Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / sched / psi.c
blob967732c0766c567d2fc1523c900c976d18ac1acf
1 /*
2 * Pressure stall information for CPU, memory and IO
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
19 * Model
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
39 * SOME = nr_delayed_tasks != 0
40 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
42 * The percentage of wallclock time spent in those compound stall
43 * states gives pressure numbers between 0 and 100 for each resource,
44 * where the SOME percentage indicates workload slowdowns and the FULL
45 * percentage indicates reduced CPU utilization:
47 * %SOME = time(SOME) / period
48 * %FULL = time(FULL) / period
50 * Multiple CPUs
52 * The more tasks and available CPUs there are, the more work can be
53 * performed concurrently. This means that the potential that can go
54 * unrealized due to resource contention *also* scales with non-idle
55 * tasks and CPUs.
57 * Consider a scenario where 257 number crunching tasks are trying to
58 * run concurrently on 256 CPUs. If we simply aggregated the task
59 * states, we would have to conclude a CPU SOME pressure number of
60 * 100%, since *somebody* is waiting on a runqueue at all
61 * times. However, that is clearly not the amount of contention the
62 * workload is experiencing: only one out of 256 possible exceution
63 * threads will be contended at any given time, or about 0.4%.
65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66 * given time *one* of the tasks is delayed due to a lack of memory.
67 * Again, looking purely at the task state would yield a memory FULL
68 * pressure number of 0%, since *somebody* is always making forward
69 * progress. But again this wouldn't capture the amount of execution
70 * potential lost, which is 1 out of 4 CPUs, or 25%.
72 * To calculate wasted potential (pressure) with multiple processors,
73 * we have to base our calculation on the number of non-idle tasks in
74 * conjunction with the number of available CPUs, which is the number
75 * of potential execution threads. SOME becomes then the proportion of
76 * delayed tasks to possibe threads, and FULL is the share of possible
77 * threads that are unproductive due to delays:
79 * threads = min(nr_nonidle_tasks, nr_cpus)
80 * SOME = min(nr_delayed_tasks / threads, 1)
81 * FULL = (threads - min(nr_running_tasks, threads)) / threads
83 * For the 257 number crunchers on 256 CPUs, this yields:
85 * threads = min(257, 256)
86 * SOME = min(1 / 256, 1) = 0.4%
87 * FULL = (256 - min(257, 256)) / 256 = 0%
89 * For the 1 out of 4 memory-delayed tasks, this yields:
91 * threads = min(4, 4)
92 * SOME = min(1 / 4, 1) = 25%
93 * FULL = (4 - min(3, 4)) / 4 = 25%
95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
96 * extension of the single-CPU model. ]
98 * Implementation
100 * To assess the precise time spent in each such state, we would have
101 * to freeze the system on task changes and start/stop the state
102 * clocks accordingly. Obviously that doesn't scale in practice.
104 * Because the scheduler aims to distribute the compute load evenly
105 * among the available CPUs, we can track task state locally to each
106 * CPU and, at much lower frequency, extrapolate the global state for
107 * the cumulative stall times and the running averages.
109 * For each runqueue, we track:
111 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
115 * and then periodically aggregate:
117 * tNONIDLE = sum(tNONIDLE[i])
119 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
122 * %SOME = tSOME / period
123 * %FULL = tFULL / period
125 * This gives us an approximation of pressure that is practical
126 * cost-wise, yet way more sensitive and accurate than periodic
127 * sampling of the aggregate task states would be.
