Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / mm / swapfile.c
blob9fffc5af29d1b9136cfe8266bcf35fa645c0f747
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
110 static inline unsigned char swap_count(unsigned char ent)
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
133 page = find_get_page(swap_address_space(entry), offset);
134 if (!page)
135 return 0;
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
143 if (trylock_page(page)) {
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
148 unlock_page(page);
150 put_page(page);
151 return ret;
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
160 static inline struct swap_extent *next_se(struct swap_extent *se)
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
170 static int discard_swap(struct swap_info_struct *si)
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
177 /* Do not discard the swap header page! */
178 se = first_se(si);
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
189 for (se = next_se(se); se; se = next_se(se)) {
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
198 cond_resched();
200 return err; /* That will often be -EOPNOTSUPP */
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 struct swap_extent *se;
207 struct rb_node *rb;
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
219 /* It *must* be present */
220 BUG();
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232 while (nr_pages) {
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
248 se = next_se(se);
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255 #define swap_entry_size(size) (size)
256 #else
257 #define SWAPFILE_CLUSTER 256
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
263 #define swap_entry_size(size) 1
264 #endif
265 #define LATENCY_LIMIT 256
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
270 info->flags = flag;
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 return info->data;
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
281 info->data = c;
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
287 info->flags = f;
288 info->data = c;
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 return info->data;
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
299 info->data = n;
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
305 info->flags = f;
306 info->data = n;
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 return info->flags & CLUSTER_FLAG_FREE;
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
319 static inline void cluster_set_null(struct swap_cluster_info *info)
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 info->flags &= ~CLUSTER_FLAG_HUGE;
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
340 struct swap_cluster_info *ci;
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
347 return ci;
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 if (ci)
353 spin_unlock(&ci->lock);
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 struct swap_info_struct *si, unsigned long offset)
363 struct swap_cluster_info *ci;
365 /* Try to use fine-grained SSD-style locking if available: */
366 ci = lock_cluster(si, offset);
367 /* Otherwise, fall back to traditional, coarse locking: */
368 if (!ci)
369 spin_lock(&si->lock);
371 return ci;
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 return cluster_is_null(&list->head);
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 return cluster_next(&list->head);
393 static void cluster_list_init(struct swap_cluster_list *list)
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
407 struct swap_cluster_info *ci_tail;
408 unsigned int tail = cluster_next(&list->tail);
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
417 spin_unlock(&ci_tail->lock);
418 cluster_set_next_flag(&list->tail, idx, 0);
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
425 unsigned int idx;
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
435 return idx;
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453 schedule_work(&si->discard_work);
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 struct swap_cluster_info *ci = si->cluster_info;
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 struct swap_cluster_info *info, *ci;
471 unsigned int idx;
473 info = si->cluster_info;
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
477 spin_unlock(&si->lock);
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
482 spin_lock(&si->lock);
483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 __free_cluster(si, idx);
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
487 unlock_cluster(ci);
491 static void swap_discard_work(struct work_struct *work)
493 struct swap_info_struct *si;
495 si = container_of(work, struct swap_info_struct, discard_work);
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 struct swap_cluster_info *ci = si->cluster_info;
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 struct swap_cluster_info *ci = si->cluster_info + idx;
515 VM_BUG_ON(cluster_count(ci) != 0);
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
527 __free_cluster(si, idx);
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539 if (!cluster_info)
540 return;
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 if (!cluster_info)
560 return;
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 unsigned long offset)
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
581 offset /= SWAPFILE_CLUSTER;
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
584 cluster_is_free(&si->cluster_info[offset]);
586 if (!conflict)
587 return false;
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 unsigned long *offset, unsigned long *scan_base)
601 struct percpu_cluster *cluster;
602 struct swap_cluster_info *ci;
603 unsigned long tmp, max;
605 new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
612 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 * we don't have free cluster but have some clusters in
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
618 swap_do_scheduled_discard(si);
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
621 goto new_cluster;
622 } else
623 return false;
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
630 tmp = cluster->next;
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
640 unlock_cluster(ci);
642 if (tmp >= max) {
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
649 return true;
652 static void __del_from_avail_list(struct swap_info_struct *p)
654 int nid;
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
660 static void del_from_avail_list(struct swap_info_struct *p)
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
670 unsigned int end = offset + nr_entries - 1;
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
680 del_from_avail_list(si);
684 static void add_to_avail_list(struct swap_info_struct *p)
686 int nid;
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693 spin_unlock(&swap_avail_lock);
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
699 unsigned long begin = offset;
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
708 WRITE_ONCE(si->highest_bit, end);
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 arch_swap_invalidate_page(si->type, offset);
721 frontswap_invalidate_page(si->type, offset);
722 if (swap_slot_free_notify)
723 swap_slot_free_notify(si->bdev, offset);
724 offset++;
726 clear_shadow_from_swap_cache(si->type, begin, end);
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
731 unsigned long prev;
733 if (!(si->flags & SWP_SOLIDSTATE)) {
734 si->cluster_next = next;
735 return;
738 prev = this_cpu_read(*si->cluster_next_cpu);
740 * Cross the swap address space size aligned trunk, choose
741 * another trunk randomly to avoid lock contention on swap
742 * address space if possible.
