1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
23 #include <asm/pgalloc.h>
32 SCAN_EXCEED_SHARED_PTE
,
36 SCAN_LACK_REFERENCED_PAGE
,
50 SCAN_ALLOC_HUGE_PAGE_FAIL
,
51 SCAN_CGROUP_CHARGE_FAIL
,
53 SCAN_PAGE_HAS_PRIVATE
,
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
59 static struct task_struct
*khugepaged_thread __read_mostly
;
60 static DEFINE_MUTEX(khugepaged_mutex
);
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly
;
64 static unsigned int khugepaged_pages_collapsed
;
65 static unsigned int khugepaged_full_scans
;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
69 static unsigned long khugepaged_sleep_expire
;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
77 static unsigned int khugepaged_max_ptes_none __read_mostly
;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly
;
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
84 static struct kmem_cache
*mm_slot_cache __read_mostly
;
86 #define MAX_PTE_MAPPED_THP 8
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
97 struct hlist_node hash
;
98 struct list_head mm_node
;
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp
;
103 unsigned long pte_mapped_thp
[MAX_PTE_MAPPED_THP
];
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
112 * There is only the one khugepaged_scan instance of this cursor structure.
114 struct khugepaged_scan
{
115 struct list_head mm_head
;
116 struct mm_slot
*mm_slot
;
117 unsigned long address
;
120 static struct khugepaged_scan khugepaged_scan
= {
121 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
125 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
126 struct kobj_attribute
*attr
,
129 return sysfs_emit(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
132 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
133 struct kobj_attribute
*attr
,
134 const char *buf
, size_t count
)
139 err
= kstrtouint(buf
, 10, &msecs
);
143 khugepaged_scan_sleep_millisecs
= msecs
;
144 khugepaged_sleep_expire
= 0;
145 wake_up_interruptible(&khugepaged_wait
);
149 static struct kobj_attribute scan_sleep_millisecs_attr
=
150 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
151 scan_sleep_millisecs_store
);
153 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
154 struct kobj_attribute
*attr
,
157 return sysfs_emit(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
160 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
161 struct kobj_attribute
*attr
,
162 const char *buf
, size_t count
)
167 err
= kstrtouint(buf
, 10, &msecs
);
171 khugepaged_alloc_sleep_millisecs
= msecs
;
172 khugepaged_sleep_expire
= 0;
173 wake_up_interruptible(&khugepaged_wait
);
177 static struct kobj_attribute alloc_sleep_millisecs_attr
=
178 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
179 alloc_sleep_millisecs_store
);
181 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
182 struct kobj_attribute
*attr
,
185 return sysfs_emit(buf
, "%u\n", khugepaged_pages_to_scan
);
187 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
188 struct kobj_attribute
*attr
,
189 const char *buf
, size_t count
)
194 err
= kstrtouint(buf
, 10, &pages
);
198 khugepaged_pages_to_scan
= pages
;
202 static struct kobj_attribute pages_to_scan_attr
=
203 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
204 pages_to_scan_store
);
206 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
207 struct kobj_attribute
*attr
,
210 return sysfs_emit(buf
, "%u\n", khugepaged_pages_collapsed
);
212 static struct kobj_attribute pages_collapsed_attr
=
213 __ATTR_RO(pages_collapsed
);
215 static ssize_t
full_scans_show(struct kobject
*kobj
,
216 struct kobj_attribute
*attr
,
219 return sysfs_emit(buf
, "%u\n", khugepaged_full_scans
);
221 static struct kobj_attribute full_scans_attr
=
222 __ATTR_RO(full_scans
);
224 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
225 struct kobj_attribute
*attr
, char *buf
)
227 return single_hugepage_flag_show(kobj
, attr
, buf
,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
230 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
231 struct kobj_attribute
*attr
,
232 const char *buf
, size_t count
)
234 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
237 static struct kobj_attribute khugepaged_defrag_attr
=
238 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
239 khugepaged_defrag_store
);
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
249 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
250 struct kobj_attribute
*attr
,
253 return sysfs_emit(buf
, "%u\n", khugepaged_max_ptes_none
);
255 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
256 struct kobj_attribute
*attr
,
257 const char *buf
, size_t count
)
260 unsigned long max_ptes_none
;
262 err
= kstrtoul(buf
, 10, &max_ptes_none
);
263 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
266 khugepaged_max_ptes_none
= max_ptes_none
;
270 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
271 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
272 khugepaged_max_ptes_none_store
);
274 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
275 struct kobj_attribute
*attr
,
278 return sysfs_emit(buf
, "%u\n", khugepaged_max_ptes_swap
);
281 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
282 struct kobj_attribute
*attr
,
283 const char *buf
, size_t count
)
286 unsigned long max_ptes_swap
;
288 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
289 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
292 khugepaged_max_ptes_swap
= max_ptes_swap
;
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
298 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
299 khugepaged_max_ptes_swap_store
);
301 static ssize_t
khugepaged_max_ptes_shared_show(struct kobject
*kobj
,
302 struct kobj_attribute
*attr
,
305 return sysfs_emit(buf
, "%u\n", khugepaged_max_ptes_shared
);
308 static ssize_t
khugepaged_max_ptes_shared_store(struct kobject
*kobj
,
309 struct kobj_attribute
*attr
,
310 const char *buf
, size_t count
)
313 unsigned long max_ptes_shared
;
315 err
= kstrtoul(buf
, 10, &max_ptes_shared
);
316 if (err
|| max_ptes_shared
> HPAGE_PMD_NR
-1)
319 khugepaged_max_ptes_shared
= max_ptes_shared
;
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr
=
325 __ATTR(max_ptes_shared
, 0644, khugepaged_max_ptes_shared_show
,
326 khugepaged_max_ptes_shared_store
);
328 static struct attribute
*khugepaged_attr
[] = {
329 &khugepaged_defrag_attr
.attr
,
330 &khugepaged_max_ptes_none_attr
.attr
,
331 &khugepaged_max_ptes_swap_attr
.attr
,
332 &khugepaged_max_ptes_shared_attr
.attr
,
333 &pages_to_scan_attr
.attr
,
334 &pages_collapsed_attr
.attr
,
335 &full_scans_attr
.attr
,
336 &scan_sleep_millisecs_attr
.attr
,
337 &alloc_sleep_millisecs_attr
.attr
,
341 struct attribute_group khugepaged_attr_group
= {
342 .attrs
= khugepaged_attr
,
343 .name
= "khugepaged",
345 #endif /* CONFIG_SYSFS */
347 int hugepage_madvise(struct vm_area_struct
*vma
,
348 unsigned long *vm_flags
, int advice
)
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 if (mm_has_pgste(vma
->vm_mm
))
361 *vm_flags
