Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / mm / khugepaged.c
blob67ab391a537393251b22591a310118f76525438d
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_EXCEED_SWAP_PTE,
32 SCAN_EXCEED_SHARED_PTE,
33 SCAN_PTE_NON_PRESENT,
34 SCAN_PTE_UFFD_WP,
35 SCAN_PAGE_RO,
36 SCAN_LACK_REFERENCED_PAGE,
37 SCAN_PAGE_NULL,
38 SCAN_SCAN_ABORT,
39 SCAN_PAGE_COUNT,
40 SCAN_PAGE_LRU,
41 SCAN_PAGE_LOCK,
42 SCAN_PAGE_ANON,
43 SCAN_PAGE_COMPOUND,
44 SCAN_ANY_PROCESS,
45 SCAN_VMA_NULL,
46 SCAN_VMA_CHECK,
47 SCAN_ADDRESS_RANGE,
48 SCAN_SWAP_CACHE_PAGE,
49 SCAN_DEL_PAGE_LRU,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
52 SCAN_TRUNCATED,
53 SCAN_PAGE_HAS_PRIVATE,
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
75 * fault.
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
84 static struct kmem_cache *mm_slot_cache __read_mostly;
86 #define MAX_PTE_MAPPED_THP 8
88 /**
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
96 struct mm_slot {
97 struct hlist_node hash;
98 struct list_head mm_node;
99 struct mm_struct *mm;
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp;
103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
112 * There is only the one khugepaged_scan instance of this cursor structure.
114 struct khugepaged_scan {
115 struct list_head mm_head;
116 struct mm_slot *mm_slot;
117 unsigned long address;
120 static struct khugepaged_scan khugepaged_scan = {
121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 struct kobj_attribute *attr,
127 char *buf)
129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 struct kobj_attribute *attr,
134 const char *buf, size_t count)
136 unsigned int msecs;
137 int err;
139 err = kstrtouint(buf, 10, &msecs);
140 if (err)
141 return -EINVAL;
143 khugepaged_scan_sleep_millisecs = msecs;
144 khugepaged_sleep_expire = 0;
145 wake_up_interruptible(&khugepaged_wait);
147 return count;
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 scan_sleep_millisecs_store);
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 struct kobj_attribute *attr,
155 char *buf)
157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
164 unsigned int msecs;
165 int err;
167 err = kstrtouint(buf, 10, &msecs);
168 if (err)
169 return -EINVAL;
171 khugepaged_alloc_sleep_millisecs = msecs;
172 khugepaged_sleep_expire = 0;
173 wake_up_interruptible(&khugepaged_wait);
175 return count;
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 alloc_sleep_millisecs_store);
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 struct kobj_attribute *attr,
183 char *buf)
185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 const char *buf, size_t count)
191 unsigned int pages;
192 int err;
194 err = kstrtouint(buf, 10, &pages);
195 if (err || !pages)
196 return -EINVAL;
198 khugepaged_pages_to_scan = pages;
200 return count;
202 static struct kobj_attribute pages_to_scan_attr =
203 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 pages_to_scan_store);
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
208 char *buf)
210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
212 static struct kobj_attribute pages_collapsed_attr =
213 __ATTR_RO(pages_collapsed);
215 static ssize_t full_scans_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 char *buf)
219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
221 static struct kobj_attribute full_scans_attr =
222 __ATTR_RO(full_scans);
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf)
227 return single_hugepage_flag_show(kobj, attr, buf,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 const char *buf, size_t count)
234 return single_hugepage_flag_store(kobj, attr, buf, count,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
237 static struct kobj_attribute khugepaged_defrag_attr =
238 __ATTR(defrag, 0644, khugepaged_defrag_show,
239 khugepaged_defrag_store);
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 char *buf)
253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
259 int err;
260 unsigned long max_ptes_none;
262 err = kstrtoul(buf, 10, &max_ptes_none);
263 if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 return -EINVAL;
266 khugepaged_max_ptes_none = max_ptes_none;
268 return count;
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 khugepaged_max_ptes_none_store);
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 struct kobj_attribute *attr,
276 char *buf)
278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
285 int err;
286 unsigned long max_ptes_swap;
288 err = kstrtoul(buf, 10, &max_ptes_swap);
289 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 return -EINVAL;
292 khugepaged_max_ptes_swap = max_ptes_swap;
294 return count;
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 khugepaged_max_ptes_swap_store);
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 struct kobj_attribute *attr,
303 char *buf)
305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 struct kobj_attribute *attr,
310 const char *buf, size_t count)
312 int err;
313 unsigned long max_ptes_shared;
315 err = kstrtoul(buf, 10, &max_ptes_shared);
316 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 return -EINVAL;
319 khugepaged_max_ptes_shared = max_ptes_shared;
321 return count;
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 khugepaged_max_ptes_shared_store);
328 static struct attribute *khugepaged_attr[] = {
329 &khugepaged_defrag_attr.attr,
330 &khugepaged_max_ptes_none_attr.attr,
331 &khugepaged_max_ptes_swap_attr.attr,
332 &khugepaged_max_ptes_shared_attr.attr,
333 &pages_to_scan_attr.attr,
334 &pages_collapsed_attr.attr,
335 &full_scans_attr.attr,
336 &scan_sleep_millisecs_attr.attr,
337 &alloc_sleep_millisecs_attr.attr,
338 NULL,
341 struct attribute_group khugepaged_attr_group = {
342 .attrs = khugepaged_attr,
343 .name = "khugepaged",
345 #endif /* CONFIG_SYSFS */
347 int hugepage_madvise(struct vm_area_struct *vma,
348 unsigned long *vm_flags, int advice)
350 switch (advice) {
351 case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 if (mm_has_pgste(vma->vm_mm))
359 return 0;
360 #endif
361 *vm_flags &= ~VM_NOHUGEPAGE;
362 *vm_flags |= VM_HUGEPAGE;
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
368 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 khugepaged_enter_vma_merge(vma, *vm_flags))
370 return -ENOMEM;
371 break;
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
380 break;
383 return 0;
386 int __init khugepaged_init(void)
388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 sizeof(struct mm_slot),
390 __alignof__(struct mm_slot), 0, NULL);
391 if (!mm_slot_cache)
392 return -ENOMEM;
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399 return 0;
402 void __init khugepaged_destroy(void)
404 kmem_cache_destroy(mm_slot_cache);
407 static inline struct mm_slot *alloc_mm_slot(void)
409 if (!mm_slot_cache) /* initialization failed */
410 return NULL;
411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
416 kmem_cache_free(mm_slot_cache, mm_slot);
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
421 struct mm_slot *mm_slot;
423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 if (mm == mm_slot->mm)
425 return mm_slot;
427 return NULL;
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 struct mm_slot *mm_slot)
433 mm_slot->mm = mm;
434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
439 return atomic_read(&mm->mm_users) == 0;
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 unsigned long vm_flags)
445 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
446 (vm_flags & VM_NOHUGEPAGE) ||
447 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
448 return false;
450 if (shmem_file(vma->vm_file) ||
451 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
452 vma->vm_file &&
453 (vm_flags & VM_DENYWRITE))) {
454 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
455 HPAGE_PMD_NR);
457 if (!vma->anon_vma || vma->vm_ops)
458 return false;
459 if (vma_is_temporary_stack(vma))
460 return false;
461 return !(vm_flags & VM_NO_KHUGEPAGED);
464 int __khugepaged_enter(struct mm_struct *mm)
466 struct mm_slot *mm_slot;
467 int wakeup;
469 mm_slot = alloc_mm_slot();
470 if (!mm_slot)
471 return -ENOMEM;
473 /* __khugepaged_exit() must not run from under us */
474 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
475 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
476 free_mm_slot(mm_slot);
477 return 0;
480 spin_lock(&khugepaged_mm_lock);
481 insert_to_mm_slots_hash(mm, mm_slot);
483 * Insert just behind the scanning cursor, to let the area settle
484 * down a little.
