Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / mm / oom_kill.c
blob04b19b7b5435bf9827b7139503180e0ce2da6d12
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
47 #include <asm/tlb.h>
48 #include "internal.h"
49 #include "slab.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/oom.h>
54 int sysctl_panic_on_oom;
55 int sysctl_oom_kill_allocating_task;
56 int sysctl_oom_dump_tasks = 1;
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 * and mark_oom_victim
66 DEFINE_MUTEX(oom_lock);
67 /* Serializes oom_score_adj and oom_score_adj_min updates */
68 DEFINE_MUTEX(oom_adj_mutex);
70 static inline bool is_memcg_oom(struct oom_control *oc)
72 return oc->memcg != NULL;
75 #ifdef CONFIG_NUMA
76 /**
77 * oom_cpuset_eligible() - check task eligiblity for kill
78 * @start: task struct of which task to consider
79 * @oc: pointer to struct oom_control
81 * Task eligibility is determined by whether or not a candidate task, @tsk,
82 * shares the same mempolicy nodes as current if it is bound by such a policy
83 * and whether or not it has the same set of allowed cpuset nodes.
85 * This function is assuming oom-killer context and 'current' has triggered
86 * the oom-killer.
88 static bool oom_cpuset_eligible(struct task_struct *start,
89 struct oom_control *oc)
91 struct task_struct *tsk;
92 bool ret = false;
93 const nodemask_t *mask = oc->nodemask;
95 if (is_memcg_oom(oc))
96 return true;
98 rcu_read_lock();
99 for_each_thread(start, tsk) {
100 if (mask) {
102 * If this is a mempolicy constrained oom, tsk's
103 * cpuset is irrelevant. Only return true if its
104 * mempolicy intersects current, otherwise it may be
105 * needlessly killed.
107 ret = mempolicy_nodemask_intersects(tsk, mask);
108 } else {
110 * This is not a mempolicy constrained oom, so only
111 * check the mems of tsk's cpuset.
113 ret = cpuset_mems_allowed_intersects(current, tsk);
115 if (ret)
116 break;
118 rcu_read_unlock();
120 return ret;
122 #else
123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 return true;
127 #endif /* CONFIG_NUMA */
130 * The process p may have detached its own ->mm while exiting or through
131 * kthread_use_mm(), but one or more of its subthreads may still have a valid
132 * pointer. Return p, or any of its subthreads with a valid ->mm, with
133 * task_lock() held.
135 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 struct task_struct *t;
139 rcu_read_lock();
141 for_each_thread(p, t) {
142 task_lock(t);
143 if (likely(t->mm))
144 goto found;
145 task_unlock(t);
147 t = NULL;
148 found:
149 rcu_read_unlock();
151 return t;
155 * order == -1 means the oom kill is required by sysrq, otherwise only
156 * for display purposes.
158 static inline bool is_sysrq_oom(struct oom_control *oc)
160 return oc->order == -1;
163 /* return true if the task is not adequate as candidate victim task. */
164 static bool oom_unkillable_task(struct task_struct *p)
166 if (is_global_init(p))
167 return true;
168 if (p->flags & PF_KTHREAD)
169 return true;
170 return false;
174 * Check whether unreclaimable slab amount is greater than
175 * all user memory(LRU pages).
176 * dump_unreclaimable_slab() could help in the case that
177 * oom due to too much unreclaimable slab used by kernel.
179 static bool should_dump_unreclaim_slab(void)
181 unsigned long nr_lru;
183 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
184 global_node_page_state(NR_INACTIVE_ANON) +
185 global_node_page_state(NR_ACTIVE_FILE) +
186 global_node_page_state(NR_INACTIVE_FILE) +
187 global_node_page_state(NR_ISOLATED_ANON) +
188 global_node_page_state(NR_ISOLATED_FILE) +
189 global_node_page_state(NR_UNEVICTABLE);
191 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
195 * oom_badness - heuristic function to determine which candidate task to kill
196 * @p: task struct of which task we should calculate
197 * @totalpages: total present RAM allowed for page allocation
199 * The heuristic for determining which task to kill is made to be as simple and
200 * predictable as possible. The goal is to return the highest value for the
201 * task consuming the most memory to avoid subsequent oom failures.
