1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
35 #include <asm/pgalloc.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
46 int hugetlb_max_hstate __read_mostly
;
47 unsigned int default_hstate_idx
;
48 struct hstate hstates
[HUGE_MAX_HSTATE
];
51 static struct cma
*hugetlb_cma
[MAX_NUMNODES
];
53 static unsigned long hugetlb_cma_size __initdata
;
56 * Minimum page order among possible hugepage sizes, set to a proper value
59 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
61 __initdata
LIST_HEAD(huge_boot_pages
);
63 /* for command line parsing */
64 static struct hstate
* __initdata parsed_hstate
;
65 static unsigned long __initdata default_hstate_max_huge_pages
;
66 static bool __initdata parsed_valid_hugepagesz
= true;
67 static bool __initdata parsed_default_hugepagesz
;
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
73 DEFINE_SPINLOCK(hugetlb_lock
);
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 static int num_fault_mutexes
;
80 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
85 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
87 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
89 spin_unlock(&spool
->lock
);
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
95 if (spool
->min_hpages
!= -1)
96 hugetlb_acct_memory(spool
->hstate
,
102 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
105 struct hugepage_subpool
*spool
;
107 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
111 spin_lock_init(&spool
->lock
);
113 spool
->max_hpages
= max_hpages
;
115 spool
->min_hpages
= min_hpages
;
117 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
121 spool
->rsv_hpages
= min_hpages
;
126 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
128 spin_lock(&spool
->lock
);
129 BUG_ON(!spool
->count
);
131 unlock_or_release_subpool(spool
);
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
142 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
150 spin_lock(&spool
->lock
);
152 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
153 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
154 spool
->used_hpages
+= delta
;
161 /* minimum size accounting */
162 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
163 if (delta
> spool
->rsv_hpages
) {
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
168 ret
= delta
- spool
->rsv_hpages
;
169 spool
->rsv_hpages
= 0;
171 ret
= 0; /* reserves already accounted for */
172 spool
->rsv_hpages
-= delta
;
177 spin_unlock(&spool
->lock
);
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
187 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
195 spin_lock(&spool
->lock
);
197 if (spool
->max_hpages
!= -1) /* maximum size accounting */
198 spool
->used_hpages
-= delta
;
200 /* minimum size accounting */
201 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
202 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
205 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
207 spool
->rsv_hpages
+= delta
;
208 if (spool
->rsv_hpages
> spool
->min_hpages
)
209 spool
->rsv_hpages
= spool
->min_hpages
;
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
216 unlock_or_release_subpool(spool
);
221 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
223 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
226 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
228 return subpool_inode(file_inode(vma
->vm_file
));
231 /* Helper that removes a struct file_region from the resv_map cache and returns
234 static struct file_region
*
235 get_file_region_entry_from_cache(struct resv_map
*resv
, long from
, long to
)
237 struct file_region
*nrg
= NULL
;
239 VM_BUG_ON(resv
->region_cache_count
<= 0);
241 resv
->region_cache_count
--;
242 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
, link
);
243 list_del(&nrg
->link
);
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region
*nrg
,
252 struct file_region
*rg
)
254 #ifdef CONFIG_CGROUP_HUGETLB
255 nrg
->reservation_counter
= rg
->reservation_counter
;
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup
*h_cg
,
265 struct resv_map
*resv
,
266 struct file_region
*nrg
)
268 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg
->reservation_counter
=
271 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
272 nrg
->css
= &h_cg
->css
;
273 if (!resv
->pages_per_hpage
)
274 resv
->pages_per_hpage
= pages_per_huge_page(h
);
275 /* pages_per_hpage should be the same for all entries in
278 VM_BUG_ON(resv
->pages_per_hpage
!= pages_per_huge_page(h
));
280 nrg
->reservation_counter
= NULL
;
286 static bool has_same_uncharge_info(struct file_region
*rg
,
287 struct file_region
*org
)
289 #ifdef CONFIG_CGROUP_HUGETLB
291 rg
->reservation_counter
== org
->reservation_counter
&&
299 static void coalesce_file_region(struct resv_map
*resv
, struct file_region
*rg
)
301 struct file_region
*nrg
= NULL
, *prg
= NULL
;
303 prg
= list_prev_entry(rg
, link
);
304 if (&prg
->link
!= &resv
->regions
&& prg
->to
== rg
->from
&&
305 has_same_uncharge_info(prg
, rg
)) {
314 nrg
= list_next_entry(rg
, link
);
315 if (&nrg
->link
!= &resv
->regions
&& nrg
->from
== rg
->to
&&
316 has_same_uncharge_info(nrg
, rg
)) {
317 nrg
->from
= rg
->from
;
325 * Must be called with resv->lock held.
327 * Calling this with regions_needed != NULL will count the number of pages
328 * to be added but will not modify the linked list. And regions_needed will
329 * indicate the number of file_regions needed in the cache to carry out to add
330 * the regions for this range.
332 static long add_reservation_in_range(struct resv_map
*resv
, long f
, long t
,
333 struct hugetlb_cgroup
*h_cg
,
334 struct hstate
*h
, long *regions_needed
)
337 struct list_head
*head
= &resv
->regions
;
338 long last_accounted_offset
= f
;
339 struct file_region
*rg
= NULL
, *trg
= NULL
, *nrg
= NULL
;
344 /* In this loop, we essentially handle an entry for the range
345 * [last_accounted_offset, rg->from), at every iteration, with some
348 list_for_each_entry_safe(rg
, trg
, head
, link
) {
349 /* Skip irrelevant regions that start before our range. */
351 /* If this region ends after the last accounted offset,
352 * then we need to update last_accounted_offset.
354 if (rg
->to
> last_accounted_offset
)
355 last_accounted_offset
= rg
->to
;
359 /* When we find a region that starts beyond our range, we've
365 /* Add an entry for last_accounted_offset -> rg->from, and
366 * update last_accounted_offset.
368 if (rg
->from
> last_accounted_offset
) {
369 add
+= rg
->from
- last_accounted_offset
;
370 if (!regions_needed
) {
371 nrg
= get_file_region_entry_from_cache(
372 resv
, last_accounted_offset
, rg
->from
);
373 record_hugetlb_cgroup_uncharge_info(h_cg
, h
,
375 list_add(&nrg
->link
, rg
->link
.prev
);
376 coalesce_file_region(resv
, nrg
);
378 *regions_needed
+= 1;
381 last_accounted_offset
= rg
->to
;
384 /* Handle the case where our range extends beyond
385 * last_accounted_offset.
387 if (last_accounted_offset
< t
) {
388 add
+= t
- last_accounted_offset
;
389 if (!regions_needed
) {
390 nrg
= get_file_region_entry_from_cache(
391 resv
, last_accounted_offset
, t
);
392 record_hugetlb_cgroup_uncharge_info(h_cg
, h
, resv
, nrg
);
393 list_add(&nrg
->link
, rg
->link
.prev
);
394 coalesce_file_region(resv
, nrg
);
396 *regions_needed
+= 1;
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
405 static int allocate_file_region_entries(struct resv_map
*resv
,
407 __must_hold(&resv
->lock
)
409 struct list_head allocated_regions
;
410 int to_allocate
= 0, i
= 0;
411 struct file_region
*trg
= NULL
, *rg
= NULL
;
413 VM_BUG_ON(regions_needed
< 0);
415 INIT_LIST_HEAD(&allocated_regions
);
418 * Check for sufficient descriptors in the cache to accommodate
419 * the number of in progress add operations plus regions_needed.
421 * This is a while loop because when we drop the lock, some other call
422 * to region_add or region_del may have consumed some region_entries,
423 * so we keep looping here until we finally have enough entries for
424 * (adds_in_progress + regions_needed).
426 while (resv
->region_cache_count
<
427 (resv
->adds_in_progress
+ regions_needed
)) {
428 to_allocate
= resv
->adds_in_progress
+ regions_needed
-
429 resv
->region_cache_count
;
431 /* At this point, we should have enough entries in the cache
432 * for all the existings adds_in_progress. We should only be
433 * needing to allocate for regions_needed.
435 VM_BUG_ON(resv
->region_cache_count
< resv
->adds_in_progress
);
437 spin_unlock(&resv
->lock
);
438 for (i
= 0; i
< to_allocate
; i
++) {
439 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
442 list_add(&trg
->link
, &allocated_regions
);
445 spin_lock(&resv
->lock
);
447 list_splice(&allocated_regions
, &resv
->region_cache
);
448 resv
->region_cache_count
+= to_allocate
;
454 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
462 * Add the huge page range represented by [f, t) to the reserve
463 * map. Regions will be taken from the cache to fill in this range.
464 * Sufficient regions should exist in the cache due to the previous
465 * call to region_chg with the same range, but in some cases the cache will not
466 * have sufficient entries due to races with other code doing region_add or
467 * region_del. The extra needed entries will be allocated.
469 * regions_needed is the out value provided by a previous call to region_chg.
471 * Return the number of new huge pages added to the map. This number is greater
472 * than or equal to zero. If file_region entries needed to be allocated for
473 * this operation and we were not able to allocate, it returns -ENOMEM.
474 * region_add of regions of length 1 never allocate file_regions and cannot
475 * fail; region_chg will always allocate at least 1 entry and a region_add for
476 * 1 page will only require at most 1 entry.
478 static long region_add(struct resv_map
*resv
, long f
, long t
,
479 long in_regions_needed
, struct hstate
*h
,
480 struct hugetlb_cgroup
*h_cg
)
482 long add
= 0, actual_regions_needed
= 0;
484 spin_lock(&resv
->lock
);
487 /* Count how many regions are actually needed to execute this add. */
488 add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
489 &actual_regions_needed
);
492 * Check for sufficient descriptors in the cache to accommodate
493 * this add operation. Note that actual_regions_needed may be greater
494 * than in_regions_needed, as the resv_map may have been modified since
495 * the region_chg call. In this case, we need to make sure that we
496 * allocate extra entries, such that we have enough for all the
497 * existing adds_in_progress, plus the excess needed for this
500 if (actual_regions_needed
> in_regions_needed
&&
501 resv
->region_cache_count
<
502 resv
->adds_in_progress
+
503 (actual_regions_needed
- in_regions_needed
)) {
504 /* region_add operation of range 1 should never need to
505 * allocate file_region entries.
507 VM_BUG_ON(t
- f
<= 1);
509 if (allocate_file_region_entries(
510 resv
, actual_regions_needed
- in_regions_needed
)) {
517 add
= add_reservation_in_range(resv
, f
, t
, h_cg
, h
, NULL
);
519 resv
->adds_in_progress
-= in_regions_needed
;
521 spin_unlock(&resv
->lock
);
527 * Examine the existing reserve map and determine how many
528 * huge pages in the specified range [f, t) are NOT currently
529 * represented. This routine is called before a subsequent
530 * call to region_add that will actually modify the reserve
531 * map to add the specified range [f, t). region_chg does
532 * not change the number of huge pages represented by the
533 * map. A number of new file_region structures is added to the cache as a
534 * placeholder, for the subsequent region_add call to use. At least 1
535 * file_region structure is added.
537 * out_regions_needed is the number of regions added to the
538 * resv->adds_in_progress. This value needs to be provided to a follow up call
539 * to region_add or region_abort for proper accounting.
541 * Returns the number of huge pages that need to be added to the existing
542 * reservation map for the range [f, t). This number is greater or equal to
543 * zero. -ENOMEM is returned if a new file_region structure or cache entry
544 * is needed and can not be allocated.
546 static long region_chg(struct resv_map
*resv
, long f
, long t
,
547 long *out_regions_needed
)
551 spin_lock(&resv
->lock
);
553 /* Count how many hugepages in this range are NOT represented. */
554 chg
= add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
557 if (*out_regions_needed
== 0)
558 *out_regions_needed
= 1;
560 if (allocate_file_region_entries(resv
, *out_regions_needed
))
563 resv
->adds_in_progress
+= *out_regions_needed
;
565 spin_unlock(&resv
->lock
);
570 * Abort the in progress add operation. The adds_in_progress field
571 * of the resv_map keeps track of the operations in progress between
572 * calls to region_chg and region_add. Operations are sometimes
573 * aborted after the call to region_chg. In such cases, region_abort
574 * is called to decrement the adds_in_progress counter. regions_needed
575 * is the value returned by the region_chg call, it is used to decrement
576 * the adds_in_progress counter.
578 * NOTE: The range arguments [f, t) are not needed or used in this
579 * routine. They are kept to make reading the calling code easier as
580 * arguments will match the associated region_chg call.
582 static void region_abort(struct resv_map
*resv
, long f
, long t
,
585 spin_lock(&resv
->lock
);
586 VM_BUG_ON(!resv
->region_cache_count
);
587 resv
->adds_in_progress
-= regions_needed
;
588 spin_unlock(&resv
->lock
);
592 * Delete the specified range [f, t) from the reserve map. If the
593 * t parameter is LONG_MAX, this indicates that ALL regions after f
594 * should be deleted. Locate the regions which intersect [f, t)
595 * and either trim, delete or split the existing regions.
597 * Returns the number of huge pages deleted from the reserve map.
598 * In the normal case, the return value is zero or more. In the
599 * case where a region must be split, a new region descriptor must
600 * be allocated. If the allocation fails, -ENOMEM will be returned.
601 * NOTE: If the parameter t == LONG_MAX, then we will never split
602 * a region and possibly return -ENOMEM. Callers specifying
603 * t == LONG_MAX do not need to check for -ENOMEM error.
605 static long region_del(struct resv_map
*resv
, long f
, long t
)
607 struct list_head
*head
= &resv
->regions
;
608 struct file_region
*rg
, *trg
;
609 struct file_region
*nrg
= NULL
;
613 spin_lock(&resv
->lock
);
614 list_for_each_entry_safe(rg
, trg
, head
, link
) {
616 * Skip regions before the range to be deleted. file_region
617 * ranges are normally of the form [from, to). However, there
618 * may be a "placeholder" entry in the map which is of the form
619 * (from, to) with from == to. Check for placeholder entries
620 * at the beginning of the range to be deleted.
622 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
628 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
630 * Check for an entry in the cache before dropping
631 * lock and attempting allocation.
634 resv
->region_cache_count
> resv
->adds_in_progress
) {
635 nrg
= list_first_entry(&resv
->region_cache
,
638 list_del(&nrg
->link
);
639 resv
->region_cache_count
--;
643 spin_unlock(&resv
->lock
);
644 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
651 hugetlb_cgroup_uncharge_file_region(
654 /* New entry for end of split region */
658 copy_hugetlb_cgroup_uncharge_info(nrg
, rg
);
660 INIT_LIST_HEAD(&nrg
->link
);
662 /* Original entry is trimmed */
665 list_add(&nrg
->link
, &rg
->link
);
670 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
671 del
+= rg
->to
- rg
->from
;
672 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
679 if (f
<= rg
->from
) { /* Trim beginning of region */
680 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
685 } else { /* Trim end of region */
686 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
694 spin_unlock(&resv
->lock
);
700 * A rare out of memory error was encountered which prevented removal of
701 * the reserve map region for a page. The huge page itself was free'ed
702 * and removed from the page cache. This routine will adjust the subpool
703 * usage count, and the global reserve count if needed. By incrementing
704 * these counts, the reserve map entry which could not be deleted will
705 * appear as a "reserved" entry instead of simply dangling with incorrect
708 void hugetlb_fix_reserve_counts(struct inode
*inode
)
710 struct hugepage_subpool
*spool
= subpool_inode(inode
);
713 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
715 struct hstate
*h
= hstate_inode(inode
);
717 hugetlb_acct_memory(h
, 1);
722 * Count and return the number of huge pages in the reserve map
723 * that intersect with the range [f, t).
725 static long region_count(struct resv_map
*resv
, long f
, long t
)
727 struct list_head
*head
= &resv
->regions
;
728 struct file_region
*rg
;
731 spin_lock(&resv
->lock
);
732 /* Locate each segment we overlap with, and count that overlap. */
733 list_for_each_entry(rg
, head
, link
) {
742 seg_from
= max(rg
->from
, f
);
743 seg_to
= min(rg
->to
, t
);
745 chg
+= seg_to
- seg_from
;
747 spin_unlock(&resv
->lock
);
753 * Convert the address within this vma to the page offset within
754 * the mapping, in pagecache page units; huge pages here.