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
143 #include "sched.h"
145 static int psi_bug __read_mostly;
147 DEFINE_STATIC_KEY_FALSE(psi_disabled);
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
154 static int __init setup_psi(char *str)
156 return kstrtobool(str, &psi_enable) == 0;
158 __setup("psi=", setup_psi);
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s 1981 /* 1/exp(2s/60s) */
164 #define EXP_300s 2034 /* 1/exp(2s/300s) */
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly;
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
176 struct psi_group psi_system = {
177 .pcpu = &system_group_pcpu,
180 static void psi_avgs_work(struct work_struct *work);
182 static void group_init(struct psi_group *group)
184 int cpu;
186 for_each_possible_cpu(cpu)
187 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
188 group->avg_last_update = sched_clock();
189 group->avg_next_update = group->avg_last_update + psi_period;
190 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
191 mutex_init(&group->avgs_lock);
192 /* Init trigger-related members */
193 mutex_init(&group->trigger_lock);
194 INIT_LIST_HEAD(&group->triggers);
195 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
196 group->poll_states = 0;
197 group->poll_min_period = U32_MAX;
198 memset(group->polling_total, 0, sizeof(group->polling_total));
199 group->polling_next_update = ULLONG_MAX;
200 group->polling_until = 0;
201 rcu_assign_pointer(group->poll_task, NULL);
204 void __init psi_init(void)
206 if (!psi_enable) {
207 static_branch_enable(&psi_disabled);
208 return;
211 psi_period = jiffies_to_nsecs(PSI_FREQ);
212 group_init(&psi_system);
215 static bool test_state(unsigned int *tasks, enum psi_states state)
217 switch (state) {
218 case PSI_IO_SOME:
219 return tasks[NR_IOWAIT];
220 case PSI_IO_FULL:
221 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
222 case PSI_MEM_SOME:
223 return tasks[NR_MEMSTALL];
224 case PSI_MEM_FULL:
225 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
226 case PSI_CPU_SOME:
227 return tasks[NR_RUNNING] > tasks[NR_ONCPU];
228 case PSI_NONIDLE:
229 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
230 tasks[NR_RUNNING];
231 default:
232 return false;
236 static void get_recent_times(struct psi_group *group, int cpu,
237 enum psi_aggregators aggregator, u32 *times,
238 u32 *pchanged_states)
240 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
241 u64 now, state_start;
242 enum psi_states s;
243 unsigned int seq;
244 u32 state_mask;
246 *pchanged_states = 0;
248 /* Snapshot a coherent view of the CPU state */
249 do {
250 seq = read_seqcount_begin(&groupc->seq);
251 now = cpu_clock(cpu);
252 memcpy(times, groupc->times, sizeof(groupc->times));
253 state_mask = groupc->state_mask;
254 state_start = groupc->state_start;
255 } while (read_seqcount_retry(&groupc->seq, seq));
257 /* Calculate state time deltas against the previous snapshot */
258 for (s = 0; s < NR_PSI_STATES; s++) {
259 u32 delta;
261 * In addition to already concluded states, we also
262 * incorporate currently active states on the CPU,
263 * since states may last for many sampling periods.
265 * This way we keep our delta sampling buckets small
266 * (u32) and our reported pressure close to what's
267 * actually happening.
269 if (state_mask & (1 << s))
270 times[s] += now - state_start;
272 delta = times[s] - groupc->times_prev[aggregator][s];
273 groupc->times_prev[aggregator][s] = times[s];
275 times[s] = delta;
276 if (delta)
277 *pchanged_states |= (1 << s);
281 static void calc_avgs(unsigned long avg[3], int missed_periods,
282 u64 time, u64 period)
284 unsigned long pct;
286 /* Fill in zeroes for periods of no activity */
287 if (missed_periods) {
288 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
289 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
290 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
293 /* Sample the most recent active period */
294 pct = div_u64(time * 100, period);
295 pct *= FIXED_1;
296 avg[0] = calc_load(avg[0], EXP_10s, pct);
297 avg[1] = calc_load(avg[1], EXP_60s, pct);
298 avg[2] = calc_load(avg[2], EXP_300s, pct);
301 static void collect_percpu_times(struct psi_group *group,
302 enum psi_aggregators aggregator,
303 u32 *pchanged_states)
305 u64 deltas[NR_PSI_STATES - 1] = { 0, };
306 unsigned long nonidle_total = 0;
307 u32 changed_states = 0;
308 int cpu;
309 int s;
312 * Collect the per-cpu time buckets and average them into a
313 * single time sample that is normalized to wallclock time.
315 * For averaging, each CPU is weighted by its non-idle time in
316 * the sampling period. This eliminates artifacts from uneven
317 * loading, or even entirely idle CPUs.
319 for_each_possible_cpu(cpu) {
320 u32 times[NR_PSI_STATES];
321 u32 nonidle;
322 u32 cpu_changed_states;
324 get_recent_times(group, cpu, aggregator, times,
325 &cpu_changed_states);
326 changed_states |= cpu_changed_states;
328 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
329 nonidle_total += nonidle;
331 for (s = 0; s < PSI_NONIDLE; s++)
332 deltas[s] += (u64)times[s] * nonidle;
336 * Integrate the sample into the running statistics that are
337 * reported to userspace: the cumulative stall times and the
338 * decaying averages.
340 * Pressure percentages are sampled at PSI_FREQ. We might be
341 * called more often when the user polls more frequently than
342 * that; we might be called less often when there is no task
343 * activity, thus no data, and clock ticks are sporadic. The
344 * below handles both.
347 /* total= */
348 for (s = 0; s < NR_PSI_STATES - 1; s++)
349 group->total[aggregator][s] +=
350 div_u64(deltas[s], max(nonidle_total, 1UL));
352 if (pchanged_states)
353 *pchanged_states = changed_states;
356 static u64 update_averages(struct psi_group *group, u64 now)
358 unsigned long missed_periods = 0;
359 u64 expires, period;
360 u64 avg_next_update;
361 int s;
363 /* avgX= */
364 expires = group->avg_next_update;
365 if (now - expires >= psi_period)
366 missed_periods = div_u64(now - expires, psi_period);
369 * The periodic clock tick can get delayed for various
370 * reasons, especially on loaded systems. To avoid clock
371 * drift, we schedule the clock in fixed psi_period intervals.