203 long oom_badness(struct task_struct *p, unsigned long totalpages)
205 long points;
206 long adj;
208 if (oom_unkillable_task(p))
209 return LONG_MIN;
211 p = find_lock_task_mm(p);
212 if (!p)
213 return LONG_MIN;
216 * Do not even consider tasks which are explicitly marked oom
217 * unkillable or have been already oom reaped or the are in
218 * the middle of vfork
220 adj = (long)p->signal->oom_score_adj;
221 if (adj == OOM_SCORE_ADJ_MIN ||
222 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
223 in_vfork(p)) {
224 task_unlock(p);
225 return LONG_MIN;
229 * The baseline for the badness score is the proportion of RAM that each
230 * task's rss, pagetable and swap space use.
232 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
233 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
234 task_unlock(p);
236 /* Normalize to oom_score_adj units */
237 adj *= totalpages / 1000;
238 points += adj;
240 return points;
243 static const char * const oom_constraint_text[] = {
244 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
245 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
246 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
247 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
251 * Determine the type of allocation constraint.
253 static enum oom_constraint constrained_alloc(struct oom_control *oc)
255 struct zone *zone;
256 struct zoneref *z;
257 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
258 bool cpuset_limited = false;
259 int nid;
261 if (is_memcg_oom(oc)) {
262 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
263 return CONSTRAINT_MEMCG;
266 /* Default to all available memory */
267 oc->totalpages = totalram_pages() + total_swap_pages;
269 if (!IS_ENABLED(CONFIG_NUMA))
270 return CONSTRAINT_NONE;
272 if (!oc->zonelist)
273 return CONSTRAINT_NONE;
275 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
276 * to kill current.We have to random task kill in this case.
277 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
279 if (oc->gfp_mask & __GFP_THISNODE)
280 return CONSTRAINT_NONE;
283 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
284 * the page allocator means a mempolicy is in effect. Cpuset policy
285 * is enforced in get_page_from_freelist().
287 if (oc->nodemask &&
288 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
289 oc->totalpages = total_swap_pages;
290 for_each_node_mask(nid, *oc->nodemask)
291 oc->totalpages += node_present_pages(nid);
292 return CONSTRAINT_MEMORY_POLICY;
295 /* Check this allocation failure is caused by cpuset's wall function */
296 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
297 highest_zoneidx, oc->nodemask)
298 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
299 cpuset_limited = true;
301 if (cpuset_limited) {
302 oc->totalpages = total_swap_pages;
303 for_each_node_mask(nid, cpuset_current_mems_allowed)
304 oc->totalpages += node_present_pages(nid);
305 return CONSTRAINT_CPUSET;
307 return CONSTRAINT_NONE;
310 static int oom_evaluate_task(struct task_struct *task, void *arg)
312 struct oom_control *oc = arg;
313 long points;
315 if (oom_unkillable_task(task))
316 goto next;
318 /* p may not have freeable memory in nodemask */
319 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
320 goto next;
323 * This task already has access to memory reserves and is being killed.
324 * Don't allow any other task to have access to the reserves unless
325 * the task has MMF_OOM_SKIP because chances that it would release
326 * any memory is quite low.
328 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
329 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
330 goto next;
331 goto abort;
335 * If task is allocating a lot of memory and has been marked to be
336 * killed first if it triggers an oom, then select it.
338 if (oom_task_origin(task)) {
339 points = LONG_MAX;
340 goto select;
343 points = oom_badness(task, oc->totalpages);
344 if (points == LONG_MIN || points < oc->chosen_points)
345 goto next;
347 select:
348 if (oc->chosen)
349 put_task_struct(oc->chosen);
350 get_task_struct(task);
351 oc->chosen = task;
352 oc->chosen_points = points;
353 next:
354 return 0;
355 abort:
356 if (oc->chosen)
357 put_task_struct(oc->chosen);
358 oc->chosen = (void *)-1UL;
359 return 1;
363 * Simple selection loop. We choose the process with the highest number of
364 * 'points'. In case scan was aborted, oc->chosen is set to -1.