756 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
757 struct vm_area_struct
*vma
, unsigned long address
)
759 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
760 (vma
->vm_pgoff
>> huge_page_order(h
));
763 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
764 unsigned long address
)
766 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
768 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
771 * Return the size of the pages allocated when backing a VMA. In the majority
772 * cases this will be same size as used by the page table entries.
774 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
776 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
777 return vma
->vm_ops
->pagesize(vma
);
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
783 * Return the page size being used by the MMU to back a VMA. In the majority
784 * of cases, the page size used by the kernel matches the MMU size. On
785 * architectures where it differs, an architecture-specific 'strong'
786 * version of this symbol is required.
788 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
790 return vma_kernel_pagesize(vma
);
794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
795 * bits of the reservation map pointer, which are always clear due to
798 #define HPAGE_RESV_OWNER (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
803 * These helpers are used to track how many pages are reserved for
804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805 * is guaranteed to have their future faults succeed.
807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808 * the reserve counters are updated with the hugetlb_lock held. It is safe
809 * to reset the VMA at fork() time as it is not in use yet and there is no
810 * chance of the global counters getting corrupted as a result of the values.
812 * The private mapping reservation is represented in a subtly different
813 * manner to a shared mapping. A shared mapping has a region map associated
814 * with the underlying file, this region map represents the backing file
815 * pages which have ever had a reservation assigned which this persists even
816 * after the page is instantiated. A private mapping has a region map
817 * associated with the original mmap which is attached to all VMAs which
818 * reference it, this region map represents those offsets which have consumed
819 * reservation ie. where pages have been instantiated.
821 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
823 return (unsigned long)vma
->vm_private_data
;
826 static void set_vma_private_data(struct vm_area_struct
*vma
,
829 vma
->vm_private_data
= (void *)value
;
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map
*resv_map
,
834 struct hugetlb_cgroup
*h_cg
,
837 #ifdef CONFIG_CGROUP_HUGETLB
839 resv_map
->reservation_counter
= NULL
;
840 resv_map
->pages_per_hpage
= 0;
841 resv_map
->css
= NULL
;
843 resv_map
->reservation_counter
=
844 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
845 resv_map
->pages_per_hpage
= pages_per_huge_page(h
);
846 resv_map
->css
= &h_cg
->css
;
851 struct resv_map
*resv_map_alloc(void)
853 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
854 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
856 if (!resv_map
|| !rg
) {
862 kref_init(&resv_map
->refs
);
863 spin_lock_init(&resv_map
->lock
);
864 INIT_LIST_HEAD(&resv_map
->regions
);
866 resv_map
->adds_in_progress
= 0;
868 * Initialize these to 0. On shared mappings, 0's here indicate these
869 * fields don't do cgroup accounting. On private mappings, these will be
870 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 * reservations are to be un-charged from here.
873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, NULL
, NULL
);
875 INIT_LIST_HEAD(&resv_map
->region_cache
);
876 list_add(&rg
->link
, &resv_map
->region_cache
);
877 resv_map
->region_cache_count
= 1;
882 void resv_map_release(struct kref
*ref
)
884 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
885 struct list_head
*head
= &resv_map
->region_cache
;
886 struct file_region
*rg
, *trg
;
888 /* Clear out any active regions before we release the map. */
889 region_del(resv_map
, 0, LONG_MAX
);
891 /* ... and any entries left in the cache */
892 list_for_each_entry_safe(rg
, trg
, head
, link
) {
897 VM_BUG_ON(resv_map
->adds_in_progress
);
902 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
905 * At inode evict time, i_mapping may not point to the original
906 * address space within the inode. This original address space
907 * contains the pointer to the resv_map. So, always use the
908 * address space embedded within the inode.
909 * The VERY common case is inode->mapping == &inode->i_data but,
910 * this may not be true for device special inodes.
912 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
915 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
918 if (vma
->vm_flags
& VM_MAYSHARE
) {
919 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
920 struct inode
*inode
= mapping
->host
;
922 return inode_resv_map(inode
);
925 return (struct resv_map
*)(get_vma_private_data(vma
) &
930 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
933 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
935 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
936 HPAGE_RESV_MASK
) | (unsigned long)map
);
939 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
942 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
944 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
947 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
951 return (get_vma_private_data(vma
) & flag
) != 0;
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
958 if (!(vma
->vm_flags
& VM_MAYSHARE
))
959 vma
->vm_private_data
= (void *)0;
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
965 if (vma
->vm_flags
& VM_NORESERVE
) {
967 * This address is already reserved by other process(chg == 0),
968 * so, we should decrement reserved count. Without decrementing,
969 * reserve count remains after releasing inode, because this
970 * allocated page will go into page cache and is regarded as
971 * coming from reserved pool in releasing step. Currently, we
972 * don't have any other solution to deal with this situation
973 * properly, so add work-around here.
975 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
981 /* Shared mappings always use reserves */
982 if (vma
->vm_flags
& VM_MAYSHARE
) {
984 * We know VM_NORESERVE is not set. Therefore, there SHOULD
985 * be a region map for all pages. The only situation where
986 * there is no region map is if a hole was punched via
987 * fallocate. In this case, there really are no reserves to
988 * use. This situation is indicated if chg != 0.
997 * Only the process that called mmap() has reserves for
1000 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1002 * Like the shared case above, a hole punch or truncate
1003 * could have been performed on the private mapping.
1004 * Examine the value of chg to determine if reserves
1005 * actually exist or were previously consumed.
1006 * Very Subtle - The value of chg comes from a previous
1007 * call to vma_needs_reserves(). The reserve map for
1008 * private mappings has different (opposite) semantics
1009 * than that of shared mappings. vma_needs_reserves()
1010 * has already taken this difference in semantics into
1011 * account. Therefore, the meaning of chg is the same
1012 * as in the shared case above. Code could easily be
1013 * combined, but keeping it separate draws attention to
1014 * subtle differences.
1025 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
1027 int nid
= page_to_nid(page
);
1028 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
1029 h
->free_huge_pages
++;
1030 h
->free_huge_pages_node
[nid
]++;
1033 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
1036 bool nocma
= !!(current
->flags
& PF_MEMALLOC_NOCMA
);
1038 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
) {
1039 if (nocma
&& is_migrate_cma_page(page
))
1042 if (PageHWPoison(page
))
1045 list_move(&page
->lru
, &h
->hugepage_activelist
);
1046 set_page_refcounted(page
);
1047 h
->free_huge_pages
--;
1048 h
->free_huge_pages_node
[nid
]--;
1055 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
1058 unsigned int cpuset_mems_cookie
;
1059 struct zonelist
*zonelist
;
1062 int node
= NUMA_NO_NODE
;
1064 zonelist
= node_zonelist(nid
, gfp_mask
);
1067 cpuset_mems_cookie
= read_mems_allowed_begin();
1068 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
1071 if (!cpuset_zone_allowed(zone
, gfp_mask
))
1074 * no need to ask again on the same node. Pool is node rather than
1077 if (zone_to_nid(zone
) == node
)
1079 node
= zone_to_nid(zone
);
1081 page
= dequeue_huge_page_node_exact(h
, node
);
1085 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
1091 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
1092 struct vm_area_struct
*vma
,
1093 unsigned long address
, int avoid_reserve
,
1097 struct mempolicy
*mpol
;
1099 nodemask_t
*nodemask
;
1103 * A child process with MAP_PRIVATE mappings created by their parent
1104 * have no page reserves. This check ensures that reservations are
1105 * not "stolen". The child may still get SIGKILLed
1107 if (!vma_has_reserves(vma
, chg
) &&
1108 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1111 /* If reserves cannot be used, ensure enough pages are in the pool */
1112 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1115 gfp_mask
= htlb_alloc_mask(h
);
1116 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1117 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
1118 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
1119 SetPagePrivate(page
);
1120 h
->resv_huge_pages
--;
1123 mpol_cond_put(mpol
);
1131 * common helper functions for hstate_next_node_to_{alloc|free}.
1132 * We may have allocated or freed a huge page based on a different
1133 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134 * be outside of *nodes_allowed. Ensure that we use an allowed
1135 * node for alloc or free.
1137 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1139 nid
= next_node_in(nid
, *nodes_allowed
);
1140 VM_BUG_ON(nid
>= MAX_NUMNODES
);
1145 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1147 if (!node_isset(nid
, *nodes_allowed
))
1148 nid
= next_node_allowed(nid
, nodes_allowed
);
1153 * returns the previously saved node ["this node"] from which to
1154 * allocate a persistent huge page for the pool and advance the
1155 * next node from which to allocate, handling wrap at end of node
1158 static int hstate_next_node_to_alloc(struct hstate
*h
,
1159 nodemask_t
*nodes_allowed
)
1163 VM_BUG_ON(!nodes_allowed
);
1165 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1166 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1172 * helper for free_pool_huge_page() - return the previously saved
1173 * node ["this node"] from which to free a huge page. Advance the
1174 * next node id whether or not we find a free huge page to free so
1175 * that the next attempt to free addresses the next node.
1177 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1181 VM_BUG_ON(!nodes_allowed
);
1183 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1184 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1190 for (nr_nodes = nodes_weight(*mask); \
1192 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1196 for (nr_nodes = nodes_weight(*mask); \
1198 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202 static void destroy_compound_gigantic_page(struct page
*page
,
1206 int nr_pages
= 1 << order
;
1207 struct page
*p
= page
+ 1;
1209 atomic_set(compound_mapcount_ptr(page
), 0);
1210 if (hpage_pincount_available(page
))
1211 atomic_set(compound_pincount_ptr(page
), 0);
1213 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1214 clear_compound_head(p
);
1215 set_page_refcounted(p
);
1218 set_compound_order(page
, 0);
1219 page
[1].compound_nr
= 0;
1220 __ClearPageHead(page
);
1223 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1226 * If the page isn't allocated using the cma allocator,
1227 * cma_release() returns false.
1230 if (cma_release(hugetlb_cma
[page_to_nid(page
)], page
, 1 << order
))
1234 free_contig_range(page_to_pfn(page
), 1 << order
);
1237 #ifdef CONFIG_CONTIG_ALLOC
1238 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1239 int nid
, nodemask_t
*nodemask
)
1241 unsigned long nr_pages
= 1UL << huge_page_order(h
);
1242 if (nid
== NUMA_NO_NODE
)
1243 nid
= numa_mem_id();
1250 if (hugetlb_cma
[nid
]) {
1251 page
= cma_alloc(hugetlb_cma
[nid
], nr_pages
,
1252 huge_page_order(h
), true);
1257 if (!(gfp_mask
& __GFP_THISNODE
)) {
1258 for_each_node_mask(node
, *nodemask
) {
1259 if (node
== nid
|| !hugetlb_cma
[node
])
1262 page
= cma_alloc(hugetlb_cma
[node
], nr_pages
,
1263 huge_page_order(h
), true);
1271 return alloc_contig_pages(nr_pages
, gfp_mask
, nid
, nodemask
);
1274 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1275 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1278 int nid
, nodemask_t
*nodemask
)
1282 #endif /* CONFIG_CONTIG_ALLOC */
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1286 int nid
, nodemask_t
*nodemask
)
1290 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1291 static inline void destroy_compound_gigantic_page(struct page
*page
,
1292 unsigned int order
) { }
1295 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1299 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1303 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1304 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1305 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1306 1 << PG_referenced
| 1 << PG_dirty
|
1307 1 << PG_active
| 1 << PG_private
|
1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1311 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page
), page
);
1312 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1313 set_page_refcounted(page
);
1314 if (hstate_is_gigantic(h
)) {
1316 * Temporarily drop the hugetlb_lock, because
1317 * we might block in free_gigantic_page().
1319 spin_unlock(&hugetlb_lock
);
1320 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1321 free_gigantic_page(page
, huge_page_order(h
));
1322 spin_lock(&hugetlb_lock
);
1324 __free_pages(page
, huge_page_order(h
));
1328 struct hstate
*size_to_hstate(unsigned long size
)
1332 for_each_hstate(h
) {
1333 if (huge_page_size(h
) == size
)
1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341 * to hstate->hugepage_activelist.)
1343 * This function can be called for tail pages, but never returns true for them.
1345 bool page_huge_active(struct page
*page
)
1347 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1348 return PageHead(page
) && PagePrivate(&page
[1]);
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page
*page
)
1354 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1355 SetPagePrivate(&page
[1]);
1358 static void clear_page_huge_active(struct page
*page
)
1360 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1361 ClearPagePrivate(&page
[1]);
1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1368 static inline bool PageHugeTemporary(struct page
*page
)
1370 if (!PageHuge(page
))
1373 return (unsigned long)page
[2].mapping
== -1U;
1376 static inline void SetPageHugeTemporary(struct page
*page
)
1378 page
[2].mapping
= (void *)-1U;
1381 static inline void ClearPageHugeTemporary(struct page
*page
)
1383 page
[2].mapping
= NULL
;
1386 static void __free_huge_page(struct page
*page
)
1389 * Can't pass hstate in here because it is called from the
1390 * compound page destructor.
1392 struct hstate
*h
= page_hstate(page
);
1393 int nid
= page_to_nid(page
);
1394 struct hugepage_subpool
*spool
=
1395 (struct hugepage_subpool
*)page_private(page
);
1396 bool restore_reserve
;
1398 VM_BUG_ON_PAGE(page_count(page
), page
);
1399 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1401 set_page_private(page
, 0);
1402 page
->mapping
= NULL
;
1403 restore_reserve
= PagePrivate(page
);
1404 ClearPagePrivate(page
);
1407 * If PagePrivate() was set on page, page allocation consumed a
1408 * reservation. If the page was associated with a subpool, there
1409 * would have been a page reserved in the subpool before allocation
1410 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1411 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 * remove the reserved page from the subpool.
1414 if (!restore_reserve
) {
1416 * A return code of zero implies that the subpool will be
1417 * under its minimum size if the reservation is not restored
1418 * after page is free. Therefore, force restore_reserve
1421 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1422 restore_reserve
= true;
1425 spin_lock(&hugetlb_lock
);
1426 clear_page_huge_active(page
);
1427 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1428 pages_per_huge_page(h
), page
);
1429 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h
),
1430 pages_per_huge_page(h
), page
);
1431 if (restore_reserve
)
1432 h
->resv_huge_pages
++;
1434 if (PageHugeTemporary(page
)) {
1435 list_del(&page
->lru
);
1436 ClearPageHugeTemporary(page
);
1437 update_and_free_page(h
, page
);
1438 } else if (h
->surplus_huge_pages_node
[nid
]) {
1439 /* remove the page from active list */
1440 list_del(&page
->lru
);
1441 update_and_free_page(h
, page
);
1442 h
->surplus_huge_pages
--;
1443 h
->surplus_huge_pages_node
[nid
]--;
1445 arch_clear_hugepage_flags(page
);
1446 enqueue_huge_page(h
, page
);
1448 spin_unlock(&hugetlb_lock
);
1452 * As free_huge_page() can be called from a non-task context, we have
1453 * to defer the actual freeing in a workqueue to prevent potential
1454 * hugetlb_lock deadlock.
1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457 * be freed and frees them one-by-one. As the page->mapping pointer is
1458 * going to be cleared in __free_huge_page() anyway, it is reused as the
1459 * llist_node structure of a lockless linked list of huge pages to be freed.
1461 static LLIST_HEAD(hpage_freelist
);
1463 static void free_hpage_workfn(struct work_struct
*work
)
1465 struct llist_node
*node
;
1468 node
= llist_del_all(&hpage_freelist
);
1471 page
= container_of((struct address_space
**)node
,
1472 struct page
, mapping
);
1474 __free_huge_page(page
);
1477 static DECLARE_WORK(free_hpage_work
, free_hpage_workfn
);
1479 void free_huge_page(struct page
*page
)
1482 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1486 * Only call schedule_work() if hpage_freelist is previously
1487 * empty. Otherwise, schedule_work() had been called but the
1488 * workfn hasn't retrieved the list yet.
