1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
26 struct follow_page_context
{
27 struct dev_pagemap
*pgmap
;
28 unsigned int page_mask
;
31 static void hpage_pincount_add(struct page
*page
, int refs
)
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page
), page
);
34 VM_BUG_ON_PAGE(page
!= compound_head(page
), page
);
36 atomic_add(refs
, compound_pincount_ptr(page
));
39 static void hpage_pincount_sub(struct page
*page
, int refs
)
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page
), page
);
42 VM_BUG_ON_PAGE(page
!= compound_head(page
), page
);
44 atomic_sub(refs
, compound_pincount_ptr(page
));
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
51 static inline struct page
*try_get_compound_head(struct page
*page
, int refs
)
53 struct page
*head
= compound_head(page
);
55 if (WARN_ON_ONCE(page_ref_count(head
) < 0))
57 if (unlikely(!page_cache_add_speculative(head
, refs
)))
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
81 static __maybe_unused
struct page
*try_grab_compound_head(struct page
*page
,
86 return try_get_compound_head(page
, refs
);
87 else if (flags
& FOLL_PIN
) {
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
94 if (unlikely(flags
& FOLL_LONGTERM
) &&
95 is_migrate_cma_page(page
))
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
106 if (!hpage_pincount_available(page
))
107 refs
*= GUP_PIN_COUNTING_BIAS
;
109 page
= try_get_compound_head(page
, refs
);
113 if (hpage_pincount_available(page
))
114 hpage_pincount_add(page
, refs
);
116 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_ACQUIRED
,
126 static void put_compound_head(struct page
*page
, int refs
, unsigned int flags
)
128 if (flags
& FOLL_PIN
) {
129 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_RELEASED
,
132 if (hpage_pincount_available(page
))
133 hpage_pincount_sub(page
, refs
);
135 refs
*= GUP_PIN_COUNTING_BIAS
;
138 VM_BUG_ON_PAGE(page_ref_count(page
) < refs
, page
);
140 * Calling put_page() for each ref is unnecessarily slow. Only the last
141 * ref needs a put_page().
144 page_ref_sub(page
, refs
- 1);
149 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
151 * This might not do anything at all, depending on the flags argument.
153 * "grab" names in this file mean, "look at flags to decide whether to use
154 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
156 * @page: pointer to page to be grabbed
157 * @flags: gup flags: these are the FOLL_* flag values.
159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
162 * FOLL_GET: page's refcount will be incremented by 1.
163 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
165 * Return: true for success, or if no action was required (if neither FOLL_PIN
166 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
167 * FOLL_PIN was set, but the page could not be grabbed.
169 bool __must_check
try_grab_page(struct page
*page
, unsigned int flags
)
171 WARN_ON_ONCE((flags
& (FOLL_GET
| FOLL_PIN
)) == (FOLL_GET
| FOLL_PIN
));
173 if (flags
& FOLL_GET
)
174 return try_get_page(page
);
175 else if (flags
& FOLL_PIN
) {
178 page
= compound_head(page
);
180 if (WARN_ON_ONCE(page_ref_count(page
) <= 0))
183 if (hpage_pincount_available(page
))
184 hpage_pincount_add(page
, 1);
186 refs
= GUP_PIN_COUNTING_BIAS
;
189 * Similar to try_grab_compound_head(): even if using the
190 * hpage_pincount_add/_sub() routines, be sure to
191 * *also* increment the normal page refcount field at least
192 * once, so that the page really is pinned.
194 page_ref_add(page
, refs
);
196 mod_node_page_state(page_pgdat(page
), NR_FOLL_PIN_ACQUIRED
, 1);
203 * unpin_user_page() - release a dma-pinned page
204 * @page: pointer to page to be released
206 * Pages that were pinned via pin_user_pages*() must be released via either
207 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
208 * that such pages can be separately tracked and uniquely handled. In
209 * particular, interactions with RDMA and filesystems need special handling.
211 void unpin_user_page(struct page
*page
)
213 put_compound_head(compound_head(page
), 1, FOLL_PIN
);
215 EXPORT_SYMBOL(unpin_user_page
);
218 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
219 * @pages: array of pages to be maybe marked dirty, and definitely released.
220 * @npages: number of pages in the @pages array.
221 * @make_dirty: whether to mark the pages dirty
223 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
224 * variants called on that page.
226 * For each page in the @pages array, make that page (or its head page, if a
227 * compound page) dirty, if @make_dirty is true, and if the page was previously
228 * listed as clean. In any case, releases all pages using unpin_user_page(),
229 * possibly via unpin_user_pages(), for the non-dirty case.
231 * Please see the unpin_user_page() documentation for details.
233 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
234 * required, then the caller should a) verify that this is really correct,
235 * because _lock() is usually required, and b) hand code it:
236 * set_page_dirty_lock(), unpin_user_page().
239 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
245 * TODO: this can be optimized for huge pages: if a series of pages is
246 * physically contiguous and part of the same compound page, then a
247 * single operation to the head page should suffice.
251 unpin_user_pages(pages
, npages
);
255 for (index
= 0; index
< npages
; index
++) {
256 struct page
*page
= compound_head(pages
[index
]);
258 * Checking PageDirty at this point may race with
259 * clear_page_dirty_for_io(), but that's OK. Two key
262 * 1) This code sees the page as already dirty, so it
263 * skips the call to set_page_dirty(). That could happen
264 * because clear_page_dirty_for_io() called
265 * page_mkclean(), followed by set_page_dirty().
266 * However, now the page is going to get written back,
267 * which meets the original intention of setting it
268 * dirty, so all is well: clear_page_dirty_for_io() goes
269 * on to call TestClearPageDirty(), and write the page
272 * 2) This code sees the page as clean, so it calls
273 * set_page_dirty(). The page stays dirty, despite being
274 * written back, so it gets written back again in the
275 * next writeback cycle. This is harmless.
277 if (!PageDirty(page
))
278 set_page_dirty_lock(page
);
279 unpin_user_page(page
);
282 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
285 * unpin_user_pages() - release an array of gup-pinned pages.
286 * @pages: array of pages to be marked dirty and released.
287 * @npages: number of pages in the @pages array.
289 * For each page in the @pages array, release the page using unpin_user_page().
291 * Please see the unpin_user_page() documentation for details.
293 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
298 * If this WARN_ON() fires, then the system *might* be leaking pages (by
299 * leaving them pinned), but probably not. More likely, gup/pup returned
300 * a hard -ERRNO error to the caller, who erroneously passed it here.
302 if (WARN_ON(IS_ERR_VALUE(npages
)))
305 * TODO: this can be optimized for huge pages: if a series of pages is
306 * physically contiguous and part of the same compound page, then a
307 * single operation to the head page should suffice.
309 for (index
= 0; index
< npages
; index
++)
310 unpin_user_page(pages
[index
]);
312 EXPORT_SYMBOL(unpin_user_pages
);
315 static struct page
*no_page_table(struct vm_area_struct
*vma
,
319 * When core dumping an enormous anonymous area that nobody
320 * has touched so far, we don't want to allocate unnecessary pages or
321 * page tables. Return error instead of NULL to skip handle_mm_fault,
322 * then get_dump_page() will return NULL to leave a hole in the dump.
323 * But we can only make this optimization where a hole would surely
324 * be zero-filled if handle_mm_fault() actually did handle it.
326 if ((flags
& FOLL_DUMP
) &&
327 (vma_is_anonymous(vma
) || !vma
->vm_ops
->fault
))
328 return ERR_PTR(-EFAULT
);
332 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
333 pte_t
*pte
, unsigned int flags
)
335 /* No page to get reference */
336 if (flags
& FOLL_GET
)
339 if (flags
& FOLL_TOUCH
) {
342 if (flags
& FOLL_WRITE
)
343 entry
= pte_mkdirty(entry
);
344 entry
= pte_mkyoung(entry
);
346 if (!pte_same(*pte
, entry
)) {
347 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
348 update_mmu_cache(vma
, address
, pte
);
352 /* Proper page table entry exists, but no corresponding struct page */
357 * FOLL_FORCE can write to even unwritable pte's, but only
358 * after we've gone through a COW cycle and they are dirty.
360 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
362 return pte_write(pte
) ||
363 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
366 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
367 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
368 struct dev_pagemap
**pgmap
)
370 struct mm_struct
*mm
= vma
->vm_mm
;
376 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
377 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
378 (FOLL_PIN
| FOLL_GET
)))
379 return ERR_PTR(-EINVAL
);
381 if (unlikely(pmd_bad(*pmd
)))
382 return no_page_table(vma
, flags
);
384 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
386 if (!pte_present(pte
)) {
389 * KSM's break_ksm() relies upon recognizing a ksm page
390 * even while it is being migrated, so for that case we
391 * need migration_entry_wait().