&= ~VM_NOHUGEPAGE
;
362 *vm_flags
|= VM_HUGEPAGE
;
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
368 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
369 khugepaged_enter_vma_merge(vma
, *vm_flags
))
372 case MADV_NOHUGEPAGE
:
373 *vm_flags
&= ~VM_HUGEPAGE
;
374 *vm_flags
|= VM_NOHUGEPAGE
;
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
386 int __init
khugepaged_init(void)
388 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
389 sizeof(struct mm_slot
),
390 __alignof__(struct mm_slot
), 0, NULL
);
394 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
395 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
396 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
397 khugepaged_max_ptes_shared
= HPAGE_PMD_NR
/ 2;
402 void __init
khugepaged_destroy(void)
404 kmem_cache_destroy(mm_slot_cache
);
407 static inline struct mm_slot
*alloc_mm_slot(void)
409 if (!mm_slot_cache
) /* initialization failed */
411 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
414 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
416 kmem_cache_free(mm_slot_cache
, mm_slot
);
419 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
421 struct mm_slot
*mm_slot
;
423 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
424 if (mm
== mm_slot
->mm
)
430 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
431 struct mm_slot
*mm_slot
)
434 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
437 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
439 return atomic_read(&mm
->mm_users
) == 0;
442 static bool hugepage_vma_check(struct vm_area_struct
*vma
,
443 unsigned long vm_flags
)
445 if ((!(vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
446 (vm_flags
& VM_NOHUGEPAGE
) ||
447 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
450 if (shmem_file(vma
->vm_file
) ||
451 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS
) &&
453 (vm_flags
& VM_DENYWRITE
))) {
454 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
457 if (!vma
->anon_vma
|| vma
->vm_ops
)
459 if (vma_is_temporary_stack(vma
))
461 return !(vm_flags
& VM_NO_KHUGEPAGED
);
464 int __khugepaged_enter(struct mm_struct
*mm
)
466 struct mm_slot
*mm_slot
;
469 mm_slot
= alloc_mm_slot();
473 /* __khugepaged_exit() must not run from under us */
474 VM_BUG_ON_MM(atomic_read(&mm
->mm_users
) == 0, mm
);
475 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
476 free_mm_slot(mm_slot
);
480 spin_lock(&khugepaged_mm_lock
);
481 insert_to_mm_slots_hash(mm
, mm_slot
);
483 * Insert just behind the scanning cursor, to let the area settle
486 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
487 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
488 spin_unlock(&khugepaged_mm_lock
);
492 wake_up_interruptible(&khugepaged_wait
);
497 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
498 unsigned long vm_flags
)
500 unsigned long hstart
, hend
;
503 * khugepaged only supports read-only files for non-shmem files.
504 * khugepaged does not yet work on special mappings. And
505 * file-private shmem THP is not supported.
507 if (!hugepage_vma_check(vma
, vm_flags
))
510 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
511 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
513 return khugepaged_enter(vma
, vm_flags
);
517 void __khugepaged_exit(struct mm_struct
*mm
)
519 struct mm_slot
*mm_slot
;
522 spin_lock(&khugepaged_mm_lock
);
523 mm_slot
= get_mm_slot(mm
);
524 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
525 hash_del(&mm_slot
->hash
);
526 list_del(&mm_slot
->mm_node
);
529 spin_unlock(&khugepaged_mm_lock
);
532 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
533 free_mm_slot(mm_slot
);
535 } else if (mm_slot
) {
537 * This is required to serialize against
538 * khugepaged_test_exit() (which is guaranteed to run
539 * under mmap sem read mode). Stop here (after we
540 * return all pagetables will be destroyed) until
541 * khugepaged has finished working on the pagetables
542 * under the mmap_lock.
545 mmap_write_unlock(mm
);
549 static void release_pte_page(struct page
*page
)
551 mod_node_page_state(page_pgdat(page
),
552 NR_ISOLATED_ANON
+ page_is_file_lru(page
),
555 putback_lru_page(page
);
558 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
,
559 struct list_head
*compound_pagelist
)
561 struct page
*page
, *tmp
;
563 while (--_pte
>= pte
) {
564 pte_t pteval
= *_pte
;
566 page
= pte_page(pteval
);
567 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)) &&
569 release_pte_page(page
);
572 list_for_each_entry_safe(page
, tmp
, compound_pagelist
, lru
) {
573 list_del(&page
->lru
);
574 release_pte_page(page
);
578 static bool is_refcount_suitable(struct page
*page
)
580 int expected_refcount
;
582 expected_refcount
= total_mapcount(page
);
583 if (PageSwapCache(page
))
584 expected_refcount
+= compound_nr(page
);
586 return page_count(page
) == expected_refcount
;
589 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
590 unsigned long address
,
592 struct list_head
*compound_pagelist
)
594 struct page
*page
= NULL
;
596 int none_or_zero
= 0, shared
= 0, result
= 0, referenced
= 0;
597 bool writable
= false;
599 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
600 _pte
++, address
+= PAGE_SIZE
) {
601 pte_t pteval
= *_pte
;
602 if (pte_none(pteval
) || (pte_present(pteval
) &&
603 is_zero_pfn(pte_pfn(pteval
)))) {
604 if (!userfaultfd_armed(vma
) &&
605 ++none_or_zero
<= khugepaged_max_ptes_none
) {
608 result
= SCAN_EXCEED_NONE_PTE
;
612 if (!pte_present(pteval
)) {
613 result
= SCAN_PTE_NON_PRESENT
;
616 page
= vm_normal_page(vma
, address
, pteval
);
617 if (unlikely(!page
)) {
618 result
= SCAN_PAGE_NULL
;
622 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
624 if (page_mapcount(page
) > 1 &&
625 ++shared
> khugepaged_max_ptes_shared
) {
626 result
= SCAN_EXCEED_SHARED_PTE
;
630 if (PageCompound(page
)) {
632 page
= compound_head(page
);
635 * Check if we have dealt with the compound page
638 list_for_each_entry(p
, compound_pagelist
, lru
) {
645 * We can do it before isolate_lru_page because the
646 * page can't be freed from under us. NOTE: PG_lock
647 * is needed to serialize against split_huge_page
648 * when invoked from the VM.
650 if (!trylock_page(page
)) {
651 result
= SCAN_PAGE_LOCK
;
656 * Check if the page has any GUP (or other external) pins.
658 * The page table that maps the page has been already unlinked
659 * from the page table tree and this process cannot get
660 * an additinal pin on the page.
662 * New pins can come later if the page is shared across fork,
663 * but not from this process. The other process cannot write to
664 * the page, only trigger CoW.
666 if (!is_refcount_suitable(page
)) {
668 result
= SCAN_PAGE_COUNT
;
671 if (!pte_write(pteval
) && PageSwapCache(page
) &&
672 !reuse_swap_page(page
, NULL
)) {
674 * Page is in the swap cache and cannot be re-used.
675 * It cannot be collapsed into a THP.
678 result
= SCAN_SWAP_CACHE_PAGE
;
683 * Isolate the page to avoid collapsing an hugepage
684 * currently in use by the VM.