744 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 /* No free swap slots available */
747 if (si->highest_bit <= si->lowest_bit)
748 return;
749 next = si->lowest_bit +
750 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 next = max_t(unsigned int, next, si->lowest_bit);
754 this_cpu_write(*si->cluster_next_cpu, next);
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758 unsigned char usage, int nr,
759 swp_entry_t slots[])
761 struct swap_cluster_info *ci;
762 unsigned long offset;
763 unsigned long scan_base;
764 unsigned long last_in_cluster = 0;
765 int latency_ration = LATENCY_LIMIT;
766 int n_ret = 0;
767 bool scanned_many = false;
770 * We try to cluster swap pages by allocating them sequentially
771 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
772 * way, however, we resort to first-free allocation, starting
773 * a new cluster. This prevents us from scattering swap pages
774 * all over the entire swap partition, so that we reduce
775 * overall disk seek times between swap pages. -- sct
776 * But we do now try to find an empty cluster. -Andrea
777 * And we let swap pages go all over an SSD partition. Hugh
780 si->flags += SWP_SCANNING;
782 * Use percpu scan base for SSD to reduce lock contention on
783 * cluster and swap cache. For HDD, sequential access is more
784 * important.
786 if (si->flags & SWP_SOLIDSTATE)
787 scan_base = this_cpu_read(*si->cluster_next_cpu);
788 else
789 scan_base = si->cluster_next;
790 offset = scan_base;
792 /* SSD algorithm */
793 if (si->cluster_info) {
794 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795 goto scan;
796 } else if (unlikely(!si->cluster_nr--)) {
797 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 goto checks;
802 spin_unlock(&si->lock);
805 * If seek is expensive, start searching for new cluster from
806 * start of partition, to minimize the span of allocated swap.
807 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 * case, just handled by scan_swap_map_try_ssd_cluster() above.
810 scan_base = offset = si->lowest_bit;
811 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
813 /* Locate the first empty (unaligned) cluster */
814 for (; last_in_cluster <= si->highest_bit; offset++) {
815 if (si->swap_map[offset])
816 last_in_cluster = offset + SWAPFILE_CLUSTER;
817 else if (offset == last_in_cluster) {
818 spin_lock(&si->lock);
819 offset -= SWAPFILE_CLUSTER - 1;
820 si->cluster_next = offset;
821 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822 goto checks;
824 if (unlikely(--latency_ration < 0)) {
825 cond_resched();
826 latency_ration = LATENCY_LIMIT;
830 offset = scan_base;
831 spin_lock(&si->lock);
832 si->cluster_nr = SWAPFILE_CLUSTER - 1;
835 checks:
836 if (si->cluster_info) {
837 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 /* take a break if we already got some slots */
839 if (n_ret)
840 goto done;
841 if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 &scan_base))
843 goto scan;
846 if (!(si->flags & SWP_WRITEOK))
847 goto no_page;
848 if (!si->highest_bit)
849 goto no_page;
850 if (offset > si->highest_bit)
851 scan_base = offset = si->lowest_bit;
853 ci = lock_cluster(si, offset);
854 /* reuse swap entry of cache-only swap if not busy. */
855 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856 int swap_was_freed;
857 unlock_cluster(ci);
858 spin_unlock(&si->lock);
859 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860 spin_lock(&si->lock);
861 /* entry was freed successfully, try to use this again */
862 if (swap_was_freed)
863 goto checks;
864 goto scan; /* check next one */
867 if (si->swap_map[offset]) {
868 unlock_cluster(ci);
869 if (!n_ret)
870 goto scan;
871 else
872 goto done;
874 WRITE_ONCE(si->swap_map[offset], usage);
875 inc_cluster_info_page(si, si->cluster_info, offset);
876 unlock_cluster(ci);
878 swap_range_alloc(si, offset, 1);
879 slots[n_ret++] = swp_entry(si->type, offset);
881 /* got enough slots or reach max slots? */
882 if ((n_ret == nr) || (offset >= si->highest_bit))
883 goto done;
885 /* search for next available slot */
887 /* time to take a break? */
888 if (unlikely(--latency_ration < 0)) {
889 if (n_ret)
890 goto done;
891 spin_unlock(&si->lock);
892 cond_resched();
893 spin_lock(&si->lock);
894 latency_ration = LATENCY_LIMIT;
897 /* try to get more slots in cluster */
898 if (si->cluster_info) {
899 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 goto checks;
901 } else if (si->cluster_nr && !si->swap_map[++offset]) {
902 /* non-ssd case, still more slots in cluster? */
903 --si->cluster_nr;
904 goto checks;
908 * Even if there's no free clusters available (fragmented),
909 * try to scan a little more quickly with lock held unless we
910 * have scanned too many slots already.
912 if (!scanned_many) {
913 unsigned long scan_limit;
915 if (offset < scan_base)
916 scan_limit = scan_base;
917 else
918 scan_limit = si->highest_bit;
919 for (; offset <= scan_limit && --latency_ration > 0;
920 offset++) {
921 if (!si->swap_map[offset])
922 goto checks;
926 done:
927 set_cluster_next(si, offset + 1);
928 si->flags -= SWP_SCANNING;
929 return n_ret;
931 scan:
932 spin_unlock(&si->lock);
933 while (++offset <= READ_ONCE(si->highest_bit)) {
934 if (data_race(!si->swap_map[offset])) {
935 spin_lock(&si->lock);
936 goto checks;
938 if (vm_swap_full() &&
939 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940 spin_lock(&si->lock);
941 goto checks;
943 if (unlikely(--latency_ration < 0)) {
944 cond_resched();
945 latency_ration = LATENCY_LIMIT;
946 scanned_many = true;
949 offset = si->lowest_bit;
950 while (offset < scan_base) {
951 if (data_race(!si->swap_map[offset])) {
952 spin_lock(&si->lock);
953 goto checks;
955 if (vm_swap_full() &&
956 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957 spin_lock(&si->lock);
958 goto checks;
960 if (unlikely(--latency_ration < 0)) {
961 cond_resched();
962 latency_ration = LATENCY_LIMIT;
963 scanned_many = true;
965 offset++;
967 spin_lock(&si->lock);
969 no_page:
970 si->flags -= SWP_SCANNING;
971 return n_ret;
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
976 unsigned long idx;
977 struct swap_cluster_info *ci;
978 unsigned long offset;
981 * Should not even be attempting cluster allocations when huge
982 * page swap is disabled. Warn and fail the allocation.