366 static void select_bad_process(struct oom_control *oc)
368 oc->chosen_points = LONG_MIN;
370 if (is_memcg_oom(oc))
371 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
372 else {
373 struct task_struct *p;
375 rcu_read_lock();
376 for_each_process(p)
377 if (oom_evaluate_task(p, oc))
378 break;
379 rcu_read_unlock();
383 static int dump_task(struct task_struct *p, void *arg)
385 struct oom_control *oc = arg;
386 struct task_struct *task;
388 if (oom_unkillable_task(p))
389 return 0;
391 /* p may not have freeable memory in nodemask */
392 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
393 return 0;
395 task = find_lock_task_mm(p);
396 if (!task) {
398 * This is a kthread or all of p's threads have already
399 * detached their mm's. There's no need to report
400 * them; they can't be oom killed anyway.
402 return 0;
405 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
406 task->pid, from_kuid(&init_user_ns, task_uid(task)),
407 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
408 mm_pgtables_bytes(task->mm),
409 get_mm_counter(task->mm, MM_SWAPENTS),
410 task->signal->oom_score_adj, task->comm);
411 task_unlock(task);
413 return 0;
417 * dump_tasks - dump current memory state of all system tasks
418 * @oc: pointer to struct oom_control
420 * Dumps the current memory state of all eligible tasks. Tasks not in the same
421 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
422 * are not shown.
423 * State information includes task's pid, uid, tgid, vm size, rss,
424 * pgtables_bytes, swapents, oom_score_adj value, and name.
426 static void dump_tasks(struct oom_control *oc)
428 pr_info("Tasks state (memory values in pages):\n");
429 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
431 if (is_memcg_oom(oc))
432 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
433 else {
434 struct task_struct *p;
436 rcu_read_lock();
437 for_each_process(p)
438 dump_task(p, oc);
439 rcu_read_unlock();
443 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
445 /* one line summary of the oom killer context. */
446 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
447 oom_constraint_text[oc->constraint],
448 nodemask_pr_args(oc->nodemask));
449 cpuset_print_current_mems_allowed();
450 mem_cgroup_print_oom_context(oc->memcg, victim);
451 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
452 from_kuid(&init_user_ns, task_uid(victim)));
455 static void dump_header(struct oom_control *oc, struct task_struct *p)
457 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
458 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
459 current->signal->oom_score_adj);
460 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
461 pr_warn("COMPACTION is disabled!!!\n");
463 dump_stack();
464 if (is_memcg_oom(oc))
465 mem_cgroup_print_oom_meminfo(oc->memcg);
466 else {
467 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
468 if (should_dump_unreclaim_slab())
469 dump_unreclaimable_slab();
471 if (sysctl_oom_dump_tasks)
472 dump_tasks(oc);
473 if (p)
474 dump_oom_summary(oc, p);
478 * Number of OOM victims in flight
480 static atomic_t oom_victims = ATOMIC_INIT(0);
481 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
483 static bool oom_killer_disabled __read_mostly;
485 #define K(x) ((x) << (PAGE_SHIFT-10))
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
495 struct task_struct *t;
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
502 return false;
505 #ifdef CONFIG_MMU
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
515 bool __oom_reap_task_mm(struct mm_struct *mm)
517 struct vm_area_struct *vma;
518 bool ret = true;
521 * Tell all users of get_user/copy_from_user etc... that the content
522 * is no longer stable. No barriers really needed because unmapping
523 * should imply barriers already and the reader would hit a page fault
524 * if it stumbled over a reaped memory.
526 set_bit(MMF_UNSTABLE, &mm->flags);
528 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
529 if (!can_madv_lru_vma(vma))
530 continue;
533 * Only anonymous pages have a good chance to be dropped
534 * without additional steps which we cannot afford as we
535 * are OOM already.
537 * We do not even care about fs backed pages because all
538 * which are reclaimable have already been reclaimed and
539 * we do not want to block exit_mmap by keeping mm ref
540 * count elevated without a good reason.