686 if (isolate_lru_page(page
)) {
688 result
= SCAN_DEL_PAGE_LRU
;
691 mod_node_page_state(page_pgdat(page
),
692 NR_ISOLATED_ANON
+ page_is_file_lru(page
),
694 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
695 VM_BUG_ON_PAGE(PageLRU(page
), page
);
697 if (PageCompound(page
))
698 list_add_tail(&page
->lru
, compound_pagelist
);
700 /* There should be enough young pte to collapse the page */
701 if (pte_young(pteval
) ||
702 page_is_young(page
) || PageReferenced(page
) ||
703 mmu_notifier_test_young(vma
->vm_mm
, address
))
706 if (pte_write(pteval
))
709 if (likely(writable
)) {
710 if (likely(referenced
)) {
711 result
= SCAN_SUCCEED
;
712 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
713 referenced
, writable
, result
);
717 result
= SCAN_PAGE_RO
;
721 release_pte_pages(pte
, _pte
, compound_pagelist
);
722 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
723 referenced
, writable
, result
);
727 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
728 struct vm_area_struct
*vma
,
729 unsigned long address
,
731 struct list_head
*compound_pagelist
)
733 struct page
*src_page
, *tmp
;
735 for (_pte
= pte
; _pte
< pte
+ HPAGE_PMD_NR
;
736 _pte
++, page
++, address
+= PAGE_SIZE
) {
737 pte_t pteval
= *_pte
;
739 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
740 clear_user_highpage(page
, address
);
741 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
742 if (is_zero_pfn(pte_pfn(pteval
))) {
744 * ptl mostly unnecessary.
748 * paravirt calls inside pte_clear here are
751 pte_clear(vma
->vm_mm
, address
, _pte
);
755 src_page
= pte_page(pteval
);
756 copy_user_highpage(page
, src_page
, address
, vma
);
757 if (!PageCompound(src_page
))
758 release_pte_page(src_page
);
760 * ptl mostly unnecessary, but preempt has to
761 * be disabled to update the per-cpu stats
762 * inside page_remove_rmap().
766 * paravirt calls inside pte_clear here are
769 pte_clear(vma
->vm_mm
, address
, _pte
);
770 page_remove_rmap(src_page
, false);
772 free_page_and_swap_cache(src_page
);
776 list_for_each_entry_safe(src_page
, tmp
, compound_pagelist
, lru
) {
777 list_del(&src_page
->lru
);
778 release_pte_page(src_page
);
782 static void khugepaged_alloc_sleep(void)
786 add_wait_queue(&khugepaged_wait
, &wait
);
787 freezable_schedule_timeout_interruptible(
788 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
789 remove_wait_queue(&khugepaged_wait
, &wait
);
792 static int khugepaged_node_load
[MAX_NUMNODES
];
794 static bool khugepaged_scan_abort(int nid
)
799 * If node_reclaim_mode is disabled, then no extra effort is made to
800 * allocate memory locally.
802 if (!node_reclaim_mode
)
805 /* If there is a count for this node already, it must be acceptable */
806 if (khugepaged_node_load
[nid
])
809 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
810 if (!khugepaged_node_load
[i
])
812 if (node_distance(nid
, i
) > node_reclaim_distance
)
818 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
819 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
821 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
825 static int khugepaged_find_target_node(void)
827 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
828 int nid
, target_node
= 0, max_value
= 0;
830 /* find first node with max normal pages hit */
831 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
832 if (khugepaged_node_load
[nid
] > max_value
) {
833 max_value
= khugepaged_node_load
[nid
];
837 /* do some balance if several nodes have the same hit record */
838 if (target_node
<= last_khugepaged_target_node
)
839 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
841 if (max_value
== khugepaged_node_load
[nid
]) {
846 last_khugepaged_target_node
= target_node
;
850 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
852 if (IS_ERR(*hpage
)) {
858 khugepaged_alloc_sleep();
868 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
870 VM_BUG_ON_PAGE(*hpage
, *hpage
);
872 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
873 if (unlikely(!*hpage
)) {
874 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
875 *hpage
= ERR_PTR(-ENOMEM
);
879 prep_transhuge_page(*hpage
);
880 count_vm_event(THP_COLLAPSE_ALLOC
);
884 static int khugepaged_find_target_node(void)
889 static inline struct page
*alloc_khugepaged_hugepage(void)
893 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
896 prep_transhuge_page(page
);
900 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
905 hpage
= alloc_khugepaged_hugepage();
907 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
912 khugepaged_alloc_sleep();
914 count_vm_event(THP_COLLAPSE_ALLOC
);
915 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
920 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
923 * If the hpage allocated earlier was briefly exposed in page cache
924 * before collapse_file() failed, it is possible that racing lookups
925 * have not yet completed, and would then be unpleasantly surprised by
926 * finding the hpage reused for the same mapping at a different offset.
927 * Just release the previous allocation if there is any danger of that.
929 if (*hpage
&& page_count(*hpage
) > 1) {
935 *hpage
= khugepaged_alloc_hugepage(wait
);
937 if (unlikely(!*hpage
))
944 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
953 * If mmap_lock temporarily dropped, revalidate vma
954 * before taking mmap_lock.
955 * Return 0 if succeeds, otherwise return none-zero
959 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
960 struct vm_area_struct
**vmap
)
962 struct vm_area_struct
*vma
;
963 unsigned long hstart
, hend
;
965 if (unlikely(khugepaged_test_exit(mm
)))
966 return SCAN_ANY_PROCESS
;
968 *vmap
= vma
= find_vma(mm
, address
);
970 return SCAN_VMA_NULL
;
972 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
973 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
974 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
975 return SCAN_ADDRESS_RANGE
;
976 if (!hugepage_vma_check(vma
, vma
->vm_flags
))
977 return SCAN_VMA_CHECK
;
978 /* Anon VMA expected */
979 if (!vma
->anon_vma
|| vma
->vm_ops
)
980 return SCAN_VMA_CHECK
;
985 * Bring missing pages in from swap, to complete THP collapse.
986 * Only done if khugepaged_scan_pmd believes it is worthwhile.
988 * Called and returns without pte mapped or spinlocks held,
989 * but with mmap_lock held to protect against vma changes.
