1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
9 #include <linux/capability.h>
10 #include <linux/mman.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
29 bool can_do_mlock(void)
31 if (rlimit(RLIMIT_MEMLOCK
) != 0)
33 if (capable(CAP_IPC_LOCK
))
37 EXPORT_SYMBOL(can_do_mlock
);
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
52 * the mmap_lock for read, and verify that the vma really is locked
57 * LRU accounting for clear_page_mlock()
59 void clear_page_mlock(struct page
*page
)
63 if (!TestClearPageMlocked(page
))
66 nr_pages
= thp_nr_pages(page
);
67 mod_zone_page_state(page_zone(page
), NR_MLOCK
, -nr_pages
);
68 count_vm_events(UNEVICTABLE_PGCLEARED
, nr_pages
);
70 * The previous TestClearPageMlocked() corresponds to the smp_mb()
71 * in __pagevec_lru_add_fn().
73 * See __pagevec_lru_add_fn for more explanation.
75 if (!isolate_lru_page(page
)) {
76 putback_lru_page(page
);
79 * We lost the race. the page already moved to evictable list.
81 if (PageUnevictable(page
))
82 count_vm_events(UNEVICTABLE_PGSTRANDED
, nr_pages
);
87 * Mark page as mlocked if not already.
88 * If page on LRU, isolate and putback to move to unevictable list.
90 void mlock_vma_page(struct page
*page
)
92 /* Serialize with page migration */
93 BUG_ON(!PageLocked(page
));
95 VM_BUG_ON_PAGE(PageTail(page
), page
);
96 VM_BUG_ON_PAGE(PageCompound(page
) && PageDoubleMap(page
), page
);
98 if (!TestSetPageMlocked(page
)) {
99 int nr_pages
= thp_nr_pages(page
);
101 mod_zone_page_state(page_zone(page
), NR_MLOCK
, nr_pages
);
102 count_vm_events(UNEVICTABLE_PGMLOCKED
, nr_pages
);
103 if (!isolate_lru_page(page
))
104 putback_lru_page(page
);
109 * Finish munlock after successful page isolation
111 * Page must be locked. This is a wrapper for try_to_munlock()
112 * and putback_lru_page() with munlock accounting.
114 static void __munlock_isolated_page(struct page
*page
)
117 * Optimization: if the page was mapped just once, that's our mapping
118 * and we don't need to check all the other vmas.
120 if (page_mapcount(page
) > 1)
121 try_to_munlock(page
);
123 /* Did try_to_unlock() succeed or punt? */
124 if (!PageMlocked(page
))
125 count_vm_events(UNEVICTABLE_PGMUNLOCKED
, thp_nr_pages(page
));
127 putback_lru_page(page
);
131 * Accounting for page isolation fail during munlock
133 * Performs accounting when page isolation fails in munlock. There is nothing
134 * else to do because it means some other task has already removed the page
135 * from the LRU. putback_lru_page() will take care of removing the page from
136 * the unevictable list, if necessary. vmscan [page_referenced()] will move
137 * the page back to the unevictable list if some other vma has it mlocked.
139 static void __munlock_isolation_failed(struct page
*page
)
141 int nr_pages
= thp_nr_pages(page
);
143 if (PageUnevictable(page
))
144 __count_vm_events(UNEVICTABLE_PGSTRANDED
, nr_pages
);
146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED
, nr_pages
);
150 * munlock_vma_page - munlock a vma page
151 * @page: page to be unlocked, either a normal page or THP page head
153 * returns the size of the page as a page mask (0 for normal page,
154 * HPAGE_PMD_NR - 1 for THP head page)
156 * called from munlock()/munmap() path with page supposedly on the LRU.
157 * When we munlock a page, because the vma where we found the page is being
158 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
159 * page locked so that we can leave it on the unevictable lru list and not
160 * bother vmscan with it. However, to walk the page's rmap list in
161 * try_to_munlock() we must isolate the page from the LRU. If some other
162 * task has removed the page from the LRU, we won't be able to do that.
163 * So we clear the PageMlocked as we might not get another chance. If we
164 * can't isolate the page, we leave it for putback_lru_page() and vmscan
165 * [page_referenced()/try_to_unmap()] to deal with.