984 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
985 VM_WARN_ON_ONCE(1);
986 return 0;
989 if (cluster_list_empty(&si->free_clusters))
990 return 0;
992 idx = cluster_list_first(&si->free_clusters);
993 offset = idx * SWAPFILE_CLUSTER;
994 ci = lock_cluster(si, offset);
995 alloc_cluster(si, idx);
996 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
998 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
999 unlock_cluster(ci);
1000 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001 *slot = swp_entry(si->type, offset);
1003 return 1;
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1008 unsigned long offset = idx * SWAPFILE_CLUSTER;
1009 struct swap_cluster_info *ci;
1011 ci = lock_cluster(si, offset);
1012 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013 cluster_set_count_flag(ci, 0, 0);
1014 free_cluster(si, idx);
1015 unlock_cluster(ci);
1016 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020 unsigned char usage)
1022 swp_entry_t entry;
1023 int n_ret;
1025 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1027 if (n_ret)
1028 return swp_offset(entry);
1029 else
1030 return 0;
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1036 unsigned long size = swap_entry_size(entry_size);
1037 struct swap_info_struct *si, *next;
1038 long avail_pgs;
1039 int n_ret = 0;
1040 int node;
1042 /* Only single cluster request supported */
1043 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1045 spin_lock(&swap_avail_lock);
1047 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048 if (avail_pgs <= 0) {
1049 spin_unlock(&swap_avail_lock);
1050 goto noswap;
1053 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1055 atomic_long_sub(n_goal * size, &nr_swap_pages);
1057 start_over:
1058 node = numa_node_id();
1059 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060 /* requeue si to after same-priority siblings */
1061 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062 spin_unlock(&swap_avail_lock);
1063 spin_lock(&si->lock);
1064 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065 spin_lock(&swap_avail_lock);
1066 if (plist_node_empty(&si->avail_lists[node])) {
1067 spin_unlock(&si->lock);
1068 goto nextsi;
1070 WARN(!si->highest_bit,
1071 "swap_info %d in list but !highest_bit\n",
1072 si->type);
1073 WARN(!(si->flags & SWP_WRITEOK),
1074 "swap_info %d in list but !SWP_WRITEOK\n",
1075 si->type);
1076 __del_from_avail_list(si);
1077 spin_unlock(&si->lock);
1078 goto nextsi;
1080 if (size == SWAPFILE_CLUSTER) {
1081 if (si->flags & SWP_BLKDEV)
1082 n_ret = swap_alloc_cluster(si, swp_entries);
1083 } else
1084 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085 n_goal, swp_entries);
1086 spin_unlock(&si->lock);
1087 if (n_ret || size == SWAPFILE_CLUSTER)
1088 goto check_out;
1089 pr_debug("scan_swap_map of si %d failed to find offset\n",
1090 si->type);
1092 spin_lock(&swap_avail_lock);
1093 nextsi:
1095 * if we got here, it's likely that si was almost full before,
1096 * and since scan_swap_map() can drop the si->lock, multiple
1097 * callers probably all tried to get a page from the same si