992 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
993 struct vm_area_struct
*vma
,
994 unsigned long address
, pmd_t
*pmd
,
999 struct vm_fault vmf
= {
1002 .flags
= FAULT_FLAG_ALLOW_RETRY
,
1004 .pgoff
= linear_page_index(vma
, address
),
1007 vmf
.pte
= pte_offset_map(pmd
, address
);
1008 for (; vmf
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
1009 vmf
.pte
++, vmf
.address
+= PAGE_SIZE
) {
1010 vmf
.orig_pte
= *vmf
.pte
;
1011 if (!is_swap_pte(vmf
.orig_pte
))
1014 ret
= do_swap_page(&vmf
);
1016 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1017 if (ret
& VM_FAULT_RETRY
) {
1019 if (hugepage_vma_revalidate(mm
, address
, &vmf
.vma
)) {
1020 /* vma is no longer available, don't continue to swapin */
1021 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
1024 /* check if the pmd is still valid */
1025 if (mm_find_pmd(mm
, address
) != pmd
) {
1026 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
1030 if (ret
& VM_FAULT_ERROR
) {
1031 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
1034 /* pte is unmapped now, we need to map it */
1035 vmf
.pte
= pte_offset_map(pmd
, vmf
.address
);
1040 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1044 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
1048 static void collapse_huge_page(struct mm_struct
*mm
,
1049 unsigned long address
,
1050 struct page
**hpage
,
1051 int node
, int referenced
, int unmapped
)
1053 LIST_HEAD(compound_pagelist
);
1057 struct page
*new_page
;
1058 spinlock_t
*pmd_ptl
, *pte_ptl
;
1059 int isolated
= 0, result
= 0;
1060 struct vm_area_struct
*vma
;
1061 struct mmu_notifier_range range
;
1064 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1066 /* Only allocate from the target node */
1067 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1070 * Before allocating the hugepage, release the mmap_lock read lock.
1071 * The allocation can take potentially a long time if it involves
1072 * sync compaction, and we do not need to hold the mmap_lock during
1073 * that. We will recheck the vma after taking it again in write mode.
1075 mmap_read_unlock(mm
);
1076 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1078 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1082 if (unlikely(mem_cgroup_charge(new_page
, mm
, gfp
))) {
1083 result
= SCAN_CGROUP_CHARGE_FAIL
;
1086 count_memcg_page_event(new_page
, THP_COLLAPSE_ALLOC
);
1089 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1091 mmap_read_unlock(mm
);
1095 pmd
= mm_find_pmd(mm
, address
);
1097 result
= SCAN_PMD_NULL
;
1098 mmap_read_unlock(mm
);
1103 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1104 * If it fails, we release mmap_lock and jump out_nolock.
1105 * Continuing to collapse causes inconsistency.
1107 if (unmapped
&& !__collapse_huge_page_swapin(mm
, vma
, address
,
1109 mmap_read_unlock(mm
);
1113 mmap_read_unlock(mm
);
1115 * Prevent all access to pagetables with the exception of
1116 * gup_fast later handled by the ptep_clear_flush and the VM
1117 * handled by the anon_vma lock + PG_lock.
1119 mmap_write_lock(mm
);
1120 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1123 /* check if the pmd is still valid */
1124 if (mm_find_pmd(mm
, address
) != pmd
)
1127 anon_vma_lock_write(vma
->anon_vma
);
1129 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
1130 address
, address
+ HPAGE_PMD_SIZE
);
1131 mmu_notifier_invalidate_range_start(&range
);
1133 pte
= pte_offset_map(pmd
, address
);
1134 pte_ptl
= pte_lockptr(mm
, pmd
);
1136 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1138 * After this gup_fast can't run anymore. This also removes
1139 * any huge TLB entry from the CPU so we won't allow
1140 * huge and small TLB entries for the same virtual address
1141 * to avoid the risk of CPU bugs in that area.
1143 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1144 spin_unlock(pmd_ptl
);
1145 mmu_notifier_invalidate_range_end(&range
);
1148 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
,
1149 &compound_pagelist
);
1150 spin_unlock(pte_ptl
);
1152 if (unlikely(!isolated
)) {
1155 BUG_ON(!pmd_none(*pmd
));
1157 * We can only use set_pmd_at when establishing
1158 * hugepmds and never for establishing regular pmds that
1159 * points to regular pagetables. Use pmd_populate for that
1161 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1162 spin_unlock(pmd_ptl
);
1163 anon_vma_unlock_write(vma
->anon_vma
);
1169 * All pages are isolated and locked so anon_vma rmap
1170 * can't run anymore.
1172 anon_vma_unlock_write(vma
->anon_vma
);
1174 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
,
1175 &compound_pagelist
);
1177 __SetPageUptodate(new_page
);
1178 pgtable
= pmd_pgtable(_pmd
);
1180 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1181 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1184 * spin_lock() below is not the equivalent of smp_wmb(), so
1185 * this is needed to avoid the copy_huge_page writes to become
1186 * visible after the set_pmd_at() write.
1191 BUG_ON(!pmd_none(*pmd
));
1192 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1193 lru_cache_add_inactive_or_unevictable(new_page
, vma
);
1194 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1195 set_pmd_at(mm
, address
, pmd
, _pmd
);
1196 update_mmu_cache_pmd(vma
, address
, pmd
);
1197 spin_unlock(pmd_ptl
);
1201 khugepaged_pages_collapsed
++;
1202 result
= SCAN_SUCCEED
;
1204 mmap_write_unlock(mm
);
1206 if (!IS_ERR_OR_NULL(*hpage
))
1207 mem_cgroup_uncharge(*hpage
);
1208 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1214 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1215 struct vm_area_struct
*vma
,
1216 unsigned long address
,
1217 struct page
**hpage
)
1221 int ret
= 0, result
= 0, referenced
= 0;
1222 int none_or_zero
= 0, shared
= 0;
1223 struct page
*page
= NULL
;
1224 unsigned long _address
;
1226 int node
= NUMA_NO_NODE
, unmapped
= 0;
1227 bool writable
= false;
1229 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1231 pmd
= mm_find_pmd(mm
, address
);
1233 result
= SCAN_PMD_NULL
;
1237 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1238 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1239 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1240 _pte
++, _address
+= PAGE_SIZE
) {
1241 pte_t pteval
= *_pte
;
1242 if (is_swap_pte(pteval
)) {
1243 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1245 * Always be strict with uffd-wp
1246 * enabled swap entries. Please see
1247 * comment below for pte_uffd_wp().
1249 if (pte_swp_uffd_wp(pteval
)) {
1250 result
= SCAN_PTE_UFFD_WP
;
1255 result
= SCAN_EXCEED_SWAP_PTE
;
1259 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1260 if (!userfaultfd_armed(vma
) &&
1261 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1264 result
= SCAN_EXCEED_NONE_PTE
;
1268 if (!pte_present(pteval
)) {
1269 result
= SCAN_PTE_NON_PRESENT
;
1272 if (pte_uffd_wp(pteval
)) {
1274 * Don't collapse the page if any of the small
1275 * PTEs are armed with uffd write protection.
1276 * Here we can also mark the new huge pmd as
1277 * write protected if any of the small ones is
1278 * marked but that could bring unknown
1279 * userfault messages that falls outside of
1280 * the registered range. So, just be simple.