167 unsigned int munlock_vma_page(struct page
*page
)
171 /* For try_to_munlock() and to serialize with page migration */
172 BUG_ON(!PageLocked(page
));
173 VM_BUG_ON_PAGE(PageTail(page
), page
);
175 if (!TestClearPageMlocked(page
)) {
176 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
180 nr_pages
= thp_nr_pages(page
);
181 mod_zone_page_state(page_zone(page
), NR_MLOCK
, -nr_pages
);
183 if (!isolate_lru_page(page
))
184 __munlock_isolated_page(page
);
186 __munlock_isolation_failed(page
);
192 * convert get_user_pages() return value to posix mlock() error
194 static int __mlock_posix_error_return(long retval
)
196 if (retval
== -EFAULT
)
198 else if (retval
== -ENOMEM
)
204 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
206 * The fast path is available only for evictable pages with single mapping.
207 * Then we can bypass the per-cpu pvec and get better performance.
208 * when mapcount > 1 we need try_to_munlock() which can fail.
209 * when !page_evictable(), we need the full redo logic of putback_lru_page to
210 * avoid leaving evictable page in unevictable list.
212 * In case of success, @page is added to @pvec and @pgrescued is incremented
213 * in case that the page was previously unevictable. @page is also unlocked.
215 static bool __putback_lru_fast_prepare(struct page
*page
, struct pagevec
*pvec
,
218 VM_BUG_ON_PAGE(PageLRU(page
), page
);
219 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
221 if (page_mapcount(page
) <= 1 && page_evictable(page
)) {
222 pagevec_add(pvec
, page
);
223 if (TestClearPageUnevictable(page
))
233 * Putback multiple evictable pages to the LRU
235 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
236 * the pages might have meanwhile become unevictable but that is OK.
238 static void __putback_lru_fast(struct pagevec
*pvec
, int pgrescued
)
240 count_vm_events(UNEVICTABLE_PGMUNLOCKED
, pagevec_count(pvec
));
242 *__pagevec_lru_add() calls release_pages() so we don't call
243 * put_page() explicitly
245 __pagevec_lru_add(pvec
);
246 count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
250 * Munlock a batch of pages from the same zone
252 * The work is split to two main phases. First phase clears the Mlocked flag
253 * and attempts to isolate the pages, all under a single zone lru lock.
254 * The second phase finishes the munlock only for pages where isolation
257 * Note that the pagevec may be modified during the process.
259 static void __munlock_pagevec(struct pagevec
*pvec
, struct zone
*zone
)
262 int nr
= pagevec_count(pvec
);
263 int delta_munlocked
= -nr
;
264 struct pagevec pvec_putback
;
265 struct lruvec
*lruvec
= NULL
;
268 pagevec_init(&pvec_putback
);
270 /* Phase 1: page isolation */
271 for (i
= 0; i
< nr
; i
++) {
272 struct page
*page
= pvec
->pages
[i
];
274 if (TestClearPageMlocked(page
)) {
276 * We already have pin from follow_page_mask()
277 * so we can spare the get_page() here.
279 if (TestClearPageLRU(page
)) {
280 lruvec
= relock_page_lruvec_irq(page
, lruvec
);
281 del_page_from_lru_list(page
, lruvec
,
285 __munlock_isolation_failed(page
);
291 * We won't be munlocking this page in the next phase
292 * but we still need to release the follow_page_mask()
293 * pin. We cannot do it under lru_lock however. If it's
294 * the last pin, __page_cache_release() would deadlock.