393 if (likely(!(flags
& FOLL_MIGRATION
)))
397 entry
= pte_to_swp_entry(pte
);
398 if (!is_migration_entry(entry
))
400 pte_unmap_unlock(ptep
, ptl
);
401 migration_entry_wait(mm
, pmd
, address
);
404 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
406 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
407 pte_unmap_unlock(ptep
, ptl
);
411 page
= vm_normal_page(vma
, address
, pte
);
412 if (!page
&& pte_devmap(pte
) && (flags
& (FOLL_GET
| FOLL_PIN
))) {
414 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
415 * case since they are only valid while holding the pgmap
418 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
420 page
= pte_page(pte
);
423 } else if (unlikely(!page
)) {
424 if (flags
& FOLL_DUMP
) {
425 /* Avoid special (like zero) pages in core dumps */
426 page
= ERR_PTR(-EFAULT
);
430 if (is_zero_pfn(pte_pfn(pte
))) {
431 page
= pte_page(pte
);
433 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
439 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
441 pte_unmap_unlock(ptep
, ptl
);
443 ret
= split_huge_page(page
);
451 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
452 if (unlikely(!try_grab_page(page
, flags
))) {
453 page
= ERR_PTR(-ENOMEM
);
457 * We need to make the page accessible if and only if we are going
458 * to access its content (the FOLL_PIN case). Please see
459 * Documentation/core-api/pin_user_pages.rst for details.
461 if (flags
& FOLL_PIN
) {
462 ret
= arch_make_page_accessible(page
);
464 unpin_user_page(page
);
469 if (flags
& FOLL_TOUCH
) {
470 if ((flags
& FOLL_WRITE
) &&
471 !pte_dirty(pte
) && !PageDirty(page
))
472 set_page_dirty(page
);
474 * pte_mkyoung() would be more correct here, but atomic care
475 * is needed to avoid losing the dirty bit: it is easier to use
476 * mark_page_accessed().
478 mark_page_accessed(page
);
480 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
481 /* Do not mlock pte-mapped THP */
482 if (PageTransCompound(page
))
486 * The preliminary mapping check is mainly to avoid the
487 * pointless overhead of lock_page on the ZERO_PAGE
488 * which might bounce very badly if there is contention.
490 * If the page is already locked, we don't need to
491 * handle it now - vmscan will handle it later if and
492 * when it attempts to reclaim the page.
494 if (page
->mapping
&& trylock_page(page
)) {
495 lru_add_drain(); /* push cached pages to LRU */
497 * Because we lock page here, and migration is
498 * blocked by the pte's page reference, and we
499 * know the page is still mapped, we don't even
500 * need to check for file-cache page truncation.
502 mlock_vma_page(page
);
507 pte_unmap_unlock(ptep
, ptl
);
510 pte_unmap_unlock(ptep
, ptl
);
513 return no_page_table(vma
, flags
);
516 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
517 unsigned long address
, pud_t
*pudp
,
519 struct follow_page_context
*ctx
)
524 struct mm_struct
*mm
= vma
->vm_mm
;
526 pmd
= pmd_offset(pudp
, address
);
528 * The READ_ONCE() will stabilize the pmdval in a register or
529 * on the stack so that it will stop changing under the code.
531 pmdval
= READ_ONCE(*pmd
);
532 if (pmd_none(pmdval
))
533 return no_page_table(vma
, flags
);
534 if (pmd_huge(pmdval
) && is_vm_hugetlb_page(vma
)) {
535 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
538 return no_page_table(vma
, flags
);
540 if (is_hugepd(__hugepd(pmd_val(pmdval
)))) {
541 page
= follow_huge_pd(vma
, address
,
542 __hugepd(pmd_val(pmdval
)), flags
,
546 return no_page_table(vma
, flags
);
549 if (!pmd_present(pmdval
)) {
550 if (likely(!(flags
& FOLL_MIGRATION
)))
551 return no_page_table(vma
, flags
);
552 VM_BUG_ON(thp_migration_supported() &&
553 !is_pmd_migration_entry(pmdval
));
554 if (is_pmd_migration_entry(pmdval
))
555 pmd_migration_entry_wait(mm
, pmd
);
556 pmdval
= READ_ONCE(*pmd
);
558 * MADV_DONTNEED may convert the pmd to null because
559 * mmap_lock is held in read mode
561 if (pmd_none(pmdval
))
562 return no_page_table(vma
, flags
);
565 if (pmd_devmap(pmdval
)) {
566 ptl
= pmd_lock(mm
, pmd
);
567 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
572 if (likely(!pmd_trans_huge(pmdval
)))
573 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
575 if ((flags
& FOLL_NUMA
) && pmd_protnone(pmdval
))
576 return no_page_table(vma
, flags
);
579 ptl
= pmd_lock(mm
, pmd
);
580 if (unlikely(pmd_none(*pmd
))) {
582 return no_page_table(vma
, flags
);
584 if (unlikely(!pmd_present(*pmd
))) {
586 if (likely(!(flags
& FOLL_MIGRATION
)))
587 return no_page_table(vma
, flags
);
588 pmd_migration_entry_wait(mm
, pmd
);
591 if (unlikely(!pmd_trans_huge(*pmd
))) {
593 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
595 if (flags
& (FOLL_SPLIT
| FOLL_SPLIT_PMD
)) {
597 page
= pmd_page(*pmd
);
598 if (is_huge_zero_page(page
)) {
601 split_huge_pmd(vma
, pmd
, address
);
602 if (pmd_trans_unstable(pmd
))
604 } else if (flags
& FOLL_SPLIT
) {
605 if (unlikely(!try_get_page(page
))) {
607 return ERR_PTR(-ENOMEM
);
611 ret
= split_huge_page(page
);
615 return no_page_table(vma
, flags
);
616 } else { /* flags & FOLL_SPLIT_PMD */
618 split_huge_pmd(vma
, pmd
, address
);
619 ret
= pte_alloc(mm
, pmd
) ? -ENOMEM
: 0;
622 return ret
? ERR_PTR(ret
) :
623 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
625 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
627 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
631 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
632 unsigned long address
, p4d_t
*p4dp
,
634 struct follow_page_context
*ctx
)
639 struct mm_struct
*mm
= vma
->vm_mm
;
641 pud
= pud_offset(p4dp
, address
);
643 return no_page_table(vma
, flags
);
644 if (pud_huge(*pud
) && is_vm_hugetlb_page(vma
)) {
645 page
= follow_huge_pud(mm
, address
, pud
, flags
);
648 return no_page_table(vma
, flags
);
650 if (is_hugepd(__hugepd(pud_val(*pud
)))) {
651 page
= follow_huge_pd(vma
, address
,
652 __hugepd(pud_val(*pud
)), flags
,
656 return no_page_table(vma
, flags
);
658 if (pud_devmap(*pud
)) {
659 ptl
= pud_lock(mm
, pud
);
660 page
= follow_devmap_pud(vma
, address
, pud
, flags
, &ctx
->pgmap
);
665 if (unlikely(pud_bad(*pud
)))
666 return no_page_table(vma
, flags
);
668 return follow_pmd_mask(vma
, address
, pud
, flags
, ctx
);
671 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
672 unsigned long address
, pgd_t
*pgdp
,
674 struct follow_page_context
*ctx
)
679 p4d
= p4d_offset(pgdp
, address
);
681 return no_page_table(vma
, flags
);
682 BUILD_BUG_ON(p4d_huge(*p4d
));
683 if (unlikely(p4d_bad(*p4d
)))
684 return no_page_table(vma
, flags
);
686 if (is_hugepd(__hugepd(p4d_val(*p4d
)))) {
687 page
= follow_huge_pd(vma
, address
,
688 __hugepd(p4d_val(*p4d
)), flags
,
692 return no_page_table(vma
, flags
);
694 return follow_pud_mask(vma
, address
, p4d
, flags
, ctx
);
698 * follow_page_mask - look up a page descriptor from a user-virtual address
699 * @vma: vm_area_struct mapping @address
700 * @address: virtual address to look up
701 * @flags: flags modifying lookup behaviour
702 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
703 * pointer to output page_mask
705 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
707 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
708 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
710 * On output, the @ctx->page_mask is set according to the size of the page.
712 * Return: the mapped (struct page *), %NULL if no mapping exists, or
713 * an error pointer if there is a mapping to something not represented
714 * by a page descriptor (see also vm_normal_page()).