1490 if (llist_add((struct llist_node
*)&page
->mapping
,
1492 schedule_work(&free_hpage_work
);
1496 __free_huge_page(page
);
1499 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1501 INIT_LIST_HEAD(&page
->lru
);
1502 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1503 set_hugetlb_cgroup(page
, NULL
);
1504 set_hugetlb_cgroup_rsvd(page
, NULL
);
1505 spin_lock(&hugetlb_lock
);
1507 h
->nr_huge_pages_node
[nid
]++;
1508 spin_unlock(&hugetlb_lock
);
1511 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1514 int nr_pages
= 1 << order
;
1515 struct page
*p
= page
+ 1;
1517 /* we rely on prep_new_huge_page to set the destructor */
1518 set_compound_order(page
, order
);
1519 __ClearPageReserved(page
);
1520 __SetPageHead(page
);
1521 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1523 * For gigantic hugepages allocated through bootmem at
1524 * boot, it's safer to be consistent with the not-gigantic
1525 * hugepages and clear the PG_reserved bit from all tail pages
1526 * too. Otherwise drivers using get_user_pages() to access tail
1527 * pages may get the reference counting wrong if they see
1528 * PG_reserved set on a tail page (despite the head page not
1529 * having PG_reserved set). Enforcing this consistency between
1530 * head and tail pages allows drivers to optimize away a check
1531 * on the head page when they need know if put_page() is needed
1532 * after get_user_pages().
1534 __ClearPageReserved(p
);
1535 set_page_count(p
, 0);
1536 set_compound_head(p
, page
);
1538 atomic_set(compound_mapcount_ptr(page
), -1);
1540 if (hpage_pincount_available(page
))
1541 atomic_set(compound_pincount_ptr(page
), 0);
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1549 int PageHuge(struct page
*page
)
1551 if (!PageCompound(page
))
1554 page
= compound_head(page
);
1555 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1557 EXPORT_SYMBOL_GPL(PageHuge
);
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1563 int PageHeadHuge(struct page
*page_head
)
1565 if (!PageHead(page_head
))
1568 return page_head
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1572 * Find and lock address space (mapping) in write mode.
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
1578 struct address_space
*hugetlb_page_mapping_lock_write(struct page
*hpage
)
1580 struct address_space
*mapping
= page_mapping(hpage
);
1585 if (i_mmap_trylock_write(mapping
))
1591 pgoff_t
__basepage_index(struct page
*page
)
1593 struct page
*page_head
= compound_head(page
);
1594 pgoff_t index
= page_index(page_head
);
1595 unsigned long compound_idx
;
1597 if (!PageHuge(page_head
))
1598 return page_index(page
);
1600 if (compound_order(page_head
) >= MAX_ORDER
)
1601 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1603 compound_idx
= page
- page_head
;
1605 return (index
<< compound_order(page_head
)) + compound_idx
;
1608 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1609 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1610 nodemask_t
*node_alloc_noretry
)
1612 int order
= huge_page_order(h
);
1614 bool alloc_try_hard
= true;
1617 * By default we always try hard to allocate the page with
1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1619 * a loop (to adjust global huge page counts) and previous allocation
1620 * failed, do not continue to try hard on the same node. Use the
1621 * node_alloc_noretry bitmap to manage this state information.
1623 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
1624 alloc_try_hard
= false;
1625 gfp_mask
|= __GFP_COMP
|__GFP_NOWARN
;
1627 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
1628 if (nid
== NUMA_NO_NODE
)
1629 nid
= numa_mem_id();
1630 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1632 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 * indicates an overall state change. Clear bit so that we resume
1639 * normal 'try hard' allocations.
1641 if (node_alloc_noretry
&& page
&& !alloc_try_hard
)
1642 node_clear(nid
, *node_alloc_noretry
);
1645 * If we tried hard to get a page but failed, set bit so that
1646 * subsequent attempts will not try as hard until there is an
1647 * overall state change.
1649 if (node_alloc_noretry
&& !page
&& alloc_try_hard
)
1650 node_set(nid
, *node_alloc_noretry
);
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1659 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1660 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1661 nodemask_t
*node_alloc_noretry
)
1665 if (hstate_is_gigantic(h
))
1666 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1668 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1669 nid
, nmask
, node_alloc_noretry
);
1673 if (hstate_is_gigantic(h
))
1674 prep_compound_gigantic_page(page
, huge_page_order(h
));
1675 prep_new_huge_page(h
, page
, page_to_nid(page
));
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1684 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1685 nodemask_t
*node_alloc_noretry
)
1689 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1691 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1692 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
,
1693 node_alloc_noretry
);
1701 put_page(page
); /* free it into the hugepage allocator */
1707 * Free huge page from pool from next node to free.
1708 * Attempt to keep persistent huge pages more or less
1709 * balanced over allowed nodes.
1710 * Called with hugetlb_lock locked.
1712 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1718 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1720 * If we're returning unused surplus pages, only examine
1721 * nodes with surplus pages.
1723 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1724 !list_empty(&h
->hugepage_freelists
[node
])) {
1726 list_entry(h
->hugepage_freelists
[node
].next
,
1728 list_del(&page
->lru
);
1729 h
->free_huge_pages
--;
1730 h
->free_huge_pages_node
[node
]--;
1732 h
->surplus_huge_pages
--;
1733 h
->surplus_huge_pages_node
[node
]--;
1735 update_and_free_page(h
, page
);
1745 * Dissolve a given free hugepage into free buddy pages. This function does
1746 * nothing for in-use hugepages and non-hugepages.
1747 * This function returns values like below:
1749 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1750 * (allocated or reserved.)
1751 * 0: successfully dissolved free hugepages or the page is not a
1752 * hugepage (considered as already dissolved)
1754 int dissolve_free_huge_page(struct page
*page
)
1758 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1759 if (!PageHuge(page
))
1762 spin_lock(&hugetlb_lock
);
1763 if (!PageHuge(page
)) {
1768 if (!page_count(page
)) {
1769 struct page
*head
= compound_head(page
);
1770 struct hstate
*h
= page_hstate(head
);
1771 int nid
= page_to_nid(head
);
1772 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1775 * Move PageHWPoison flag from head page to the raw error page,
1776 * which makes any subpages rather than the error page reusable.
1778 if (PageHWPoison(head
) && page
!= head
) {
1779 SetPageHWPoison(page
);
1780 ClearPageHWPoison(head
);
1782 list_del(&head
->lru
);
1783 h
->free_huge_pages
--;
1784 h
->free_huge_pages_node
[nid
]--;
1785 h
->max_huge_pages
--;
1786 update_and_free_page(h
, head
);
1790 spin_unlock(&hugetlb_lock
);
1795 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796 * make specified memory blocks removable from the system.
1797 * Note that this will dissolve a free gigantic hugepage completely, if any
1798 * part of it lies within the given range.
1799 * Also note that if dissolve_free_huge_page() returns with an error, all
1800 * free hugepages that were dissolved before that error are lost.
1802 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1808 if (!hugepages_supported())
1811 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1812 page
= pfn_to_page(pfn
);
1813 rc
= dissolve_free_huge_page(page
);
1822 * Allocates a fresh surplus page from the page allocator.
1824 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1825 int nid
, nodemask_t
*nmask
)
1827 struct page
*page
= NULL
;
1829 if (hstate_is_gigantic(h
))
1832 spin_lock(&hugetlb_lock
);
1833 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1835 spin_unlock(&hugetlb_lock
);
1837 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1841 spin_lock(&hugetlb_lock
);
1843 * We could have raced with the pool size change.
1844 * Double check that and simply deallocate the new page
1845 * if we would end up overcommiting the surpluses. Abuse
1846 * temporary page to workaround the nasty free_huge_page
1849 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1850 SetPageHugeTemporary(page
);
1851 spin_unlock(&hugetlb_lock
);
1855 h
->surplus_huge_pages
++;
1856 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1860 spin_unlock(&hugetlb_lock
);
1865 static struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1866 int nid
, nodemask_t
*nmask
)
1870 if (hstate_is_gigantic(h
))
1873 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1878 * We do not account these pages as surplus because they are only
1879 * temporary and will be released properly on the last reference
1881 SetPageHugeTemporary(page
);
1887 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1890 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1891 struct vm_area_struct
*vma
, unsigned long addr
)
1894 struct mempolicy
*mpol
;
1895 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1897 nodemask_t
*nodemask
;
1899 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1900 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1901 mpol_cond_put(mpol
);
1906 /* page migration callback function */
1907 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1908 nodemask_t
*nmask
, gfp_t gfp_mask
)
1910 spin_lock(&hugetlb_lock
);
1911 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1914 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1916 spin_unlock(&hugetlb_lock
);
1920 spin_unlock(&hugetlb_lock
);
1922 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1925 /* mempolicy aware migration callback */
1926 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1927 unsigned long address
)
1929 struct mempolicy
*mpol
;
1930 nodemask_t
*nodemask
;
1935 gfp_mask
= htlb_alloc_mask(h
);
1936 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1937 page
= alloc_huge_page_nodemask(h
, node
, nodemask
, gfp_mask
);
1938 mpol_cond_put(mpol
);
1944 * Increase the hugetlb pool such that it can accommodate a reservation
1947 static int gather_surplus_pages(struct hstate
*h
, long delta
)
1948 __must_hold(&hugetlb_lock
)
1950 struct list_head surplus_list
;
1951 struct page
*page
, *tmp
;
1954 long needed
, allocated
;
1955 bool alloc_ok
= true;
1957 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1959 h
->resv_huge_pages
+= delta
;
1964 INIT_LIST_HEAD(&surplus_list
);
1968 spin_unlock(&hugetlb_lock
);
1969 for (i
= 0; i
< needed
; i
++) {
1970 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1971 NUMA_NO_NODE
, NULL
);
1976 list_add(&page
->lru
, &surplus_list
);
1982 * After retaking hugetlb_lock, we need to recalculate 'needed'
1983 * because either resv_huge_pages or free_huge_pages may have changed.
1985 spin_lock(&hugetlb_lock
);
1986 needed
= (h
->resv_huge_pages
+ delta
) -
1987 (h
->free_huge_pages
+ allocated
);
1992 * We were not able to allocate enough pages to
1993 * satisfy the entire reservation so we free what
1994 * we've allocated so far.
1999 * The surplus_list now contains _at_least_ the number of extra pages
2000 * needed to accommodate the reservation. Add the appropriate number
2001 * of pages to the hugetlb pool and free the extras back to the buddy
2002 * allocator. Commit the entire reservation here to prevent another
2003 * process from stealing the pages as they are added to the pool but
2004 * before they are reserved.
2006 needed
+= allocated
;
2007 h
->resv_huge_pages
+= delta
;
2010 /* Free the needed pages to the hugetlb pool */
2011 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
2015 * This page is now managed by the hugetlb allocator and has
2016 * no users -- drop the buddy allocator's reference.
2018 VM_BUG_ON_PAGE(!put_page_testzero(page
), page
);
2019 enqueue_huge_page(h
, page
);
2022 spin_unlock(&hugetlb_lock
);
2024 /* Free unnecessary surplus pages to the buddy allocator */
2025 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
2027 spin_lock(&hugetlb_lock
);
2033 * This routine has two main purposes:
2034 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2035 * in unused_resv_pages. This corresponds to the prior adjustments made
2036 * to the associated reservation map.
2037 * 2) Free any unused surplus pages that may have been allocated to satisfy
2038 * the reservation. As many as unused_resv_pages may be freed.
2040 * Called with hugetlb_lock held. However, the lock could be dropped (and
2041 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2042 * we must make sure nobody else can claim pages we are in the process of
2043 * freeing. Do this by ensuring resv_huge_page always is greater than the
2044 * number of huge pages we plan to free when dropping the lock.
2046 static void return_unused_surplus_pages(struct hstate
*h
,
2047 unsigned long unused_resv_pages
)
2049 unsigned long nr_pages
;
2051 /* Cannot return gigantic pages currently */
2052 if (hstate_is_gigantic(h
))
2056 * Part (or even all) of the reservation could have been backed
2057 * by pre-allocated pages. Only free surplus pages.
2059 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
2062 * We want to release as many surplus pages as possible, spread
2063 * evenly across all nodes with memory. Iterate across these nodes
2064 * until we can no longer free unreserved surplus pages. This occurs
2065 * when the nodes with surplus pages have no free pages.
2066 * free_pool_huge_page() will balance the freed pages across the
2067 * on-line nodes with memory and will handle the hstate accounting.
2069 * Note that we decrement resv_huge_pages as we free the pages. If
2070 * we drop the lock, resv_huge_pages will still be sufficiently large
2071 * to cover subsequent pages we may free.
2073 while (nr_pages
--) {
2074 h
->resv_huge_pages
--;
2075 unused_resv_pages
--;
2076 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
2078 cond_resched_lock(&hugetlb_lock
);
2082 /* Fully uncommit the reservation */
2083 h
->resv_huge_pages
-= unused_resv_pages
;
2088 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2089 * are used by the huge page allocation routines to manage reservations.
2091 * vma_needs_reservation is called to determine if the huge page at addr
2092 * within the vma has an associated reservation. If a reservation is
2093 * needed, the value 1 is returned. The caller is then responsible for
2094 * managing the global reservation and subpool usage counts. After
2095 * the huge page has been allocated, vma_commit_reservation is called
2096 * to add the page to the reservation map. If the page allocation fails,
2097 * the reservation must be ended instead of committed. vma_end_reservation
2098 * is called in such cases.
2100 * In the normal case, vma_commit_reservation returns the same value
2101 * as the preceding vma_needs_reservation call. The only time this
2102 * is not the case is if a reserve map was changed between calls. It
2103 * is the responsibility of the caller to notice the difference and
2104 * take appropriate action.
2106 * vma_add_reservation is used in error paths where a reservation must
2107 * be restored when a newly allocated huge page must be freed. It is
2108 * to be called after calling vma_needs_reservation to determine if a
2109 * reservation exists.
2111 enum vma_resv_mode
{
2117 static long __vma_reservation_common(struct hstate
*h
,
2118 struct vm_area_struct
*vma
, unsigned long addr
,
2119 enum vma_resv_mode mode
)
2121 struct resv_map
*resv
;
2124 long dummy_out_regions_needed
;
2126 resv
= vma_resv_map(vma
);
2130 idx
= vma_hugecache_offset(h
, vma
, addr
);
2132 case VMA_NEEDS_RESV
:
2133 ret
= region_chg(resv
, idx
, idx
+ 1, &dummy_out_regions_needed
);
2134 /* We assume that vma_reservation_* routines always operate on
2135 * 1 page, and that adding to resv map a 1 page entry can only
2136 * ever require 1 region.
2138 VM_BUG_ON(dummy_out_regions_needed
!= 1);
2140 case VMA_COMMIT_RESV
:
2141 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2142 /* region_add calls of range 1 should never fail. */
2146 region_abort(resv
, idx
, idx
+ 1, 1);
2150 if (vma
->vm_flags
& VM_MAYSHARE
) {
2151 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2152 /* region_add calls of range 1 should never fail. */
2155 region_abort(resv
, idx
, idx
+ 1, 1);
2156 ret
= region_del(resv
, idx
, idx
+ 1);
2163 if (vma
->vm_flags
& VM_MAYSHARE
)
2165 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
2167 * In most cases, reserves always exist for private mappings.
2168 * However, a file associated with mapping could have been
2169 * hole punched or truncated after reserves were consumed.
2170 * As subsequent fault on such a range will not use reserves.
2171 * Subtle - The reserve map for private mappings has the
2172 * opposite meaning than that of shared mappings. If NO
2173 * entry is in the reserve map, it means a reservation exists.
2174 * If an entry exists in the reserve map, it means the
2175 * reservation has already been consumed. As a result, the
2176 * return value of this routine is the opposite of the
2177 * value returned from reserve map manipulation routines above.