542 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
543 struct mmu_notifier_range range;
544 struct mmu_gather tlb;
546 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
547 vma, mm, vma->vm_start,
548 vma->vm_end);
549 tlb_gather_mmu(&tlb, mm, range.start, range.end);
550 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
551 tlb_finish_mmu(&tlb, range.start, range.end);
552 ret = false;
553 continue;
555 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
556 mmu_notifier_invalidate_range_end(&range);
557 tlb_finish_mmu(&tlb, range.start, range.end);
561 return ret;
565 * Reaps the address space of the give task.
567 * Returns true on success and false if none or part of the address space
568 * has been reclaimed and the caller should retry later.
570 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
572 bool ret = true;
574 if (!mmap_read_trylock(mm)) {
575 trace_skip_task_reaping(tsk->pid);
576 return false;
580 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
581 * work on the mm anymore. The check for MMF_OOM_SKIP must run
582 * under mmap_lock for reading because it serializes against the
583 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
585 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
586 trace_skip_task_reaping(tsk->pid);
587 goto out_unlock;
590 trace_start_task_reaping(tsk->pid);
592 /* failed to reap part of the address space. Try again later */
593 ret = __oom_reap_task_mm(mm);
594 if (!ret)
595 goto out_finish;
597 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
598 task_pid_nr(tsk), tsk->comm,
599 K(get_mm_counter(mm, MM_ANONPAGES)),
600 K(get_mm_counter(mm, MM_FILEPAGES)),
601 K(get_mm_counter(mm, MM_SHMEMPAGES)));
602 out_finish:
603 trace_finish_task_reaping(tsk->pid);
604 out_unlock:
605 mmap_read_unlock(mm);
607 return ret;
610 #define MAX_OOM_REAP_RETRIES 10
611 static void oom_reap_task(struct task_struct *tsk)
613 int attempts = 0;
614 struct mm_struct *mm = tsk->signal->oom_mm;
616 /* Retry the mmap_read_trylock(mm) a few times */
617 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
618 schedule_timeout_idle(HZ/10);
620 if (attempts <= MAX_OOM_REAP_RETRIES ||
621 test_bit(MMF_OOM_SKIP, &mm->flags))
622 goto done;
624 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
625 task_pid_nr(tsk), tsk->comm);
626 sched_show_task(tsk);
627 debug_show_all_locks();
629 done:
630 tsk->oom_reaper_list = NULL;
633 * Hide this mm from OOM killer because it has been either reaped or
634 * somebody can't call mmap_write_unlock(mm).
636 set_bit(MMF_OOM_SKIP, &mm->flags);
638 /* Drop a reference taken by wake_oom_reaper */
639 put_task_struct(tsk);
642 static int oom_reaper(void *unused)
644 while (true) {
645 struct task_struct *tsk = NULL;
647 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
648 spin_lock(&oom_reaper_lock);
649 if (oom_reaper_list != NULL) {
650 tsk = oom_reaper_list;
651 oom_reaper_list = tsk->oom_reaper_list;
653 spin_unlock(&oom_reaper_lock);
655 if (tsk)
656 oom_reap_task(tsk);
659 return 0;
662 static void wake_oom_reaper(struct task_struct *tsk)
664 /* mm is already queued? */
665 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
666 return;
668 get_task_struct(tsk);
670 spin_lock(&oom_reaper_lock);
671 tsk->oom_reaper_list = oom_reaper_list;
672 oom_reaper_list = tsk;
673 spin_unlock(&oom_reaper_lock);
674 trace_wake_reaper(tsk->pid);
675 wake_up(&oom_reaper_wait);
678 static int __init oom_init(void)
680 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
681 return 0;
683 subsys_initcall(oom_init)
684 #else
685 static inline void wake_oom_reaper(struct task_struct *tsk)
688 #endif /* CONFIG_MMU */
691 * mark_oom_victim - mark the given task as OOM victim
692 * @tsk: task to mark
694 * Has to be called with oom_lock held and never after
695 * oom has been disabled already.
697 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
698 * under task_lock or operate on the current).