486 wakeup = list_empty(&khugepaged_scan.mm_head);
487 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
488 spin_unlock(&khugepaged_mm_lock);
490 mmgrab(mm);
491 if (wakeup)
492 wake_up_interruptible(&khugepaged_wait);
494 return 0;
497 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
498 unsigned long vm_flags)
500 unsigned long hstart, hend;
503 * khugepaged only supports read-only files for non-shmem files.
504 * khugepaged does not yet work on special mappings. And
505 * file-private shmem THP is not supported.
507 if (!hugepage_vma_check(vma, vm_flags))
508 return 0;
510 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
511 hend = vma->vm_end & HPAGE_PMD_MASK;
512 if (hstart < hend)
513 return khugepaged_enter(vma, vm_flags);
514 return 0;
517 void __khugepaged_exit(struct mm_struct *mm)
519 struct mm_slot *mm_slot;
520 int free = 0;
522 spin_lock(&khugepaged_mm_lock);
523 mm_slot = get_mm_slot(mm);
524 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
525 hash_del(&mm_slot->hash);
526 list_del(&mm_slot->mm_node);
527 free = 1;
529 spin_unlock(&khugepaged_mm_lock);
531 if (free) {
532 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
533 free_mm_slot(mm_slot);
534 mmdrop(mm);
535 } else if (mm_slot) {
537 * This is required to serialize against
538 * khugepaged_test_exit() (which is guaranteed to run
539 * under mmap sem read mode). Stop here (after we
540 * return all pagetables will be destroyed) until
541 * khugepaged has finished working on the pagetables
542 * under the mmap_lock.
544 mmap_write_lock(mm);
545 mmap_write_unlock(mm);
549 static void release_pte_page(struct page *page)
551 mod_node_page_state(page_pgdat(page),
552 NR_ISOLATED_ANON + page_is_file_lru(page),
553 -compound_nr(page));
554 unlock_page(page);
555 putback_lru_page(page);
558 static void release_pte_pages(pte_t *pte, pte_t *_pte,
559 struct list_head *compound_pagelist)
561 struct page *page, *tmp;
563 while (--_pte >= pte) {
564 pte_t pteval = *_pte;
566 page = pte_page(pteval);
567 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
568 !PageCompound(page))
569 release_pte_page(page);
572 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
573 list_del(&page->lru);
574 release_pte_page(page);
578 static bool is_refcount_suitable(struct page *page)
580 int expected_refcount;
582 expected_refcount = total_mapcount(page);
583 if (PageSwapCache(page))
584 expected_refcount += compound_nr(page);
586 return page_count(page) == expected_refcount;
589 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
590 unsigned long address,
591 pte_t *pte,
592 struct list_head *compound_pagelist)
594 struct page *page = NULL;
595 pte_t *_pte;
596 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
597 bool writable = false;
599 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
600 _pte++, address += PAGE_SIZE) {
601 pte_t pteval = *_pte;
602 if (pte_none(pteval) || (pte_present(pteval) &&
603 is_zero_pfn(pte_pfn(pteval)))) {
604 if (!userfaultfd_armed(vma) &&
605 ++none_or_zero <= khugepaged_max_ptes_none) {
606 continue;
607 } else {
608 result = SCAN_EXCEED_NONE_PTE;
609 goto out;
612 if (!pte_present(pteval)) {
613 result = SCAN_PTE_NON_PRESENT;
614 goto out;
616 page = vm_normal_page(vma, address, pteval);
617 if (unlikely(!page)) {
618 result = SCAN_PAGE_NULL;
619 goto out;
622 VM_BUG_ON_PAGE(!PageAnon(page), page);
624 if (page_mapcount(page) > 1 &&
625 ++shared > khugepaged_max_ptes_shared) {
626 result = SCAN_EXCEED_SHARED_PTE;
627 goto out;
630 if (PageCompound(page)) {
631 struct page *p;
632 page = compound_head(page);
635 * Check if we have dealt with the compound page
636 * already
638 list_for_each_entry(p, compound_pagelist, lru) {
639 if (page == p)
640 goto next;
645 * We can do it before isolate_lru_page because the
646 * page can't be freed from under us. NOTE: PG_lock
647 * is needed to serialize against split_huge_page
648 * when invoked from the VM.
650 if (!trylock_page(page)) {
651 result = SCAN_PAGE_LOCK;
652 goto out;
656 * Check if the page has any GUP (or other external) pins.
658 * The page table that maps the page has been already unlinked
659 * from the page table tree and this process cannot get
660 * an additinal pin on the page.
662 * New pins can come later if the page is shared across fork,
663 * but not from this process. The other process cannot write to
664 * the page, only trigger CoW.
666 if (!is_refcount_suitable(page)) {
667 unlock_page(page);
668 result = SCAN_PAGE_COUNT;
669 goto out;
671 if (!pte_write(pteval) && PageSwapCache(page) &&
672 !reuse_swap_page(page, NULL)) {
674 * Page is in the swap cache and cannot be re-used.
675 * It cannot be collapsed into a THP.
677 unlock_page(page);
678 result = SCAN_SWAP_CACHE_PAGE;
679 goto out;
683 * Isolate the page to avoid collapsing an hugepage
684 * currently in use by the VM.
686 if (isolate_lru_page(page)) {
687 unlock_page(page);
688 result = SCAN_DEL_PAGE_LRU;
689 goto out;
691 mod_node_page_state(page_pgdat(page),
692 NR_ISOLATED_ANON + page_is_file_lru(page),
693 compound_nr(page));
694 VM_BUG_ON_PAGE(!PageLocked(page), page);
695 VM_BUG_ON_PAGE(PageLRU(page), page);
697 if (PageCompound(page))
698 list_add_tail(&page->lru, compound_pagelist);
699 next:
700 /* There should be enough young pte to collapse the page */
701 if (pte_young(pteval) ||
702 page_is_young(page) || PageReferenced(page) ||
703 mmu_notifier_test_young(vma->vm_mm, address))
704 referenced++;
706 if (pte_write(pteval))
707 writable = true;
709 if (likely(writable)) {
710 if (likely(referenced)) {
711 result = SCAN_SUCCEED;
712 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
713 referenced, writable, result);
714 return 1;
716 } else {
717 result = SCAN_PAGE_RO;
720 out:
721 release_pte_pages(pte, _pte, compound_pagelist);
722 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
723 referenced, writable, result);
724 return 0;
727 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
728 struct vm_area_struct *vma,
729 unsigned long address,
730 spinlock_t *ptl,
731 struct list_head *compound_pagelist)
733 struct page *src_page, *tmp;
734 pte_t *_pte;
735 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
736 _pte++, page++, address += PAGE_SIZE) {
737 pte_t pteval = *_pte;
739 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
740 clear_user_highpage(page, address);
741 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
742 if (is_zero_pfn(pte_pfn(pteval))) {
744 * ptl mostly unnecessary.
746 spin_lock(ptl);
748 * paravirt calls inside pte_clear here are
749 * superfluous.