2185 return ret
< 0 ? ret
: 0;
2188 static long vma_needs_reservation(struct hstate
*h
,
2189 struct vm_area_struct
*vma
, unsigned long addr
)
2191 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
2194 static long vma_commit_reservation(struct hstate
*h
,
2195 struct vm_area_struct
*vma
, unsigned long addr
)
2197 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
2200 static void vma_end_reservation(struct hstate
*h
,
2201 struct vm_area_struct
*vma
, unsigned long addr
)
2203 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
2206 static long vma_add_reservation(struct hstate
*h
,
2207 struct vm_area_struct
*vma
, unsigned long addr
)
2209 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
2213 * This routine is called to restore a reservation on error paths. In the
2214 * specific error paths, a huge page was allocated (via alloc_huge_page)
2215 * and is about to be freed. If a reservation for the page existed,
2216 * alloc_huge_page would have consumed the reservation and set PagePrivate
2217 * in the newly allocated page. When the page is freed via free_huge_page,
2218 * the global reservation count will be incremented if PagePrivate is set.
2219 * However, free_huge_page can not adjust the reserve map. Adjust the
2220 * reserve map here to be consistent with global reserve count adjustments
2221 * to be made by free_huge_page.
2223 static void restore_reserve_on_error(struct hstate
*h
,
2224 struct vm_area_struct
*vma
, unsigned long address
,
2227 if (unlikely(PagePrivate(page
))) {
2228 long rc
= vma_needs_reservation(h
, vma
, address
);
2230 if (unlikely(rc
< 0)) {
2232 * Rare out of memory condition in reserve map
2233 * manipulation. Clear PagePrivate so that
2234 * global reserve count will not be incremented
2235 * by free_huge_page. This will make it appear
2236 * as though the reservation for this page was
2237 * consumed. This may prevent the task from
2238 * faulting in the page at a later time. This
2239 * is better than inconsistent global huge page
2240 * accounting of reserve counts.
2242 ClearPagePrivate(page
);
2244 rc
= vma_add_reservation(h
, vma
, address
);
2245 if (unlikely(rc
< 0))
2247 * See above comment about rare out of
2250 ClearPagePrivate(page
);
2252 vma_end_reservation(h
, vma
, address
);
2256 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2257 unsigned long addr
, int avoid_reserve
)
2259 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2260 struct hstate
*h
= hstate_vma(vma
);
2262 long map_chg
, map_commit
;
2265 struct hugetlb_cgroup
*h_cg
;
2266 bool deferred_reserve
;
2268 idx
= hstate_index(h
);
2270 * Examine the region/reserve map to determine if the process
2271 * has a reservation for the page to be allocated. A return
2272 * code of zero indicates a reservation exists (no change).
2274 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2276 return ERR_PTR(-ENOMEM
);
2279 * Processes that did not create the mapping will have no
2280 * reserves as indicated by the region/reserve map. Check
2281 * that the allocation will not exceed the subpool limit.
2282 * Allocations for MAP_NORESERVE mappings also need to be
2283 * checked against any subpool limit.
2285 if (map_chg
|| avoid_reserve
) {
2286 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2288 vma_end_reservation(h
, vma
, addr
);
2289 return ERR_PTR(-ENOSPC
);
2293 * Even though there was no reservation in the region/reserve
2294 * map, there could be reservations associated with the
2295 * subpool that can be used. This would be indicated if the
2296 * return value of hugepage_subpool_get_pages() is zero.
2297 * However, if avoid_reserve is specified we still avoid even
2298 * the subpool reservations.
2304 /* If this allocation is not consuming a reservation, charge it now.
2306 deferred_reserve
= map_chg
|| avoid_reserve
|| !vma_resv_map(vma
);
2307 if (deferred_reserve
) {
2308 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
2309 idx
, pages_per_huge_page(h
), &h_cg
);
2311 goto out_subpool_put
;
2314 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2316 goto out_uncharge_cgroup_reservation
;
2318 spin_lock(&hugetlb_lock
);
2320 * glb_chg is passed to indicate whether or not a page must be taken
2321 * from the global free pool (global change). gbl_chg == 0 indicates
2322 * a reservation exists for the allocation.
2324 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2326 spin_unlock(&hugetlb_lock
);
2327 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2329 goto out_uncharge_cgroup
;
2330 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2331 SetPagePrivate(page
);
2332 h
->resv_huge_pages
--;
2334 spin_lock(&hugetlb_lock
);
2335 list_add(&page
->lru
, &h
->hugepage_activelist
);
2338 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2339 /* If allocation is not consuming a reservation, also store the
2340 * hugetlb_cgroup pointer on the page.
2342 if (deferred_reserve
) {
2343 hugetlb_cgroup_commit_charge_rsvd(idx
, pages_per_huge_page(h
),
2347 spin_unlock(&hugetlb_lock
);
2349 set_page_private(page
, (unsigned long)spool
);
2351 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2352 if (unlikely(map_chg
> map_commit
)) {
2354 * The page was added to the reservation map between
2355 * vma_needs_reservation and vma_commit_reservation.
2356 * This indicates a race with hugetlb_reserve_pages.
2357 * Adjust for the subpool count incremented above AND
2358 * in hugetlb_reserve_pages for the same page. Also,
2359 * the reservation count added in hugetlb_reserve_pages
2360 * no longer applies.
2364 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2365 hugetlb_acct_memory(h
, -rsv_adjust
);
2366 if (deferred_reserve
)
2367 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h
),
2368 pages_per_huge_page(h
), page
);
2372 out_uncharge_cgroup
:
2373 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2374 out_uncharge_cgroup_reservation
:
2375 if (deferred_reserve
)
2376 hugetlb_cgroup_uncharge_cgroup_rsvd(idx
, pages_per_huge_page(h
),
2379 if (map_chg
|| avoid_reserve
)
2380 hugepage_subpool_put_pages(spool
, 1);
2381 vma_end_reservation(h
, vma
, addr
);
2382 return ERR_PTR(-ENOSPC
);
2385 int alloc_bootmem_huge_page(struct hstate
*h
)
2386 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2387 int __alloc_bootmem_huge_page(struct hstate
*h
)
2389 struct huge_bootmem_page
*m
;
2392 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2395 addr
= memblock_alloc_try_nid_raw(
2396 huge_page_size(h
), huge_page_size(h
),
2397 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2400 * Use the beginning of the huge page to store the
2401 * huge_bootmem_page struct (until gather_bootmem
2402 * puts them into the mem_map).
2411 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2412 /* Put them into a private list first because mem_map is not up yet */
2413 INIT_LIST_HEAD(&m
->list
);
2414 list_add(&m
->list
, &huge_boot_pages
);
2419 static void __init
prep_compound_huge_page(struct page
*page
,
2422 if (unlikely(order
> (MAX_ORDER
- 1)))
2423 prep_compound_gigantic_page(page
, order
);
2425 prep_compound_page(page
, order
);
2428 /* Put bootmem huge pages into the standard lists after mem_map is up */
2429 static void __init
gather_bootmem_prealloc(void)
2431 struct huge_bootmem_page
*m
;
2433 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2434 struct page
*page
= virt_to_page(m
);
2435 struct hstate
*h
= m
->hstate
;
2437 WARN_ON(page_count(page
) != 1);
2438 prep_compound_huge_page(page
, h
->order
);
2439 WARN_ON(PageReserved(page
));
2440 prep_new_huge_page(h
, page
, page_to_nid(page
));
2441 put_page(page
); /* free it into the hugepage allocator */
2444 * If we had gigantic hugepages allocated at boot time, we need
2445 * to restore the 'stolen' pages to totalram_pages in order to
2446 * fix confusing memory reports from free(1) and another
2447 * side-effects, like CommitLimit going negative.
2449 if (hstate_is_gigantic(h
))
2450 adjust_managed_page_count(page
, 1 << h
->order
);
2455 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2458 nodemask_t
*node_alloc_noretry
;
2460 if (!hstate_is_gigantic(h
)) {
2462 * Bit mask controlling how hard we retry per-node allocations.
2463 * Ignore errors as lower level routines can deal with
2464 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2465 * time, we are likely in bigger trouble.
2467 node_alloc_noretry
= kmalloc(sizeof(*node_alloc_noretry
),
2470 /* allocations done at boot time */
2471 node_alloc_noretry
= NULL
;
2474 /* bit mask controlling how hard we retry per-node allocations */
2475 if (node_alloc_noretry
)
2476 nodes_clear(*node_alloc_noretry
);
2478 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2479 if (hstate_is_gigantic(h
)) {
2480 if (hugetlb_cma_size
) {
2481 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2484 if (!alloc_bootmem_huge_page(h
))
2486 } else if (!alloc_pool_huge_page(h
,
2487 &node_states
[N_MEMORY
],
2488 node_alloc_noretry
))
2492 if (i
< h
->max_huge_pages
) {
2495 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2496 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2497 h
->max_huge_pages
, buf
, i
);
2498 h
->max_huge_pages
= i
;
2501 kfree(node_alloc_noretry
);
2504 static void __init
hugetlb_init_hstates(void)
2508 for_each_hstate(h
) {
2509 if (minimum_order
> huge_page_order(h
))
2510 minimum_order
= huge_page_order(h
);
2512 /* oversize hugepages were init'ed in early boot */
2513 if (!hstate_is_gigantic(h
))
2514 hugetlb_hstate_alloc_pages(h
);
2516 VM_BUG_ON(minimum_order
== UINT_MAX
);
2519 static void __init
report_hugepages(void)
2523 for_each_hstate(h
) {
2526 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2527 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2528 buf
, h
->free_huge_pages
);
2532 #ifdef CONFIG_HIGHMEM
2533 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2534 nodemask_t
*nodes_allowed
)
2538 if (hstate_is_gigantic(h
))
2541 for_each_node_mask(i
, *nodes_allowed
) {
2542 struct page
*page
, *next
;
2543 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2544 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2545 if (count
>= h
->nr_huge_pages
)
2547 if (PageHighMem(page
))
2549 list_del(&page
->lru
);
2550 update_and_free_page(h
, page
);
2551 h
->free_huge_pages
--;
2552 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2557 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2558 nodemask_t
*nodes_allowed
)
2564 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2565 * balanced by operating on them in a round-robin fashion.
2566 * Returns 1 if an adjustment was made.
2568 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2573 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2576 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2577 if (h
->surplus_huge_pages_node
[node
])
2581 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2582 if (h
->surplus_huge_pages_node
[node
] <
2583 h
->nr_huge_pages_node
[node
])
2590 h
->surplus_huge_pages
+= delta
;
2591 h
->surplus_huge_pages_node
[node
] += delta
;
2595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2596 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2597 nodemask_t
*nodes_allowed
)
2599 unsigned long min_count
, ret
;
2600 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
2603 * Bit mask controlling how hard we retry per-node allocations.
2604 * If we can not allocate the bit mask, do not attempt to allocate
2605 * the requested huge pages.
2607 if (node_alloc_noretry
)
2608 nodes_clear(*node_alloc_noretry
);
2612 spin_lock(&hugetlb_lock
);
2615 * Check for a node specific request.
2616 * Changing node specific huge page count may require a corresponding
2617 * change to the global count. In any case, the passed node mask
2618 * (nodes_allowed) will restrict alloc/free to the specified node.
2620 if (nid
!= NUMA_NO_NODE
) {
2621 unsigned long old_count
= count
;
2623 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2625 * User may have specified a large count value which caused the
2626 * above calculation to overflow. In this case, they wanted
2627 * to allocate as many huge pages as possible. Set count to
2628 * largest possible value to align with their intention.
2630 if (count
< old_count
)
2635 * Gigantic pages runtime allocation depend on the capability for large
2636 * page range allocation.
2637 * If the system does not provide this feature, return an error when
2638 * the user tries to allocate gigantic pages but let the user free the
2639 * boottime allocated gigantic pages.
2641 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2642 if (count
> persistent_huge_pages(h
)) {
2643 spin_unlock(&hugetlb_lock
);
2644 NODEMASK_FREE(node_alloc_noretry
);
2647 /* Fall through to decrease pool */
2651 * Increase the pool size
2652 * First take pages out of surplus state. Then make up the
2653 * remaining difference by allocating fresh huge pages.
2655 * We might race with alloc_surplus_huge_page() here and be unable
2656 * to convert a surplus huge page to a normal huge page. That is
2657 * not critical, though, it just means the overall size of the
2658 * pool might be one hugepage larger than it needs to be, but
2659 * within all the constraints specified by the sysctls.
2661 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2662 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2666 while (count
> persistent_huge_pages(h
)) {
2668 * If this allocation races such that we no longer need the
2669 * page, free_huge_page will handle it by freeing the page
2670 * and reducing the surplus.
2672 spin_unlock(&hugetlb_lock
);
2674 /* yield cpu to avoid soft lockup */
2677 ret
= alloc_pool_huge_page(h
, nodes_allowed
,
2678 node_alloc_noretry
);
2679 spin_lock(&hugetlb_lock
);
2683 /* Bail for signals. Probably ctrl-c from user */
2684 if (signal_pending(current
))
2689 * Decrease the pool size
2690 * First return free pages to the buddy allocator (being careful
2691 * to keep enough around to satisfy reservations). Then place
2692 * pages into surplus state as needed so the pool will shrink
2693 * to the desired size as pages become free.
2695 * By placing pages into the surplus state independent of the
2696 * overcommit value, we are allowing the surplus pool size to
2697 * exceed overcommit. There are few sane options here. Since
2698 * alloc_surplus_huge_page() is checking the global counter,
2699 * though, we'll note that we're not allowed to exceed surplus
2700 * and won't grow the pool anywhere else. Not until one of the
2701 * sysctls are changed, or the surplus pages go out of use.
2703 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2704 min_count
= max(count
, min_count
);
2705 try_to_free_low(h
, min_count
, nodes_allowed
);
2706 while (min_count
< persistent_huge_pages(h
)) {
2707 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2709 cond_resched_lock(&hugetlb_lock
);
2711 while (count
< persistent_huge_pages(h
)) {
2712 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2716 h
->max_huge_pages
= persistent_huge_pages(h
);
2717 spin_unlock(&hugetlb_lock
);
2719 NODEMASK_FREE(node_alloc_noretry
);
2724 #define HSTATE_ATTR_RO(_name) \
2725 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2727 #define HSTATE_ATTR(_name) \
2728 static struct kobj_attribute _name##_attr = \
2729 __ATTR(_name, 0644, _name##_show, _name##_store)
2731 static struct kobject
*hugepages_kobj
;
2732 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2734 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2736 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2740 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2741 if (hstate_kobjs
[i
] == kobj
) {
2743 *nidp
= NUMA_NO_NODE
;
2747 return kobj_to_node_hstate(kobj
, nidp
);
2750 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2751 struct kobj_attribute
*attr
, char *buf
)
2754 unsigned long nr_huge_pages
;
2757 h
= kobj_to_hstate(kobj
, &nid
);
2758 if (nid
== NUMA_NO_NODE
)
2759 nr_huge_pages
= h
->nr_huge_pages
;
2761 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2763 return sysfs_emit(buf
, "%lu\n", nr_huge_pages
);
2766 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2767 struct hstate
*h
, int nid
,
2768 unsigned long count
, size_t len
)
2771 nodemask_t nodes_allowed
, *n_mask
;
2773 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2776 if (nid
== NUMA_NO_NODE
) {
2778 * global hstate attribute
2780 if (!(obey_mempolicy
&&
2781 init_nodemask_of_mempolicy(&nodes_allowed
)))
2782 n_mask
= &node_states
[N_MEMORY
];
2784 n_mask
= &nodes_allowed
;
2787 * Node specific request. count adjustment happens in
2788 * set_max_huge_pages() after acquiring hugetlb_lock.
2790 init_nodemask_of_node(&nodes_allowed
, nid
);
2791 n_mask
= &nodes_allowed
;
2794 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2796 return err
? err
: len
;
2799 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2800 struct kobject
*kobj
, const char *buf
,
2804 unsigned long count
;
2808 err
= kstrtoul(buf
, 10, &count
);
2812 h
= kobj_to_hstate(kobj
, &nid
);
2813 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2816 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2817 struct kobj_attribute
*attr
, char *buf
)
2819 return nr_hugepages_show_common(kobj
, attr
, buf
);
2822 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2823 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2825 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2827 HSTATE_ATTR(nr_hugepages
);
2832 * hstate attribute for optionally mempolicy-based constraint on persistent
2833 * huge page alloc/free.