1098 * and it filled up before we could get one; or, the si filled
1099 * up between us dropping swap_avail_lock and taking si->lock.
1100 * Since we dropped the swap_avail_lock, the swap_avail_head
1101 * list may have been modified; so if next is still in the
1102 * swap_avail_head list then try it, otherwise start over
1103 * if we have not gotten any slots.
1105 if (plist_node_empty(&next->avail_lists[node]))
1106 goto start_over;
1109 spin_unlock(&swap_avail_lock);
1111 check_out:
1112 if (n_ret < n_goal)
1113 atomic_long_add((long)(n_goal - n_ret) * size,
1114 &nr_swap_pages);
1115 noswap:
1116 return n_ret;
1119 /* The only caller of this function is now suspend routine */
1120 swp_entry_t get_swap_page_of_type(int type)
1122 struct swap_info_struct *si = swap_type_to_swap_info(type);
1123 pgoff_t offset;
1125 if (!si)
1126 goto fail;
1128 spin_lock(&si->lock);
1129 if (si->flags & SWP_WRITEOK) {
1130 /* This is called for allocating swap entry, not cache */
1131 offset = scan_swap_map(si, 1);
1132 if (offset) {
1133 atomic_long_dec(&nr_swap_pages);
1134 spin_unlock(&si->lock);
1135 return swp_entry(type, offset);
1138 spin_unlock(&si->lock);
1139 fail:
1140 return (swp_entry_t) {0};
1143 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1145 struct swap_info_struct *p;
1146 unsigned long offset;
1148 if (!entry.val)
1149 goto out;
1150 p = swp_swap_info(entry);
1151 if (!p)
1152 goto bad_nofile;
1153 if (data_race(!(p->flags & SWP_USED)))
1154 goto bad_device;
1155 offset = swp_offset(entry);
1156 if (offset >= p->max)
1157 goto bad_offset;
1158 return p;
1160 bad_offset:
1161 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1162 goto out;
1163 bad_device:
1164 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1165 goto out;
1166 bad_nofile:
1167 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1168 out:
1169 return NULL;
1172 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1174 struct swap_info_struct *p;
1176 p = __swap_info_get(entry);
1177 if (!p)
1178 goto out;
1179 if (data_race(!p->swap_map[swp_offset(entry)]))
1180 goto bad_free;
1181 return p;
1183 bad_free:
1184 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1185 out:
1186 return NULL;
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1191 struct swap_info_struct *p;
1193 p = _swap_info_get(entry);
1194 if (p)
1195 spin_lock(&p->lock);
1196 return p;
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200 struct swap_info_struct *q)
1202 struct swap_info_struct *p;
1204 p = _swap_info_get(entry);
1206 if (p != q) {
1207 if (q != NULL)
1208 spin_unlock(&q->lock);
1209 if (p != NULL)
1210 spin_lock(&p->lock);
1212 return p;
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216 unsigned long offset,
1217 unsigned char usage)
1219 unsigned char count;
1220 unsigned char has_cache;
1222 count = p->swap_map[offset];
1224 has_cache = count & SWAP_HAS_CACHE;
1225 count &= ~SWAP_HAS_CACHE;
1227 if (usage == SWAP_HAS_CACHE) {
1228 VM_BUG_ON(!has_cache);
1229 has_cache = 0;
1230 } else if (count == SWAP_MAP_SHMEM) {
1232 * Or we could insist on shmem.c using a special
1233 * swap_shmem_free() and free_shmem_swap_and_cache()...