700 static void mark_oom_victim(struct task_struct *tsk)
702 struct mm_struct *mm = tsk->mm;
704 WARN_ON(oom_killer_disabled);
705 /* OOM killer might race with memcg OOM */
706 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
707 return;
709 /* oom_mm is bound to the signal struct life time. */
710 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
711 mmgrab(tsk->signal->oom_mm);
712 set_bit(MMF_OOM_VICTIM, &mm->flags);
716 * Make sure that the task is woken up from uninterruptible sleep
717 * if it is frozen because OOM killer wouldn't be able to free
718 * any memory and livelock. freezing_slow_path will tell the freezer
719 * that TIF_MEMDIE tasks should be ignored.
721 __thaw_task(tsk);
722 atomic_inc(&oom_victims);
723 trace_mark_victim(tsk->pid);
727 * exit_oom_victim - note the exit of an OOM victim
729 void exit_oom_victim(void)
731 clear_thread_flag(TIF_MEMDIE);
733 if (!atomic_dec_return(&oom_victims))
734 wake_up_all(&oom_victims_wait);
738 * oom_killer_enable - enable OOM killer
740 void oom_killer_enable(void)
742 oom_killer_disabled = false;
743 pr_info("OOM killer enabled.\n");
747 * oom_killer_disable - disable OOM killer
748 * @timeout: maximum timeout to wait for oom victims in jiffies
750 * Forces all page allocations to fail rather than trigger OOM killer.
751 * Will block and wait until all OOM victims are killed or the given
752 * timeout expires.
754 * The function cannot be called when there are runnable user tasks because
755 * the userspace would see unexpected allocation failures as a result. Any
756 * new usage of this function should be consulted with MM people.
758 * Returns true if successful and false if the OOM killer cannot be
759 * disabled.
761 bool oom_killer_disable(signed long timeout)
763 signed long ret;
766 * Make sure to not race with an ongoing OOM killer. Check that the
767 * current is not killed (possibly due to sharing the victim's memory).
769 if (mutex_lock_killable(&oom_lock))
770 return false;
771 oom_killer_disabled = true;
772 mutex_unlock(&oom_lock);
774 ret = wait_event_interruptible_timeout(oom_victims_wait,
775 !atomic_read(&oom_victims), timeout);
776 if (ret <= 0) {
777 oom_killer_enable();
778 return false;
780 pr_info("OOM killer disabled.\n");
782 return true;
785 static inline bool __task_will_free_mem(struct task_struct *task)
787 struct signal_struct *sig = task->signal;
790 * A coredumping process may sleep for an extended period in exit_mm(),
791 * so the oom killer cannot assume that the process will promptly exit
792 * and release memory.
794 if (sig->flags & SIGNAL_GROUP_COREDUMP)
795 return false;
797 if (sig->flags & SIGNAL_GROUP_EXIT)
798 return true;
800 if (thread_group_empty(task) && (task->flags & PF_EXITING))
801 return true;
803 return false;
807 * Checks whether the given task is dying or exiting and likely to
808 * release its address space. This means that all threads and processes
809 * sharing the same mm have to be killed or exiting.
810 * Caller has to make sure that task->mm is stable (hold task_lock or
811 * it operates on the current).
813 static bool task_will_free_mem(struct task_struct *task)
815 struct mm_struct *mm = task->mm;
816 struct task_struct *p;
817 bool ret = true;
820 * Skip tasks without mm because it might have passed its exit_mm and
821 * exit_oom_victim. oom_reaper could have rescued that but do not rely
822 * on that for now. We can consider find_lock_task_mm in future.
824 if (!mm)
825 return false;
827 if (!__task_will_free_mem(task))
828 return false;
831 * This task has already been drained by the oom reaper so there are
832 * only small chances it will free some more
834 if (test_bit(MMF_OOM_SKIP, &mm->flags))
835 return false;
837 if (atomic_read(&mm->mm_users) <= 1)
838 return true;
841 * Make sure that all tasks which share the mm with the given tasks
842 * are dying as well to make sure that a) nobody pins its mm and
843 * b) the task is also reapable by the oom reaper.