296 pagevec_add(&pvec_putback
, pvec
->pages
[i
]);
297 pvec
->pages
[i
] = NULL
;
300 __mod_zone_page_state(zone
, NR_MLOCK
, delta_munlocked
);
301 unlock_page_lruvec_irq(lruvec
);
302 } else if (delta_munlocked
) {
303 mod_zone_page_state(zone
, NR_MLOCK
, delta_munlocked
);
306 /* Now we can release pins of pages that we are not munlocking */
307 pagevec_release(&pvec_putback
);
309 /* Phase 2: page munlock */
310 for (i
= 0; i
< nr
; i
++) {
311 struct page
*page
= pvec
->pages
[i
];
315 if (!__putback_lru_fast_prepare(page
, &pvec_putback
,
318 * Slow path. We don't want to lose the last
319 * pin before unlock_page()
321 get_page(page
); /* for putback_lru_page() */
322 __munlock_isolated_page(page
);
324 put_page(page
); /* from follow_page_mask() */
330 * Phase 3: page putback for pages that qualified for the fast path
331 * This will also call put_page() to return pin from follow_page_mask()
333 if (pagevec_count(&pvec_putback
))
334 __putback_lru_fast(&pvec_putback
, pgrescued
);
338 * Fill up pagevec for __munlock_pagevec using pte walk
340 * The function expects that the struct page corresponding to @start address is
341 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
343 * The rest of @pvec is filled by subsequent pages within the same pmd and same
344 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
345 * pages also get pinned.
347 * Returns the address of the next page that should be scanned. This equals
348 * @start + PAGE_SIZE when no page could be added by the pte walk.
350 static unsigned long __munlock_pagevec_fill(struct pagevec
*pvec
,
351 struct vm_area_struct
*vma
, struct zone
*zone
,
352 unsigned long start
, unsigned long end
)
358 * Initialize pte walk starting at the already pinned page where we
359 * are sure that there is a pte, as it was pinned under the same
360 * mmap_lock write op.
362 pte
= get_locked_pte(vma
->vm_mm
, start
, &ptl
);
363 /* Make sure we do not cross the page table boundary */
364 end
= pgd_addr_end(start
, end
);
365 end
= p4d_addr_end(start
, end
);
366 end
= pud_addr_end(start
, end
);
367 end
= pmd_addr_end(start
, end
);
369 /* The page next to the pinned page is the first we will try to get */
371 while (start
< end
) {
372 struct page
*page
= NULL
;
374 if (pte_present(*pte
))
375 page
= vm_normal_page(vma
, start
, *pte
);
377 * Break if page could not be obtained or the page's node+zone does not
380 if (!page
|| page_zone(page
) != zone
)
384 * Do not use pagevec for PTE-mapped THP,
385 * munlock_vma_pages_range() will handle them.
387 if (PageTransCompound(page
))
392 * Increase the address that will be returned *before* the
393 * eventual break due to pvec becoming full by adding the page
396 if (pagevec_add(pvec
, page
) == 0)
399 pte_unmap_unlock(pte
, ptl
);
404 * munlock_vma_pages_range() - munlock all pages in the vma range.'
405 * @vma - vma containing range to be munlock()ed.
406 * @start - start address in @vma of the range
407 * @end - end of range in @vma.
409 * For mremap(), munmap() and exit().
411 * Called with @vma VM_LOCKED.
413 * Returns with VM_LOCKED cleared. Callers must be prepared to
416 * We don't save and restore VM_LOCKED here because pages are
417 * still on lru. In unmap path, pages might be scanned by reclaim
418 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
419 * free them. This will result in freeing mlocked pages.
421 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
422 unsigned long start
, unsigned long end
)
424 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
426 while (start
< end
) {
428 unsigned int page_mask
= 0;
429 unsigned long page_increm
;
435 * Although FOLL_DUMP is intended for get_dump_page(),
436 * it just so happens that its special treatment of the
437 * ZERO_PAGE (returning an error instead of doing get_page)
438 * suits munlock very well (and if somehow an abnormal page
439 * has sneaked into the range, we won't oops here: great).
441 page
= follow_page(vma
, start
, FOLL_GET
| FOLL_DUMP
);
443 if (page
&& !IS_ERR(page
)) {
444 if (PageTransTail(page
)) {
445 VM_BUG_ON_PAGE(PageMlocked(page
), page
);
446 put_page(page
); /* follow_page_mask() */
447 } else if (PageTransHuge(page
)) {
450 * Any THP page found by follow_page_mask() may
451 * have gotten split before reaching
452 * munlock_vma_page(), so we need to compute
453 * the page_mask here instead.
455 page_mask
= munlock_vma_page(page
);
457 put_page(page
); /* follow_page_mask() */
460 * Non-huge pages are handled in batches via
461 * pagevec. The pin from follow_page_mask()
462 * prevents them from collapsing by THP.