751 pte_clear(vma->vm_mm, address, _pte);
752 spin_unlock(ptl);
754 } else {
755 src_page = pte_page(pteval);
756 copy_user_highpage(page, src_page, address, vma);
757 if (!PageCompound(src_page))
758 release_pte_page(src_page);
760 * ptl mostly unnecessary, but preempt has to
761 * be disabled to update the per-cpu stats
762 * inside page_remove_rmap().
764 spin_lock(ptl);
766 * paravirt calls inside pte_clear here are
767 * superfluous.
769 pte_clear(vma->vm_mm, address, _pte);
770 page_remove_rmap(src_page, false);
771 spin_unlock(ptl);
772 free_page_and_swap_cache(src_page);
776 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
777 list_del(&src_page->lru);
778 release_pte_page(src_page);
782 static void khugepaged_alloc_sleep(void)
784 DEFINE_WAIT(wait);
786 add_wait_queue(&khugepaged_wait, &wait);
787 freezable_schedule_timeout_interruptible(
788 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
789 remove_wait_queue(&khugepaged_wait, &wait);
792 static int khugepaged_node_load[MAX_NUMNODES];
794 static bool khugepaged_scan_abort(int nid)
796 int i;
799 * If node_reclaim_mode is disabled, then no extra effort is made to
800 * allocate memory locally.
802 if (!node_reclaim_mode)
803 return false;
805 /* If there is a count for this node already, it must be acceptable */
806 if (khugepaged_node_load[nid])
807 return false;
809 for (i = 0; i < MAX_NUMNODES; i++) {
810 if (!khugepaged_node_load[i])
811 continue;
812 if (node_distance(nid, i) > node_reclaim_distance)
813 return true;
815 return false;
818 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
819 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
821 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
824 #ifdef CONFIG_NUMA
825 static int khugepaged_find_target_node(void)
827 static int last_khugepaged_target_node = NUMA_NO_NODE;
828 int nid, target_node = 0, max_value = 0;
830 /* find first node with max normal pages hit */
831 for (nid = 0; nid < MAX_NUMNODES; nid++)
832 if (khugepaged_node_load[nid] > max_value) {
833 max_value = khugepaged_node_load[nid];
834 target_node = nid;
837 /* do some balance if several nodes have the same hit record */
838 if (target_node <= last_khugepaged_target_node)
839 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
840 nid++)
841 if (max_value == khugepaged_node_load[nid]) {
842 target_node = nid;
843 break;
846 last_khugepaged_target_node = target_node;
847 return target_node;
850 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
852 if (IS_ERR(*hpage)) {
853 if (!*wait)
854 return false;
856 *wait = false;
857 *hpage = NULL;
858 khugepaged_alloc_sleep();
859 } else if (*hpage) {
860 put_page(*hpage);
861 *hpage = NULL;
864 return true;
867 static struct page *
868 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
870 VM_BUG_ON_PAGE(*hpage, *hpage);
872 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
873 if (unlikely(!*hpage)) {
874 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
875 *hpage = ERR_PTR(-ENOMEM);
876 return NULL;
879 prep_transhuge_page(*hpage);
880 count_vm_event(THP_COLLAPSE_ALLOC);
881 return *hpage;
883 #else
884 static int khugepaged_find_target_node(void)
886 return 0;
889 static inline struct page *alloc_khugepaged_hugepage(void)
891 struct page *page;
893 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
894 HPAGE_PMD_ORDER);
895 if (page)
896 prep_transhuge_page(page);
897 return page;
900 static struct page *khugepaged_alloc_hugepage(bool *wait)
902 struct page *hpage;
904 do {
905 hpage = alloc_khugepaged_hugepage();
906 if (!hpage) {
907 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
908 if (!*wait)
909 return NULL;
911 *wait = false;
912 khugepaged_alloc_sleep();
913 } else
914 count_vm_event(THP_COLLAPSE_ALLOC);
915 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
917 return hpage;
920 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
923 * If the hpage allocated earlier was briefly exposed in page cache
924 * before collapse_file() failed, it is possible that racing lookups
925 * have not yet completed, and would then be unpleasantly surprised by
926 * finding the hpage reused for the same mapping at a different offset.
927 * Just release the previous allocation if there is any danger of that.
929 if (*hpage && page_count(*hpage) > 1) {
930 put_page(*hpage);
931 *hpage = NULL;
934 if (!*hpage)
935 *hpage = khugepaged_alloc_hugepage(wait);
937 if (unlikely(!*hpage))
938 return false;
940 return true;
943 static struct page *
944 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
946 VM_BUG_ON(!*hpage);
948 return *hpage;
950 #endif
953 * If mmap_lock temporarily dropped, revalidate vma
954 * before taking mmap_lock.
955 * Return 0 if succeeds, otherwise return none-zero
956 * value (scan code).
959 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
960 struct vm_area_struct **vmap)
962 struct vm_area_struct *vma;
963 unsigned long hstart, hend;
965 if (unlikely(khugepaged_test_exit(mm)))
966 return SCAN_ANY_PROCESS;
968 *vmap = vma = find_vma(mm, address);
969 if (!vma)
970 return SCAN_VMA_NULL;
972 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
973 hend = vma->vm_end & HPAGE_PMD_MASK;
974 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
975 return SCAN_ADDRESS_RANGE;
976 if (!hugepage_vma_check(vma, vma->vm_flags))
977 return SCAN_VMA_CHECK;
978 /* Anon VMA expected */
979 if (!vma->anon_vma || vma->vm_ops)
980 return SCAN_VMA_CHECK;
981 return 0;
985 * Bring missing pages in from swap, to complete THP collapse.
986 * Only done if khugepaged_scan_pmd believes it is worthwhile.
988 * Called and returns without pte mapped or spinlocks held,
989 * but with mmap_lock held to protect against vma changes.
992 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
993 struct vm_area_struct *vma,
994 unsigned long address, pmd_t *pmd,
995 int referenced)
997 int swapped_in = 0;
998 vm_fault_t ret = 0;
999 struct vm_fault vmf = {
1000 .vma = vma,
1001 .address = address,
1002 .flags = FAULT_FLAG_ALLOW_RETRY,
1003 .pmd = pmd,
1004 .pgoff = linear_page_index(vma, address),
1007 vmf.pte = pte_offset_map(pmd, address);
1008 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
1009 vmf.pte++, vmf.address += PAGE_SIZE) {
1010 vmf.orig_pte = *vmf.pte;
1011 if (!is_swap_pte(vmf.orig_pte))
1012 continue;
1013 swapped_in++;
1014 ret = do_swap_page(&vmf);
1016 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1017 if (ret & VM_FAULT_RETRY) {
1018 mmap_read_lock(mm);
1019 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1020 /* vma is no longer available, don't continue to swapin */
1021 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1022 return false;
1024 /* check if the pmd is still valid */
1025 if (mm_find_pmd(mm, address) != pmd) {
1026 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1027 return false;
1030 if (ret & VM_FAULT_ERROR) {
1031 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1032 return false;
1034 /* pte is unmapped now, we need to map it */
1035 vmf.pte = pte_offset_map(pmd, vmf.address);
1037 vmf.pte--;
1038 pte_unmap(vmf.pte);
1040 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1041 if (swapped_in)
1042 lru_add_drain();
1044 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1045 return true;
1048 static void collapse_huge_page(struct mm_struct *mm,
1049 unsigned long address,
1050 struct page **hpage,
1051 int node, int referenced, int unmapped)
1053 LIST_HEAD(compound_pagelist);
1054 pmd_t *pmd, _pmd;
1055 pte_t *pte;
1056 pgtable_t pgtable;
1057 struct page *new_page;
1058 spinlock_t *pmd_ptl, *pte_ptl;
1059 int isolated = 0, result = 0;
1060 struct vm_area_struct *vma;
1061 struct mmu_notifier_range range;
1062 gfp_t gfp;
1064 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1066 /* Only allocate from the target node */
1067 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1070 * Before allocating the hugepage, release the mmap_lock read lock.