1282 result
= SCAN_PTE_UFFD_WP
;
1285 if (pte_write(pteval
))
1288 page
= vm_normal_page(vma
, _address
, pteval
);
1289 if (unlikely(!page
)) {
1290 result
= SCAN_PAGE_NULL
;
1294 if (page_mapcount(page
) > 1 &&
1295 ++shared
> khugepaged_max_ptes_shared
) {
1296 result
= SCAN_EXCEED_SHARED_PTE
;
1300 page
= compound_head(page
);
1303 * Record which node the original page is from and save this
1304 * information to khugepaged_node_load[].
1305 * Khupaged will allocate hugepage from the node has the max
1308 node
= page_to_nid(page
);
1309 if (khugepaged_scan_abort(node
)) {
1310 result
= SCAN_SCAN_ABORT
;
1313 khugepaged_node_load
[node
]++;
1314 if (!PageLRU(page
)) {
1315 result
= SCAN_PAGE_LRU
;
1318 if (PageLocked(page
)) {
1319 result
= SCAN_PAGE_LOCK
;
1322 if (!PageAnon(page
)) {
1323 result
= SCAN_PAGE_ANON
;
1328 * Check if the page has any GUP (or other external) pins.
1330 * Here the check is racy it may see totmal_mapcount > refcount
1332 * For example, one process with one forked child process.
1333 * The parent has the PMD split due to MADV_DONTNEED, then
1334 * the child is trying unmap the whole PMD, but khugepaged
1335 * may be scanning the parent between the child has
1336 * PageDoubleMap flag cleared and dec the mapcount. So
1337 * khugepaged may see total_mapcount > refcount.
1339 * But such case is ephemeral we could always retry collapse
1340 * later. However it may report false positive if the page
1341 * has excessive GUP pins (i.e. 512). Anyway the same check
1342 * will be done again later the risk seems low.
1344 if (!is_refcount_suitable(page
)) {
1345 result
= SCAN_PAGE_COUNT
;
1348 if (pte_young(pteval
) ||
1349 page_is_young(page
) || PageReferenced(page
) ||
1350 mmu_notifier_test_young(vma
->vm_mm
, address
))
1354 result
= SCAN_PAGE_RO
;
1355 } else if (!referenced
|| (unmapped
&& referenced
< HPAGE_PMD_NR
/2)) {
1356 result
= SCAN_LACK_REFERENCED_PAGE
;
1358 result
= SCAN_SUCCEED
;
1362 pte_unmap_unlock(pte
, ptl
);
1364 node
= khugepaged_find_target_node();
1365 /* collapse_huge_page will return with the mmap_lock released */
1366 collapse_huge_page(mm
, address
, hpage
, node
,
1367 referenced
, unmapped
);
1370 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1371 none_or_zero
, result
, unmapped
);
1375 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1377 struct mm_struct
*mm
= mm_slot
->mm
;
1379 lockdep_assert_held(&khugepaged_mm_lock
);
1381 if (khugepaged_test_exit(mm
)) {
1383 hash_del(&mm_slot
->hash
);
1384 list_del(&mm_slot
->mm_node
);
1387 * Not strictly needed because the mm exited already.
1389 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1392 /* khugepaged_mm_lock actually not necessary for the below */
1393 free_mm_slot(mm_slot
);
1400 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1401 * khugepaged should try to collapse the page table.
1403 static int khugepaged_add_pte_mapped_thp(struct mm_struct
*mm
,
1406 struct mm_slot
*mm_slot
;
1408 VM_BUG_ON(addr
& ~HPAGE_PMD_MASK
);
1410 spin_lock(&khugepaged_mm_lock
);
1411 mm_slot
= get_mm_slot(mm
);
1412 if (likely(mm_slot
&& mm_slot
->nr_pte_mapped_thp
< MAX_PTE_MAPPED_THP
))
1413 mm_slot
->pte_mapped_thp
[mm_slot
->nr_pte_mapped_thp
++] = addr
;
1414 spin_unlock(&khugepaged_mm_lock
);
1419 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1422 * @mm: process address space where collapse happens
1423 * @addr: THP collapse address
1425 * This function checks whether all the PTEs in the PMD are pointing to the
1426 * right THP. If so, retract the page table so the THP can refault in with
1429 void collapse_pte_mapped_thp(struct mm_struct
*mm
, unsigned long addr
)
1431 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1432 struct vm_area_struct
*vma
= find_vma(mm
, haddr
);
1434 pte_t
*start_pte
, *pte
;
1440 if (!vma
|| !vma
->vm_file
||
1441 vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
)
1445 * This vm_flags may not have VM_HUGEPAGE if the page was not
1446 * collapsed by this mm. But we can still collapse if the page is
1447 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1448 * will not fail the vma for missing VM_HUGEPAGE
1450 if (!hugepage_vma_check(vma
, vma
->vm_flags
| VM_HUGEPAGE
))
1453 hpage
= find_lock_page(vma
->vm_file
->f_mapping
,
1454 linear_page_index(vma
, haddr
));
1458 if (!PageHead(hpage
))
1461 pmd
= mm_find_pmd(mm
, haddr
);
1465 start_pte
= pte_offset_map_lock(mm
, pmd
, haddr
, &ptl
);
1467 /* step 1: check all mapped PTEs are to the right huge page */
1468 for (i
= 0, addr
= haddr
, pte
= start_pte
;
1469 i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
, pte
++) {
1472 /* empty pte, skip */
1476 /* page swapped out, abort */
1477 if (!pte_present(*pte
))
1480 page
= vm_normal_page(vma
, addr
, *pte
);
1483 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1484 * page table, but the new page will not be a subpage of hpage.
1486 if (hpage
+ i
!= page
)
1491 /* step 2: adjust rmap */
1492 for (i
= 0, addr
= haddr
, pte
= start_pte
;
1493 i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
, pte
++) {
1498 page
= vm_normal_page(vma
, addr
, *pte
);
1499 page_remove_rmap(page
, false);
1502 pte_unmap_unlock(start_pte
, ptl
);
1504 /* step 3: set proper refcount and mm_counters. */
1506 page_ref_sub(hpage
, count
);
1507 add_mm_counter(vma
->vm_mm
, mm_counter_file(hpage
), -count
);
1510 /* step 4: collapse pmd */
1511 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1512 _pmd
= pmdp_collapse_flush(vma
, haddr
, pmd
);
1515 pte_free(mm
, pmd_pgtable(_pmd
));
1523 pte_unmap_unlock(start_pte
, ptl
);
1527 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot
*mm_slot
)
1529 struct mm_struct
*mm
= mm_slot
->mm
;
1532 if (likely(mm_slot
->nr_pte_mapped_thp
== 0))
1535 if (!mmap_write_trylock(mm
))
1538 if (unlikely(khugepaged_test_exit(mm
)))
1541 for (i
= 0; i
< mm_slot
->nr_pte_mapped_thp
; i
++)
1542 collapse_pte_mapped_thp(mm
, mm_slot
->pte_mapped_thp
[i
]);
1545 mm_slot
->nr_pte_mapped_thp
= 0;
1546 mmap_write_unlock(mm
);
1550 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1552 struct vm_area_struct
*vma
;
1553 struct mm_struct
*mm
;
1557 i_mmap_lock_write(mapping
);
1558 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1560 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 * got written to. These VMAs are likely not worth investing
1562 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1565 * Not that vma->anon_vma check is racy: it can be set up after
1566 * the check but before we took mmap_lock by the fault path.