2835 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2836 struct kobj_attribute
*attr
,
2839 return nr_hugepages_show_common(kobj
, attr
, buf
);
2842 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2843 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2845 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2847 HSTATE_ATTR(nr_hugepages_mempolicy
);
2851 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2852 struct kobj_attribute
*attr
, char *buf
)
2854 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2855 return sysfs_emit(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2858 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2859 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2862 unsigned long input
;
2863 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2865 if (hstate_is_gigantic(h
))
2868 err
= kstrtoul(buf
, 10, &input
);
2872 spin_lock(&hugetlb_lock
);
2873 h
->nr_overcommit_huge_pages
= input
;
2874 spin_unlock(&hugetlb_lock
);
2878 HSTATE_ATTR(nr_overcommit_hugepages
);
2880 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2881 struct kobj_attribute
*attr
, char *buf
)
2884 unsigned long free_huge_pages
;
2887 h
= kobj_to_hstate(kobj
, &nid
);
2888 if (nid
== NUMA_NO_NODE
)
2889 free_huge_pages
= h
->free_huge_pages
;
2891 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2893 return sysfs_emit(buf
, "%lu\n", free_huge_pages
);
2895 HSTATE_ATTR_RO(free_hugepages
);
2897 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2898 struct kobj_attribute
*attr
, char *buf
)
2900 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2901 return sysfs_emit(buf
, "%lu\n", h
->resv_huge_pages
);
2903 HSTATE_ATTR_RO(resv_hugepages
);
2905 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2906 struct kobj_attribute
*attr
, char *buf
)
2909 unsigned long surplus_huge_pages
;
2912 h
= kobj_to_hstate(kobj
, &nid
);
2913 if (nid
== NUMA_NO_NODE
)
2914 surplus_huge_pages
= h
->surplus_huge_pages
;
2916 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2918 return sysfs_emit(buf
, "%lu\n", surplus_huge_pages
);
2920 HSTATE_ATTR_RO(surplus_hugepages
);
2922 static struct attribute
*hstate_attrs
[] = {
2923 &nr_hugepages_attr
.attr
,
2924 &nr_overcommit_hugepages_attr
.attr
,
2925 &free_hugepages_attr
.attr
,
2926 &resv_hugepages_attr
.attr
,
2927 &surplus_hugepages_attr
.attr
,
2929 &nr_hugepages_mempolicy_attr
.attr
,
2934 static const struct attribute_group hstate_attr_group
= {
2935 .attrs
= hstate_attrs
,
2938 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2939 struct kobject
**hstate_kobjs
,
2940 const struct attribute_group
*hstate_attr_group
)
2943 int hi
= hstate_index(h
);
2945 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2946 if (!hstate_kobjs
[hi
])
2949 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2951 kobject_put(hstate_kobjs
[hi
]);
2956 static void __init
hugetlb_sysfs_init(void)
2961 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2962 if (!hugepages_kobj
)
2965 for_each_hstate(h
) {
2966 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2967 hstate_kobjs
, &hstate_attr_group
);
2969 pr_err("HugeTLB: Unable to add hstate %s", h
->name
);
2976 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2977 * with node devices in node_devices[] using a parallel array. The array
2978 * index of a node device or _hstate == node id.
2979 * This is here to avoid any static dependency of the node device driver, in
2980 * the base kernel, on the hugetlb module.
2982 struct node_hstate
{
2983 struct kobject
*hugepages_kobj
;
2984 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2986 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2989 * A subset of global hstate attributes for node devices
2991 static struct attribute
*per_node_hstate_attrs
[] = {
2992 &nr_hugepages_attr
.attr
,
2993 &free_hugepages_attr
.attr
,
2994 &surplus_hugepages_attr
.attr
,
2998 static const struct attribute_group per_node_hstate_attr_group
= {
2999 .attrs
= per_node_hstate_attrs
,
3003 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3004 * Returns node id via non-NULL nidp.
3006 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3010 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
3011 struct node_hstate
*nhs
= &node_hstates
[nid
];
3013 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
3014 if (nhs
->hstate_kobjs
[i
] == kobj
) {
3026 * Unregister hstate attributes from a single node device.
3027 * No-op if no hstate attributes attached.
3029 static void hugetlb_unregister_node(struct node
*node
)
3032 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3034 if (!nhs
->hugepages_kobj
)
3035 return; /* no hstate attributes */
3037 for_each_hstate(h
) {
3038 int idx
= hstate_index(h
);
3039 if (nhs
->hstate_kobjs
[idx
]) {
3040 kobject_put(nhs
->hstate_kobjs
[idx
]);
3041 nhs
->hstate_kobjs
[idx
] = NULL
;
3045 kobject_put(nhs
->hugepages_kobj
);
3046 nhs
->hugepages_kobj
= NULL
;
3051 * Register hstate attributes for a single node device.
3052 * No-op if attributes already registered.
3054 static void hugetlb_register_node(struct node
*node
)
3057 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3060 if (nhs
->hugepages_kobj
)
3061 return; /* already allocated */
3063 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
3065 if (!nhs
->hugepages_kobj
)
3068 for_each_hstate(h
) {
3069 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
3071 &per_node_hstate_attr_group
);
3073 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3074 h
->name
, node
->dev
.id
);
3075 hugetlb_unregister_node(node
);
3082 * hugetlb init time: register hstate attributes for all registered node
3083 * devices of nodes that have memory. All on-line nodes should have
3084 * registered their associated device by this time.
3086 static void __init
hugetlb_register_all_nodes(void)
3090 for_each_node_state(nid
, N_MEMORY
) {
3091 struct node
*node
= node_devices
[nid
];
3092 if (node
->dev
.id
== nid
)
3093 hugetlb_register_node(node
);
3097 * Let the node device driver know we're here so it can
3098 * [un]register hstate attributes on node hotplug.
3100 register_hugetlbfs_with_node(hugetlb_register_node
,
3101 hugetlb_unregister_node
);
3103 #else /* !CONFIG_NUMA */
3105 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3113 static void hugetlb_register_all_nodes(void) { }
3117 static int __init
hugetlb_init(void)
3121 if (!hugepages_supported()) {
3122 if (hugetlb_max_hstate
|| default_hstate_max_huge_pages
)
3123 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3128 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3129 * architectures depend on setup being done here.
3131 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
3132 if (!parsed_default_hugepagesz
) {
3134 * If we did not parse a default huge page size, set
3135 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3136 * number of huge pages for this default size was implicitly
3137 * specified, set that here as well.
3138 * Note that the implicit setting will overwrite an explicit
3139 * setting. A warning will be printed in this case.
3141 default_hstate_idx
= hstate_index(size_to_hstate(HPAGE_SIZE
));
3142 if (default_hstate_max_huge_pages
) {
3143 if (default_hstate
.max_huge_pages
) {
3146 string_get_size(huge_page_size(&default_hstate
),
3147 1, STRING_UNITS_2
, buf
, 32);
3148 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3149 default_hstate
.max_huge_pages
, buf
);
3150 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3151 default_hstate_max_huge_pages
);
3153 default_hstate
.max_huge_pages
=
3154 default_hstate_max_huge_pages
;
3158 hugetlb_cma_check();
3159 hugetlb_init_hstates();
3160 gather_bootmem_prealloc();
3163 hugetlb_sysfs_init();
3164 hugetlb_register_all_nodes();
3165 hugetlb_cgroup_file_init();
3168 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
3170 num_fault_mutexes
= 1;
3172 hugetlb_fault_mutex_table
=
3173 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
3175 BUG_ON(!hugetlb_fault_mutex_table
);
3177 for (i
= 0; i
< num_fault_mutexes
; i
++)
3178 mutex_init(&hugetlb_fault_mutex_table
[i
]);
3181 subsys_initcall(hugetlb_init
);
3183 /* Overwritten by architectures with more huge page sizes */
3184 bool __init
__attribute((weak
)) arch_hugetlb_valid_size(unsigned long size
)
3186 return size
== HPAGE_SIZE
;
3189 void __init
hugetlb_add_hstate(unsigned int order
)
3194 if (size_to_hstate(PAGE_SIZE
<< order
)) {
3197 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
3199 h
= &hstates
[hugetlb_max_hstate
++];
3201 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
3202 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
3203 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
3204 INIT_LIST_HEAD(&h
->hugepage_activelist
);
3205 h
->next_nid_to_alloc
= first_memory_node
;
3206 h
->next_nid_to_free
= first_memory_node
;
3207 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
3208 huge_page_size(h
)/1024);
3214 * hugepages command line processing
3215 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3216 * specification. If not, ignore the hugepages value. hugepages can also
3217 * be the first huge page command line option in which case it implicitly
3218 * specifies the number of huge pages for the default size.
3220 static int __init
hugepages_setup(char *s
)
3223 static unsigned long *last_mhp
;
3225 if (!parsed_valid_hugepagesz
) {
3226 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s
);
3227 parsed_valid_hugepagesz
= true;
3232 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3233 * yet, so this hugepages= parameter goes to the "default hstate".
3234 * Otherwise, it goes with the previously parsed hugepagesz or
3235 * default_hugepagesz.
3237 else if (!hugetlb_max_hstate
)
3238 mhp
= &default_hstate_max_huge_pages
;
3240 mhp
= &parsed_hstate
->max_huge_pages
;
3242 if (mhp
== last_mhp
) {
3243 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s
);
3247 if (sscanf(s
, "%lu", mhp
) <= 0)
3251 * Global state is always initialized later in hugetlb_init.
3252 * But we need to allocate >= MAX_ORDER hstates here early to still
3253 * use the bootmem allocator.
3255 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
3256 hugetlb_hstate_alloc_pages(parsed_hstate
);
3262 __setup("hugepages=", hugepages_setup
);
3265 * hugepagesz command line processing
3266 * A specific huge page size can only be specified once with hugepagesz.
3267 * hugepagesz is followed by hugepages on the command line. The global
3268 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3269 * hugepagesz argument was valid.
3271 static int __init
hugepagesz_setup(char *s
)
3276 parsed_valid_hugepagesz
= false;
3277 size
= (unsigned long)memparse(s
, NULL
);
3279 if (!arch_hugetlb_valid_size(size
)) {
3280 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s
);
3284 h
= size_to_hstate(size
);
3287 * hstate for this size already exists. This is normally
3288 * an error, but is allowed if the existing hstate is the
3289 * default hstate. More specifically, it is only allowed if
3290 * the number of huge pages for the default hstate was not
3291 * previously specified.
3293 if (!parsed_default_hugepagesz
|| h
!= &default_hstate
||
3294 default_hstate
.max_huge_pages
) {
3295 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s
);
3300 * No need to call hugetlb_add_hstate() as hstate already
3301 * exists. But, do set parsed_hstate so that a following
3302 * hugepages= parameter will be applied to this hstate.
3305 parsed_valid_hugepagesz
= true;
3309 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3310 parsed_valid_hugepagesz
= true;
3313 __setup("hugepagesz=", hugepagesz_setup
);
3316 * default_hugepagesz command line input
3317 * Only one instance of default_hugepagesz allowed on command line.
3319 static int __init
default_hugepagesz_setup(char *s
)
3323 parsed_valid_hugepagesz
= false;
3324 if (parsed_default_hugepagesz
) {
3325 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s
);
3329 size
= (unsigned long)memparse(s
, NULL
);
3331 if (!arch_hugetlb_valid_size(size
)) {
3332 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s
);
3336 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3337 parsed_valid_hugepagesz
= true;
3338 parsed_default_hugepagesz
= true;
3339 default_hstate_idx
= hstate_index(size_to_hstate(size
));
3342 * The number of default huge pages (for this size) could have been
3343 * specified as the first hugetlb parameter: hugepages=X. If so,
3344 * then default_hstate_max_huge_pages is set. If the default huge
3345 * page size is gigantic (>= MAX_ORDER), then the pages must be
3346 * allocated here from bootmem allocator.
3348 if (default_hstate_max_huge_pages
) {
3349 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
3350 if (hstate_is_gigantic(&default_hstate
))
3351 hugetlb_hstate_alloc_pages(&default_hstate
);
3352 default_hstate_max_huge_pages
= 0;
3357 __setup("default_hugepagesz=", default_hugepagesz_setup
);
3359 static unsigned int allowed_mems_nr(struct hstate
*h
)
3362 unsigned int nr
= 0;
3363 nodemask_t
*mpol_allowed
;
3364 unsigned int *array
= h
->free_huge_pages_node
;
3365 gfp_t gfp_mask
= htlb_alloc_mask(h
);
3367 mpol_allowed
= policy_nodemask_current(gfp_mask
);
3369 for_each_node_mask(node
, cpuset_current_mems_allowed
) {
3370 if (!mpol_allowed
||
3371 (mpol_allowed
&& node_isset(node
, *mpol_allowed
)))
3378 #ifdef CONFIG_SYSCTL
3379 static int proc_hugetlb_doulongvec_minmax(struct ctl_table
*table
, int write
,
3380 void *buffer
, size_t *length
,
3381 loff_t
*ppos
, unsigned long *out
)
3383 struct ctl_table dup_table
;
3386 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3387 * can duplicate the @table and alter the duplicate of it.
3390 dup_table
.data
= out
;
3392 return proc_doulongvec_minmax(&dup_table
, write
, buffer
, length
, ppos
);
3395 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
3396 struct ctl_table
*table
, int write
,
3397 void *buffer
, size_t *length
, loff_t
*ppos
)
3399 struct hstate
*h
= &default_hstate
;
3400 unsigned long tmp
= h
->max_huge_pages
;
3403 if (!hugepages_supported())
3406 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
3412 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
3413 NUMA_NO_NODE
, tmp
, *length
);
3418 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
3419 void *buffer
, size_t *length
, loff_t
*ppos
)
3422 return hugetlb_sysctl_handler_common(false, table
, write
,
3423 buffer
, length
, ppos
);
3427 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
3428 void *buffer
, size_t *length
, loff_t
*ppos
)
3430 return hugetlb_sysctl_handler_common(true, table
, write
,
3431 buffer
, length
, ppos
);
3433 #endif /* CONFIG_NUMA */
3435 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
3436 void *buffer
, size_t *length
, loff_t
*ppos
)
3438 struct hstate
*h
= &default_hstate
;
3442 if (!hugepages_supported())
3445 tmp
= h
->nr_overcommit_huge_pages
;
3447 if (write
&& hstate_is_gigantic(h
))
3450 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
3456 spin_lock(&hugetlb_lock
);
3457 h
->nr_overcommit_huge_pages
= tmp
;
3458 spin_unlock(&hugetlb_lock
);
3464 #endif /* CONFIG_SYSCTL */
3466 void hugetlb_report_meminfo(struct seq_file
*m
)
3469 unsigned long total
= 0;
3471 if (!hugepages_supported())
3474 for_each_hstate(h
) {
3475 unsigned long count
= h
->nr_huge_pages
;
3477 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3479 if (h
== &default_hstate
)
3481 "HugePages_Total: %5lu\n"
3482 "HugePages_Free: %5lu\n"
3483 "HugePages_Rsvd: %5lu\n"
3484 "HugePages_Surp: %5lu\n"
3485 "Hugepagesize: %8lu kB\n",
3489 h
->surplus_huge_pages
,
3490 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3493 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3496 int hugetlb_report_node_meminfo(char *buf
, int len
, int nid
)
3498 struct hstate
*h
= &default_hstate
;
3500 if (!hugepages_supported())
3503 return sysfs_emit_at(buf
, len
,
3504 "Node %d HugePages_Total: %5u\n"
3505 "Node %d HugePages_Free: %5u\n"
3506 "Node %d HugePages_Surp: %5u\n",
3507 nid
, h
->nr_huge_pages_node
[nid
],
3508 nid
, h
->free_huge_pages_node
[nid
],
3509 nid
, h
->surplus_huge_pages_node
[nid
]);
3512 void hugetlb_show_meminfo(void)
3517 if (!hugepages_supported())
3520 for_each_node_state(nid
, N_MEMORY
)
3522 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3524 h
->nr_huge_pages_node
[nid
],
3525 h
->free_huge_pages_node
[nid
],
3526 h
->surplus_huge_pages_node
[nid
],
3527 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3530 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3532 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3533 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3536 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3537 unsigned long hugetlb_total_pages(void)
3540 unsigned long nr_total_pages
= 0;
3543 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3544 return nr_total_pages
;
3547 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3551 spin_lock(&hugetlb_lock
);
3553 * When cpuset is configured, it breaks the strict hugetlb page
3554 * reservation as the accounting is done on a global variable. Such
3555 * reservation is completely rubbish in the presence of cpuset because
3556 * the reservation is not checked against page availability for the
3557 * current cpuset. Application can still potentially OOM'ed by kernel
3558 * with lack of free htlb page in cpuset that the task is in.