1071 * The allocation can take potentially a long time if it involves
1072 * sync compaction, and we do not need to hold the mmap_lock during
1073 * that. We will recheck the vma after taking it again in write mode.
1075 mmap_read_unlock(mm);
1076 new_page = khugepaged_alloc_page(hpage, gfp, node);
1077 if (!new_page) {
1078 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1079 goto out_nolock;
1082 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1083 result = SCAN_CGROUP_CHARGE_FAIL;
1084 goto out_nolock;
1086 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1088 mmap_read_lock(mm);
1089 result = hugepage_vma_revalidate(mm, address, &vma);
1090 if (result) {
1091 mmap_read_unlock(mm);
1092 goto out_nolock;
1095 pmd = mm_find_pmd(mm, address);
1096 if (!pmd) {
1097 result = SCAN_PMD_NULL;
1098 mmap_read_unlock(mm);
1099 goto out_nolock;
1103 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1104 * If it fails, we release mmap_lock and jump out_nolock.
1105 * Continuing to collapse causes inconsistency.
1107 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1108 pmd, referenced)) {
1109 mmap_read_unlock(mm);
1110 goto out_nolock;
1113 mmap_read_unlock(mm);
1115 * Prevent all access to pagetables with the exception of
1116 * gup_fast later handled by the ptep_clear_flush and the VM
1117 * handled by the anon_vma lock + PG_lock.
1119 mmap_write_lock(mm);
1120 result = hugepage_vma_revalidate(mm, address, &vma);
1121 if (result)
1122 goto out;
1123 /* check if the pmd is still valid */
1124 if (mm_find_pmd(mm, address) != pmd)
1125 goto out;
1127 anon_vma_lock_write(vma->anon_vma);
1129 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1130 address, address + HPAGE_PMD_SIZE);
1131 mmu_notifier_invalidate_range_start(&range);
1133 pte = pte_offset_map(pmd, address);
1134 pte_ptl = pte_lockptr(mm, pmd);
1136 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1138 * After this gup_fast can't run anymore. This also removes
1139 * any huge TLB entry from the CPU so we won't allow
1140 * huge and small TLB entries for the same virtual address
1141 * to avoid the risk of CPU bugs in that area.
1143 _pmd = pmdp_collapse_flush(vma, address, pmd);
1144 spin_unlock(pmd_ptl);
1145 mmu_notifier_invalidate_range_end(&range);
1147 spin_lock(pte_ptl);
1148 isolated = __collapse_huge_page_isolate(vma, address, pte,
1149 &compound_pagelist);
1150 spin_unlock(pte_ptl);
1152 if (unlikely(!isolated)) {
1153 pte_unmap(pte);
1154 spin_lock(pmd_ptl);
1155 BUG_ON(!pmd_none(*pmd));
1157 * We can only use set_pmd_at when establishing
1158 * hugepmds and never for establishing regular pmds that
1159 * points to regular pagetables. Use pmd_populate for that
1161 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1162 spin_unlock(pmd_ptl);
1163 anon_vma_unlock_write(vma->anon_vma);
1164 result = SCAN_FAIL;
1165 goto out;
1169 * All pages are isolated and locked so anon_vma rmap
1170 * can't run anymore.
1172 anon_vma_unlock_write(vma->anon_vma);
1174 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1175 &compound_pagelist);
1176 pte_unmap(pte);
1177 __SetPageUptodate(new_page);
1178 pgtable = pmd_pgtable(_pmd);
1180 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1181 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1184 * spin_lock() below is not the equivalent of smp_wmb(), so
1185 * this is needed to avoid the copy_huge_page writes to become
1186 * visible after the set_pmd_at() write.
1188 smp_wmb();
1190 spin_lock(pmd_ptl);
1191 BUG_ON(!pmd_none(*pmd));
1192 page_add_new_anon_rmap(new_page, vma, address, true);
1193 lru_cache_add_inactive_or_unevictable(new_page, vma);
1194 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1195 set_pmd_at(mm, address, pmd, _pmd);
1196 update_mmu_cache_pmd(vma, address, pmd);
1197 spin_unlock(pmd_ptl);
1199 *hpage = NULL;
1201 khugepaged_pages_collapsed++;
1202 result = SCAN_SUCCEED;
1203 out_up_write:
1204 mmap_write_unlock(mm);
1205 out_nolock:
1206 if (!IS_ERR_OR_NULL(*hpage))
1207 mem_cgroup_uncharge(*hpage);
1208 trace_mm_collapse_huge_page(mm, isolated, result);
1209 return;
1210 out:
1211 goto out_up_write;
1214 static int khugepaged_scan_pmd(struct mm_struct *mm,
1215 struct vm_area_struct *vma,
1216 unsigned long address,
1217 struct page **hpage)
1219 pmd_t *pmd;
1220 pte_t *pte, *_pte;
1221 int ret = 0, result = 0, referenced = 0;
1222 int none_or_zero = 0, shared = 0;
1223 struct page *page = NULL;
1224 unsigned long _address;
1225 spinlock_t *ptl;
1226 int node = NUMA_NO_NODE, unmapped = 0;
1227 bool writable = false;
1229 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1231 pmd = mm_find_pmd(mm, address);
1232 if (!pmd) {
1233 result = SCAN_PMD_NULL;
1234 goto out;
1237 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1238 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1239 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1240 _pte++, _address += PAGE_SIZE) {
1241 pte_t pteval = *_pte;
1242 if (is_swap_pte(pteval)) {
1243 if (++unmapped <= khugepaged_max_ptes_swap) {
1245 * Always be strict with uffd-wp
1246 * enabled swap entries. Please see
1247 * comment below for pte_uffd_wp().
1249 if (pte_swp_uffd_wp(pteval)) {
1250 result = SCAN_PTE_UFFD_WP;
1251 goto out_unmap;
1253 continue;
1254 } else {
1255 result = SCAN_EXCEED_SWAP_PTE;
1256 goto out_unmap;
1259 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1260 if (!userfaultfd_armed(vma) &&
1261 ++none_or_zero <= khugepaged_max_ptes_none) {
1262 continue;
1263 } else {
1264 result = SCAN_EXCEED_NONE_PTE;
1265 goto out_unmap;
1268 if (!pte_present(pteval)) {
1269 result = SCAN_PTE_NON_PRESENT;
1270 goto out_unmap;
1272 if (pte_uffd_wp(pteval)) {
1274 * Don't collapse the page if any of the small
1275 * PTEs are armed with uffd write protection.
1276 * Here we can also mark the new huge pmd as
1277 * write protected if any of the small ones is
1278 * marked but that could bring unknown
1279 * userfault messages that falls outside of
1280 * the registered range. So, just be simple.
1282 result = SCAN_PTE_UFFD_WP;
1283 goto out_unmap;
1285 if (pte_write(pteval))
1286 writable = true;
1288 page = vm_normal_page(vma, _address, pteval);
1289 if (unlikely(!page)) {
1290 result = SCAN_PAGE_NULL;
1291 goto out_unmap;
1294 if (page_mapcount(page) > 1 &&
1295 ++shared > khugepaged_max_ptes_shared) {
1296 result = SCAN_EXCEED_SHARED_PTE;
1297 goto out_unmap;
1300 page = compound_head(page);
1303 * Record which node the original page is from and save this
1304 * information to khugepaged_node_load[].