464 pagevec_add(&pvec
, page
);
465 zone
= page_zone(page
);
468 * Try to fill the rest of pagevec using fast
469 * pte walk. This will also update start to
470 * the next page to process. Then munlock the
473 start
= __munlock_pagevec_fill(&pvec
, vma
,
475 __munlock_pagevec(&pvec
, zone
);
479 page_increm
= 1 + page_mask
;
480 start
+= page_increm
* PAGE_SIZE
;
487 * mlock_fixup - handle mlock[all]/munlock[all] requests.
489 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
490 * munlock is a no-op. However, for some special vmas, we go ahead and
493 * For vmas that pass the filters, merge/split as appropriate.
495 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
496 unsigned long start
, unsigned long end
, vm_flags_t newflags
)
498 struct mm_struct
*mm
= vma
->vm_mm
;
502 int lock
= !!(newflags
& VM_LOCKED
);
503 vm_flags_t old_flags
= vma
->vm_flags
;
505 if (newflags
== vma
->vm_flags
|| (vma
->vm_flags
& VM_SPECIAL
) ||
506 is_vm_hugetlb_page(vma
) || vma
== get_gate_vma(current
->mm
) ||
508 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
511 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
512 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
513 vma
->vm_file
, pgoff
, vma_policy(vma
),
514 vma
->vm_userfaultfd_ctx
);
520 if (start
!= vma
->vm_start
) {
521 ret
= split_vma(mm
, vma
, start
, 1);
526 if (end
!= vma
->vm_end
) {
527 ret
= split_vma(mm
, vma
, end
, 0);
534 * Keep track of amount of locked VM.
536 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
538 nr_pages
= -nr_pages
;
539 else if (old_flags
& VM_LOCKED
)
541 mm
->locked_vm
+= nr_pages
;
544 * vm_flags is protected by the mmap_lock held in write mode.
545 * It's okay if try_to_unmap_one unmaps a page just after we
546 * set VM_LOCKED, populate_vma_page_range will bring it back.
550 vma
->vm_flags
= newflags
;
552 munlock_vma_pages_range(vma
, start
, end
);
559 static int apply_vma_lock_flags(unsigned long start
, size_t len
,
562 unsigned long nstart
, end
, tmp
;
563 struct vm_area_struct
* vma
, * prev
;
566 VM_BUG_ON(offset_in_page(start
));
567 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
573 vma
= find_vma(current
->mm
, start
);
574 if (!vma
|| vma
->vm_start
> start
)
578 if (start
> vma
->vm_start
)
581 for (nstart
= start
; ; ) {
582 vm_flags_t newflags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
586 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
590 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
594 if (nstart
< prev
->vm_end
)
595 nstart
= prev
->vm_end
;
600 if (!vma
|| vma
->vm_start
!= nstart
) {
609 * Go through vma areas and sum size of mlocked
610 * vma pages, as return value.
611 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
613 * Return value: previously mlocked page counts
615 static unsigned long count_mm_mlocked_page_nr(struct mm_struct
*mm
,
616 unsigned long start
, size_t len
)
618 struct vm_area_struct
*vma
;
619 unsigned long count
= 0;
624 vma
= find_vma(mm
, start
);
628 for (; vma
; vma
= vma
->vm_next
) {
629 if (start
>= vma
->vm_end
)
631 if (start
+ len
<= vma
->vm_start
)
633 if (vma
->vm_flags
& VM_LOCKED
) {
634 if (start
> vma
->vm_start
)
635 count
-= (start
- vma
->vm_start
);
636 if (start
+ len
< vma
->vm_end
) {
637 count
+= start
+ len
- vma
->vm_start
;
640 count
+= vma
->vm_end
- vma
->vm_start
;
644 return count
>> PAGE_SHIFT
;
647 static __must_check
int do_mlock(unsigned long start
, size_t len
, vm_flags_t flags
)
649 unsigned long locked
;
650 unsigned long lock_limit
;
653 start
= untagged_addr(start
);
658 len
= PAGE_ALIGN(len
+ (offset_in_page(start
)));
661 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
662 lock_limit
>>= PAGE_SHIFT
;
663 locked
= len
>> PAGE_SHIFT
;
665 if (mmap_write_lock_killable(current
->mm
))
668 locked
+= current
->mm
->locked_vm
;
669 if ((locked
> lock_limit
) && (!capable(CAP_IPC_LOCK
))) {
671 * It is possible that the regions requested intersect with
672 * previously mlocked areas, that part area in "mm->locked_vm"
673 * should not be counted to new mlock increment count. So check
674 * and adjust locked count if necessary.