3559 * Attempt to enforce strict accounting with cpuset is almost
3560 * impossible (or too ugly) because cpuset is too fluid that
3561 * task or memory node can be dynamically moved between cpusets.
3563 * The change of semantics for shared hugetlb mapping with cpuset is
3564 * undesirable. However, in order to preserve some of the semantics,
3565 * we fall back to check against current free page availability as
3566 * a best attempt and hopefully to minimize the impact of changing
3567 * semantics that cpuset has.
3569 * Apart from cpuset, we also have memory policy mechanism that
3570 * also determines from which node the kernel will allocate memory
3571 * in a NUMA system. So similar to cpuset, we also should consider
3572 * the memory policy of the current task. Similar to the description
3576 if (gather_surplus_pages(h
, delta
) < 0)
3579 if (delta
> allowed_mems_nr(h
)) {
3580 return_unused_surplus_pages(h
, delta
);
3587 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3590 spin_unlock(&hugetlb_lock
);
3594 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3596 struct resv_map
*resv
= vma_resv_map(vma
);
3599 * This new VMA should share its siblings reservation map if present.
3600 * The VMA will only ever have a valid reservation map pointer where
3601 * it is being copied for another still existing VMA. As that VMA
3602 * has a reference to the reservation map it cannot disappear until
3603 * after this open call completes. It is therefore safe to take a
3604 * new reference here without additional locking.
3606 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3607 kref_get(&resv
->refs
);
3610 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3612 struct hstate
*h
= hstate_vma(vma
);
3613 struct resv_map
*resv
= vma_resv_map(vma
);
3614 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3615 unsigned long reserve
, start
, end
;
3618 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3621 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3622 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3624 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3625 hugetlb_cgroup_uncharge_counter(resv
, start
, end
);
3628 * Decrement reserve counts. The global reserve count may be
3629 * adjusted if the subpool has a minimum size.
3631 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3632 hugetlb_acct_memory(h
, -gbl_reserve
);
3635 kref_put(&resv
->refs
, resv_map_release
);
3638 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3640 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3645 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3647 struct hstate
*hstate
= hstate_vma(vma
);
3649 return 1UL << huge_page_shift(hstate
);
3653 * We cannot handle pagefaults against hugetlb pages at all. They cause
3654 * handle_mm_fault() to try to instantiate regular-sized pages in the
3655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3658 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3665 * When a new function is introduced to vm_operations_struct and added
3666 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3667 * This is because under System V memory model, mappings created via
3668 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3669 * their original vm_ops are overwritten with shm_vm_ops.
3671 const struct vm_operations_struct hugetlb_vm_ops
= {
3672 .fault
= hugetlb_vm_op_fault
,
3673 .open
= hugetlb_vm_op_open
,
3674 .close
= hugetlb_vm_op_close
,
3675 .may_split
= hugetlb_vm_op_split
,
3676 .pagesize
= hugetlb_vm_op_pagesize
,
3679 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3685 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3686 vma
->vm_page_prot
)));
3688 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3689 vma
->vm_page_prot
));
3691 entry
= pte_mkyoung(entry
);
3692 entry
= pte_mkhuge(entry
);
3693 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3698 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3699 unsigned long address
, pte_t
*ptep
)
3703 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3704 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3705 update_mmu_cache(vma
, address
, ptep
);
3708 bool is_hugetlb_entry_migration(pte_t pte
)
3712 if (huge_pte_none(pte
) || pte_present(pte
))
3714 swp
= pte_to_swp_entry(pte
);
3715 if (is_migration_entry(swp
))
3721 static bool is_hugetlb_entry_hwpoisoned(pte_t pte
)
3725 if (huge_pte_none(pte
) || pte_present(pte
))
3727 swp
= pte_to_swp_entry(pte
);
3728 if (is_hwpoison_entry(swp
))
3734 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3735 struct vm_area_struct
*vma
)
3737 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3738 struct page
*ptepage
;
3741 struct hstate
*h
= hstate_vma(vma
);
3742 unsigned long sz
= huge_page_size(h
);
3743 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3744 struct mmu_notifier_range range
;
3747 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3750 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3753 mmu_notifier_invalidate_range_start(&range
);
3756 * For shared mappings i_mmap_rwsem must be held to call
3757 * huge_pte_alloc, otherwise the returned ptep could go
3758 * away if part of a shared pmd and another thread calls
3761 i_mmap_lock_read(mapping
);
3764 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3765 spinlock_t
*src_ptl
, *dst_ptl
;
3766 src_pte
= huge_pte_offset(src
, addr
, sz
);
3769 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3776 * If the pagetables are shared don't copy or take references.
3777 * dst_pte == src_pte is the common case of src/dest sharing.
3779 * However, src could have 'unshared' and dst shares with
3780 * another vma. If dst_pte !none, this implies sharing.
3781 * Check here before taking page table lock, and once again
3782 * after taking the lock below.
3784 dst_entry
= huge_ptep_get(dst_pte
);
3785 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3788 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3789 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3790 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3791 entry
= huge_ptep_get(src_pte
);
3792 dst_entry
= huge_ptep_get(dst_pte
);
3793 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3795 * Skip if src entry none. Also, skip in the
3796 * unlikely case dst entry !none as this implies
3797 * sharing with another vma.
3800 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3801 is_hugetlb_entry_hwpoisoned(entry
))) {
3802 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3804 if (is_write_migration_entry(swp_entry
) && cow
) {
3806 * COW mappings require pages in both
3807 * parent and child to be set to read.
3809 make_migration_entry_read(&swp_entry
);
3810 entry
= swp_entry_to_pte(swp_entry
);
3811 set_huge_swap_pte_at(src
, addr
, src_pte
,
3814 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3818 * No need to notify as we are downgrading page
3819 * table protection not changing it to point
3822 * See Documentation/vm/mmu_notifier.rst
3824 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3826 entry
= huge_ptep_get(src_pte
);
3827 ptepage
= pte_page(entry
);
3829 page_dup_rmap(ptepage
, true);
3830 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3831 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3833 spin_unlock(src_ptl
);
3834 spin_unlock(dst_ptl
);
3838 mmu_notifier_invalidate_range_end(&range
);
3840 i_mmap_unlock_read(mapping
);
3845 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3846 unsigned long start
, unsigned long end
,
3847 struct page
*ref_page
)
3849 struct mm_struct
*mm
= vma
->vm_mm
;
3850 unsigned long address
;
3855 struct hstate
*h
= hstate_vma(vma
);
3856 unsigned long sz
= huge_page_size(h
);
3857 struct mmu_notifier_range range
;
3859 WARN_ON(!is_vm_hugetlb_page(vma
));
3860 BUG_ON(start
& ~huge_page_mask(h
));
3861 BUG_ON(end
& ~huge_page_mask(h
));
3864 * This is a hugetlb vma, all the pte entries should point
3867 tlb_change_page_size(tlb
, sz
);
3868 tlb_start_vma(tlb
, vma
);
3871 * If sharing possible, alert mmu notifiers of worst case.
3873 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3875 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3876 mmu_notifier_invalidate_range_start(&range
);
3878 for (; address
< end
; address
+= sz
) {
3879 ptep
= huge_pte_offset(mm
, address
, sz
);
3883 ptl
= huge_pte_lock(h
, mm
, ptep
);
3884 if (huge_pmd_unshare(mm
, vma
, &address
, ptep
)) {
3887 * We just unmapped a page of PMDs by clearing a PUD.
3888 * The caller's TLB flush range should cover this area.
3893 pte
= huge_ptep_get(ptep
);
3894 if (huge_pte_none(pte
)) {
3900 * Migrating hugepage or HWPoisoned hugepage is already
3901 * unmapped and its refcount is dropped, so just clear pte here.
3903 if (unlikely(!pte_present(pte
))) {
3904 huge_pte_clear(mm
, address
, ptep
, sz
);
3909 page
= pte_page(pte
);
3911 * If a reference page is supplied, it is because a specific
3912 * page is being unmapped, not a range. Ensure the page we
3913 * are about to unmap is the actual page of interest.
3916 if (page
!= ref_page
) {
3921 * Mark the VMA as having unmapped its page so that
3922 * future faults in this VMA will fail rather than
3923 * looking like data was lost
3925 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3928 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3929 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3930 if (huge_pte_dirty(pte
))
3931 set_page_dirty(page
);
3933 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3934 page_remove_rmap(page
, true);
3937 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3939 * Bail out after unmapping reference page if supplied
3944 mmu_notifier_invalidate_range_end(&range
);
3945 tlb_end_vma(tlb
, vma
);
3948 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3949 struct vm_area_struct
*vma
, unsigned long start
,
3950 unsigned long end
, struct page
*ref_page
)
3952 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3955 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3956 * test will fail on a vma being torn down, and not grab a page table
3957 * on its way out. We're lucky that the flag has such an appropriate
3958 * name, and can in fact be safely cleared here. We could clear it
3959 * before the __unmap_hugepage_range above, but all that's necessary
3960 * is to clear it before releasing the i_mmap_rwsem. This works
3961 * because in the context this is called, the VMA is about to be
3962 * destroyed and the i_mmap_rwsem is held.
3964 vma
->vm_flags
&= ~VM_MAYSHARE
;
3967 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3968 unsigned long end
, struct page
*ref_page
)
3970 struct mm_struct
*mm
;
3971 struct mmu_gather tlb
;
3972 unsigned long tlb_start
= start
;
3973 unsigned long tlb_end
= end
;
3976 * If shared PMDs were possibly used within this vma range, adjust
3977 * start/end for worst case tlb flushing.
3978 * Note that we can not be sure if PMDs are shared until we try to
3979 * unmap pages. However, we want to make sure TLB flushing covers
3980 * the largest possible range.
3982 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3986 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3987 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3988 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3992 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3993 * mappping it owns the reserve page for. The intention is to unmap the page
3994 * from other VMAs and let the children be SIGKILLed if they are faulting the
3997 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3998 struct page
*page
, unsigned long address
)
4000 struct hstate
*h
= hstate_vma(vma
);
4001 struct vm_area_struct
*iter_vma
;
4002 struct address_space
*mapping
;
4006 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4007 * from page cache lookup which is in HPAGE_SIZE units.
4009 address
= address
& huge_page_mask(h
);
4010 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
4012 mapping
= vma
->vm_file
->f_mapping
;
4015 * Take the mapping lock for the duration of the table walk. As
4016 * this mapping should be shared between all the VMAs,
4017 * __unmap_hugepage_range() is called as the lock is already held
4019 i_mmap_lock_write(mapping
);
4020 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
4021 /* Do not unmap the current VMA */
4022 if (iter_vma
== vma
)
4026 * Shared VMAs have their own reserves and do not affect
4027 * MAP_PRIVATE accounting but it is possible that a shared
4028 * VMA is using the same page so check and skip such VMAs.
4030 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
4034 * Unmap the page from other VMAs without their own reserves.
4035 * They get marked to be SIGKILLed if they fault in these
4036 * areas. This is because a future no-page fault on this VMA
4037 * could insert a zeroed page instead of the data existing
4038 * from the time of fork. This would look like data corruption
4040 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
4041 unmap_hugepage_range(iter_vma
, address
,
4042 address
+ huge_page_size(h
), page
);
4044 i_mmap_unlock_write(mapping
);
4048 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4049 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4050 * cannot race with other handlers or page migration.
4051 * Keep the pte_same checks anyway to make transition from the mutex easier.
4053 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4054 unsigned long address
, pte_t
*ptep
,
4055 struct page
*pagecache_page
, spinlock_t
*ptl
)
4058 struct hstate
*h
= hstate_vma(vma
);
4059 struct page
*old_page
, *new_page
;
4060 int outside_reserve
= 0;
4062 unsigned long haddr
= address
& huge_page_mask(h
);
4063 struct mmu_notifier_range range
;
4065 pte
= huge_ptep_get(ptep
);
4066 old_page
= pte_page(pte
);
4069 /* If no-one else is actually using this page, avoid the copy
4070 * and just make the page writable */
4071 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
4072 page_move_anon_rmap(old_page
, vma
);
4073 set_huge_ptep_writable(vma
, haddr
, ptep
);
4078 * If the process that created a MAP_PRIVATE mapping is about to
4079 * perform a COW due to a shared page count, attempt to satisfy
4080 * the allocation without using the existing reserves. The pagecache
4081 * page is used to determine if the reserve at this address was
4082 * consumed or not. If reserves were used, a partial faulted mapping
4083 * at the time of fork() could consume its reserves on COW instead
4084 * of the full address range.
4086 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
4087 old_page
!= pagecache_page
)
4088 outside_reserve
= 1;
4093 * Drop page table lock as buddy allocator may be called. It will
4094 * be acquired again before returning to the caller, as expected.
4097 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
4099 if (IS_ERR(new_page
)) {
4101 * If a process owning a MAP_PRIVATE mapping fails to COW,
4102 * it is due to references held by a child and an insufficient
4103 * huge page pool. To guarantee the original mappers
4104 * reliability, unmap the page from child processes. The child
4105 * may get SIGKILLed if it later faults.
4107 if (outside_reserve
) {
4108 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4113 BUG_ON(huge_pte_none(pte
));
4115 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4116 * unmapping. unmapping needs to hold i_mmap_rwsem
4117 * in write mode. Dropping i_mmap_rwsem in read mode
4118 * here is OK as COW mappings do not interact with
4121 * Reacquire both after unmap operation.
4123 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4124 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4125 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4126 i_mmap_unlock_read(mapping
);
4128 unmap_ref_private(mm
, vma
, old_page
, haddr
);
4130 i_mmap_lock_read(mapping
);
4131 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4133 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4135 pte_same(huge_ptep_get(ptep
), pte
)))
4136 goto retry_avoidcopy
;
4138 * race occurs while re-acquiring page table
4139 * lock, and our job is done.
4144 ret
= vmf_error(PTR_ERR(new_page
));
4145 goto out_release_old
;
4149 * When the original hugepage is shared one, it does not have
4150 * anon_vma prepared.
4152 if (unlikely(anon_vma_prepare(vma
))) {
4154 goto out_release_all
;
4157 copy_user_huge_page(new_page
, old_page
, address
, vma
,
4158 pages_per_huge_page(h
));
4159 __SetPageUptodate(new_page
);
4161 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
4162 haddr
+ huge_page_size(h
));
4163 mmu_notifier_invalidate_range_start(&range
);
4166 * Retake the page table lock to check for racing updates
4167 * before the page tables are altered
4170 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4171 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
4172 ClearPagePrivate(new_page
);
4175 huge_ptep_clear_flush(vma
, haddr
, ptep
);
4176 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
4177 set_huge_pte_at(mm
, haddr
, ptep
,
4178 make_huge_pte(vma
, new_page
, 1));
4179 page_remove_rmap(old_page
, true);
4180 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
4181 set_page_huge_active(new_page
);
4182 /* Make the old page be freed below */
4183 new_page
= old_page
;
4186 mmu_notifier_invalidate_range_end(&range
);
4188 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
4193 spin_lock(ptl
); /* Caller expects lock to be held */
4197 /* Return the pagecache page at a given address within a VMA */
4198 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
4199 struct vm_area_struct
*vma
, unsigned long address
)
4201 struct address_space
*mapping
;
4204 mapping
= vma
->vm_file
->f_mapping
;
4205 idx
= vma_hugecache_offset(h
, vma
, address
);
4207 return find_lock_page(mapping
, idx
);
4211 * Return whether there is a pagecache page to back given address within VMA.
4212 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4214 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
4215 struct vm_area_struct
*vma
, unsigned long address
)
4217 struct address_space
*mapping
;
4221 mapping
= vma
->vm_file
->f_mapping
;
4222 idx
= vma_hugecache_offset(h
, vma
, address
);
4224 page
= find_get_page(mapping
, idx
);
4227 return page
!= NULL
;
4230 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
4233 struct inode
*inode
= mapping
->host
;
4234 struct hstate
*h
= hstate_inode(inode
);
4235 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
4239 ClearPagePrivate(page
);
4242 * set page dirty so that it will not be removed from cache/file
4243 * by non-hugetlbfs specific code paths.