1305 * Khupaged will allocate hugepage from the node has the max
1306 * hit record.
1308 node = page_to_nid(page);
1309 if (khugepaged_scan_abort(node)) {
1310 result = SCAN_SCAN_ABORT;
1311 goto out_unmap;
1313 khugepaged_node_load[node]++;
1314 if (!PageLRU(page)) {
1315 result = SCAN_PAGE_LRU;
1316 goto out_unmap;
1318 if (PageLocked(page)) {
1319 result = SCAN_PAGE_LOCK;
1320 goto out_unmap;
1322 if (!PageAnon(page)) {
1323 result = SCAN_PAGE_ANON;
1324 goto out_unmap;
1328 * Check if the page has any GUP (or other external) pins.
1330 * Here the check is racy it may see totmal_mapcount > refcount
1331 * in some cases.
1332 * For example, one process with one forked child process.
1333 * The parent has the PMD split due to MADV_DONTNEED, then
1334 * the child is trying unmap the whole PMD, but khugepaged
1335 * may be scanning the parent between the child has
1336 * PageDoubleMap flag cleared and dec the mapcount. So
1337 * khugepaged may see total_mapcount > refcount.
1339 * But such case is ephemeral we could always retry collapse
1340 * later. However it may report false positive if the page
1341 * has excessive GUP pins (i.e. 512). Anyway the same check
1342 * will be done again later the risk seems low.
1344 if (!is_refcount_suitable(page)) {
1345 result = SCAN_PAGE_COUNT;
1346 goto out_unmap;
1348 if (pte_young(pteval) ||
1349 page_is_young(page) || PageReferenced(page) ||
1350 mmu_notifier_test_young(vma->vm_mm, address))
1351 referenced++;
1353 if (!writable) {
1354 result = SCAN_PAGE_RO;
1355 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1356 result = SCAN_LACK_REFERENCED_PAGE;
1357 } else {
1358 result = SCAN_SUCCEED;
1359 ret = 1;
1361 out_unmap:
1362 pte_unmap_unlock(pte, ptl);
1363 if (ret) {
1364 node = khugepaged_find_target_node();
1365 /* collapse_huge_page will return with the mmap_lock released */
1366 collapse_huge_page(mm, address, hpage, node,
1367 referenced, unmapped);
1369 out:
1370 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1371 none_or_zero, result, unmapped);
1372 return ret;
1375 static void collect_mm_slot(struct mm_slot *mm_slot)
1377 struct mm_struct *mm = mm_slot->mm;
1379 lockdep_assert_held(&khugepaged_mm_lock);
1381 if (khugepaged_test_exit(mm)) {
1382 /* free mm_slot */
1383 hash_del(&mm_slot->hash);
1384 list_del(&mm_slot->mm_node);
1387 * Not strictly needed because the mm exited already.
1389 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1392 /* khugepaged_mm_lock actually not necessary for the below */
1393 free_mm_slot(mm_slot);
1394 mmdrop(mm);
1398 #ifdef CONFIG_SHMEM
1400 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1401 * khugepaged should try to collapse the page table.
1403 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1404 unsigned long addr)
1406 struct mm_slot *mm_slot;
1408 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1410 spin_lock(&khugepaged_mm_lock);
1411 mm_slot = get_mm_slot(mm);
1412 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1413 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1414 spin_unlock(&khugepaged_mm_lock);
1415 return 0;
1419 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1420 * address haddr.
1422 * @mm: process address space where collapse happens
1423 * @addr: THP collapse address
1425 * This function checks whether all the PTEs in the PMD are pointing to the
1426 * right THP. If so, retract the page table so the THP can refault in with
1427 * as pmd-mapped.
1429 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1431 unsigned long haddr = addr & HPAGE_PMD_MASK;
1432 struct vm_area_struct *vma = find_vma(mm, haddr);
1433 struct page *hpage;
1434 pte_t *start_pte, *pte;
1435 pmd_t *pmd, _pmd;
1436 spinlock_t *ptl;
1437 int count = 0;
1438 int i;
1440 if (!vma || !vma->vm_file ||
1441 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1442 return;
1445 * This vm_flags may not have VM_HUGEPAGE if the page was not
1446 * collapsed by this mm. But we can still collapse if the page is
1447 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1448 * will not fail the vma for missing VM_HUGEPAGE
1450 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1451 return;
1453 hpage = find_lock_page(vma->vm_file->f_mapping,
1454 linear_page_index(vma, haddr));
1455 if (!hpage)
1456 return;
1458 if (!PageHead(hpage))
1459 goto drop_hpage;
1461 pmd = mm_find_pmd(mm, haddr);
1462 if (!pmd)
1463 goto drop_hpage;
1465 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1467 /* step 1: check all mapped PTEs are to the right huge page */
1468 for (i = 0, addr = haddr, pte = start_pte;
1469 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1470 struct page *page;
1472 /* empty pte, skip */
1473 if (pte_none(*pte))
1474 continue;
1476 /* page swapped out, abort */
1477 if (!pte_present(*pte))
1478 goto abort;
1480 page = vm_normal_page(vma, addr, *pte);
1483 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1484 * page table, but the new page will not be a subpage of hpage.
1486 if (hpage + i != page)
1487 goto abort;
1488 count++;
1491 /* step 2: adjust rmap */
1492 for (i = 0, addr = haddr, pte = start_pte;
1493 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1494 struct page *page;
1496 if (pte_none(*pte))
1497 continue;
1498 page = vm_normal_page(vma, addr, *pte);
1499 page_remove_rmap(page, false);
1502 pte_unmap_unlock(start_pte, ptl);
1504 /* step 3: set proper refcount and mm_counters. */
1505 if (count) {
1506 page_ref_sub(hpage, count);
1507 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1510 /* step 4: collapse pmd */
1511 ptl = pmd_lock(vma->vm_mm, pmd);
1512 _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1513 spin_unlock(ptl);
1514 mm_dec_nr_ptes(mm);
1515 pte_free(mm, pmd_pgtable(_pmd));
1517 drop_hpage:
1518 unlock_page(hpage);
1519 put_page(hpage);
1520 return;
1522 abort:
1523 pte_unmap_unlock(start_pte, ptl);
1524 goto drop_hpage;
1527 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1529 struct mm_struct *mm = mm_slot->mm;
1530 int i;
1532 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1533 return 0;
1535 if (!mmap_write_trylock(mm))
1536 return -EBUSY;
1538 if (unlikely(khugepaged_test_exit(mm)))
1539 goto out;
1541 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1542 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1544 out:
1545 mm_slot->nr_pte_mapped_thp = 0;
1546 mmap_write_unlock(mm);
1547 return 0;
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1552 struct vm_area_struct *vma;
1553 struct mm_struct *mm;
1554 unsigned long addr;
1555 pmd_t *pmd, _pmd;
1557 i_mmap_lock_write(mapping);
1558 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1560 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 * got written to. These VMAs are likely not worth investing
1562 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563 * later.
1565 * Not that vma->anon_vma check is racy: it can be set up after
1566 * the check but before we took mmap_lock by the fault path.
1567 * But page lock would prevent establishing any new ptes of the
1568 * page, so we are safe.
1570 * An alternative would be drop the check, but check that page
1571 * table is clear before calling pmdp_collapse_flush() under
1572 * ptl. It has higher chance to recover THP for the VMA, but
1573 * has higher cost too.