372 * But the deltas we sample out of the per-cpu buckets above
373 * are based on the actual time elapsing between clock ticks.
375 avg_next_update = expires + ((1 + missed_periods) * psi_period);
376 period = now - (group->avg_last_update + (missed_periods * psi_period));
377 group->avg_last_update = now;
379 for (s = 0; s < NR_PSI_STATES - 1; s++) {
380 u32 sample;
382 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
384 * Due to the lockless sampling of the time buckets,
385 * recorded time deltas can slip into the next period,
386 * which under full pressure can result in samples in
387 * excess of the period length.
389 * We don't want to report non-sensical pressures in
390 * excess of 100%, nor do we want to drop such events
391 * on the floor. Instead we punt any overage into the
392 * future until pressure subsides. By doing this we
393 * don't underreport the occurring pressure curve, we
394 * just report it delayed by one period length.
396 * The error isn't cumulative. As soon as another
397 * delta slips from a period P to P+1, by definition
398 * it frees up its time T in P.
400 if (sample > period)
401 sample = period;
402 group->avg_total[s] += sample;
403 calc_avgs(group->avg[s], missed_periods, sample, period);
406 return avg_next_update;
409 static void psi_avgs_work(struct work_struct *work)
411 struct delayed_work *dwork;
412 struct psi_group *group;
413 u32 changed_states;
414 bool nonidle;
415 u64 now;
417 dwork = to_delayed_work(work);
418 group = container_of(dwork, struct psi_group, avgs_work);
420 mutex_lock(&group->avgs_lock);
422 now = sched_clock();
424 collect_percpu_times(group, PSI_AVGS, &changed_states);
425 nonidle = changed_states & (1 << PSI_NONIDLE);
427 * If there is task activity, periodically fold the per-cpu
428 * times and feed samples into the running averages. If things
429 * are idle and there is no data to process, stop the clock.
430 * Once restarted, we'll catch up the running averages in one
431 * go - see calc_avgs() and missed_periods.
433 if (now >= group->avg_next_update)
434 group->avg_next_update = update_averages(group, now);
436 if (nonidle) {
437 schedule_delayed_work(dwork, nsecs_to_jiffies(
438 group->avg_next_update - now) + 1);
441 mutex_unlock(&group->avgs_lock);
444 /* Trigger tracking window manupulations */
445 static void window_reset(struct psi_window *win, u64 now, u64 value,
446 u64 prev_growth)
448 win->start_time = now;
449 win->start_value = value;
450 win->prev_growth = prev_growth;
454 * PSI growth tracking window update and growth calculation routine.
456 * This approximates a sliding tracking window by interpolating
457 * partially elapsed windows using historical growth data from the
458 * previous intervals. This minimizes memory requirements (by not storing
459 * all the intermediate values in the previous window) and simplifies
460 * the calculations. It works well because PSI signal changes only in
461 * positive direction and over relatively small window sizes the growth
462 * is close to linear.
464 static u64 window_update(struct psi_window *win, u64 now, u64 value)
466 u64 elapsed;
467 u64 growth;
469 elapsed = now - win->start_time;
470 growth = value - win->start_value;
472 * After each tracking window passes win->start_value and
473 * win->start_time get reset and win->prev_growth stores
474 * the average per-window growth of the previous window.
475 * win->prev_growth is then used to interpolate additional
476 * growth from the previous window assuming it was linear.
478 if (elapsed > win->size)
479 window_reset(win, now, value, growth);
480 else {
481 u32 remaining;
483 remaining = win->size - elapsed;
484 growth += div64_u64(win->prev_growth * remaining, win->size);
487 return growth;
490 static void init_triggers(struct psi_group *group, u64 now)
492 struct psi_trigger *t;
494 list_for_each_entry(t, &group->triggers, node)
495 window_reset(&t->win, now,
496 group->total[PSI_POLL][t->state], 0);
497 memcpy(group->polling_total, group->total[PSI_POLL],
498 sizeof(group->polling_total));
499 group->polling_next_update = now + group->poll_min_period;
502 static u64 update_triggers(struct psi_group *group, u64 now)
504 struct psi_trigger *t;
505 bool new_stall = false;
506 u64 *total = group->total[PSI_POLL];
509 * On subsequent updates, calculate growth deltas and let
510 * watchers know when their specified thresholds are exceeded.