716 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
717 unsigned long address
, unsigned int flags
,
718 struct follow_page_context
*ctx
)
722 struct mm_struct
*mm
= vma
->vm_mm
;
726 /* make this handle hugepd */
727 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
729 WARN_ON_ONCE(flags
& (FOLL_GET
| FOLL_PIN
));
733 pgd
= pgd_offset(mm
, address
);
735 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
736 return no_page_table(vma
, flags
);
738 if (pgd_huge(*pgd
)) {
739 page
= follow_huge_pgd(mm
, address
, pgd
, flags
);
742 return no_page_table(vma
, flags
);
744 if (is_hugepd(__hugepd(pgd_val(*pgd
)))) {
745 page
= follow_huge_pd(vma
, address
,
746 __hugepd(pgd_val(*pgd
)), flags
,
750 return no_page_table(vma
, flags
);
753 return follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
756 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
757 unsigned int foll_flags
)
759 struct follow_page_context ctx
= { NULL
};
762 page
= follow_page_mask(vma
, address
, foll_flags
, &ctx
);
764 put_dev_pagemap(ctx
.pgmap
);
768 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
769 unsigned int gup_flags
, struct vm_area_struct
**vma
,
779 /* user gate pages are read-only */
780 if (gup_flags
& FOLL_WRITE
)
782 if (address
> TASK_SIZE
)
783 pgd
= pgd_offset_k(address
);
785 pgd
= pgd_offset_gate(mm
, address
);
788 p4d
= p4d_offset(pgd
, address
);
791 pud
= pud_offset(p4d
, address
);
794 pmd
= pmd_offset(pud
, address
);
795 if (!pmd_present(*pmd
))
797 VM_BUG_ON(pmd_trans_huge(*pmd
));
798 pte
= pte_offset_map(pmd
, address
);
801 *vma
= get_gate_vma(mm
);
804 *page
= vm_normal_page(*vma
, address
, *pte
);
806 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
808 *page
= pte_page(*pte
);
810 if (unlikely(!try_grab_page(*page
, gup_flags
))) {
822 * mmap_lock must be held on entry. If @locked != NULL and *@flags
823 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
824 * is, *@locked will be set to 0 and -EBUSY returned.
826 static int faultin_page(struct vm_area_struct
*vma
,
827 unsigned long address
, unsigned int *flags
, int *locked
)
829 unsigned int fault_flags
= 0;
832 /* mlock all present pages, but do not fault in new pages */
833 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
835 if (*flags
& FOLL_WRITE
)
836 fault_flags
|= FAULT_FLAG_WRITE
;
837 if (*flags
& FOLL_REMOTE
)
838 fault_flags
|= FAULT_FLAG_REMOTE
;
840 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
841 if (*flags
& FOLL_NOWAIT
)
842 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
843 if (*flags
& FOLL_TRIED
) {
845 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
848 fault_flags
|= FAULT_FLAG_TRIED
;
851 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
852 if (ret
& VM_FAULT_ERROR
) {
853 int err
= vm_fault_to_errno(ret
, *flags
);
860 if (ret
& VM_FAULT_RETRY
) {
861 if (locked
&& !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
867 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
868 * necessary, even if maybe_mkwrite decided not to set pte_write. We
869 * can thus safely do subsequent page lookups as if they were reads.
870 * But only do so when looping for pte_write is futile: in some cases
871 * userspace may also be wanting to write to the gotten user page,
872 * which a read fault here might prevent (a readonly page might get
873 * reCOWed by userspace write).
875 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
880 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
882 vm_flags_t vm_flags
= vma
->vm_flags
;
883 int write
= (gup_flags
& FOLL_WRITE
);
884 int foreign
= (gup_flags
& FOLL_REMOTE
);
886 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
889 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
892 if ((gup_flags
& FOLL_LONGTERM
) && vma_is_fsdax(vma
))
896 if (!(vm_flags
& VM_WRITE
)) {
897 if (!(gup_flags
& FOLL_FORCE
))
900 * We used to let the write,force case do COW in a
901 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
902 * set a breakpoint in a read-only mapping of an
903 * executable, without corrupting the file (yet only
904 * when that file had been opened for writing!).
905 * Anon pages in shared mappings are surprising: now
908 if (!is_cow_mapping(vm_flags
))
911 } else if (!(vm_flags
& VM_READ
)) {
912 if (!(gup_flags
& FOLL_FORCE
))
915 * Is there actually any vma we can reach here which does not
916 * have VM_MAYREAD set?
918 if (!(vm_flags
& VM_MAYREAD
))
922 * gups are always data accesses, not instruction
923 * fetches, so execute=false here
925 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
931 * __get_user_pages() - pin user pages in memory
932 * @mm: mm_struct of target mm
933 * @start: starting user address
934 * @nr_pages: number of pages from start to pin
935 * @gup_flags: flags modifying pin behaviour
936 * @pages: array that receives pointers to the pages pinned.
937 * Should be at least nr_pages long. Or NULL, if caller
938 * only intends to ensure the pages are faulted in.
939 * @vmas: array of pointers to vmas corresponding to each page.
940 * Or NULL if the caller does not require them.
941 * @locked: whether we're still with the mmap_lock held
943 * Returns either number of pages pinned (which may be less than the
944 * number requested), or an error. Details about the return value:
946 * -- If nr_pages is 0, returns 0.
947 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
948 * -- If nr_pages is >0, and some pages were pinned, returns the number of
949 * pages pinned. Again, this may be less than nr_pages.
950 * -- 0 return value is possible when the fault would need to be retried.
952 * The caller is responsible for releasing returned @pages, via put_page().
954 * @vmas are valid only as long as mmap_lock is held.
956 * Must be called with mmap_lock held. It may be released. See below.
958 * __get_user_pages walks a process's page tables and takes a reference to
959 * each struct page that each user address corresponds to at a given
960 * instant. That is, it takes the page that would be accessed if a user
961 * thread accesses the given user virtual address at that instant.
963 * This does not guarantee that the page exists in the user mappings when
964 * __get_user_pages returns, and there may even be a completely different
965 * page there in some cases (eg. if mmapped pagecache has been invalidated
966 * and subsequently re faulted). However it does guarantee that the page
967 * won't be freed completely. And mostly callers simply care that the page
968 * contains data that was valid *at some point in time*. Typically, an IO
969 * or similar operation cannot guarantee anything stronger anyway because
970 * locks can't be held over the syscall boundary.
972 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
973 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
974 * appropriate) must be called after the page is finished with, and
975 * before put_page is called.
977 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
978 * released by an up_read(). That can happen if @gup_flags does not
981 * A caller using such a combination of @locked and @gup_flags
982 * must therefore hold the mmap_lock for reading only, and recognize
983 * when it's been released. Otherwise, it must be held for either
984 * reading or writing and will not be released.
986 * In most cases, get_user_pages or get_user_pages_fast should be used
987 * instead of __get_user_pages. __get_user_pages should be used only if
988 * you need some special @gup_flags.
990 static long __get_user_pages(struct mm_struct
*mm
,
991 unsigned long start
, unsigned long nr_pages
,
992 unsigned int gup_flags
, struct page
**pages
,
993 struct vm_area_struct
**vmas
, int *locked
)
996 struct vm_area_struct
*vma
= NULL
;
997 struct follow_page_context ctx
= { NULL
};
1002 start
= untagged_addr(start
);
1004 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
1007 * If FOLL_FORCE is set then do not force a full fault as the hinting
1008 * fault information is unrelated to the reference behaviour of a task
1009 * using the address space
1011 if (!(gup_flags
& FOLL_FORCE
))
1012 gup_flags
|= FOLL_NUMA
;
1016 unsigned int foll_flags
= gup_flags
;
1017 unsigned int page_increm
;
1019 /* first iteration or cross vma bound */
1020 if (!vma
|| start
>= vma
->vm_end
) {
1021 vma
= find_extend_vma(mm
, start
);
1022 if (!vma
&& in_gate_area(mm
, start
)) {
1023 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
1025 pages
? &pages
[i
] : NULL
);
1036 ret
= check_vma_flags(vma
, gup_flags
);
1040 if (is_vm_hugetlb_page(vma
)) {
1041 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1042 &start
, &nr_pages
, i
,
1044 if (locked
&& *locked
== 0) {
1046 * We've got a VM_FAULT_RETRY
1047 * and we've lost mmap_lock.
1048 * We must stop here.
1050 BUG_ON(gup_flags
& FOLL_NOWAIT
);
1059 * If we have a pending SIGKILL, don't keep faulting pages and
1060 * potentially allocating memory.
1062 if (fatal_signal_pending(current
)) {
1068 page
= follow_page_mask(vma
, start
, foll_flags
, &ctx
);
1070 ret
= faultin_page(vma
, start
, &foll_flags
, locked
);
1085 } else if (PTR_ERR(page
) == -EEXIST
) {
1087 * Proper page table entry exists, but no corresponding
1091 } else if (IS_ERR(page
)) {
1092 ret
= PTR_ERR(page
);
1097 flush_anon_page(vma
, page
, start
);
1098 flush_dcache_page(page
);
1106 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
1107 if (page_increm
> nr_pages
)
1108 page_increm
= nr_pages
;
1110 start
+= page_increm
* PAGE_SIZE
;
1111 nr_pages
-= page_increm
;
1115 put_dev_pagemap(ctx
.pgmap
);
1119 static bool vma_permits_fault(struct vm_area_struct
*vma
,
1120 unsigned int fault_flags
)
1122 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
1123 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
1124 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
1126 if (!(vm_flags
& vma
->vm_flags
))
1130 * The architecture might have a hardware protection
1131 * mechanism other than read/write that can deny access.
