
;
11291 ng
= rcu_dereference(p
->numa_group
);
11292 for_each_online_node(node
) {
11293 if (p
->numa_faults
) {
11294 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
11295 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11298 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
11299 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11301 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
11305 #endif /* CONFIG_NUMA_BALANCING */
11306 #endif /* CONFIG_SCHED_DEBUG */
11308 __init
void init_sched_fair_class(void)
11311 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
11313 #ifdef CONFIG_NO_HZ_COMMON
11314 nohz
.next_balance
= jiffies
;
11315 nohz
.next_blocked
= jiffies
;
11316 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
11323 * Helper functions to facilitate extracting info from tracepoints.
11326 const struct sched_avg
*sched_trace_cfs_rq_avg(struct cfs_rq
*cfs_rq
)
11329 return cfs_rq
? &cfs_rq
->avg
: NULL
;
11334 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg
);
11336 char *sched_trace_cfs_rq_path(struct cfs_rq
*cfs_rq
, char *str
, int len
)
11340 strlcpy(str
, "(null)", len
);
11345 cfs_rq_tg_path(cfs_rq
, str
, len
);
11348 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path
);
11350 int sched_trace_cfs_rq_cpu(struct cfs_rq
*cfs_rq
)
11352 return cfs_rq
? cpu_of(rq_of(cfs_rq
)) : -1;
11354 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu
);
11356 const struct sched_avg
*sched_trace_rq_avg_rt(struct rq
*rq
)
11359 return rq
? &rq
->avg_rt
: NULL
;
11364 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt
);
11366 const struct sched_avg
*sched_trace_rq_avg_dl(struct rq
*rq
)
11369 return rq
? &rq
->avg_dl
: NULL
;
11374 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl
);
11376 const struct sched_avg
*sched_trace_rq_avg_irq(struct rq
*rq
)
11378 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11379 return rq
? &rq
->avg_irq
: NULL
;
11384 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq
);
11386 int sched_trace_rq_cpu(struct rq
*rq
)
11388 return rq
? cpu_of(rq
) : -1;
11390 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu
);
11392 int sched_trace_rq_cpu_capacity(struct rq
*rq
)
11398 SCHED_CAPACITY_SCALE
11402 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity
);
11404 const struct cpumask
*sched_trace_rd_span(struct root_domain
*rd
)
11407 return rd
? rd
->span
: NULL
;
11412 EXPORT_SYMBOL_GPL(sched_trace_rd_span
);
11414 int sched_trace_rq_nr_running(struct rq
*rq
)
11416 return rq
? rq
->nr_running
: -1;
11418 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running
);