845 rcu_read_lock();
846 for_each_process(p) {
847 if (!process_shares_mm(p, mm))
848 continue;
849 if (same_thread_group(task, p))
850 continue;
851 ret = __task_will_free_mem(p);
852 if (!ret)
853 break;
855 rcu_read_unlock();
857 return ret;
860 static void __oom_kill_process(struct task_struct *victim, const char *message)
862 struct task_struct *p;
863 struct mm_struct *mm;
864 bool can_oom_reap = true;
866 p = find_lock_task_mm(victim);
867 if (!p) {
868 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
869 message, task_pid_nr(victim), victim->comm);
870 put_task_struct(victim);
871 return;
872 } else if (victim != p) {
873 get_task_struct(p);
874 put_task_struct(victim);
875 victim = p;
878 /* Get a reference to safely compare mm after task_unlock(victim) */
879 mm = victim->mm;
880 mmgrab(mm);
882 /* Raise event before sending signal: task reaper must see this */
883 count_vm_event(OOM_KILL);
884 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
887 * We should send SIGKILL before granting access to memory reserves
888 * in order to prevent the OOM victim from depleting the memory
889 * reserves from the user space under its control.
891 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
892 mark_oom_victim(victim);
893 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
894 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
895 K(get_mm_counter(mm, MM_ANONPAGES)),
896 K(get_mm_counter(mm, MM_FILEPAGES)),
897 K(get_mm_counter(mm, MM_SHMEMPAGES)),
898 from_kuid(&init_user_ns, task_uid(victim)),
899 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
900 task_unlock(victim);
903 * Kill all user processes sharing victim->mm in other thread groups, if
904 * any. They don't get access to memory reserves, though, to avoid
905 * depletion of all memory. This prevents mm->mmap_lock livelock when an
906 * oom killed thread cannot exit because it requires the semaphore and
907 * its contended by another thread trying to allocate memory itself.
908 * That thread will now get access to memory reserves since it has a
909 * pending fatal signal.
911 rcu_read_lock();
912 for_each_process(p) {
913 if (!process_shares_mm(p, mm))
914 continue;
915 if (same_thread_group(p, victim))
916 continue;
917 if (is_global_init(p)) {
918 can_oom_reap = false;
919 set_bit(MMF_OOM_SKIP, &mm->flags);
920 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
921 task_pid_nr(victim), victim->comm,
922 task_pid_nr(p), p->comm);
923 continue;
926 * No kthead_use_mm() user needs to read from the userspace so
927 * we are ok to reap it.
929 if (unlikely(p->flags & PF_KTHREAD))
930 continue;
931 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
933 rcu_read_unlock();
935 if (can_oom_reap)
936 wake_oom_reaper(victim);
938 mmdrop(mm);
939 put_task_struct(victim);
941 #undef K
944 * Kill provided task unless it's secured by setting
945 * oom_score_adj to OOM_SCORE_ADJ_MIN.
947 static int oom_kill_memcg_member(struct task_struct *task, void *message)
949 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
950 !is_global_init(task)) {
951 get_task_struct(task);
952 __oom_kill_process(task, message);
954 return 0;
957 static void oom_kill_process(struct oom_control *oc, const char *message)
959 struct task_struct *victim = oc->chosen;
960 struct mem_cgroup *oom_group;
961 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
962 DEFAULT_RATELIMIT_BURST);
965 * If the task is already exiting, don't alarm the sysadmin or kill
966 * its children or threads, just give it access to memory reserves
967 * so it can die quickly
969 task_lock(victim);
970 if (task_will_free_mem(victim)) {
971 mark_oom_victim(victim);
972 wake_oom_reaper(victim);
973 task_unlock(victim);
974 put_task_struct(victim);
975 return;
977 task_unlock(victim);
979 if (__ratelimit(&oom_rs))
980 dump_header(oc, victim);
983 * Do we need to kill the entire memory cgroup?
984 * Or even one of the ancestor memory cgroups?
985 * Check this out before killing the victim task.