1575 if (vma->anon_vma)
1576 continue;
1577 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578 if (addr & ~HPAGE_PMD_MASK)
1579 continue;
1580 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581 continue;
1582 mm = vma->vm_mm;
1583 pmd = mm_find_pmd(mm, addr);
1584 if (!pmd)
1585 continue;
1587 * We need exclusive mmap_lock to retract page table.
1589 * We use trylock due to lock inversion: we need to acquire
1590 * mmap_lock while holding page lock. Fault path does it in
1591 * reverse order. Trylock is a way to avoid deadlock.
1593 if (mmap_write_trylock(mm)) {
1594 if (!khugepaged_test_exit(mm)) {
1595 spinlock_t *ptl = pmd_lock(mm, pmd);
1596 /* assume page table is clear */
1597 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1598 spin_unlock(ptl);
1599 mm_dec_nr_ptes(mm);
1600 pte_free(mm, pmd_pgtable(_pmd));
1602 mmap_write_unlock(mm);
1603 } else {
1604 /* Try again later */
1605 khugepaged_add_pte_mapped_thp(mm, addr);
1608 i_mmap_unlock_write(mapping);
1612 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1614 * @mm: process address space where collapse happens
1615 * @file: file that collapse on
1616 * @start: collapse start address
1617 * @hpage: new allocated huge page for collapse
1618 * @node: appointed node the new huge page allocate from
1620 * Basic scheme is simple, details are more complex:
1621 * - allocate and lock a new huge page;
1622 * - scan page cache replacing old pages with the new one
1623 * + swap/gup in pages if necessary;
1624 * + fill in gaps;
1625 * + keep old pages around in case rollback is required;
1626 * - if replacing succeeds:
1627 * + copy data over;
1628 * + free old pages;
1629 * + unlock huge page;
1630 * - if replacing failed;
1631 * + put all pages back and unfreeze them;
1632 * + restore gaps in the page cache;
1633 * + unlock and free huge page;
1635 static void collapse_file(struct mm_struct *mm,
1636 struct file *file, pgoff_t start,
1637 struct page **hpage, int node)
1639 struct address_space *mapping = file->f_mapping;
1640 gfp_t gfp;
1641 struct page *new_page;
1642 pgoff_t index, end = start + HPAGE_PMD_NR;
1643 LIST_HEAD(pagelist);
1644 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645 int nr_none = 0, result = SCAN_SUCCEED;
1646 bool is_shmem = shmem_file(file);
1648 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1649 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1651 /* Only allocate from the target node */
1652 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1654 new_page = khugepaged_alloc_page(hpage, gfp, node);
1655 if (!new_page) {
1656 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1657 goto out;
1660 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1661 result = SCAN_CGROUP_CHARGE_FAIL;
1662 goto out;
1664 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1666 /* This will be less messy when we use multi-index entries */
1667 do {
1668 xas_lock_irq(&xas);
1669 xas_create_range(&xas);
1670 if (!xas_error(&xas))
1671 break;
1672 xas_unlock_irq(&xas);
1673 if (!xas_nomem(&xas, GFP_KERNEL)) {
1674 result = SCAN_FAIL;
1675 goto out;
1677 } while (1);
1679 __SetPageLocked(new_page);
1680 if (is_shmem)
1681 __SetPageSwapBacked(new_page);
1682 new_page->index = start;
1683 new_page->mapping = mapping;
1686 * At this point the new_page is locked and not up-to-date.
1687 * It's safe to insert it into the page cache, because nobody would
1688 * be able to map it or use it in another way until we unlock it.
1691 xas_set(&xas, start);
1692 for (index = start; index < end; index++) {
1693 struct page *page = xas_next(&xas);
1695 VM_BUG_ON(index != xas.xa_index);
1696 if (is_shmem) {
1697 if (!page) {
1699 * Stop if extent has been truncated or
1700 * hole-punched, and is now completely
1701 * empty.
1703 if (index == start) {
1704 if (!xas_next_entry(&xas, end - 1)) {
1705 result = SCAN_TRUNCATED;
1706 goto xa_locked;
1708 xas_set(&xas, index);
1710 if (!shmem_charge(mapping->host, 1)) {
1711 result = SCAN_FAIL;
1712 goto xa_locked;
1714 xas_store(&xas, new_page);
1715 nr_none++;
1716 continue;
1719 if (xa_is_value(page) || !PageUptodate(page)) {
1720 xas_unlock_irq(&xas);
1721 /* swap in or instantiate fallocated page */
1722 if (shmem_getpage(mapping->host, index, &page,
1723 SGP_NOHUGE)) {
1724 result = SCAN_FAIL;
1725 goto xa_unlocked;
1727 } else if (trylock_page(page)) {
1728 get_page(page);
1729 xas_unlock_irq(&xas);
1730 } else {
1731 result = SCAN_PAGE_LOCK;
1732 goto xa_locked;
1734 } else { /* !is_shmem */
1735 if (!page || xa_is_value(page)) {
1736 xas_unlock_irq(&xas);
1737 page_cache_sync_readahead(mapping, &file->f_ra,
1738 file, index,
1739 end - index);
1740 /* drain pagevecs to help isolate_lru_page() */
1741 lru_add_drain();
1742 page = find_lock_page(mapping, index);
1743 if (unlikely(page == NULL)) {
1744 result = SCAN_FAIL;
1745 goto xa_unlocked;
1747 } else if (PageDirty(page)) {
1749 * khugepaged only works on read-only fd,
1750 * so this page is dirty because it hasn't
1751 * been flushed since first write. There
1752 * won't be new dirty pages.
1754 * Trigger async flush here and hope the
1755 * writeback is done when khugepaged
1756 * revisits this page.
1758 * This is a one-off situation. We are not
1759 * forcing writeback in loop.
1761 xas_unlock_irq(&xas);
1762 filemap_flush(mapping);
1763 result = SCAN_FAIL;
1764 goto xa_unlocked;
1765 } else if (trylock_page(page)) {
1766 get_page(page);
1767 xas_unlock_irq(&xas);
1768 } else {
1769 result = SCAN_PAGE_LOCK;
1770 goto xa_locked;
1775 * The page must be locked, so we can drop the i_pages lock
1776 * without racing with truncate.
1778 VM_BUG_ON_PAGE(!PageLocked(page), page);
1780 /* make sure the page is up to date */
1781 if (unlikely(!PageUptodate(page))) {
1782 result = SCAN_FAIL;
1783 goto out_unlock;
1787 * If file was truncated then extended, or hole-punched, before
1788 * we locked the first page, then a THP might be there already.
1790 if (PageTransCompound(page)) {
1791 result = SCAN_PAGE_COMPOUND;
1792 goto out_unlock;
1795 if (page_mapping(page) != mapping) {
1796 result = SCAN_TRUNCATED;
1797 goto out_unlock;
1800 if (!is_shmem && PageDirty(page)) {
1802 * khugepaged only works on read-only fd, so this
1803 * page is dirty because it hasn't been flushed
1804 * since first write.