676 locked
-= count_mm_mlocked_page_nr(current
->mm
,
680 /* check against resource limits */
681 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
682 error
= apply_vma_lock_flags(start
, len
, flags
);
684 mmap_write_unlock(current
->mm
);
688 error
= __mm_populate(start
, len
, 0);
690 return __mlock_posix_error_return(error
);
694 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
696 return do_mlock(start
, len
, VM_LOCKED
);
699 SYSCALL_DEFINE3(mlock2
, unsigned long, start
, size_t, len
, int, flags
)
701 vm_flags_t vm_flags
= VM_LOCKED
;
703 if (flags
& ~MLOCK_ONFAULT
)
706 if (flags
& MLOCK_ONFAULT
)
707 vm_flags
|= VM_LOCKONFAULT
;
709 return do_mlock(start
, len
, vm_flags
);
712 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
716 start
= untagged_addr(start
);
718 len
= PAGE_ALIGN(len
+ (offset_in_page(start
)));
721 if (mmap_write_lock_killable(current
->mm
))
723 ret
= apply_vma_lock_flags(start
, len
, 0);
724 mmap_write_unlock(current
->mm
);
730 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
731 * and translate into the appropriate modifications to mm->def_flags and/or the
732 * flags for all current VMAs.
734 * There are a couple of subtleties with this. If mlockall() is called multiple
735 * times with different flags, the values do not necessarily stack. If mlockall
736 * is called once including the MCL_FUTURE flag and then a second time without
737 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
739 static int apply_mlockall_flags(int flags
)
741 struct vm_area_struct
* vma
, * prev
= NULL
;
742 vm_flags_t to_add
= 0;
744 current
->mm
->def_flags
&= VM_LOCKED_CLEAR_MASK
;
745 if (flags
& MCL_FUTURE
) {
746 current
->mm
->def_flags
|= VM_LOCKED
;
748 if (flags
& MCL_ONFAULT
)
749 current
->mm
->def_flags
|= VM_LOCKONFAULT
;
751 if (!(flags
& MCL_CURRENT
))
755 if (flags
& MCL_CURRENT
) {
757 if (flags
& MCL_ONFAULT
)
758 to_add
|= VM_LOCKONFAULT
;
761 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
764 newflags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
768 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
775 SYSCALL_DEFINE1(mlockall
, int, flags
)
777 unsigned long lock_limit
;
780 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
| MCL_ONFAULT
)) ||
781 flags
== MCL_ONFAULT
)
787 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
788 lock_limit
>>= PAGE_SHIFT
;
790 if (mmap_write_lock_killable(current
->mm
))
794 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
795 capable(CAP_IPC_LOCK
))
796 ret
= apply_mlockall_flags(flags
);
797 mmap_write_unlock(current
->mm
);
798 if (!ret
&& (flags
& MCL_CURRENT
))
799 mm_populate(0, TASK_SIZE
);
804 SYSCALL_DEFINE0(munlockall
)
808 if (mmap_write_lock_killable(current
->mm
))
810 ret
= apply_mlockall_flags(0);
811 mmap_write_unlock(current
->mm
);
816 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
817 * shm segments) get accounted against the user_struct instead.
819 static DEFINE_SPINLOCK(shmlock_user_lock
);
821 int user_shm_lock(size_t size
, struct user_struct
*user
)
823 unsigned long lock_limit
, locked
;
826 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
827 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
828 if (lock_limit
== RLIM_INFINITY
)
830 lock_limit
>>= PAGE_SHIFT
;
831 spin_lock(&shmlock_user_lock
);
833 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
836 user
->locked_shm
+= locked
;
839 spin_unlock(&shmlock_user_lock
);
843 void user_shm_unlock(size_t size
, struct user_struct
*user
)
845 spin_lock(&shmlock_user_lock
);
846 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
847 spin_unlock(&shmlock_user_lock
);