512 list_for_each_entry(t, &group->triggers, node) {
513 u64 growth;
515 /* Check for stall activity */
516 if (group->polling_total[t->state] == total[t->state])
517 continue;
520 * Multiple triggers might be looking at the same state,
521 * remember to update group->polling_total[] once we've
522 * been through all of them. Also remember to extend the
523 * polling time if we see new stall activity.
525 new_stall = true;
527 /* Calculate growth since last update */
528 growth = window_update(&t->win, now, total[t->state]);
529 if (growth < t->threshold)
530 continue;
532 /* Limit event signaling to once per window */
533 if (now < t->last_event_time + t->win.size)
534 continue;
536 /* Generate an event */
537 if (cmpxchg(&t->event, 0, 1) == 0)
538 wake_up_interruptible(&t->event_wait);
539 t->last_event_time = now;
542 if (new_stall)
543 memcpy(group->polling_total, total,
544 sizeof(group->polling_total));
546 return now + group->poll_min_period;
549 /* Schedule polling if it's not already scheduled. */
550 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
552 struct task_struct *task;
555 * Do not reschedule if already scheduled.
556 * Possible race with a timer scheduled after this check but before
557 * mod_timer below can be tolerated because group->polling_next_update
558 * will keep updates on schedule.
560 if (timer_pending(&group->poll_timer))
561 return;
563 rcu_read_lock();
565 task = rcu_dereference(group->poll_task);
567 * kworker might be NULL in case psi_trigger_destroy races with
568 * psi_task_change (hotpath) which can't use locks
570 if (likely(task))
571 mod_timer(&group->poll_timer, jiffies + delay);
573 rcu_read_unlock();
576 static void psi_poll_work(struct psi_group *group)
578 u32 changed_states;
579 u64 now;
581 mutex_lock(&group->trigger_lock);
583 now = sched_clock();
585 collect_percpu_times(group, PSI_POLL, &changed_states);
587 if (changed_states & group->poll_states) {
588 /* Initialize trigger windows when entering polling mode */
589 if (now > group->polling_until)
590 init_triggers(group, now);
593 * Keep the monitor active for at least the duration of the
594 * minimum tracking window as long as monitor states are
595 * changing.
597 group->polling_until = now +
598 group->poll_min_period * UPDATES_PER_WINDOW;
601 if (now > group->polling_until) {
602 group->polling_next_update = ULLONG_MAX;
603 goto out;
606 if (now >= group->polling_next_update)
607 group->polling_next_update = update_triggers(group, now);
609 psi_schedule_poll_work(group,
610 nsecs_to_jiffies(group->polling_next_update - now) + 1);
612 out:
613 mutex_unlock(&group->trigger_lock);
616 static int psi_poll_worker(void *data)
618 struct psi_group *group = (struct psi_group *)data;
620 sched_set_fifo_low(current);
622 while (true) {
623 wait_event_interruptible(group->poll_wait,
624 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
625 kthread_should_stop());
626 if (kthread_should_stop())
627 break;
629 psi_poll_work(group);
631 return 0;
634 static void poll_timer_fn(struct timer_list *t)
636 struct psi_group *group = from_timer(group, t, poll_timer);
638 atomic_set(&group->poll_wakeup, 1);
639 wake_up_interruptible(&group->poll_wait);
642 static void record_times(struct psi_group_cpu *groupc, int cpu,
643 bool memstall_tick)
645 u32 delta;
646 u64 now;
648 now = cpu_clock(cpu);
649 delta = now - groupc->state_start;
650 groupc->state_start = now;
652 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
653 groupc->times[PSI_IO_SOME] += delta;
654 if (groupc->state_mask & (1 << PSI_IO_FULL))
655 groupc->times[PSI_IO_FULL] += delta;
658 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
659 groupc->times[PSI_MEM_SOME] += delta;
660 if (groupc->state_mask & (1 << PSI_MEM_FULL))
661 groupc->times[PSI_MEM_FULL] += delta;
662 else if (memstall_tick) {
663 u32 sample;
665 * Since we care about lost potential, a
666 * memstall is FULL when there are no other
667 * working tasks, but also when the CPU is
668 * actively reclaiming and nothing productive
669 * could run even if it were runnable.
671 * When the timer tick sees a reclaiming CPU,
672 * regardless of runnable tasks, sample a FULL
673 * tick (or less if it hasn't been a full tick
674 * since the last state change).