1133 * gup always represents data access, not instruction
1134 * fetches, so execute=false here:
1136 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1143 * fixup_user_fault() - manually resolve a user page fault
1144 * @mm: mm_struct of target mm
1145 * @address: user address
1146 * @fault_flags:flags to pass down to handle_mm_fault()
1147 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1148 * does not allow retry. If NULL, the caller must guarantee
1149 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1151 * This is meant to be called in the specific scenario where for locking reasons
1152 * we try to access user memory in atomic context (within a pagefault_disable()
1153 * section), this returns -EFAULT, and we want to resolve the user fault before
1156 * Typically this is meant to be used by the futex code.
1158 * The main difference with get_user_pages() is that this function will
1159 * unconditionally call handle_mm_fault() which will in turn perform all the
1160 * necessary SW fixup of the dirty and young bits in the PTE, while
1161 * get_user_pages() only guarantees to update these in the struct page.
1163 * This is important for some architectures where those bits also gate the
1164 * access permission to the page because they are maintained in software. On
1165 * such architectures, gup() will not be enough to make a subsequent access
1168 * This function will not return with an unlocked mmap_lock. So it has not the
1169 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1171 int fixup_user_fault(struct mm_struct
*mm
,
1172 unsigned long address
, unsigned int fault_flags
,
1175 struct vm_area_struct
*vma
;
1176 vm_fault_t ret
, major
= 0;
1178 address
= untagged_addr(address
);
1181 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1184 vma
= find_extend_vma(mm
, address
);
1185 if (!vma
|| address
< vma
->vm_start
)
1188 if (!vma_permits_fault(vma
, fault_flags
))
1191 if ((fault_flags
& FAULT_FLAG_KILLABLE
) &&
1192 fatal_signal_pending(current
))
1195 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1196 major
|= ret
& VM_FAULT_MAJOR
;
1197 if (ret
& VM_FAULT_ERROR
) {
1198 int err
= vm_fault_to_errno(ret
, 0);
1205 if (ret
& VM_FAULT_RETRY
) {
1208 fault_flags
|= FAULT_FLAG_TRIED
;
1214 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1217 * Please note that this function, unlike __get_user_pages will not
1218 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1220 static __always_inline
long __get_user_pages_locked(struct mm_struct
*mm
,
1221 unsigned long start
,
1222 unsigned long nr_pages
,
1223 struct page
**pages
,
1224 struct vm_area_struct
**vmas
,
1228 long ret
, pages_done
;
1232 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1234 /* check caller initialized locked */
1235 BUG_ON(*locked
!= 1);
1238 if (flags
& FOLL_PIN
)
1239 atomic_set(&mm
->has_pinned
, 1);
1242 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1243 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1244 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1245 * for FOLL_GET, not for the newer FOLL_PIN.
1247 * FOLL_PIN always expects pages to be non-null, but no need to assert
1248 * that here, as any failures will be obvious enough.
1250 if (pages
&& !(flags
& FOLL_PIN
))
1254 lock_dropped
= false;
1256 ret
= __get_user_pages(mm
, start
, nr_pages
, flags
, pages
,
1259 /* VM_FAULT_RETRY couldn't trigger, bypass */
1262 /* VM_FAULT_RETRY cannot return errors */
1265 BUG_ON(ret
>= nr_pages
);
1276 * VM_FAULT_RETRY didn't trigger or it was a
1284 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1285 * For the prefault case (!pages) we only update counts.
1289 start
+= ret
<< PAGE_SHIFT
;
1290 lock_dropped
= true;
1294 * Repeat on the address that fired VM_FAULT_RETRY
1295 * with both FAULT_FLAG_ALLOW_RETRY and
1296 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1297 * by fatal signals, so we need to check it before we
1298 * start trying again otherwise it can loop forever.
1301 if (fatal_signal_pending(current
)) {
1303 pages_done
= -EINTR
;
1307 ret
= mmap_read_lock_killable(mm
);
1316 ret
= __get_user_pages(mm
, start
, 1, flags
| FOLL_TRIED
,
1317 pages
, NULL
, locked
);
1319 /* Continue to retry until we succeeded */
1337 if (lock_dropped
&& *locked
) {
1339 * We must let the caller know we temporarily dropped the lock
1340 * and so the critical section protected by it was lost.
1342 mmap_read_unlock(mm
);
1349 * populate_vma_page_range() - populate a range of pages in the vma.
1351 * @start: start address
1353 * @locked: whether the mmap_lock is still held
1355 * This takes care of mlocking the pages too if VM_LOCKED is set.
1357 * Return either number of pages pinned in the vma, or a negative error
1360 * vma->vm_mm->mmap_lock must be held.
1362 * If @locked is NULL, it may be held for read or write and will
1365 * If @locked is non-NULL, it must held for read only and may be
1366 * released. If it's released, *@locked will be set to 0.
1368 long populate_vma_page_range(struct vm_area_struct
*vma
,
1369 unsigned long start
, unsigned long end
, int *locked
)
1371 struct mm_struct
*mm
= vma
->vm_mm
;
1372 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1375 VM_BUG_ON(start
& ~PAGE_MASK
);
1376 VM_BUG_ON(end
& ~PAGE_MASK
);
1377 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1378 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1379 mmap_assert_locked(mm
);
1381 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1382 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1383 gup_flags
&= ~FOLL_POPULATE
;
1385 * We want to touch writable mappings with a write fault in order
1386 * to break COW, except for shared mappings because these don't COW
1387 * and we would not want to dirty them for nothing.
1389 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1390 gup_flags
|= FOLL_WRITE
;
1393 * We want mlock to succeed for regions that have any permissions
1394 * other than PROT_NONE.
1396 if (vma_is_accessible(vma
))
1397 gup_flags
|= FOLL_FORCE
;
1400 * We made sure addr is within a VMA, so the following will
1401 * not result in a stack expansion that recurses back here.
1403 return __get_user_pages(mm
, start
, nr_pages
, gup_flags
,
1404 NULL
, NULL
, locked
);
1408 * __mm_populate - populate and/or mlock pages within a range of address space.
1410 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1411 * flags. VMAs must be already marked with the desired vm_flags, and
1412 * mmap_lock must not be held.
1414 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1416 struct mm_struct
*mm
= current
->mm
;
1417 unsigned long end
, nstart
, nend
;
1418 struct vm_area_struct
*vma
= NULL
;
1424 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1426 * We want to fault in pages for [nstart; end) address range.
1427 * Find first corresponding VMA.
1432 vma
= find_vma(mm
, nstart
);
1433 } else if (nstart
>= vma
->vm_end
)
1435 if (!vma
|| vma
->vm_start
>= end
)
1438 * Set [nstart; nend) to intersection of desired address
1439 * range with the first VMA. Also, skip undesirable VMA types.
1441 nend
= min(end
, vma
->vm_end
);
1442 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1444 if (nstart
< vma
->vm_start
)
1445 nstart
= vma
->vm_start
;
1447 * Now fault in a range of pages. populate_vma_page_range()
1448 * double checks the vma flags, so that it won't mlock pages
1449 * if the vma was already munlocked.
1451 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1453 if (ignore_errors
) {
1455 continue; /* continue at next VMA */
1459 nend
= nstart
+ ret
* PAGE_SIZE
;
1463 mmap_read_unlock(mm
);
1464 return ret
; /* 0 or negative error code */
1466 #else /* CONFIG_MMU */
1467 static long __get_user_pages_locked(struct mm_struct
*mm
, unsigned long start
,
1468 unsigned long nr_pages
, struct page
**pages
,
1469 struct vm_area_struct
**vmas
, int *locked
,
1470 unsigned int foll_flags
)
1472 struct vm_area_struct
*vma
;
1473 unsigned long vm_flags
;
1476 /* calculate required read or write permissions.
1477 * If FOLL_FORCE is set, we only require the "MAY" flags.
1479 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
1480 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1481 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
1482 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1484 for (i
= 0; i
< nr_pages
; i
++) {
1485 vma
= find_vma(mm
, start
);
1487 goto finish_or_fault
;
1489 /* protect what we can, including chardevs */
1490 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1491 !(vm_flags
& vma
->vm_flags
))
1492 goto finish_or_fault
;
1495 pages
[i
] = virt_to_page(start
);
1501 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
1507 return i
? : -EFAULT
;
1509 #endif /* !CONFIG_MMU */
1512 * get_dump_page() - pin user page in memory while writing it to core dump
1513 * @addr: user address
1515 * Returns struct page pointer of user page pinned for dump,
1516 * to be freed afterwards by put_page().