4245 set_page_dirty(page
);
4247 spin_lock(&inode
->i_lock
);
4248 inode
->i_blocks
+= blocks_per_huge_page(h
);
4249 spin_unlock(&inode
->i_lock
);
4253 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
4254 struct vm_area_struct
*vma
,
4255 struct address_space
*mapping
, pgoff_t idx
,
4256 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
4258 struct hstate
*h
= hstate_vma(vma
);
4259 vm_fault_t ret
= VM_FAULT_SIGBUS
;
4265 unsigned long haddr
= address
& huge_page_mask(h
);
4266 bool new_page
= false;
4269 * Currently, we are forced to kill the process in the event the
4270 * original mapper has unmapped pages from the child due to a failed
4271 * COW. Warn that such a situation has occurred as it may not be obvious
4273 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
4274 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4280 * We can not race with truncation due to holding i_mmap_rwsem.
4281 * i_size is modified when holding i_mmap_rwsem, so check here
4282 * once for faults beyond end of file.
4284 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4289 page
= find_lock_page(mapping
, idx
);
4292 * Check for page in userfault range
4294 if (userfaultfd_missing(vma
)) {
4296 struct vm_fault vmf
= {
4301 * Hard to debug if it ends up being
4302 * used by a callee that assumes
4303 * something about the other
4304 * uninitialized fields... same as in
4310 * hugetlb_fault_mutex and i_mmap_rwsem must be
4311 * dropped before handling userfault. Reacquire
4312 * after handling fault to make calling code simpler.
4314 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4315 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4316 i_mmap_unlock_read(mapping
);
4317 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
4318 i_mmap_lock_read(mapping
);
4319 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4323 page
= alloc_huge_page(vma
, haddr
, 0);
4326 * Returning error will result in faulting task being
4327 * sent SIGBUS. The hugetlb fault mutex prevents two
4328 * tasks from racing to fault in the same page which
4329 * could result in false unable to allocate errors.
4330 * Page migration does not take the fault mutex, but
4331 * does a clear then write of pte's under page table
4332 * lock. Page fault code could race with migration,
4333 * notice the clear pte and try to allocate a page
4334 * here. Before returning error, get ptl and make
4335 * sure there really is no pte entry.
4337 ptl
= huge_pte_lock(h
, mm
, ptep
);
4338 if (!huge_pte_none(huge_ptep_get(ptep
))) {
4344 ret
= vmf_error(PTR_ERR(page
));
4347 clear_huge_page(page
, address
, pages_per_huge_page(h
));
4348 __SetPageUptodate(page
);
4351 if (vma
->vm_flags
& VM_MAYSHARE
) {
4352 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
4361 if (unlikely(anon_vma_prepare(vma
))) {
4363 goto backout_unlocked
;
4369 * If memory error occurs between mmap() and fault, some process
4370 * don't have hwpoisoned swap entry for errored virtual address.
4371 * So we need to block hugepage fault by PG_hwpoison bit check.
4373 if (unlikely(PageHWPoison(page
))) {
4374 ret
= VM_FAULT_HWPOISON_LARGE
|
4375 VM_FAULT_SET_HINDEX(hstate_index(h
));
4376 goto backout_unlocked
;
4381 * If we are going to COW a private mapping later, we examine the
4382 * pending reservations for this page now. This will ensure that
4383 * any allocations necessary to record that reservation occur outside
4386 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4387 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4389 goto backout_unlocked
;
4391 /* Just decrements count, does not deallocate */
4392 vma_end_reservation(h
, vma
, haddr
);
4395 ptl
= huge_pte_lock(h
, mm
, ptep
);
4397 if (!huge_pte_none(huge_ptep_get(ptep
)))
4401 ClearPagePrivate(page
);
4402 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
4404 page_dup_rmap(page
, true);
4405 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
4406 && (vma
->vm_flags
& VM_SHARED
)));
4407 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
4409 hugetlb_count_add(pages_per_huge_page(h
), mm
);
4410 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4411 /* Optimization, do the COW without a second fault */
4412 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
4418 * Only make newly allocated pages active. Existing pages found
4419 * in the pagecache could be !page_huge_active() if they have been
4420 * isolated for migration.
4423 set_page_huge_active(page
);
4433 restore_reserve_on_error(h
, vma
, haddr
, page
);
4439 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4441 unsigned long key
[2];
4444 key
[0] = (unsigned long) mapping
;
4447 hash
= jhash2((u32
*)&key
, sizeof(key
)/(sizeof(u32
)), 0);
4449 return hash
& (num_fault_mutexes
- 1);
4453 * For uniprocesor systems we always use a single mutex, so just
4454 * return 0 and avoid the hashing overhead.
4456 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4462 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4463 unsigned long address
, unsigned int flags
)
4470 struct page
*page
= NULL
;
4471 struct page
*pagecache_page
= NULL
;
4472 struct hstate
*h
= hstate_vma(vma
);
4473 struct address_space
*mapping
;
4474 int need_wait_lock
= 0;
4475 unsigned long haddr
= address
& huge_page_mask(h
);
4477 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4480 * Since we hold no locks, ptep could be stale. That is
4481 * OK as we are only making decisions based on content and
4482 * not actually modifying content here.
4484 entry
= huge_ptep_get(ptep
);
4485 if (unlikely(is_hugetlb_entry_migration(entry
))) {
4486 migration_entry_wait_huge(vma
, mm
, ptep
);
4488 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
4489 return VM_FAULT_HWPOISON_LARGE
|
4490 VM_FAULT_SET_HINDEX(hstate_index(h
));
4494 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4495 * until finished with ptep. This serves two purposes:
4496 * 1) It prevents huge_pmd_unshare from being called elsewhere
4497 * and making the ptep no longer valid.
4498 * 2) It synchronizes us with i_size modifications during truncation.
4500 * ptep could have already be assigned via huge_pte_offset. That
4501 * is OK, as huge_pte_alloc will return the same value unless
4502 * something has changed.
4504 mapping
= vma
->vm_file
->f_mapping
;
4505 i_mmap_lock_read(mapping
);
4506 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4508 i_mmap_unlock_read(mapping
);
4509 return VM_FAULT_OOM
;
4513 * Serialize hugepage allocation and instantiation, so that we don't
4514 * get spurious allocation failures if two CPUs race to instantiate
4515 * the same page in the page cache.
4517 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4518 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4519 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4521 entry
= huge_ptep_get(ptep
);
4522 if (huge_pte_none(entry
)) {
4523 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
4530 * entry could be a migration/hwpoison entry at this point, so this
4531 * check prevents the kernel from going below assuming that we have
4532 * an active hugepage in pagecache. This goto expects the 2nd page
4533 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4534 * properly handle it.
4536 if (!pte_present(entry
))
4540 * If we are going to COW the mapping later, we examine the pending
4541 * reservations for this page now. This will ensure that any
4542 * allocations necessary to record that reservation occur outside the
4543 * spinlock. For private mappings, we also lookup the pagecache
4544 * page now as it is used to determine if a reservation has been
4547 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4548 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4552 /* Just decrements count, does not deallocate */
4553 vma_end_reservation(h
, vma
, haddr
);
4555 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4556 pagecache_page
= hugetlbfs_pagecache_page(h
,
4560 ptl
= huge_pte_lock(h
, mm
, ptep
);
4562 /* Check for a racing update before calling hugetlb_cow */
4563 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4567 * hugetlb_cow() requires page locks of pte_page(entry) and
4568 * pagecache_page, so here we need take the former one
4569 * when page != pagecache_page or !pagecache_page.
4571 page
= pte_page(entry
);
4572 if (page
!= pagecache_page
)
4573 if (!trylock_page(page
)) {
4580 if (flags
& FAULT_FLAG_WRITE
) {
4581 if (!huge_pte_write(entry
)) {
4582 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4583 pagecache_page
, ptl
);
4586 entry
= huge_pte_mkdirty(entry
);
4588 entry
= pte_mkyoung(entry
);
4589 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4590 flags
& FAULT_FLAG_WRITE
))
4591 update_mmu_cache(vma
, haddr
, ptep
);
4593 if (page
!= pagecache_page
)
4599 if (pagecache_page
) {
4600 unlock_page(pagecache_page
);
4601 put_page(pagecache_page
);
4604 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4605 i_mmap_unlock_read(mapping
);
4607 * Generally it's safe to hold refcount during waiting page lock. But
4608 * here we just wait to defer the next page fault to avoid busy loop and
4609 * the page is not used after unlocked before returning from the current
4610 * page fault. So we are safe from accessing freed page, even if we wait
4611 * here without taking refcount.
4614 wait_on_page_locked(page
);
4619 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4620 * modifications for huge pages.
4622 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4624 struct vm_area_struct
*dst_vma
,
4625 unsigned long dst_addr
,
4626 unsigned long src_addr
,
4627 struct page
**pagep
)
4629 struct address_space
*mapping
;
4632 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4633 struct hstate
*h
= hstate_vma(dst_vma
);
4641 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4645 ret
= copy_huge_page_from_user(page
,
4646 (const void __user
*) src_addr
,
4647 pages_per_huge_page(h
), false);
4649 /* fallback to copy_from_user outside mmap_lock */
4650 if (unlikely(ret
)) {
4653 /* don't free the page */
4662 * The memory barrier inside __SetPageUptodate makes sure that
4663 * preceding stores to the page contents become visible before
4664 * the set_pte_at() write.
4666 __SetPageUptodate(page
);
4668 mapping
= dst_vma
->vm_file
->f_mapping
;
4669 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4672 * If shared, add to page cache
4675 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4678 goto out_release_nounlock
;
4681 * Serialization between remove_inode_hugepages() and
4682 * huge_add_to_page_cache() below happens through the
4683 * hugetlb_fault_mutex_table that here must be hold by
4686 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4688 goto out_release_nounlock
;
4691 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4695 * Recheck the i_size after holding PT lock to make sure not
4696 * to leave any page mapped (as page_mapped()) beyond the end
4697 * of the i_size (remove_inode_hugepages() is strict about
4698 * enforcing that). If we bail out here, we'll also leave a
4699 * page in the radix tree in the vm_shared case beyond the end
4700 * of the i_size, but remove_inode_hugepages() will take care
4701 * of it as soon as we drop the hugetlb_fault_mutex_table.
4703 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4706 goto out_release_unlock
;
4709 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4710 goto out_release_unlock
;
4713 page_dup_rmap(page
, true);
4715 ClearPagePrivate(page
);
4716 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4719 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4720 if (dst_vma
->vm_flags
& VM_WRITE
)
4721 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4722 _dst_pte
= pte_mkyoung(_dst_pte
);
4724 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4726 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4727 dst_vma
->vm_flags
& VM_WRITE
);
4728 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4730 /* No need to invalidate - it was non-present before */
4731 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4734 set_page_huge_active(page
);
4744 out_release_nounlock
:
4749 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4750 struct page
**pages
, struct vm_area_struct
**vmas
,
4751 unsigned long *position
, unsigned long *nr_pages
,
4752 long i
, unsigned int flags
, int *locked
)
4754 unsigned long pfn_offset
;
4755 unsigned long vaddr
= *position
;
4756 unsigned long remainder
= *nr_pages
;
4757 struct hstate
*h
= hstate_vma(vma
);
4760 while (vaddr
< vma
->vm_end
&& remainder
) {
4762 spinlock_t
*ptl
= NULL
;
4767 * If we have a pending SIGKILL, don't keep faulting pages and
4768 * potentially allocating memory.
4770 if (fatal_signal_pending(current
)) {
4776 * Some archs (sparc64, sh*) have multiple pte_ts to
4777 * each hugepage. We have to make sure we get the
4778 * first, for the page indexing below to work.
4780 * Note that page table lock is not held when pte is null.
4782 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4785 ptl
= huge_pte_lock(h
, mm
, pte
);
4786 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4789 * When coredumping, it suits get_dump_page if we just return
4790 * an error where there's an empty slot with no huge pagecache
4791 * to back it. This way, we avoid allocating a hugepage, and
4792 * the sparse dumpfile avoids allocating disk blocks, but its
4793 * huge holes still show up with zeroes where they need to be.
4795 if (absent
&& (flags
& FOLL_DUMP
) &&
4796 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4804 * We need call hugetlb_fault for both hugepages under migration
4805 * (in which case hugetlb_fault waits for the migration,) and
4806 * hwpoisoned hugepages (in which case we need to prevent the
4807 * caller from accessing to them.) In order to do this, we use
4808 * here is_swap_pte instead of is_hugetlb_entry_migration and
4809 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4810 * both cases, and because we can't follow correct pages
4811 * directly from any kind of swap entries.
4813 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4814 ((flags
& FOLL_WRITE
) &&
4815 !huge_pte_write(huge_ptep_get(pte
)))) {
4817 unsigned int fault_flags
= 0;
4821 if (flags
& FOLL_WRITE
)
4822 fault_flags
|= FAULT_FLAG_WRITE
;
4824 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4825 FAULT_FLAG_KILLABLE
;
4826 if (flags
& FOLL_NOWAIT
)
4827 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4828 FAULT_FLAG_RETRY_NOWAIT
;
4829 if (flags
& FOLL_TRIED
) {
4831 * Note: FAULT_FLAG_ALLOW_RETRY and
4832 * FAULT_FLAG_TRIED can co-exist
4834 fault_flags
|= FAULT_FLAG_TRIED
;
4836 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4837 if (ret
& VM_FAULT_ERROR
) {
4838 err
= vm_fault_to_errno(ret
, flags
);
4842 if (ret
& VM_FAULT_RETRY
) {
4844 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4848 * VM_FAULT_RETRY must not return an
4849 * error, it will return zero
4852 * No need to update "position" as the
4853 * caller will not check it after
4854 * *nr_pages is set to 0.
4861 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4862 page
= pte_page(huge_ptep_get(pte
));
4865 * If subpage information not requested, update counters
4866 * and skip the same_page loop below.
4868 if (!pages
&& !vmas
&& !pfn_offset
&&
4869 (vaddr
+ huge_page_size(h
) < vma
->vm_end
) &&
4870 (remainder
>= pages_per_huge_page(h
))) {
4871 vaddr
+= huge_page_size(h
);
4872 remainder
-= pages_per_huge_page(h
);
4873 i
+= pages_per_huge_page(h
);
4880 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4882 * try_grab_page() should always succeed here, because:
4883 * a) we hold the ptl lock, and b) we've just checked
4884 * that the huge page is present in the page tables. If
4885 * the huge page is present, then the tail pages must
4886 * also be present. The ptl prevents the head page and
4887 * tail pages from being rearranged in any way. So this
4888 * page must be available at this point, unless the page
4889 * refcount overflowed:
4891 if (WARN_ON_ONCE(!try_grab_page(pages
[i
], flags
))) {
4906 if (vaddr
< vma
->vm_end
&& remainder
&&
4907 pfn_offset
< pages_per_huge_page(h
)) {
4909 * We use pfn_offset to avoid touching the pageframes
4910 * of this compound page.
4916 *nr_pages
= remainder
;
4918 * setting position is actually required only if remainder is
4919 * not zero but it's faster not to add a "if (remainder)"
4927 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4929 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4932 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4935 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4936 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4938 struct mm_struct
*mm
= vma
->vm_mm
;
4939 unsigned long start
= address
;
4942 struct hstate
*h
= hstate_vma(vma
);
4943 unsigned long pages
= 0;
4944 bool shared_pmd
= false;
4945 struct mmu_notifier_range range
;
4948 * In the case of shared PMDs, the area to flush could be beyond
4949 * start/end. Set range.start/range.end to cover the maximum possible
4950 * range if PMD sharing is possible.