676 sample = min(delta, (u32)jiffies_to_nsecs(1));
677 groupc->times[PSI_MEM_FULL] += sample;
681 if (groupc->state_mask & (1 << PSI_CPU_SOME))
682 groupc->times[PSI_CPU_SOME] += delta;
684 if (groupc->state_mask & (1 << PSI_NONIDLE))
685 groupc->times[PSI_NONIDLE] += delta;
688 static void psi_group_change(struct psi_group *group, int cpu,
689 unsigned int clear, unsigned int set,
690 bool wake_clock)
692 struct psi_group_cpu *groupc;
693 u32 state_mask = 0;
694 unsigned int t, m;
695 enum psi_states s;
697 groupc = per_cpu_ptr(group->pcpu, cpu);
700 * First we assess the aggregate resource states this CPU's
701 * tasks have been in since the last change, and account any
702 * SOME and FULL time these may have resulted in.
704 * Then we update the task counts according to the state
705 * change requested through the @clear and @set bits.
707 write_seqcount_begin(&groupc->seq);
709 record_times(groupc, cpu, false);
711 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
712 if (!(m & (1 << t)))
713 continue;
714 if (groupc->tasks[t] == 0 && !psi_bug) {
715 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
716 cpu, t, groupc->tasks[0],
717 groupc->tasks[1], groupc->tasks[2],
718 groupc->tasks[3], clear, set);
719 psi_bug = 1;
721 groupc->tasks[t]--;
724 for (t = 0; set; set &= ~(1 << t), t++)
725 if (set & (1 << t))
726 groupc->tasks[t]++;
728 /* Calculate state mask representing active states */
729 for (s = 0; s < NR_PSI_STATES; s++) {
730 if (test_state(groupc->tasks, s))
731 state_mask |= (1 << s);
733 groupc->state_mask = state_mask;
735 write_seqcount_end(&groupc->seq);
737 if (state_mask & group->poll_states)
738 psi_schedule_poll_work(group, 1);
740 if (wake_clock && !delayed_work_pending(&group->avgs_work))
741 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
744 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
746 #ifdef CONFIG_CGROUPS
747 struct cgroup *cgroup = NULL;
749 if (!*iter)
750 cgroup = task->cgroups->dfl_cgrp;
751 else if (*iter == &psi_system)
752 return NULL;
753 else
754 cgroup = cgroup_parent(*iter);
756 if (cgroup && cgroup_parent(cgroup)) {
757 *iter = cgroup;
758 return cgroup_psi(cgroup);
760 #else
761 if (*iter)
762 return NULL;
763 #endif
764 *iter = &psi_system;
765 return &psi_system;
768 static void psi_flags_change(struct task_struct *task, int clear, int set)
770 if (((task->psi_flags & set) ||
771 (task->psi_flags & clear) != clear) &&
772 !psi_bug) {
773 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
774 task->pid, task->comm, task_cpu(task),
775 task->psi_flags, clear, set);
776 psi_bug = 1;
779 task->psi_flags &= ~clear;
780 task->psi_flags |= set;
783 void psi_task_change(struct task_struct *task, int clear, int set)
785 int cpu = task_cpu(task);
786 struct psi_group *group;
787 bool wake_clock = true;
788 void *iter = NULL;
790 if (!task->pid)
791 return;
793 psi_flags_change(task, clear, set);
796 * Periodic aggregation shuts off if there is a period of no
797 * task changes, so we wake it back up if necessary. However,
798 * don't do this if the task change is the aggregation worker
799 * itself going to sleep, or we'll ping-pong forever.
801 if (unlikely((clear & TSK_RUNNING) &&
802 (task->flags & PF_WQ_WORKER) &&
803 wq_worker_last_func(task) == psi_avgs_work))
804 wake_clock = false;
806 while ((group = iterate_groups(task, &iter)))
807 psi_group_change(group, cpu, clear, set, wake_clock);
810 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
811 bool sleep)
813 struct psi_group *group, *common = NULL;
814 int cpu = task_cpu(prev);
815 void *iter;
817 if (next->pid) {
818 psi_flags_change(next, 0, TSK_ONCPU);
820 * When moving state between tasks, the group that
821 * contains them both does not change: we can stop
822 * updating the tree once we reach the first common
823 * ancestor. Iterate @next's ancestors until we
824 * encounter @prev's state.
826 iter = NULL;
827 while ((group = iterate_groups(next, &iter))) {
828 if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
829 common = group;
830 break;
833 psi_group_change(group, cpu, 0, TSK_ONCPU, true);
838 * If this is a voluntary sleep, dequeue will have taken care
839 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
840 * only need to deal with it during preemption.