1567 * But page lock would prevent establishing any new ptes of the
1568 * page, so we are safe.
1570 * An alternative would be drop the check, but check that page
1571 * table is clear before calling pmdp_collapse_flush() under
1572 * ptl. It has higher chance to recover THP for the VMA, but
1573 * has higher cost too.
1577 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1578 if (addr
& ~HPAGE_PMD_MASK
)
1580 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1583 pmd
= mm_find_pmd(mm
, addr
);
1587 * We need exclusive mmap_lock to retract page table.
1589 * We use trylock due to lock inversion: we need to acquire
1590 * mmap_lock while holding page lock. Fault path does it in
1591 * reverse order. Trylock is a way to avoid deadlock.
1593 if (mmap_write_trylock(mm
)) {
1594 if (!khugepaged_test_exit(mm
)) {
1595 spinlock_t
*ptl
= pmd_lock(mm
, pmd
);
1596 /* assume page table is clear */
1597 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1600 pte_free(mm
, pmd_pgtable(_pmd
));
1602 mmap_write_unlock(mm
);
1604 /* Try again later */
1605 khugepaged_add_pte_mapped_thp(mm
, addr
);
1608 i_mmap_unlock_write(mapping
);
1612 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1614 * @mm: process address space where collapse happens
1615 * @file: file that collapse on
1616 * @start: collapse start address
1617 * @hpage: new allocated huge page for collapse
1618 * @node: appointed node the new huge page allocate from
1620 * Basic scheme is simple, details are more complex:
1621 * - allocate and lock a new huge page;
1622 * - scan page cache replacing old pages with the new one
1623 * + swap/gup in pages if necessary;
1625 * + keep old pages around in case rollback is required;
1626 * - if replacing succeeds:
1629 * + unlock huge page;
1630 * - if replacing failed;
1631 * + put all pages back and unfreeze them;
1632 * + restore gaps in the page cache;
1633 * + unlock and free huge page;
1635 static void collapse_file(struct mm_struct
*mm
,
1636 struct file
*file
, pgoff_t start
,
1637 struct page
**hpage
, int node
)
1639 struct address_space
*mapping
= file
->f_mapping
;
1641 struct page
*new_page
;
1642 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1643 LIST_HEAD(pagelist
);
1644 XA_STATE_ORDER(xas
, &mapping
->i_pages
, start
, HPAGE_PMD_ORDER
);
1645 int nr_none
= 0, result
= SCAN_SUCCEED
;
1646 bool is_shmem
= shmem_file(file
);
1648 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS
) && !is_shmem
);
1649 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1651 /* Only allocate from the target node */
1652 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1654 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1656 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1660 if (unlikely(mem_cgroup_charge(new_page
, mm
, gfp
))) {
1661 result
= SCAN_CGROUP_CHARGE_FAIL
;
1664 count_memcg_page_event(new_page
, THP_COLLAPSE_ALLOC
);
1666 /* This will be less messy when we use multi-index entries */
1669 xas_create_range(&xas
);
1670 if (!xas_error(&xas
))
1672 xas_unlock_irq(&xas
);
1673 if (!xas_nomem(&xas
, GFP_KERNEL
)) {
1679 __SetPageLocked(new_page
);
1681 __SetPageSwapBacked(new_page
);
1682 new_page
->index
= start
;
1683 new_page
->mapping
= mapping
;
1686 * At this point the new_page is locked and not up-to-date.
1687 * It's safe to insert it into the page cache, because nobody would
1688 * be able to map it or use it in another way until we unlock it.
1691 xas_set(&xas
, start
);
1692 for (index
= start
; index
< end
; index
++) {
1693 struct page
*page
= xas_next(&xas
);
1695 VM_BUG_ON(index
!= xas
.xa_index
);
1699 * Stop if extent has been truncated or
1700 * hole-punched, and is now completely
1703 if (index
== start
) {
1704 if (!xas_next_entry(&xas
, end
- 1)) {
1705 result
= SCAN_TRUNCATED
;
1708 xas_set(&xas
, index
);
1710 if (!shmem_charge(mapping
->host
, 1)) {
1714 xas_store(&xas
, new_page
);
1719 if (xa_is_value(page
) || !PageUptodate(page
)) {
1720 xas_unlock_irq(&xas
);
1721 /* swap in or instantiate fallocated page */
1722 if (shmem_getpage(mapping
->host
, index
, &page
,
1727 } else if (trylock_page(page
)) {
1729 xas_unlock_irq(&xas
);
1731 result
= SCAN_PAGE_LOCK
;
1734 } else { /* !is_shmem */
1735 if (!page
|| xa_is_value(page
)) {
1736 xas_unlock_irq(&xas
);
1737 page_cache_sync_readahead(mapping
, &file
->f_ra
,
1740 /* drain pagevecs to help isolate_lru_page() */
1742 page
= find_lock_page(mapping
, index
);
1743 if (unlikely(page
== NULL
)) {
1747 } else if (PageDirty(page
)) {
1749 * khugepaged only works on read-only fd,
1750 * so this page is dirty because it hasn't
1751 * been flushed since first write. There
1752 * won't be new dirty pages.
1754 * Trigger async flush here and hope the
1755 * writeback is done when khugepaged
1756 * revisits this page.
1758 * This is a one-off situation. We are not
1759 * forcing writeback in loop.
1761 xas_unlock_irq(&xas
);
1762 filemap_flush(mapping
);
1765 } else if (trylock_page(page
)) {
1767 xas_unlock_irq(&xas
);
1769 result
= SCAN_PAGE_LOCK
;
1775 * The page must be locked, so we can drop the i_pages lock
1776 * without racing with truncate.
1778 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1780 /* make sure the page is up to date */
1781 if (unlikely(!PageUptodate(page
))) {
1787 * If file was truncated then extended, or hole-punched, before
1788 * we locked the first page, then a THP might be there already.
1790 if (PageTransCompound(page
)) {
1791 result
= SCAN_PAGE_COMPOUND
;
1795 if (page_mapping(page
) != mapping
) {
1796 result
= SCAN_TRUNCATED
;
1800 if (!is_shmem
&& PageDirty(page
)) {
1802 * khugepaged only works on read-only fd, so this
1803 * page is dirty because it hasn't been flushed
1804 * since first write.