1518 * Returns NULL on any kind of failure - a hole must then be inserted into
1519 * the corefile, to preserve alignment with its headers; and also returns
1520 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1521 * allowing a hole to be left in the corefile to save diskspace.
1523 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1525 #ifdef CONFIG_ELF_CORE
1526 struct page
*get_dump_page(unsigned long addr
)
1528 struct mm_struct
*mm
= current
->mm
;
1533 if (mmap_read_lock_killable(mm
))
1535 ret
= __get_user_pages_locked(mm
, addr
, 1, &page
, NULL
, &locked
,
1536 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
);
1538 mmap_read_unlock(mm
);
1539 return (ret
== 1) ? page
: NULL
;
1541 #endif /* CONFIG_ELF_CORE */
1544 static long check_and_migrate_cma_pages(struct mm_struct
*mm
,
1545 unsigned long start
,
1546 unsigned long nr_pages
,
1547 struct page
**pages
,
1548 struct vm_area_struct
**vmas
,
1549 unsigned int gup_flags
)
1553 bool drain_allow
= true;
1554 bool migrate_allow
= true;
1555 LIST_HEAD(cma_page_list
);
1556 long ret
= nr_pages
;
1557 struct migration_target_control mtc
= {
1558 .nid
= NUMA_NO_NODE
,
1559 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_NOWARN
,
1563 for (i
= 0; i
< nr_pages
;) {
1565 struct page
*head
= compound_head(pages
[i
]);
1568 * gup may start from a tail page. Advance step by the left
1571 step
= compound_nr(head
) - (pages
[i
] - head
);
1573 * If we get a page from the CMA zone, since we are going to
1574 * be pinning these entries, we might as well move them out
1575 * of the CMA zone if possible.
1577 if (is_migrate_cma_page(head
)) {
1579 isolate_huge_page(head
, &cma_page_list
);
1581 if (!PageLRU(head
) && drain_allow
) {
1582 lru_add_drain_all();
1583 drain_allow
= false;
1586 if (!isolate_lru_page(head
)) {
1587 list_add_tail(&head
->lru
, &cma_page_list
);
1588 mod_node_page_state(page_pgdat(head
),
1590 page_is_file_lru(head
),
1591 thp_nr_pages(head
));
1599 if (!list_empty(&cma_page_list
)) {
1601 * drop the above get_user_pages reference.
1603 if (gup_flags
& FOLL_PIN
)
1604 unpin_user_pages(pages
, nr_pages
);
1606 for (i
= 0; i
< nr_pages
; i
++)
1609 if (migrate_pages(&cma_page_list
, alloc_migration_target
, NULL
,
1610 (unsigned long)&mtc
, MIGRATE_SYNC
, MR_CONTIG_RANGE
)) {
1612 * some of the pages failed migration. Do get_user_pages
1613 * without migration.
1615 migrate_allow
= false;
1617 if (!list_empty(&cma_page_list
))
1618 putback_movable_pages(&cma_page_list
);
1621 * We did migrate all the pages, Try to get the page references
1622 * again migrating any new CMA pages which we failed to isolate
1625 ret
= __get_user_pages_locked(mm
, start
, nr_pages
,
1629 if ((ret
> 0) && migrate_allow
) {
1639 static long check_and_migrate_cma_pages(struct mm_struct
*mm
,
1640 unsigned long start
,
1641 unsigned long nr_pages
,
1642 struct page
**pages
,
1643 struct vm_area_struct
**vmas
,
1644 unsigned int gup_flags
)
1648 #endif /* CONFIG_CMA */
1651 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1652 * allows us to process the FOLL_LONGTERM flag.
1654 static long __gup_longterm_locked(struct mm_struct
*mm
,
1655 unsigned long start
,
1656 unsigned long nr_pages
,
1657 struct page
**pages
,
1658 struct vm_area_struct
**vmas
,
1659 unsigned int gup_flags
)
1661 unsigned long flags
= 0;
1664 if (gup_flags
& FOLL_LONGTERM
)
1665 flags
= memalloc_nocma_save();
1667 rc
= __get_user_pages_locked(mm
, start
, nr_pages
, pages
, vmas
, NULL
,
1670 if (gup_flags
& FOLL_LONGTERM
) {
1672 rc
= check_and_migrate_cma_pages(mm
, start
, rc
, pages
,
1674 memalloc_nocma_restore(flags
);
1679 static bool is_valid_gup_flags(unsigned int gup_flags
)
1682 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1683 * never directly by the caller, so enforce that with an assertion:
1685 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1688 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1689 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1692 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
1699 static long __get_user_pages_remote(struct mm_struct
*mm
,
1700 unsigned long start
, unsigned long nr_pages
,
1701 unsigned int gup_flags
, struct page
**pages
,
1702 struct vm_area_struct
**vmas
, int *locked
)
1705 * Parts of FOLL_LONGTERM behavior are incompatible with
1706 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1707 * vmas. However, this only comes up if locked is set, and there are
1708 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1709 * allow what we can.
1711 if (gup_flags
& FOLL_LONGTERM
) {
1712 if (WARN_ON_ONCE(locked
))
1715 * This will check the vmas (even if our vmas arg is NULL)
1716 * and return -ENOTSUPP if DAX isn't allowed in this case:
1718 return __gup_longterm_locked(mm
, start
, nr_pages
, pages
,
1719 vmas
, gup_flags
| FOLL_TOUCH
|
1723 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
, vmas
,
1725 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
1729 * get_user_pages_remote() - pin user pages in memory
1730 * @mm: mm_struct of target mm
1731 * @start: starting user address
1732 * @nr_pages: number of pages from start to pin
1733 * @gup_flags: flags modifying lookup behaviour
1734 * @pages: array that receives pointers to the pages pinned.
1735 * Should be at least nr_pages long. Or NULL, if caller
1736 * only intends to ensure the pages are faulted in.
1737 * @vmas: array of pointers to vmas corresponding to each page.
1738 * Or NULL if the caller does not require them.
1739 * @locked: pointer to lock flag indicating whether lock is held and
1740 * subsequently whether VM_FAULT_RETRY functionality can be
1741 * utilised. Lock must initially be held.
1743 * Returns either number of pages pinned (which may be less than the
1744 * number requested), or an error. Details about the return value:
1746 * -- If nr_pages is 0, returns 0.
1747 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1748 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1749 * pages pinned. Again, this may be less than nr_pages.
1751 * The caller is responsible for releasing returned @pages, via put_page().
1753 * @vmas are valid only as long as mmap_lock is held.
1755 * Must be called with mmap_lock held for read or write.
1757 * get_user_pages_remote walks a process's page tables and takes a reference
1758 * to each struct page that each user address corresponds to at a given
1759 * instant. That is, it takes the page that would be accessed if a user
1760 * thread accesses the given user virtual address at that instant.
1762 * This does not guarantee that the page exists in the user mappings when
1763 * get_user_pages_remote returns, and there may even be a completely different
1764 * page there in some cases (eg. if mmapped pagecache has been invalidated
1765 * and subsequently re faulted). However it does guarantee that the page
1766 * won't be freed completely. And mostly callers simply care that the page
1767 * contains data that was valid *at some point in time*. Typically, an IO
1768 * or similar operation cannot guarantee anything stronger anyway because
1769 * locks can't be held over the syscall boundary.
1771 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1772 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1773 * be called after the page is finished with, and before put_page is called.
1775 * get_user_pages_remote is typically used for fewer-copy IO operations,
1776 * to get a handle on the memory by some means other than accesses
1777 * via the user virtual addresses. The pages may be submitted for
1778 * DMA to devices or accessed via their kernel linear mapping (via the
1779 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1781 * See also get_user_pages_fast, for performance critical applications.
1783 * get_user_pages_remote should be phased out in favor of
1784 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1785 * should use get_user_pages_remote because it cannot pass
1786 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1788 long get_user_pages_remote(struct mm_struct
*mm
,
1789 unsigned long start
, unsigned long nr_pages
,
1790 unsigned int gup_flags
, struct page
**pages
,
1791 struct vm_area_struct
**vmas
, int *locked
)
1793 if (!is_valid_gup_flags(gup_flags
))
1796 return __get_user_pages_remote(mm
, start
, nr_pages
, gup_flags
,
1797 pages
, vmas
, locked
);
1799 EXPORT_SYMBOL(get_user_pages_remote
);
1801 #else /* CONFIG_MMU */
1802 long get_user_pages_remote(struct mm_struct
*mm
,
1803 unsigned long start
, unsigned long nr_pages
,
1804 unsigned int gup_flags
, struct page
**pages
,
1805 struct vm_area_struct
**vmas
, int *locked
)
1810 static long __get_user_pages_remote(struct mm_struct
*mm
,
1811 unsigned long start
, unsigned long nr_pages
,
1812 unsigned int gup_flags
, struct page
**pages
,
1813 struct vm_area_struct
**vmas
, int *locked
)
1817 #endif /* !CONFIG_MMU */
1820 * get_user_pages() - pin user pages in memory
1821 * @start: starting user address
1822 * @nr_pages: number of pages from start to pin
1823 * @gup_flags: flags modifying lookup behaviour
1824 * @pages: array that receives pointers to the pages pinned.