842 if (sleep)
843 return;
845 if (prev->pid) {
846 psi_flags_change(prev, TSK_ONCPU, 0);
848 iter = NULL;
849 while ((group = iterate_groups(prev, &iter)) && group != common)
850 psi_group_change(group, cpu, TSK_ONCPU, 0, true);
854 void psi_memstall_tick(struct task_struct *task, int cpu)
856 struct psi_group *group;
857 void *iter = NULL;
859 while ((group = iterate_groups(task, &iter))) {
860 struct psi_group_cpu *groupc;
862 groupc = per_cpu_ptr(group->pcpu, cpu);
863 write_seqcount_begin(&groupc->seq);
864 record_times(groupc, cpu, true);
865 write_seqcount_end(&groupc->seq);
870 * psi_memstall_enter - mark the beginning of a memory stall section
871 * @flags: flags to handle nested sections
873 * Marks the calling task as being stalled due to a lack of memory,
874 * such as waiting for a refault or performing reclaim.
876 void psi_memstall_enter(unsigned long *flags)
878 struct rq_flags rf;
879 struct rq *rq;
881 if (static_branch_likely(&psi_disabled))
882 return;
884 *flags = current->in_memstall;
885 if (*flags)
886 return;
888 * in_memstall setting & accounting needs to be atomic wrt
889 * changes to the task's scheduling state, otherwise we can
890 * race with CPU migration.
892 rq = this_rq_lock_irq(&rf);
894 current->in_memstall = 1;
895 psi_task_change(current, 0, TSK_MEMSTALL);
897 rq_unlock_irq(rq, &rf);
901 * psi_memstall_leave - mark the end of an memory stall section
902 * @flags: flags to handle nested memdelay sections
904 * Marks the calling task as no longer stalled due to lack of memory.
906 void psi_memstall_leave(unsigned long *flags)
908 struct rq_flags rf;
909 struct rq *rq;
911 if (static_branch_likely(&psi_disabled))
912 return;
914 if (*flags)
915 return;
917 * in_memstall clearing & accounting needs to be atomic wrt
918 * changes to the task's scheduling state, otherwise we could
919 * race with CPU migration.
921 rq = this_rq_lock_irq(&rf);
923 current->in_memstall = 0;
924 psi_task_change(current, TSK_MEMSTALL, 0);
926 rq_unlock_irq(rq, &rf);
929 #ifdef CONFIG_CGROUPS
930 int psi_cgroup_alloc(struct cgroup *cgroup)
932 if (static_branch_likely(&psi_disabled))
933 return 0;
935 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
936 if (!cgroup->psi.pcpu)
937 return -ENOMEM;
938 group_init(&cgroup->psi);
939 return 0;
942 void psi_cgroup_free(struct cgroup *cgroup)
944 if (static_branch_likely(&psi_disabled))
945 return;
947 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
948 free_percpu(cgroup->psi.pcpu);
949 /* All triggers must be removed by now */
950 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
954 * cgroup_move_task - move task to a different cgroup
955 * @task: the task
956 * @to: the target css_set
958 * Move task to a new cgroup and safely migrate its associated stall
959 * state between the different groups.
961 * This function acquires the task's rq lock to lock out concurrent
962 * changes to the task's scheduling state and - in case the task is
963 * running - concurrent changes to its stall state.
965 void cgroup_move_task(struct task_struct *task, struct css_set *to)
967 unsigned int task_flags = 0;
968 struct rq_flags rf;
969 struct rq *rq;
971 if (static_branch_likely(&psi_disabled)) {
973 * Lame to do this here, but the scheduler cannot be locked
974 * from the outside, so we move cgroups from inside sched/.
976 rcu_assign_pointer(task->cgroups, to);
977 return;
980 rq = task_rq_lock(task, &rf);
982 if (task_on_rq_queued(task)) {
983 task_flags = TSK_RUNNING;
984 if (task_current(rq, task))
985 task_flags |= TSK_ONCPU;
986 } else if (task->in_iowait)
987 task_flags = TSK_IOWAIT;
989 if (task->in_memstall)
990 task_flags |= TSK_MEMSTALL;
992 if (task_flags)
993 psi_task_change(task, task_flags, 0);
995 /* See comment above */
996 rcu_assign_pointer(task->cgroups, to);
998 if (task_flags)
999 psi_task_change(task, 0, task_flags);
1001 task_rq_unlock(rq, task, &rf);
1003 #endif /* CONFIG_CGROUPS */
1005 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1007 int full;
1008 u64 now;
1010 if (static_branch_likely(&psi_disabled))
1011 return -EOPNOTSUPP;
1013 /* Update averages before reporting them */
1014 mutex_lock(&group->avgs_lock);
1015 now = sched_clock();
1016 collect_percpu_times(group, PSI_AVGS, NULL);
1017 if (now >= group->avg_next_update)
1018 group->avg_next_update = update_averages(group, now);
1019 mutex_unlock(&group->avgs_lock);
1021 for (full = 0; full < 2 - (res == PSI_CPU); full++) {
1022 unsigned long avg[3];
1023 u64 total;
1024 int w;
1026 for (w = 0; w < 3; w++)
1027 avg[w] = group->avg[res * 2 + full][w];
1028 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1029 NSEC_PER_USEC);