987 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
989 __oom_kill_process(victim, message);
992 * If necessary, kill all tasks in the selected memory cgroup.
994 if (oom_group) {
995 mem_cgroup_print_oom_group(oom_group);
996 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
997 (void*)message);
998 mem_cgroup_put(oom_group);
1003 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1005 static void check_panic_on_oom(struct oom_control *oc)
1007 if (likely(!sysctl_panic_on_oom))
1008 return;
1009 if (sysctl_panic_on_oom != 2) {
1011 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1012 * does not panic for cpuset, mempolicy, or memcg allocation
1013 * failures.
1015 if (oc->constraint != CONSTRAINT_NONE)
1016 return;
1018 /* Do not panic for oom kills triggered by sysrq */
1019 if (is_sysrq_oom(oc))
1020 return;
1021 dump_header(oc, NULL);
1022 panic("Out of memory: %s panic_on_oom is enabled\n",
1023 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1026 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1028 int register_oom_notifier(struct notifier_block *nb)
1030 return blocking_notifier_chain_register(&oom_notify_list, nb);
1032 EXPORT_SYMBOL_GPL(register_oom_notifier);
1034 int unregister_oom_notifier(struct notifier_block *nb)
1036 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1038 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1041 * out_of_memory - kill the "best" process when we run out of memory
1042 * @oc: pointer to struct oom_control
1044 * If we run out of memory, we have the choice between either
1045 * killing a random task (bad), letting the system crash (worse)
1046 * OR try to be smart about which process to kill. Note that we
1047 * don't have to be perfect here, we just have to be good.
1049 bool out_of_memory(struct oom_control *oc)
1051 unsigned long freed = 0;
1053 if (oom_killer_disabled)
1054 return false;
1056 if (!is_memcg_oom(oc)) {
1057 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1058 if (freed > 0)
1059 /* Got some memory back in the last second. */
1060 return true;
1064 * If current has a pending SIGKILL or is exiting, then automatically
1065 * select it. The goal is to allow it to allocate so that it may
1066 * quickly exit and free its memory.
1068 if (task_will_free_mem(current)) {
1069 mark_oom_victim(current);
1070 wake_oom_reaper(current);
1071 return true;
1075 * The OOM killer does not compensate for IO-less reclaim.
1076 * pagefault_out_of_memory lost its gfp context so we have to
1077 * make sure exclude 0 mask - all other users should have at least
1078 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1079 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1081 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1082 return true;
1085 * Check if there were limitations on the allocation (only relevant for
1086 * NUMA and memcg) that may require different handling.
1088 oc->constraint = constrained_alloc(oc);
1089 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1090 oc->nodemask = NULL;
1091 check_panic_on_oom(oc);
1093 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1094 current->mm && !oom_unkillable_task(current) &&
1095 oom_cpuset_eligible(current, oc) &&
1096 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1097 get_task_struct(current);
1098 oc->chosen = current;
1099 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1100 return true;
1103 select_bad_process(oc);
1104 /* Found nothing?!?! */
1105 if (!oc->chosen) {
1106 dump_header(oc, NULL);
1107 pr_warn("Out of memory and no killable processes...\n");
1109 * If we got here due to an actual allocation at the
1110 * system level, we cannot survive this and will enter
1111 * an endless loop in the allocator. Bail out now.
1113 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1114 panic("System is deadlocked on memory\n");
1116 if (oc->chosen && oc->chosen != (void *)-1UL)
1117 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1118 "Memory cgroup out of memory");
1119 return !!oc->chosen;
1123 * The pagefault handler calls here because it is out of memory, so kill a
1124 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1125 * killing is already in progress so do nothing.
1127 void pagefault_out_of_memory(void)
1129 struct oom_control oc = {
1130 .zonelist = NULL,
1131 .nodemask = NULL,
1132 .memcg = NULL,
1133 .gfp_mask = 0,
1134 .order = 0,
1137 if (mem_cgroup_oom_synchronize(true))
1138 return;
1140 if (!mutex_trylock(&oom_lock))
1141 return;
1142 out_of_memory(&oc);
1143 mutex_unlock(&oom_lock);