1825 * Should be at least nr_pages long. Or NULL, if caller
1826 * only intends to ensure the pages are faulted in.
1827 * @vmas: array of pointers to vmas corresponding to each page.
1828 * Or NULL if the caller does not require them.
1830 * This is the same as get_user_pages_remote(), just with a less-flexible
1831 * calling convention where we assume that the mm being operated on belongs to
1832 * the current task, and doesn't allow passing of a locked parameter. We also
1833 * obviously don't pass FOLL_REMOTE in here.
1835 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
1836 unsigned int gup_flags
, struct page
**pages
,
1837 struct vm_area_struct
**vmas
)
1839 if (!is_valid_gup_flags(gup_flags
))
1842 return __gup_longterm_locked(current
->mm
, start
, nr_pages
,
1843 pages
, vmas
, gup_flags
| FOLL_TOUCH
);
1845 EXPORT_SYMBOL(get_user_pages
);
1848 * get_user_pages_locked() - variant of get_user_pages()
1850 * @start: starting user address
1851 * @nr_pages: number of pages from start to pin
1852 * @gup_flags: flags modifying lookup behaviour
1853 * @pages: array that receives pointers to the pages pinned.
1854 * Should be at least nr_pages long. Or NULL, if caller
1855 * only intends to ensure the pages are faulted in.
1856 * @locked: pointer to lock flag indicating whether lock is held and
1857 * subsequently whether VM_FAULT_RETRY functionality can be
1858 * utilised. Lock must initially be held.
1860 * It is suitable to replace the form:
1862 * mmap_read_lock(mm);
1864 * get_user_pages(mm, ..., pages, NULL);
1865 * mmap_read_unlock(mm);
1870 * mmap_read_lock(mm);
1872 * get_user_pages_locked(mm, ..., pages, &locked);
1874 * mmap_read_unlock(mm);
1876 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1877 * paths better by using either get_user_pages_locked() or
1878 * get_user_pages_unlocked().
1881 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
1882 unsigned int gup_flags
, struct page
**pages
,
1886 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1887 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1888 * vmas. As there are no users of this flag in this call we simply
1889 * disallow this option for now.
1891 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
1894 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1895 * never directly by the caller, so enforce that:
1897 if (WARN_ON_ONCE(gup_flags
& FOLL_PIN
))
1900 return __get_user_pages_locked(current
->mm
, start
, nr_pages
,
1901 pages
, NULL
, locked
,
1902 gup_flags
| FOLL_TOUCH
);
1904 EXPORT_SYMBOL(get_user_pages_locked
);
1907 * get_user_pages_unlocked() is suitable to replace the form:
1909 * mmap_read_lock(mm);
1910 * get_user_pages(mm, ..., pages, NULL);
1911 * mmap_read_unlock(mm);
1915 * get_user_pages_unlocked(mm, ..., pages);
1917 * It is functionally equivalent to get_user_pages_fast so
1918 * get_user_pages_fast should be used instead if specific gup_flags
1919 * (e.g. FOLL_FORCE) are not required.
1921 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
1922 struct page
**pages
, unsigned int gup_flags
)
1924 struct mm_struct
*mm
= current
->mm
;
1929 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1930 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1931 * vmas. As there are no users of this flag in this call we simply
1932 * disallow this option for now.
1934 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
1938 ret
= __get_user_pages_locked(mm
, start
, nr_pages
, pages
, NULL
,
1939 &locked
, gup_flags
| FOLL_TOUCH
);
1941 mmap_read_unlock(mm
);
1944 EXPORT_SYMBOL(get_user_pages_unlocked
);
1949 * get_user_pages_fast attempts to pin user pages by walking the page
1950 * tables directly and avoids taking locks. Thus the walker needs to be
1951 * protected from page table pages being freed from under it, and should
1952 * block any THP splits.
1954 * One way to achieve this is to have the walker disable interrupts, and
1955 * rely on IPIs from the TLB flushing code blocking before the page table
1956 * pages are freed. This is unsuitable for architectures that do not need
1957 * to broadcast an IPI when invalidating TLBs.
1959 * Another way to achieve this is to batch up page table containing pages
1960 * belonging to more than one mm_user, then rcu_sched a callback to free those
1961 * pages. Disabling interrupts will allow the fast_gup walker to both block
1962 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1963 * (which is a relatively rare event). The code below adopts this strategy.
1965 * Before activating this code, please be aware that the following assumptions
1966 * are currently made:
1968 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1969 * free pages containing page tables or TLB flushing requires IPI broadcast.
1971 * *) ptes can be read atomically by the architecture.
1973 * *) access_ok is sufficient to validate userspace address ranges.
1975 * The last two assumptions can be relaxed by the addition of helper functions.
1977 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1979 #ifdef CONFIG_HAVE_FAST_GUP
1981 static void __maybe_unused
undo_dev_pagemap(int *nr
, int nr_start
,
1983 struct page
**pages
)
1985 while ((*nr
) - nr_start
) {
1986 struct page
*page
= pages
[--(*nr
)];
1988 ClearPageReferenced(page
);
1989 if (flags
& FOLL_PIN
)
1990 unpin_user_page(page
);
1996 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1997 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1998 unsigned int flags
, struct page
**pages
, int *nr
)
2000 struct dev_pagemap
*pgmap
= NULL
;
2001 int nr_start
= *nr
, ret
= 0;
2004 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
2006 pte_t pte
= ptep_get_lockless(ptep
);
2007 struct page
*head
, *page
;
2010 * Similar to the PMD case below, NUMA hinting must take slow
2011 * path using the pte_protnone check.
2013 if (pte_protnone(pte
))
2016 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2019 if (pte_devmap(pte
)) {
2020 if (unlikely(flags
& FOLL_LONGTERM
))
2023 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
2024 if (unlikely(!pgmap
)) {
2025 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2028 } else if (pte_special(pte
))
2031 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2032 page
= pte_page(pte
);
2034 head
= try_grab_compound_head(page
, 1, flags
);
2038 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
2039 put_compound_head(head
, 1, flags
);
2043 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
2046 * We need to make the page accessible if and only if we are
2047 * going to access its content (the FOLL_PIN case). Please
2048 * see Documentation/core-api/pin_user_pages.rst for
2051 if (flags
& FOLL_PIN
) {
2052 ret
= arch_make_page_accessible(page
);
2054 unpin_user_page(page
);
2058 SetPageReferenced(page
);
2062 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
2068 put_dev_pagemap(pgmap
);
2075 * If we can't determine whether or not a pte is special, then fail immediately
2076 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2079 * For a futex to be placed on a THP tail page, get_futex_key requires a
2080 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2081 * useful to have gup_huge_pmd even if we can't operate on ptes.