1031 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1032 full ? "full" : "some",
1033 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1034 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1035 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1036 total);
1039 return 0;
1042 static int psi_io_show(struct seq_file *m, void *v)
1044 return psi_show(m, &psi_system, PSI_IO);
1047 static int psi_memory_show(struct seq_file *m, void *v)
1049 return psi_show(m, &psi_system, PSI_MEM);
1052 static int psi_cpu_show(struct seq_file *m, void *v)
1054 return psi_show(m, &psi_system, PSI_CPU);
1057 static int psi_io_open(struct inode *inode, struct file *file)
1059 return single_open(file, psi_io_show, NULL);
1062 static int psi_memory_open(struct inode *inode, struct file *file)
1064 return single_open(file, psi_memory_show, NULL);
1067 static int psi_cpu_open(struct inode *inode, struct file *file)
1069 return single_open(file, psi_cpu_show, NULL);
1072 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1073 char *buf, size_t nbytes, enum psi_res res)
1075 struct psi_trigger *t;
1076 enum psi_states state;
1077 u32 threshold_us;
1078 u32 window_us;
1080 if (static_branch_likely(&psi_disabled))
1081 return ERR_PTR(-EOPNOTSUPP);
1083 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1084 state = PSI_IO_SOME + res * 2;
1085 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1086 state = PSI_IO_FULL + res * 2;
1087 else
1088 return ERR_PTR(-EINVAL);
1090 if (state >= PSI_NONIDLE)
1091 return ERR_PTR(-EINVAL);
1093 if (window_us < WINDOW_MIN_US ||
1094 window_us > WINDOW_MAX_US)
1095 return ERR_PTR(-EINVAL);
1097 /* Check threshold */
1098 if (threshold_us == 0 || threshold_us > window_us)
1099 return ERR_PTR(-EINVAL);
1101 t = kmalloc(sizeof(*t), GFP_KERNEL);
1102 if (!t)
1103 return ERR_PTR(-ENOMEM);
1105 t->group = group;
1106 t->state = state;
1107 t->threshold = threshold_us * NSEC_PER_USEC;
1108 t->win.size = window_us * NSEC_PER_USEC;
1109 window_reset(&t->win, 0, 0, 0);
1111 t->event = 0;
1112 t->last_event_time = 0;
1113 init_waitqueue_head(&t->event_wait);
1114 kref_init(&t->refcount);
1116 mutex_lock(&group->trigger_lock);
1118 if (!rcu_access_pointer(group->poll_task)) {
1119 struct task_struct *task;
1121 task = kthread_create(psi_poll_worker, group, "psimon");
1122 if (IS_ERR(task)) {
1123 kfree(t);
1124 mutex_unlock(&group->trigger_lock);
1125 return ERR_CAST(task);
1127 atomic_set(&group->poll_wakeup, 0);
1128 init_waitqueue_head(&group->poll_wait);
1129 wake_up_process(task);
1130 timer_setup(&group->poll_timer, poll_timer_fn, 0);
1131 rcu_assign_pointer(group->poll_task, task);
1134 list_add(&t->node, &group->triggers);
1135 group->poll_min_period = min(group->poll_min_period,
1136 div_u64(t->win.size, UPDATES_PER_WINDOW));
1137 group->nr_triggers[t->state]++;
1138 group->poll_states |= (1 << t->state);
1140 mutex_unlock(&group->trigger_lock);
1142 return t;
1145 static void psi_trigger_destroy(struct kref *ref)
1147 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1148 struct psi_group *group = t->group;
1149 struct task_struct *task_to_destroy = NULL;
1151 if (static_branch_likely(&psi_disabled))
1152 return;
1155 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1156 * from under a polling process.
1158 wake_up_interruptible(&t->event_wait);
1160 mutex_lock(&group->trigger_lock);
1162 if (!list_empty(&t->node)) {
1163 struct psi_trigger *tmp;
1164 u64 period = ULLONG_MAX;
1166 list_del(&t->node);
1167 group->nr_triggers[t->state]--;
1168 if (!group->nr_triggers[t->state])
1169 group->poll_states &= ~(1 << t->state);
1170 /* reset min update period for the remaining triggers */
1171 list_for_each_entry(tmp, &group->triggers, node)
1172 period = min(period, div_u64(tmp->win.size,
1173 UPDATES_PER_WINDOW));
1174 group->poll_min_period = period;
1175 /* Destroy poll_task when the last trigger is destroyed */
1176 if (group->poll_states == 0) {
1177 group->polling_until = 0;
1178 task_to_destroy = rcu_dereference_protected(
1179 group->poll_task,
1180 lockdep_is_held(&group->trigger_lock));
1181 rcu_assign_pointer(group->poll_task, NULL);
1185 mutex_unlock(&group->trigger_lock);
1188 * Wait for both *trigger_ptr from psi_trigger_replace and
1189 * poll_task RCUs to complete their read-side critical sections
1190 * before destroying the trigger and optionally the poll_task
1192 synchronize_rcu();
1194 * Destroy the kworker after releasing trigger_lock to prevent a
1195 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1197 if (task_to_destroy) {
1199 * After the RCU grace period has expired, the worker
1200 * can no longer be found through group->poll_task.