1810 if (isolate_lru_page(page
)) {
1811 result
= SCAN_DEL_PAGE_LRU
;
1815 if (page_has_private(page
) &&
1816 !try_to_release_page(page
, GFP_KERNEL
)) {
1817 result
= SCAN_PAGE_HAS_PRIVATE
;
1818 putback_lru_page(page
);
1822 if (page_mapped(page
))
1823 unmap_mapping_pages(mapping
, index
, 1, false);
1826 xas_set(&xas
, index
);
1828 VM_BUG_ON_PAGE(page
!= xas_load(&xas
), page
);
1829 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1832 * The page is expected to have page_count() == 3:
1833 * - we hold a pin on it;
1834 * - one reference from page cache;
1835 * - one from isolate_lru_page;
1837 if (!page_ref_freeze(page
, 3)) {
1838 result
= SCAN_PAGE_COUNT
;
1839 xas_unlock_irq(&xas
);
1840 putback_lru_page(page
);
1845 * Add the page to the list to be able to undo the collapse if
1846 * something go wrong.
1848 list_add_tail(&page
->lru
, &pagelist
);
1850 /* Finally, replace with the new page. */
1851 xas_store(&xas
, new_page
);
1860 __inc_lruvec_page_state(new_page
, NR_SHMEM_THPS
);
1862 __inc_lruvec_page_state(new_page
, NR_FILE_THPS
);
1863 filemap_nr_thps_inc(mapping
);
1867 __mod_lruvec_page_state(new_page
, NR_FILE_PAGES
, nr_none
);
1869 __mod_lruvec_page_state(new_page
, NR_SHMEM
, nr_none
);
1873 xas_unlock_irq(&xas
);
1876 if (result
== SCAN_SUCCEED
) {
1877 struct page
*page
, *tmp
;
1880 * Replacing old pages with new one has succeeded, now we
1881 * need to copy the content and free the old pages.
1884 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1885 while (index
< page
->index
) {
1886 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1889 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1891 list_del(&page
->lru
);
1892 page
->mapping
= NULL
;
1893 page_ref_unfreeze(page
, 1);
1894 ClearPageActive(page
);
1895 ClearPageUnevictable(page
);
1900 while (index
< end
) {
1901 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1905 SetPageUptodate(new_page
);
1906 page_ref_add(new_page
, HPAGE_PMD_NR
- 1);
1908 set_page_dirty(new_page
);
1909 lru_cache_add(new_page
);
1912 * Remove pte page tables, so we can re-fault the page as huge.
1914 retract_page_tables(mapping
, start
);
1917 khugepaged_pages_collapsed
++;
1921 /* Something went wrong: roll back page cache changes */
1923 mapping
->nrpages
-= nr_none
;
1926 shmem_uncharge(mapping
->host
, nr_none
);
1928 xas_set(&xas
, start
);
1929 xas_for_each(&xas
, page
, end
- 1) {
1930 page
= list_first_entry_or_null(&pagelist
,
1932 if (!page
|| xas
.xa_index
< page
->index
) {
1936 /* Put holes back where they were */
1937 xas_store(&xas
, NULL
);
1941 VM_BUG_ON_PAGE(page
->index
!= xas
.xa_index
, page
);
1943 /* Unfreeze the page. */
1944 list_del(&page
->lru
);
1945 page_ref_unfreeze(page
, 2);
1946 xas_store(&xas
, page
);
1948 xas_unlock_irq(&xas
);
1950 putback_lru_page(page
);
1954 xas_unlock_irq(&xas
);
1956 new_page
->mapping
= NULL
;
1959 unlock_page(new_page
);
1961 VM_BUG_ON(!list_empty(&pagelist
));
1962 if (!IS_ERR_OR_NULL(*hpage
))
1963 mem_cgroup_uncharge(*hpage
);
1964 /* TODO: tracepoints */
1967 static void khugepaged_scan_file(struct mm_struct
*mm
,
1968 struct file
*file
, pgoff_t start
, struct page
**hpage
)
1970 struct page
*page
= NULL
;
1971 struct address_space
*mapping
= file
->f_mapping
;
1972 XA_STATE(xas
, &mapping
->i_pages
, start
);
1974 int node
= NUMA_NO_NODE
;
1975 int result
= SCAN_SUCCEED
;
1979 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1981 xas_for_each(&xas
, page
, start
+ HPAGE_PMD_NR
- 1) {
1982 if (xas_retry(&xas
, page
))
1985 if (xa_is_value(page
)) {
1986 if (++swap
> khugepaged_max_ptes_swap
) {
1987 result
= SCAN_EXCEED_SWAP_PTE
;
1993 if (PageTransCompound(page
)) {
1994 result
= SCAN_PAGE_COMPOUND
;
1998 node
= page_to_nid(page
);
1999 if (khugepaged_scan_abort(node
)) {
2000 result
= SCAN_SCAN_ABORT
;
2003 khugepaged_node_load
[node
]++;
2005 if (!PageLRU(page
)) {
2006 result
= SCAN_PAGE_LRU
;
2010 if (page_count(page
) !=
2011 1 + page_mapcount(page
) + page_has_private(page
)) {
2012 result
= SCAN_PAGE_COUNT
;
2017 * We probably should check if the page is referenced here, but
2018 * nobody would transfer pte_young() to PageReferenced() for us.
2019 * And rmap walk here is just too costly...
2024 if (need_resched()) {
2031 if (result
== SCAN_SUCCEED
) {
2032 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
2033 result
= SCAN_EXCEED_NONE_PTE
;
2035 node
= khugepaged_find_target_node();
2036 collapse_file(mm
, file
, start
, hpage
, node
);
2040 /* TODO: tracepoints */
2043 static void khugepaged_scan_file(struct mm_struct
*mm
,
2044 struct file
*file
, pgoff_t start
, struct page
**hpage
)
2049 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot
*mm_slot
)
2055 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2056 struct page
**hpage
)
2057 __releases(&khugepaged_mm_lock
)
2058 __acquires(&khugepaged_mm_lock
)
2060 struct mm_slot
*mm_slot
;
2061 struct mm_struct
*mm
;
2062 struct vm_area_struct
*vma
;
2066 lockdep_assert_held(&khugepaged_mm_lock
);
2068 if (khugepaged_scan
.mm_slot
)
2069 mm_slot
= khugepaged_scan
.mm_slot
;
2071 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2072 struct mm_slot
, mm_node
);
2073 khugepaged_scan
.address
= 0;
2074 khugepaged_scan
.mm_slot
= mm_slot
;
2076 spin_unlock(&khugepaged_mm_lock
);
2077 khugepaged_collapse_pte_mapped_thps(mm_slot
);
2081 * Don't wait for semaphore (to avoid long wait times). Just move to
2082 * the next mm on the list.