2083 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
2084 unsigned int flags
, struct page
**pages
, int *nr
)
2088 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2090 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2091 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
2092 unsigned long end
, unsigned int flags
,
2093 struct page
**pages
, int *nr
)
2096 struct dev_pagemap
*pgmap
= NULL
;
2099 struct page
*page
= pfn_to_page(pfn
);
2101 pgmap
= get_dev_pagemap(pfn
, pgmap
);
2102 if (unlikely(!pgmap
)) {
2103 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2106 SetPageReferenced(page
);
2108 if (unlikely(!try_grab_page(page
, flags
))) {
2109 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2114 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2117 put_dev_pagemap(pgmap
);
2121 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2122 unsigned long end
, unsigned int flags
,
2123 struct page
**pages
, int *nr
)
2125 unsigned long fault_pfn
;
2128 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
2129 if (!__gup_device_huge(fault_pfn
, addr
, end
, flags
, pages
, nr
))
2132 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
2133 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2139 static int __gup_device_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
2140 unsigned long end
, unsigned int flags
,
2141 struct page
**pages
, int *nr
)
2143 unsigned long fault_pfn
;
2146 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2147 if (!__gup_device_huge(fault_pfn
, addr
, end
, flags
, pages
, nr
))
2150 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2151 undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2157 static int __gup_device_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2158 unsigned long end
, unsigned int flags
,
2159 struct page
**pages
, int *nr
)
2165 static int __gup_device_huge_pud(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
2166 unsigned long end
, unsigned int flags
,
2167 struct page
**pages
, int *nr
)
2174 static int record_subpages(struct page
*page
, unsigned long addr
,
2175 unsigned long end
, struct page
**pages
)
2179 for (nr
= 0; addr
!= end
; addr
+= PAGE_SIZE
)
2180 pages
[nr
++] = page
++;
2185 #ifdef CONFIG_ARCH_HAS_HUGEPD
2186 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
2189 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
2190 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
2193 static int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
2194 unsigned long end
, unsigned int flags
,
2195 struct page
**pages
, int *nr
)
2197 unsigned long pte_end
;
2198 struct page
*head
, *page
;
2202 pte_end
= (addr
+ sz
) & ~(sz
-1);
2206 pte
= huge_ptep_get(ptep
);
2208 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2211 /* hugepages are never "special" */
2212 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2214 head
= pte_page(pte
);
2215 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
2216 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2218 head
= try_grab_compound_head(head
, refs
, flags
);
2222 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
2223 put_compound_head(head
, refs
, flags
);
2228 SetPageReferenced(head
);
2232 static int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2233 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2234 struct page
**pages
, int *nr
)
2237 unsigned long sz
= 1UL << hugepd_shift(hugepd
);
2240 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
2242 next
= hugepte_addr_end(addr
, end
, sz
);
2243 if (!gup_hugepte(ptep
, sz
, addr
, end
, flags
, pages
, nr
))
2245 } while (ptep
++, addr
= next
, addr
!= end
);
2250 static inline int gup_huge_pd(hugepd_t hugepd
, unsigned long addr
,
2251 unsigned int pdshift
, unsigned long end
, unsigned int flags
,
2252 struct page
**pages
, int *nr
)
2256 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2258 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
2259 unsigned long end
, unsigned int flags
,
2260 struct page
**pages
, int *nr
)
2262 struct page
*head
, *page
;
2265 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
2268 if (pmd_devmap(orig
)) {
2269 if (unlikely(flags
& FOLL_LONGTERM
))
2271 return __gup_device_huge_pmd(orig
, pmdp
, addr
, end
, flags
,
2275 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
2276 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2278 head
= try_grab_compound_head(pmd_page(orig
), refs
, flags
);
2282 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
2283 put_compound_head(head
, refs
, flags
);
2288 SetPageReferenced(head
);
2292 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
2293 unsigned long end
, unsigned int flags
,
2294 struct page
**pages
, int *nr
)
2296 struct page
*head
, *page
;
2299 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
2302 if (pud_devmap(orig
)) {
2303 if (unlikely(flags
& FOLL_LONGTERM
))
2305 return __gup_device_huge_pud(orig
, pudp
, addr
, end
, flags
,
2309 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
2310 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2312 head
= try_grab_compound_head(pud_page(orig
), refs
, flags
);
2316 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
2317 put_compound_head(head
, refs
, flags
);
2322 SetPageReferenced(head
);
2326 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
2327 unsigned long end
, unsigned int flags
,
2328 struct page
**pages
, int *nr
)
2331 struct page
*head
, *page
;
2333 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
2336 BUILD_BUG_ON(pgd_devmap(orig
));
2338 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
2339 refs
= record_subpages(page
, addr
, end
, pages
+ *nr
);
2341 head
= try_grab_compound_head(pgd_page(orig
), refs
, flags
);
2345 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
2346 put_compound_head(head
, refs
, flags
);
2351 SetPageReferenced(head
);
2355 static int gup_pmd_range(pud_t
*pudp
, pud_t pud
, unsigned long addr
, unsigned long end
,
2356 unsigned int flags
, struct page
**pages
, int *nr
)
2361 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
2363 pmd_t pmd
= READ_ONCE(*pmdp
);
2365 next
= pmd_addr_end(addr
, end
);
2366 if (!pmd_present(pmd
))
2369 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
) ||
2372 * NUMA hinting faults need to be handled in the GUP
2373 * slowpath for accounting purposes and so that they
2374 * can be serialised against THP migration.
2376 if (pmd_protnone(pmd
))
2379 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, flags
,
2383 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
2385 * architecture have different format for hugetlbfs
2386 * pmd format and THP pmd format
2388 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
2389 PMD_SHIFT
, next
, flags
, pages
, nr
))
2391 } else if (!gup_pte_range(pmd
, addr
, next
, flags
, pages
, nr
))
2393 } while (pmdp
++, addr
= next
, addr
!= end
);
2398 static int gup_pud_range(p4d_t
*p4dp
, p4d_t p4d
, unsigned long addr
, unsigned long end
,
2399 unsigned int flags
, struct page
**pages
, int *nr
)
2404 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
2406 pud_t pud
= READ_ONCE(*pudp
);
2408 next
= pud_addr_end(addr
, end
);
2409 if (unlikely(!pud_present(pud
)))
2411 if (unlikely(pud_huge(pud
))) {
2412 if (!gup_huge_pud(pud
, pudp
, addr
, next
, flags
,
2415 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
2416 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
2417 PUD_SHIFT
, next
, flags
, pages
, nr
))
2419 } else if (!gup_pmd_range(pudp
, pud
, addr
, next
, flags
, pages
, nr
))
2421 } while (pudp
++, addr
= next
, addr
!= end
);
2426 static int gup_p4d_range(pgd_t
*pgdp
, pgd_t pgd
, unsigned long addr
, unsigned long end
,
2427 unsigned int flags
, struct page
**pages
, int *nr
)
2432 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
2434 p4d_t p4d
= READ_ONCE(*p4dp
);
2436 next
= p4d_addr_end(addr
, end
);
2439 BUILD_BUG_ON(p4d_huge(p4d
));
2440 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
2441 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
2442 P4D_SHIFT
, next
, flags
, pages
, nr
))
2444 } else if (!gup_pud_range(p4dp
, p4d
, addr
, next
, flags
, pages
, nr
))
2446 } while (p4dp
++, addr
= next
, addr
!= end
);
2451 static void gup_pgd_range(unsigned long addr
, unsigned long end
,
2452 unsigned int flags
, struct page
**pages
, int *nr
)
2457 pgdp
= pgd_offset(current
->mm
, addr
);
2459 pgd_t pgd
= READ_ONCE(*pgdp
);
2461 next
= pgd_addr_end(addr
, end
);
2464 if (unlikely(pgd_huge(pgd
))) {
2465 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, flags
,
2468 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
2469 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
2470 PGDIR_SHIFT
, next
, flags
, pages
, nr
))
2472 } else if (!gup_p4d_range(pgdp
, pgd
, addr
, next
, flags
, pages
, nr
))
2474 } while (pgdp
++, addr
= next
, addr
!= end
);
2477 static inline void gup_pgd_range(unsigned long addr
, unsigned long end
,
2478 unsigned int flags
, struct page
**pages
, int *nr
)
2481 #endif /* CONFIG_HAVE_FAST_GUP */
2483 #ifndef gup_fast_permitted
2485 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2486 * we need to fall back to the slow version:
2488 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
2494 static int __gup_longterm_unlocked(unsigned long start
, int nr_pages
,
2495 unsigned int gup_flags
, struct page
**pages
)
2500 * FIXME: FOLL_LONGTERM does not work with
2501 * get_user_pages_unlocked() (see comments in that function)
2503 if (gup_flags
& FOLL_LONGTERM
) {
2504 mmap_read_lock(current
->mm
);
2505 ret
= __gup_longterm_locked(current
->mm
,
2507 pages
, NULL
, gup_flags
);
2508 mmap_read_unlock(current
->mm
);
2510 ret
= get_user_pages_unlocked(start
, nr_pages
,
2517 static unsigned long lockless_pages_from_mm(unsigned long start
,
2519 unsigned int gup_flags
,
2520 struct page
**pages
)
2522 unsigned long flags
;
2526 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP
) ||
2527 !gup_fast_permitted(start
, end
))
2530 if (gup_flags
& FOLL_PIN
) {
2531 seq
= raw_read_seqcount(¤t
->mm
->write_protect_seq
);
2537 * Disable interrupts. The nested form is used, in order to allow full,
2538 * general purpose use of this routine.
2540 * With interrupts disabled, we block page table pages from being freed
2541 * from under us. See struct mmu_table_batch comments in
2542 * include/asm-generic/tlb.h for more details.
2544 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2545 * that come from THPs splitting.
2547 local_irq_save(flags
);
2548 gup_pgd_range(start
, end
, gup_flags
, pages
, &nr_pinned
);
2549 local_irq_restore(flags
);
2552 * When pinning pages for DMA there could be a concurrent write protect
2553 * from fork() via copy_page_range(), in this case always fail fast GUP.