1806 result = SCAN_FAIL;
1807 goto out_unlock;
1810 if (isolate_lru_page(page)) {
1811 result = SCAN_DEL_PAGE_LRU;
1812 goto out_unlock;
1815 if (page_has_private(page) &&
1816 !try_to_release_page(page, GFP_KERNEL)) {
1817 result = SCAN_PAGE_HAS_PRIVATE;
1818 putback_lru_page(page);
1819 goto out_unlock;
1822 if (page_mapped(page))
1823 unmap_mapping_pages(mapping, index, 1, false);
1825 xas_lock_irq(&xas);
1826 xas_set(&xas, index);
1828 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1829 VM_BUG_ON_PAGE(page_mapped(page), page);
1832 * The page is expected to have page_count() == 3:
1833 * - we hold a pin on it;
1834 * - one reference from page cache;
1835 * - one from isolate_lru_page;
1837 if (!page_ref_freeze(page, 3)) {
1838 result = SCAN_PAGE_COUNT;
1839 xas_unlock_irq(&xas);
1840 putback_lru_page(page);
1841 goto out_unlock;
1845 * Add the page to the list to be able to undo the collapse if
1846 * something go wrong.
1848 list_add_tail(&page->lru, &pagelist);
1850 /* Finally, replace with the new page. */
1851 xas_store(&xas, new_page);
1852 continue;
1853 out_unlock:
1854 unlock_page(page);
1855 put_page(page);
1856 goto xa_unlocked;
1859 if (is_shmem)
1860 __inc_lruvec_page_state(new_page, NR_SHMEM_THPS);
1861 else {
1862 __inc_lruvec_page_state(new_page, NR_FILE_THPS);
1863 filemap_nr_thps_inc(mapping);
1866 if (nr_none) {
1867 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1868 if (is_shmem)
1869 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1872 xa_locked:
1873 xas_unlock_irq(&xas);
1874 xa_unlocked:
1876 if (result == SCAN_SUCCEED) {
1877 struct page *page, *tmp;
1880 * Replacing old pages with new one has succeeded, now we
1881 * need to copy the content and free the old pages.
1883 index = start;
1884 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1885 while (index < page->index) {
1886 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1887 index++;
1889 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1890 page);
1891 list_del(&page->lru);
1892 page->mapping = NULL;
1893 page_ref_unfreeze(page, 1);
1894 ClearPageActive(page);
1895 ClearPageUnevictable(page);
1896 unlock_page(page);
1897 put_page(page);
1898 index++;
1900 while (index < end) {
1901 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1902 index++;
1905 SetPageUptodate(new_page);
1906 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1907 if (is_shmem)
1908 set_page_dirty(new_page);
1909 lru_cache_add(new_page);
1912 * Remove pte page tables, so we can re-fault the page as huge.
1914 retract_page_tables(mapping, start);
1915 *hpage = NULL;
1917 khugepaged_pages_collapsed++;
1918 } else {
1919 struct page *page;
1921 /* Something went wrong: roll back page cache changes */
1922 xas_lock_irq(&xas);
1923 mapping->nrpages -= nr_none;
1925 if (is_shmem)
1926 shmem_uncharge(mapping->host, nr_none);
1928 xas_set(&xas, start);
1929 xas_for_each(&xas, page, end - 1) {
1930 page = list_first_entry_or_null(&pagelist,
1931 struct page, lru);
1932 if (!page || xas.xa_index < page->index) {
1933 if (!nr_none)
1934 break;
1935 nr_none--;
1936 /* Put holes back where they were */
1937 xas_store(&xas, NULL);
1938 continue;
1941 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1943 /* Unfreeze the page. */
1944 list_del(&page->lru);
1945 page_ref_unfreeze(page, 2);
1946 xas_store(&xas, page);
1947 xas_pause(&xas);
1948 xas_unlock_irq(&xas);
1949 unlock_page(page);
1950 putback_lru_page(page);
1951 xas_lock_irq(&xas);
1953 VM_BUG_ON(nr_none);
1954 xas_unlock_irq(&xas);
1956 new_page->mapping = NULL;
1959 unlock_page(new_page);
1960 out:
1961 VM_BUG_ON(!list_empty(&pagelist));
1962 if (!IS_ERR_OR_NULL(*hpage))
1963 mem_cgroup_uncharge(*hpage);
1964 /* TODO: tracepoints */
1967 static void khugepaged_scan_file(struct mm_struct *mm,
1968 struct file *file, pgoff_t start, struct page **hpage)
1970 struct page *page = NULL;
1971 struct address_space *mapping = file->f_mapping;
1972 XA_STATE(xas, &mapping->i_pages, start);
1973 int present, swap;
1974 int node = NUMA_NO_NODE;
1975 int result = SCAN_SUCCEED;
1977 present = 0;
1978 swap = 0;
1979 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1980 rcu_read_lock();
1981 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1982 if (xas_retry(&xas, page))
1983 continue;
1985 if (xa_is_value(page)) {
1986 if (++swap > khugepaged_max_ptes_swap) {
1987 result = SCAN_EXCEED_SWAP_PTE;
1988 break;
1990 continue;
1993 if (PageTransCompound(page)) {
1994 result = SCAN_PAGE_COMPOUND;
1995 break;
1998 node = page_to_nid(page);
1999 if (khugepaged_scan_abort(node)) {
2000 result = SCAN_SCAN_ABORT;
2001 break;
2003 khugepaged_node_load[node]++;
2005 if (!PageLRU(page)) {
2006 result = SCAN_PAGE_LRU;
2007 break;
2010 if (page_count(page) !=
2011 1 + page_mapcount(page) + page_has_private(page)) {
2012 result = SCAN_PAGE_COUNT;
2013 break;
2017 * We probably should check if the page is referenced here, but
2018 * nobody would transfer pte_young() to PageReferenced() for us.
2019 * And rmap walk here is just too costly...
2022 present++;
2024 if (need_resched()) {
2025 xas_pause(&xas);
2026 cond_resched_rcu();
2029 rcu_read_unlock();
2031 if (result == SCAN_SUCCEED) {
2032 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2033 result = SCAN_EXCEED_NONE_PTE;
2034 } else {
2035 node = khugepaged_find_target_node();
2036 collapse_file(mm, file, start, hpage, node);
2040 /* TODO: tracepoints */
2042 #else
2043 static void khugepaged_scan_file(struct mm_struct *mm,
2044 struct file *file, pgoff_t start, struct page **hpage)
2046 BUILD_BUG();
2049 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2051 return 0;
2053 #endif
2055 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2056 struct page **hpage)
2057 __releases(&khugepaged_mm_lock)
2058 __acquires(&khugepaged_mm_lock)
2060 struct mm_slot *mm_slot;
2061 struct mm_struct *mm;
2062 struct vm_area_struct *vma;
2063 int progress = 0;
2065 VM_BUG_ON(!pages);
2066 lockdep_assert_held(&khugepaged_mm_lock);
2068 if (khugepaged_scan.mm_slot)
2069 mm_slot = khugepaged_scan.mm_slot;
2070 else {
2071 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2072 struct mm_slot, mm_node);
2073 khugepaged_scan.address = 0;
2074 khugepaged_scan.mm_slot = mm_slot;
2076 spin_unlock(&khugepaged_mm_lock);
2077 khugepaged_collapse_pte_mapped_thps(mm_slot);
2079 mm = mm_slot->mm;
2081 * Don't wait for semaphore (to avoid long wait times). Just move to
2082 * the next mm on the list.