4952 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
4953 0, vma
, mm
, start
, end
);
4954 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4956 BUG_ON(address
>= end
);
4957 flush_cache_range(vma
, range
.start
, range
.end
);
4959 mmu_notifier_invalidate_range_start(&range
);
4960 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4961 for (; address
< end
; address
+= huge_page_size(h
)) {
4963 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4966 ptl
= huge_pte_lock(h
, mm
, ptep
);
4967 if (huge_pmd_unshare(mm
, vma
, &address
, ptep
)) {
4973 pte
= huge_ptep_get(ptep
);
4974 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4978 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4979 swp_entry_t entry
= pte_to_swp_entry(pte
);
4981 if (is_write_migration_entry(entry
)) {
4984 make_migration_entry_read(&entry
);
4985 newpte
= swp_entry_to_pte(entry
);
4986 set_huge_swap_pte_at(mm
, address
, ptep
,
4987 newpte
, huge_page_size(h
));
4993 if (!huge_pte_none(pte
)) {
4996 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4997 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4998 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4999 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
5005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5006 * may have cleared our pud entry and done put_page on the page table:
5007 * once we release i_mmap_rwsem, another task can do the final put_page
5008 * and that page table be reused and filled with junk. If we actually
5009 * did unshare a page of pmds, flush the range corresponding to the pud.
5012 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
5014 flush_hugetlb_tlb_range(vma
, start
, end
);
5016 * No need to call mmu_notifier_invalidate_range() we are downgrading
5017 * page table protection not changing it to point to a new page.
5019 * See Documentation/vm/mmu_notifier.rst
5021 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
5022 mmu_notifier_invalidate_range_end(&range
);
5024 return pages
<< h
->order
;
5027 int hugetlb_reserve_pages(struct inode
*inode
,
5029 struct vm_area_struct
*vma
,
5030 vm_flags_t vm_flags
)
5032 long ret
, chg
, add
= -1;
5033 struct hstate
*h
= hstate_inode(inode
);
5034 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5035 struct resv_map
*resv_map
;
5036 struct hugetlb_cgroup
*h_cg
= NULL
;
5037 long gbl_reserve
, regions_needed
= 0;
5039 /* This should never happen */
5041 VM_WARN(1, "%s called with a negative range\n", __func__
);
5046 * Only apply hugepage reservation if asked. At fault time, an
5047 * attempt will be made for VM_NORESERVE to allocate a page
5048 * without using reserves
5050 if (vm_flags
& VM_NORESERVE
)
5054 * Shared mappings base their reservation on the number of pages that
5055 * are already allocated on behalf of the file. Private mappings need
5056 * to reserve the full area even if read-only as mprotect() may be
5057 * called to make the mapping read-write. Assume !vma is a shm mapping
5059 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5061 * resv_map can not be NULL as hugetlb_reserve_pages is only
5062 * called for inodes for which resv_maps were created (see
5063 * hugetlbfs_get_inode).
5065 resv_map
= inode_resv_map(inode
);
5067 chg
= region_chg(resv_map
, from
, to
, ®ions_needed
);
5070 /* Private mapping. */
5071 resv_map
= resv_map_alloc();
5077 set_vma_resv_map(vma
, resv_map
);
5078 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
5086 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
5087 hstate_index(h
), chg
* pages_per_huge_page(h
), &h_cg
);
5094 if (vma
&& !(vma
->vm_flags
& VM_MAYSHARE
) && h_cg
) {
5095 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5098 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, h_cg
, h
);
5102 * There must be enough pages in the subpool for the mapping. If
5103 * the subpool has a minimum size, there may be some global
5104 * reservations already in place (gbl_reserve).
5106 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
5107 if (gbl_reserve
< 0) {
5109 goto out_uncharge_cgroup
;
5113 * Check enough hugepages are available for the reservation.
5114 * Hand the pages back to the subpool if there are not
5116 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
5122 * Account for the reservations made. Shared mappings record regions
5123 * that have reservations as they are shared by multiple VMAs.
5124 * When the last VMA disappears, the region map says how much
5125 * the reservation was and the page cache tells how much of
5126 * the reservation was consumed. Private mappings are per-VMA and
5127 * only the consumed reservations are tracked. When the VMA
5128 * disappears, the original reservation is the VMA size and the
5129 * consumed reservations are stored in the map. Hence, nothing
5130 * else has to be done for private mappings here
5132 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5133 add
= region_add(resv_map
, from
, to
, regions_needed
, h
, h_cg
);
5135 if (unlikely(add
< 0)) {
5136 hugetlb_acct_memory(h
, -gbl_reserve
);
5139 } else if (unlikely(chg
> add
)) {
5141 * pages in this range were added to the reserve
5142 * map between region_chg and region_add. This
5143 * indicates a race with alloc_huge_page. Adjust
5144 * the subpool and reserve counts modified above
5145 * based on the difference.
5149 hugetlb_cgroup_uncharge_cgroup_rsvd(
5151 (chg
- add
) * pages_per_huge_page(h
), h_cg
);
5153 rsv_adjust
= hugepage_subpool_put_pages(spool
,
5155 hugetlb_acct_memory(h
, -rsv_adjust
);
5160 /* put back original number of pages, chg */
5161 (void)hugepage_subpool_put_pages(spool
, chg
);
5162 out_uncharge_cgroup
:
5163 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h
),
5164 chg
* pages_per_huge_page(h
), h_cg
);
5166 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
5167 /* Only call region_abort if the region_chg succeeded but the
5168 * region_add failed or didn't run.
5170 if (chg
>= 0 && add
< 0)
5171 region_abort(resv_map
, from
, to
, regions_needed
);
5172 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
5173 kref_put(&resv_map
->refs
, resv_map_release
);
5177 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
5180 struct hstate
*h
= hstate_inode(inode
);
5181 struct resv_map
*resv_map
= inode_resv_map(inode
);
5183 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5187 * Since this routine can be called in the evict inode path for all
5188 * hugetlbfs inodes, resv_map could be NULL.
5191 chg
= region_del(resv_map
, start
, end
);
5193 * region_del() can fail in the rare case where a region
5194 * must be split and another region descriptor can not be
5195 * allocated. If end == LONG_MAX, it will not fail.
5201 spin_lock(&inode
->i_lock
);
5202 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
5203 spin_unlock(&inode
->i_lock
);
5206 * If the subpool has a minimum size, the number of global
5207 * reservations to be released may be adjusted.
5209 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
5210 hugetlb_acct_memory(h
, -gbl_reserve
);
5215 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5216 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
5217 struct vm_area_struct
*vma
,
5218 unsigned long addr
, pgoff_t idx
)
5220 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
5222 unsigned long sbase
= saddr
& PUD_MASK
;
5223 unsigned long s_end
= sbase
+ PUD_SIZE
;
5225 /* Allow segments to share if only one is marked locked */
5226 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5227 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5230 * match the virtual addresses, permission and the alignment of the
5233 if (pmd_index(addr
) != pmd_index(saddr
) ||
5234 vm_flags
!= svm_flags
||
5235 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
5241 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
5243 unsigned long base
= addr
& PUD_MASK
;
5244 unsigned long end
= base
+ PUD_SIZE
;
5247 * check on proper vm_flags and page table alignment
5249 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
5255 * Determine if start,end range within vma could be mapped by shared pmd.
5256 * If yes, adjust start and end to cover range associated with possible
5257 * shared pmd mappings.
5259 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5260 unsigned long *start
, unsigned long *end
)
5262 unsigned long a_start
, a_end
;
5264 if (!(vma
->vm_flags
& VM_MAYSHARE
))
5267 /* Extend the range to be PUD aligned for a worst case scenario */
5268 a_start
= ALIGN_DOWN(*start
, PUD_SIZE
);
5269 a_end
= ALIGN(*end
, PUD_SIZE
);
5272 * Intersect the range with the vma range, since pmd sharing won't be
5273 * across vma after all
5275 *start
= max(vma
->vm_start
, a_start
);
5276 *end
= min(vma
->vm_end
, a_end
);
5280 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5281 * and returns the corresponding pte. While this is not necessary for the
5282 * !shared pmd case because we can allocate the pmd later as well, it makes the
5283 * code much cleaner.
5285 * This routine must be called with i_mmap_rwsem held in at least read mode if
5286 * sharing is possible. For hugetlbfs, this prevents removal of any page
5287 * table entries associated with the address space. This is important as we
5288 * are setting up sharing based on existing page table entries (mappings).
5290 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5291 * huge_pte_alloc know that sharing is not possible and do not take
5292 * i_mmap_rwsem as a performance optimization. This is handled by the
5293 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5294 * only required for subsequent processing.
5296 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5298 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
5299 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5300 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
5302 struct vm_area_struct
*svma
;
5303 unsigned long saddr
;
5308 if (!vma_shareable(vma
, addr
))
5309 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5311 i_mmap_assert_locked(mapping
);
5312 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
5316 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
5318 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
5319 vma_mmu_pagesize(svma
));
5321 get_page(virt_to_page(spte
));
5330 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
5331 if (pud_none(*pud
)) {
5332 pud_populate(mm
, pud
,
5333 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
5336 put_page(virt_to_page(spte
));
5340 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5345 * unmap huge page backed by shared pte.
5347 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5348 * indicated by page_count > 1, unmap is achieved by clearing pud and
5349 * decrementing the ref count. If count == 1, the pte page is not shared.
5351 * Called with page table lock held and i_mmap_rwsem held in write mode.
5353 * returns: 1 successfully unmapped a shared pte page
5354 * 0 the underlying pte page is not shared, or it is the last user
5356 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
5357 unsigned long *addr
, pte_t
*ptep
)
5359 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
5360 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
5361 pud_t
*pud
= pud_offset(p4d
, *addr
);
5363 i_mmap_assert_write_locked(vma
->vm_file
->f_mapping
);
5364 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
5365 if (page_count(virt_to_page(ptep
)) == 1)
5369 put_page(virt_to_page(ptep
));
5371 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
5374 #define want_pmd_share() (1)
5375 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5376 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5381 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
5382 unsigned long *addr
, pte_t
*ptep
)
5387 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5388 unsigned long *start
, unsigned long *end
)
5391 #define want_pmd_share() (0)
5392 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5394 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5395 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
5396 unsigned long addr
, unsigned long sz
)
5403 pgd
= pgd_offset(mm
, addr
);
5404 p4d
= p4d_alloc(mm
, pgd
, addr
);
5407 pud
= pud_alloc(mm
, p4d
, addr
);
5409 if (sz
== PUD_SIZE
) {
5412 BUG_ON(sz
!= PMD_SIZE
);
5413 if (want_pmd_share() && pud_none(*pud
))
5414 pte
= huge_pmd_share(mm
, addr
, pud
);
5416 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5419 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
5425 * huge_pte_offset() - Walk the page table to resolve the hugepage
5426 * entry at address @addr
5428 * Return: Pointer to page table entry (PUD or PMD) for
5429 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5430 * size @sz doesn't match the hugepage size at this level of the page
5433 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
5434 unsigned long addr
, unsigned long sz
)
5441 pgd
= pgd_offset(mm
, addr
);
5442 if (!pgd_present(*pgd
))
5444 p4d
= p4d_offset(pgd
, addr
);
5445 if (!p4d_present(*p4d
))
5448 pud
= pud_offset(p4d
, addr
);
5450 /* must be pud huge, non-present or none */
5451 return (pte_t
*)pud
;
5452 if (!pud_present(*pud
))
5454 /* must have a valid entry and size to go further */
5456 pmd
= pmd_offset(pud
, addr
);
5457 /* must be pmd huge, non-present or none */
5458 return (pte_t
*)pmd
;
5461 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5464 * These functions are overwritable if your architecture needs its own
5467 struct page
* __weak
5468 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
5471 return ERR_PTR(-EINVAL
);
5474 struct page
* __weak
5475 follow_huge_pd(struct vm_area_struct
*vma
,
5476 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
5478 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5482 struct page
* __weak
5483 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
5484 pmd_t
*pmd
, int flags
)
5486 struct page
*page
= NULL
;
5490 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5491 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
5492 (FOLL_PIN
| FOLL_GET
)))
5496 ptl
= pmd_lockptr(mm
, pmd
);
5499 * make sure that the address range covered by this pmd is not
5500 * unmapped from other threads.
5502 if (!pmd_huge(*pmd
))
5504 pte
= huge_ptep_get((pte_t
*)pmd
);
5505 if (pte_present(pte
)) {
5506 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
5508 * try_grab_page() should always succeed here, because: a) we
5509 * hold the pmd (ptl) lock, and b) we've just checked that the
5510 * huge pmd (head) page is present in the page tables. The ptl
5511 * prevents the head page and tail pages from being rearranged
5512 * in any way. So this page must be available at this point,
5513 * unless the page refcount overflowed:
5515 if (WARN_ON_ONCE(!try_grab_page(page
, flags
))) {
5520 if (is_hugetlb_entry_migration(pte
)) {
5522 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
5526 * hwpoisoned entry is treated as no_page_table in
5527 * follow_page_mask().
5535 struct page
* __weak
5536 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
5537 pud_t
*pud
, int flags
)
5539 if (flags
& (FOLL_GET
| FOLL_PIN
))
5542 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
5545 struct page
* __weak
5546 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
5548 if (flags
& (FOLL_GET
| FOLL_PIN
))
5551 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
5554 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
5558 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5559 spin_lock(&hugetlb_lock
);
5560 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
5564 clear_page_huge_active(page
);
5565 list_move_tail(&page
->lru
, list
);
5567 spin_unlock(&hugetlb_lock
);
5571 void putback_active_hugepage(struct page
*page
)
5573 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5574 spin_lock(&hugetlb_lock
);
5575 set_page_huge_active(page
);
5576 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
5577 spin_unlock(&hugetlb_lock
);
5581 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
5583 struct hstate
*h
= page_hstate(oldpage
);
5585 hugetlb_cgroup_migrate(oldpage
, newpage
);
5586 set_page_owner_migrate_reason(newpage
, reason
);
5589 * transfer temporary state of the new huge page. This is
5590 * reverse to other transitions because the newpage is going to
5591 * be final while the old one will be freed so it takes over
5592 * the temporary status.
5594 * Also note that we have to transfer the per-node surplus state
5595 * here as well otherwise the global surplus count will not match
5598 if (PageHugeTemporary(newpage
)) {
5599 int old_nid
= page_to_nid(oldpage
);
5600 int new_nid
= page_to_nid(newpage
);
5602 SetPageHugeTemporary(oldpage
);
5603 ClearPageHugeTemporary(newpage
);
5605 spin_lock(&hugetlb_lock
);
5606 if (h
->surplus_huge_pages_node
[old_nid
]) {
5607 h
->surplus_huge_pages_node
[old_nid
]--;
5608 h
->surplus_huge_pages_node
[new_nid
]++;
5610 spin_unlock(&hugetlb_lock
);
5615 static bool cma_reserve_called __initdata
;
5617 static int __init
cmdline_parse_hugetlb_cma(char *p
)
5619 hugetlb_cma_size
= memparse(p
, &p
);
5623 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma
);
5625 void __init
hugetlb_cma_reserve(int order
)
5627 unsigned long size
, reserved
, per_node
;
5630 cma_reserve_called
= true;
5632 if (!hugetlb_cma_size
)
5635 if (hugetlb_cma_size
< (PAGE_SIZE
<< order
)) {
5636 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5637 (PAGE_SIZE
<< order
) / SZ_1M
);
5642 * If 3 GB area is requested on a machine with 4 numa nodes,
5643 * let's allocate 1 GB on first three nodes and ignore the last one.
5645 per_node
= DIV_ROUND_UP(hugetlb_cma_size
, nr_online_nodes
);
5646 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5647 hugetlb_cma_size
/ SZ_1M
, per_node
/ SZ_1M
);
5650 for_each_node_state(nid
, N_ONLINE
) {
5652 char name
[CMA_MAX_NAME
];
5654 size
= min(per_node
, hugetlb_cma_size
- reserved
);
5655 size
= round_up(size
, PAGE_SIZE
<< order
);
5657 snprintf(name
, sizeof(name
), "hugetlb%d", nid
);
5658 res
= cma_declare_contiguous_nid(0, size
, 0, PAGE_SIZE
<< order
,
5660 &hugetlb_cma
[nid
], nid
);
5662 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5668 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5671 if (reserved
>= hugetlb_cma_size
)
5676 void __init
hugetlb_cma_check(void)
5678 if (!hugetlb_cma_size
|| cma_reserve_called
)
5681 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5684 #endif /* CONFIG_CMA */