2555 if (gup_flags
& FOLL_PIN
) {
2556 if (read_seqcount_retry(¤t
->mm
->write_protect_seq
, seq
)) {
2557 unpin_user_pages(pages
, nr_pinned
);
2564 static int internal_get_user_pages_fast(unsigned long start
,
2565 unsigned long nr_pages
,
2566 unsigned int gup_flags
,
2567 struct page
**pages
)
2569 unsigned long len
, end
;
2570 unsigned long nr_pinned
;
2573 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
2574 FOLL_FORCE
| FOLL_PIN
| FOLL_GET
|
2578 if (gup_flags
& FOLL_PIN
)
2579 atomic_set(¤t
->mm
->has_pinned
, 1);
2581 if (!(gup_flags
& FOLL_FAST_ONLY
))
2582 might_lock_read(¤t
->mm
->mmap_lock
);
2584 start
= untagged_addr(start
) & PAGE_MASK
;
2585 len
= nr_pages
<< PAGE_SHIFT
;
2586 if (check_add_overflow(start
, len
, &end
))
2588 if (unlikely(!access_ok((void __user
*)start
, len
)))
2591 nr_pinned
= lockless_pages_from_mm(start
, end
, gup_flags
, pages
);
2592 if (nr_pinned
== nr_pages
|| gup_flags
& FOLL_FAST_ONLY
)
2595 /* Slow path: try to get the remaining pages with get_user_pages */
2596 start
+= nr_pinned
<< PAGE_SHIFT
;
2598 ret
= __gup_longterm_unlocked(start
, nr_pages
- nr_pinned
, gup_flags
,
2602 * The caller has to unpin the pages we already pinned so
2603 * returning -errno is not an option
2609 return ret
+ nr_pinned
;
2613 * get_user_pages_fast_only() - pin user pages in memory
2614 * @start: starting user address
2615 * @nr_pages: number of pages from start to pin
2616 * @gup_flags: flags modifying pin behaviour
2617 * @pages: array that receives pointers to the pages pinned.
2618 * Should be at least nr_pages long.
2620 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2622 * Note a difference with get_user_pages_fast: this always returns the
2623 * number of pages pinned, 0 if no pages were pinned.
2625 * If the architecture does not support this function, simply return with no
2628 * Careful, careful! COW breaking can go either way, so a non-write
2629 * access can get ambiguous page results. If you call this function without
2630 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2632 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
2633 unsigned int gup_flags
, struct page
**pages
)
2637 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2638 * because gup fast is always a "pin with a +1 page refcount" request.
2640 * FOLL_FAST_ONLY is required in order to match the API description of
2641 * this routine: no fall back to regular ("slow") GUP.
2643 gup_flags
|= FOLL_GET
| FOLL_FAST_ONLY
;
2645 nr_pinned
= internal_get_user_pages_fast(start
, nr_pages
, gup_flags
,
2649 * As specified in the API description above, this routine is not
2650 * allowed to return negative values. However, the common core
2651 * routine internal_get_user_pages_fast() *can* return -errno.
2652 * Therefore, correct for that here:
2659 EXPORT_SYMBOL_GPL(get_user_pages_fast_only
);
2662 * get_user_pages_fast() - pin user pages in memory
2663 * @start: starting user address
2664 * @nr_pages: number of pages from start to pin
2665 * @gup_flags: flags modifying pin behaviour
2666 * @pages: array that receives pointers to the pages pinned.
2667 * Should be at least nr_pages long.
2669 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2670 * If not successful, it will fall back to taking the lock and
2671 * calling get_user_pages().
2673 * Returns number of pages pinned. This may be fewer than the number requested.
2674 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2677 int get_user_pages_fast(unsigned long start
, int nr_pages
,
2678 unsigned int gup_flags
, struct page
**pages
)
2680 if (!is_valid_gup_flags(gup_flags
))
2684 * The caller may or may not have explicitly set FOLL_GET; either way is
2685 * OK. However, internally (within mm/gup.c), gup fast variants must set
2686 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2689 gup_flags
|= FOLL_GET
;
2690 return internal_get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2692 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
2695 * pin_user_pages_fast() - pin user pages in memory without taking locks
2697 * @start: starting user address
2698 * @nr_pages: number of pages from start to pin
2699 * @gup_flags: flags modifying pin behaviour
2700 * @pages: array that receives pointers to the pages pinned.
2701 * Should be at least nr_pages long.
2703 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2704 * get_user_pages_fast() for documentation on the function arguments, because
2705 * the arguments here are identical.
2707 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2708 * see Documentation/core-api/pin_user_pages.rst for further details.
2710 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
2711 unsigned int gup_flags
, struct page
**pages
)
2713 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2714 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2717 gup_flags
|= FOLL_PIN
;
2718 return internal_get_user_pages_fast(start
, nr_pages
, gup_flags
, pages
);
2720 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
2723 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2724 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2726 * The API rules are the same, too: no negative values may be returned.
2728 int pin_user_pages_fast_only(unsigned long start
, int nr_pages
,
2729 unsigned int gup_flags
, struct page
**pages
)
2734 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2735 * rules require returning 0, rather than -errno:
2737 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2740 * FOLL_FAST_ONLY is required in order to match the API description of
2741 * this routine: no fall back to regular ("slow") GUP.
2743 gup_flags
|= (FOLL_PIN
| FOLL_FAST_ONLY
);
2744 nr_pinned
= internal_get_user_pages_fast(start
, nr_pages
, gup_flags
,
2747 * This routine is not allowed to return negative values. However,
2748 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2749 * correct for that here:
2756 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only
);
2759 * pin_user_pages_remote() - pin pages of a remote process
2761 * @mm: mm_struct of target mm
2762 * @start: starting user address
2763 * @nr_pages: number of pages from start to pin
2764 * @gup_flags: flags modifying lookup behaviour
2765 * @pages: array that receives pointers to the pages pinned.
2766 * Should be at least nr_pages long. Or NULL, if caller
2767 * only intends to ensure the pages are faulted in.
2768 * @vmas: array of pointers to vmas corresponding to each page.
2769 * Or NULL if the caller does not require them.
2770 * @locked: pointer to lock flag indicating whether lock is held and
2771 * subsequently whether VM_FAULT_RETRY functionality can be
2772 * utilised. Lock must initially be held.
2774 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2775 * get_user_pages_remote() for documentation on the function arguments, because
2776 * the arguments here are identical.
2778 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2779 * see Documentation/core-api/pin_user_pages.rst for details.
2781 long pin_user_pages_remote(struct mm_struct
*mm
,
2782 unsigned long start
, unsigned long nr_pages
,
2783 unsigned int gup_flags
, struct page
**pages
,
2784 struct vm_area_struct
**vmas
, int *locked
)
2786 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2787 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2790 gup_flags
|= FOLL_PIN
;
2791 return __get_user_pages_remote(mm
, start
, nr_pages
, gup_flags
,
2792 pages
, vmas
, locked
);
2794 EXPORT_SYMBOL(pin_user_pages_remote
);
2797 * pin_user_pages() - pin user pages in memory for use by other devices
2799 * @start: starting user address
2800 * @nr_pages: number of pages from start to pin
2801 * @gup_flags: flags modifying lookup behaviour
2802 * @pages: array that receives pointers to the pages pinned.
2803 * Should be at least nr_pages long. Or NULL, if caller
2804 * only intends to ensure the pages are faulted in.
2805 * @vmas: array of pointers to vmas corresponding to each page.
2806 * Or NULL if the caller does not require them.
2808 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2811 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2812 * see Documentation/core-api/pin_user_pages.rst for details.
2814 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
2815 unsigned int gup_flags
, struct page
**pages
,
2816 struct vm_area_struct
**vmas
)
2818 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2819 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2822 gup_flags
|= FOLL_PIN
;
2823 return __gup_longterm_locked(current
->mm
, start
, nr_pages
,
2824 pages
, vmas
, gup_flags
);
2826 EXPORT_SYMBOL(pin_user_pages
);
2829 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2830 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2831 * FOLL_PIN and rejects FOLL_GET.
2833 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2834 struct page
**pages
, unsigned int gup_flags
)
2836 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2837 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2840 gup_flags
|= FOLL_PIN
;
2841 return get_user_pages_unlocked(start
, nr_pages
, pages
, gup_flags
);
2843 EXPORT_SYMBOL(pin_user_pages_unlocked
);
2846 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2847 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2850 long pin_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
2851 unsigned int gup_flags
, struct page
**pages
,
2855 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2856 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2857 * vmas. As there are no users of this flag in this call we simply
2858 * disallow this option for now.
2860 if (WARN_ON_ONCE(gup_flags
& FOLL_LONGTERM
))
2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2864 if (WARN_ON_ONCE(gup_flags
& FOLL_GET
))
2867 gup_flags
|= FOLL_PIN
;
2868 return __get_user_pages_locked(current
->mm
, start
, nr_pages
,
2869 pages
, NULL
, locked
,
2870 gup_flags
| FOLL_TOUCH
);
2872 EXPORT_SYMBOL(pin_user_pages_locked
);