2084 vma = NULL;
2085 if (unlikely(!mmap_read_trylock(mm)))
2086 goto breakouterloop_mmap_lock;
2087 if (likely(!khugepaged_test_exit(mm)))
2088 vma = find_vma(mm, khugepaged_scan.address);
2090 progress++;
2091 for (; vma; vma = vma->vm_next) {
2092 unsigned long hstart, hend;
2094 cond_resched();
2095 if (unlikely(khugepaged_test_exit(mm))) {
2096 progress++;
2097 break;
2099 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2100 skip:
2101 progress++;
2102 continue;
2104 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105 hend = vma->vm_end & HPAGE_PMD_MASK;
2106 if (hstart >= hend)
2107 goto skip;
2108 if (khugepaged_scan.address > hend)
2109 goto skip;
2110 if (khugepaged_scan.address < hstart)
2111 khugepaged_scan.address = hstart;
2112 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2113 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2114 goto skip;
2116 while (khugepaged_scan.address < hend) {
2117 int ret;
2118 cond_resched();
2119 if (unlikely(khugepaged_test_exit(mm)))
2120 goto breakouterloop;
2122 VM_BUG_ON(khugepaged_scan.address < hstart ||
2123 khugepaged_scan.address + HPAGE_PMD_SIZE >
2124 hend);
2125 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2126 struct file *file = get_file(vma->vm_file);
2127 pgoff_t pgoff = linear_page_index(vma,
2128 khugepaged_scan.address);
2130 mmap_read_unlock(mm);
2131 ret = 1;
2132 khugepaged_scan_file(mm, file, pgoff, hpage);
2133 fput(file);
2134 } else {
2135 ret = khugepaged_scan_pmd(mm, vma,
2136 khugepaged_scan.address,
2137 hpage);
2139 /* move to next address */
2140 khugepaged_scan.address += HPAGE_PMD_SIZE;
2141 progress += HPAGE_PMD_NR;
2142 if (ret)
2143 /* we released mmap_lock so break loop */
2144 goto breakouterloop_mmap_lock;
2145 if (progress >= pages)
2146 goto breakouterloop;
2149 breakouterloop:
2150 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2151 breakouterloop_mmap_lock:
2153 spin_lock(&khugepaged_mm_lock);
2154 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2156 * Release the current mm_slot if this mm is about to die, or
2157 * if we scanned all vmas of this mm.
2159 if (khugepaged_test_exit(mm) || !vma) {
2161 * Make sure that if mm_users is reaching zero while
2162 * khugepaged runs here, khugepaged_exit will find
2163 * mm_slot not pointing to the exiting mm.
2165 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2166 khugepaged_scan.mm_slot = list_entry(
2167 mm_slot->mm_node.next,
2168 struct mm_slot, mm_node);
2169 khugepaged_scan.address = 0;
2170 } else {
2171 khugepaged_scan.mm_slot = NULL;
2172 khugepaged_full_scans++;
2175 collect_mm_slot(mm_slot);
2178 return progress;
2181 static int khugepaged_has_work(void)
2183 return !list_empty(&khugepaged_scan.mm_head) &&
2184 khugepaged_enabled();
2187 static int khugepaged_wait_event(void)
2189 return !list_empty(&khugepaged_scan.mm_head) ||
2190 kthread_should_stop();
2193 static void khugepaged_do_scan(void)
2195 struct page *hpage = NULL;
2196 unsigned int progress = 0, pass_through_head = 0;
2197 unsigned int pages = khugepaged_pages_to_scan;
2198 bool wait = true;
2200 barrier(); /* write khugepaged_pages_to_scan to local stack */
2202 lru_add_drain_all();
2204 while (progress < pages) {
2205 if (!khugepaged_prealloc_page(&hpage, &wait))
2206 break;
2208 cond_resched();
2210 if (unlikely(kthread_should_stop() || try_to_freeze()))
2211 break;
2213 spin_lock(&khugepaged_mm_lock);
2214 if (!khugepaged_scan.mm_slot)
2215 pass_through_head++;
2216 if (khugepaged_has_work() &&
2217 pass_through_head < 2)
2218 progress += khugepaged_scan_mm_slot(pages - progress,
2219 &hpage);
2220 else
2221 progress = pages;
2222 spin_unlock(&khugepaged_mm_lock);
2225 if (!IS_ERR_OR_NULL(hpage))
2226 put_page(hpage);
2229 static bool khugepaged_should_wakeup(void)
2231 return kthread_should_stop() ||
2232 time_after_eq(jiffies, khugepaged_sleep_expire);
2235 static void khugepaged_wait_work(void)
2237 if (khugepaged_has_work()) {
2238 const unsigned long scan_sleep_jiffies =
2239 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2241 if (!scan_sleep_jiffies)
2242 return;
2244 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2245 wait_event_freezable_timeout(khugepaged_wait,
2246 khugepaged_should_wakeup(),
2247 scan_sleep_jiffies);
2248 return;
2251 if (khugepaged_enabled())
2252 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2255 static int khugepaged(void *none)
2257 struct mm_slot *mm_slot;
2259 set_freezable();
2260 set_user_nice(current, MAX_NICE);
2262 while (!kthread_should_stop()) {
2263 khugepaged_do_scan();
2264 khugepaged_wait_work();
2267 spin_lock(&khugepaged_mm_lock);
2268 mm_slot = khugepaged_scan.mm_slot;
2269 khugepaged_scan.mm_slot = NULL;
2270 if (mm_slot)
2271 collect_mm_slot(mm_slot);
2272 spin_unlock(&khugepaged_mm_lock);
2273 return 0;
2276 static void set_recommended_min_free_kbytes(void)
2278 struct zone *zone;
2279 int nr_zones = 0;
2280 unsigned long recommended_min;
2282 for_each_populated_zone(zone) {
2284 * We don't need to worry about fragmentation of
2285 * ZONE_MOVABLE since it only has movable pages.
2287 if (zone_idx(zone) > gfp_zone(GFP_USER))
2288 continue;
2290 nr_zones++;
2293 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2294 recommended_min = pageblock_nr_pages * nr_zones * 2;
2297 * Make sure that on average at least two pageblocks are almost free
2298 * of another type, one for a migratetype to fall back to and a
2299 * second to avoid subsequent fallbacks of other types There are 3
2300 * MIGRATE_TYPES we care about.
2302 recommended_min += pageblock_nr_pages * nr_zones *
2303 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2305 /* don't ever allow to reserve more than 5% of the lowmem */
2306 recommended_min = min(recommended_min,
2307 (unsigned long) nr_free_buffer_pages() / 20);
2308 recommended_min <<= (PAGE_SHIFT-10);
2310 if (recommended_min > min_free_kbytes) {
2311 if (user_min_free_kbytes >= 0)
2312 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2313 min_free_kbytes, recommended_min);
2315 min_free_kbytes = recommended_min;
2317 setup_per_zone_wmarks();
2320 int start_stop_khugepaged(void)
2322 int err = 0;
2324 mutex_lock(&khugepaged_mutex);
2325 if (khugepaged_enabled()) {
2326 if (!khugepaged_thread)
2327 khugepaged_thread = kthread_run(khugepaged, NULL,
2328 "khugepaged");
2329 if (IS_ERR(khugepaged_thread)) {
2330 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2331 err = PTR_ERR(khugepaged_thread);
2332 khugepaged_thread = NULL;
2333 goto fail;
2336 if (!list_empty(&khugepaged_scan.mm_head))
2337 wake_up_interruptible(&khugepaged_wait);
2339 set_recommended_min_free_kbytes();
2340 } else if (khugepaged_thread) {
2341 kthread_stop(khugepaged_thread);
2342 khugepaged_thread = NULL;
2344 fail:
2345 mutex_unlock(&khugepaged_mutex);
2346 return err;
2349 void khugepaged_min_free_kbytes_update(void)
2351 mutex_lock(&khugepaged_mutex);
2352 if (khugepaged_enabled() && khugepaged_thread)
2353 set_recommended_min_free_kbytes();
2354 mutex_unlock(&khugepaged_mutex);