2085 if (unlikely(!mmap_read_trylock(mm
)))
2086 goto breakouterloop_mmap_lock
;
2087 if (likely(!khugepaged_test_exit(mm
)))
2088 vma
= find_vma(mm
, khugepaged_scan
.address
);
2091 for (; vma
; vma
= vma
->vm_next
) {
2092 unsigned long hstart
, hend
;
2095 if (unlikely(khugepaged_test_exit(mm
))) {
2099 if (!hugepage_vma_check(vma
, vma
->vm_flags
)) {
2104 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2105 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2108 if (khugepaged_scan
.address
> hend
)
2110 if (khugepaged_scan
.address
< hstart
)
2111 khugepaged_scan
.address
= hstart
;
2112 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2113 if (shmem_file(vma
->vm_file
) && !shmem_huge_enabled(vma
))
2116 while (khugepaged_scan
.address
< hend
) {
2119 if (unlikely(khugepaged_test_exit(mm
)))
2120 goto breakouterloop
;
2122 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2123 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2125 if (IS_ENABLED(CONFIG_SHMEM
) && vma
->vm_file
) {
2126 struct file
*file
= get_file(vma
->vm_file
);
2127 pgoff_t pgoff
= linear_page_index(vma
,
2128 khugepaged_scan
.address
);
2130 mmap_read_unlock(mm
);
2132 khugepaged_scan_file(mm
, file
, pgoff
, hpage
);
2135 ret
= khugepaged_scan_pmd(mm
, vma
,
2136 khugepaged_scan
.address
,
2139 /* move to next address */
2140 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2141 progress
+= HPAGE_PMD_NR
;
2143 /* we released mmap_lock so break loop */
2144 goto breakouterloop_mmap_lock
;
2145 if (progress
>= pages
)
2146 goto breakouterloop
;
2150 mmap_read_unlock(mm
); /* exit_mmap will destroy ptes after this */
2151 breakouterloop_mmap_lock
:
2153 spin_lock(&khugepaged_mm_lock
);
2154 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2156 * Release the current mm_slot if this mm is about to die, or
2157 * if we scanned all vmas of this mm.
2159 if (khugepaged_test_exit(mm
) || !vma
) {
2161 * Make sure that if mm_users is reaching zero while
2162 * khugepaged runs here, khugepaged_exit will find
2163 * mm_slot not pointing to the exiting mm.
2165 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2166 khugepaged_scan
.mm_slot
= list_entry(
2167 mm_slot
->mm_node
.next
,
2168 struct mm_slot
, mm_node
);
2169 khugepaged_scan
.address
= 0;
2171 khugepaged_scan
.mm_slot
= NULL
;
2172 khugepaged_full_scans
++;
2175 collect_mm_slot(mm_slot
);
2181 static int khugepaged_has_work(void)
2183 return !list_empty(&khugepaged_scan
.mm_head
) &&
2184 khugepaged_enabled();
2187 static int khugepaged_wait_event(void)
2189 return !list_empty(&khugepaged_scan
.mm_head
) ||
2190 kthread_should_stop();
2193 static void khugepaged_do_scan(void)
2195 struct page
*hpage
= NULL
;
2196 unsigned int progress
= 0, pass_through_head
= 0;
2197 unsigned int pages
= khugepaged_pages_to_scan
;
2200 barrier(); /* write khugepaged_pages_to_scan to local stack */
2202 lru_add_drain_all();
2204 while (progress
< pages
) {
2205 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2210 if (unlikely(kthread_should_stop() || try_to_freeze()))
2213 spin_lock(&khugepaged_mm_lock
);
2214 if (!khugepaged_scan
.mm_slot
)
2215 pass_through_head
++;
2216 if (khugepaged_has_work() &&
2217 pass_through_head
< 2)
2218 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2222 spin_unlock(&khugepaged_mm_lock
);
2225 if (!IS_ERR_OR_NULL(hpage
))
2229 static bool khugepaged_should_wakeup(void)
2231 return kthread_should_stop() ||
2232 time_after_eq(jiffies
, khugepaged_sleep_expire
);
2235 static void khugepaged_wait_work(void)
2237 if (khugepaged_has_work()) {
2238 const unsigned long scan_sleep_jiffies
=
2239 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
2241 if (!scan_sleep_jiffies
)
2244 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
2245 wait_event_freezable_timeout(khugepaged_wait
,
2246 khugepaged_should_wakeup(),
2247 scan_sleep_jiffies
);
2251 if (khugepaged_enabled())
2252 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2255 static int khugepaged(void *none
)
2257 struct mm_slot
*mm_slot
;
2260 set_user_nice(current
, MAX_NICE
);
2262 while (!kthread_should_stop()) {
2263 khugepaged_do_scan();
2264 khugepaged_wait_work();
2267 spin_lock(&khugepaged_mm_lock
);
2268 mm_slot
= khugepaged_scan
.mm_slot
;
2269 khugepaged_scan
.mm_slot
= NULL
;
2271 collect_mm_slot(mm_slot
);
2272 spin_unlock(&khugepaged_mm_lock
);
2276 static void set_recommended_min_free_kbytes(void)
2280 unsigned long recommended_min
;
2282 for_each_populated_zone(zone
) {
2284 * We don't need to worry about fragmentation of
2285 * ZONE_MOVABLE since it only has movable pages.
2287 if (zone_idx(zone
) > gfp_zone(GFP_USER
))
2293 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2294 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
2297 * Make sure that on average at least two pageblocks are almost free
2298 * of another type, one for a migratetype to fall back to and a
2299 * second to avoid subsequent fallbacks of other types There are 3
2300 * MIGRATE_TYPES we care about.
2302 recommended_min
+= pageblock_nr_pages
* nr_zones
*
2303 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
2305 /* don't ever allow to reserve more than 5% of the lowmem */
2306 recommended_min
= min(recommended_min
,
2307 (unsigned long) nr_free_buffer_pages() / 20);
2308 recommended_min
<<= (PAGE_SHIFT
-10);
2310 if (recommended_min
> min_free_kbytes
) {
2311 if (user_min_free_kbytes
>= 0)
2312 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2313 min_free_kbytes
, recommended_min
);
2315 min_free_kbytes
= recommended_min
;
2317 setup_per_zone_wmarks();
2320 int start_stop_khugepaged(void)
2324 mutex_lock(&khugepaged_mutex
);
2325 if (khugepaged_enabled()) {
2326 if (!khugepaged_thread
)
2327 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
2329 if (IS_ERR(khugepaged_thread
)) {
2330 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2331 err
= PTR_ERR(khugepaged_thread
);
2332 khugepaged_thread
= NULL
;
2336 if (!list_empty(&khugepaged_scan
.mm_head
))
2337 wake_up_interruptible(&khugepaged_wait
);
2339 set_recommended_min_free_kbytes();
2340 } else if (khugepaged_thread
) {
2341 kthread_stop(khugepaged_thread
);
2342 khugepaged_thread
= NULL
;
2345 mutex_unlock(&khugepaged_mutex
);
2349 void khugepaged_min_free_kbytes_update(void)
2351 mutex_lock(&khugepaged_mutex
);
2352 if (khugepaged_enabled() && khugepaged_thread
)
2353 set_recommended_min_free_kbytes();
2354 mutex_unlock(&khugepaged_mutex
);