1201 * But it might have been already scheduled before
1202 * that - deschedule it cleanly before destroying it.
1204 del_timer_sync(&group->poll_timer);
1205 kthread_stop(task_to_destroy);
1207 kfree(t);
1210 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1212 struct psi_trigger *old = *trigger_ptr;
1214 if (static_branch_likely(&psi_disabled))
1215 return;
1217 rcu_assign_pointer(*trigger_ptr, new);
1218 if (old)
1219 kref_put(&old->refcount, psi_trigger_destroy);
1222 __poll_t psi_trigger_poll(void **trigger_ptr,
1223 struct file *file, poll_table *wait)
1225 __poll_t ret = DEFAULT_POLLMASK;
1226 struct psi_trigger *t;
1228 if (static_branch_likely(&psi_disabled))
1229 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1231 rcu_read_lock();
1233 t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1234 if (!t) {
1235 rcu_read_unlock();
1236 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1238 kref_get(&t->refcount);
1240 rcu_read_unlock();
1242 poll_wait(file, &t->event_wait, wait);
1244 if (cmpxchg(&t->event, 1, 0) == 1)
1245 ret |= EPOLLPRI;
1247 kref_put(&t->refcount, psi_trigger_destroy);
1249 return ret;
1252 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1253 size_t nbytes, enum psi_res res)
1255 char buf[32];
1256 size_t buf_size;
1257 struct seq_file *seq;
1258 struct psi_trigger *new;
1260 if (static_branch_likely(&psi_disabled))
1261 return -EOPNOTSUPP;
1263 if (!nbytes)
1264 return -EINVAL;
1266 buf_size = min(nbytes, sizeof(buf));
1267 if (copy_from_user(buf, user_buf, buf_size))
1268 return -EFAULT;
1270 buf[buf_size - 1] = '\0';
1272 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1273 if (IS_ERR(new))
1274 return PTR_ERR(new);
1276 seq = file->private_data;
1277 /* Take seq->lock to protect seq->private from concurrent writes */
1278 mutex_lock(&seq->lock);
1279 psi_trigger_replace(&seq->private, new);
1280 mutex_unlock(&seq->lock);
1282 return nbytes;
1285 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1286 size_t nbytes, loff_t *ppos)
1288 return psi_write(file, user_buf, nbytes, PSI_IO);
1291 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1292 size_t nbytes, loff_t *ppos)
1294 return psi_write(file, user_buf, nbytes, PSI_MEM);
1297 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1298 size_t nbytes, loff_t *ppos)
1300 return psi_write(file, user_buf, nbytes, PSI_CPU);
1303 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1305 struct seq_file *seq = file->private_data;
1307 return psi_trigger_poll(&seq->private, file, wait);
1310 static int psi_fop_release(struct inode *inode, struct file *file)
1312 struct seq_file *seq = file->private_data;
1314 psi_trigger_replace(&seq->private, NULL);
1315 return single_release(inode, file);
1318 static const struct proc_ops psi_io_proc_ops = {
1319 .proc_open = psi_io_open,
1320 .proc_read = seq_read,
1321 .proc_lseek = seq_lseek,
1322 .proc_write = psi_io_write,
1323 .proc_poll = psi_fop_poll,
1324 .proc_release = psi_fop_release,
1327 static const struct proc_ops psi_memory_proc_ops = {
1328 .proc_open = psi_memory_open,
1329 .proc_read = seq_read,
1330 .proc_lseek = seq_lseek,
1331 .proc_write = psi_memory_write,
1332 .proc_poll = psi_fop_poll,
1333 .proc_release = psi_fop_release,
1336 static const struct proc_ops psi_cpu_proc_ops = {
1337 .proc_open = psi_cpu_open,
1338 .proc_read = seq_read,
1339 .proc_lseek = seq_lseek,
1340 .proc_write = psi_cpu_write,
1341 .proc_poll = psi_fop_poll,
1342 .proc_release = psi_fop_release,
1345 static int __init psi_proc_init(void)
1347 if (psi_enable) {
1348 proc_mkdir("pressure", NULL);
1349 proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1350 proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1351 proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1353 return 0;
1355 module_init(psi_proc_init);