1235 count = 0;
1236 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237 if (count == COUNT_CONTINUED) {
1238 if (swap_count_continued(p, offset, count))
1239 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240 else
1241 count = SWAP_MAP_MAX;
1242 } else
1243 count--;
1246 usage = count | has_cache;
1247 if (usage)
1248 WRITE_ONCE(p->swap_map[offset], usage);
1249 else
1250 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1252 return usage;
1256 * Check whether swap entry is valid in the swap device. If so,
1257 * return pointer to swap_info_struct, and keep the swap entry valid
1258 * via preventing the swap device from being swapoff, until
1259 * put_swap_device() is called. Otherwise return NULL.
1261 * The entirety of the RCU read critical section must come before the
1262 * return from or after the call to synchronize_rcu() in
1263 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1264 * true, the si->map, si->cluster_info, etc. must be valid in the
1265 * critical section.
1267 * Notice that swapoff or swapoff+swapon can still happen before the
1268 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1269 * in put_swap_device() if there isn't any other way to prevent
1270 * swapoff, such as page lock, page table lock, etc. The caller must
1271 * be prepared for that. For example, the following situation is
1272 * possible.
1274 * CPU1 CPU2
1275 * do_swap_page()
1276 * ... swapoff+swapon
1277 * __read_swap_cache_async()
1278 * swapcache_prepare()
1279 * __swap_duplicate()
1280 * // check swap_map
1281 * // verify PTE not changed
1283 * In __swap_duplicate(), the swap_map need to be checked before
1284 * changing partly because the specified swap entry may be for another
1285 * swap device which has been swapoff. And in do_swap_page(), after
1286 * the page is read from the swap device, the PTE is verified not
1287 * changed with the page table locked to check whether the swap device
1288 * has been swapoff or swapoff+swapon.
1290 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1292 struct swap_info_struct *si;
1293 unsigned long offset;
1295 if (!entry.val)
1296 goto out;
1297 si = swp_swap_info(entry);
1298 if (!si)
1299 goto bad_nofile;
1301 rcu_read_lock();
1302 if (data_race(!(si->flags & SWP_VALID)))
1303 goto unlock_out;
1304 offset = swp_offset(entry);
1305 if (offset >= si->max)
1306 goto unlock_out;
1308 return si;
1309 bad_nofile:
1310 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1311 out:
1312 return NULL;
1313 unlock_out:
1314 rcu_read_unlock();
1315 return NULL;
1318 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1319 swp_entry_t entry)
1321 struct swap_cluster_info *ci;
1322 unsigned long offset = swp_offset(entry);
1323 unsigned char usage;
1325 ci = lock_cluster_or_swap_info(p, offset);
1326 usage = __swap_entry_free_locked(p, offset, 1);
1327 unlock_cluster_or_swap_info(p, ci);
1328 if (!usage)
1329 free_swap_slot(entry);
1331 return usage;
1334 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1336 struct swap_cluster_info *ci;
1337 unsigned long offset = swp_offset(entry);
1338 unsigned char count;
1340 ci = lock_cluster(p, offset);
1341 count = p->swap_map[offset];
1342 VM_BUG_ON(count != SWAP_HAS_CACHE);
1343 p->swap_map[offset] = 0;
1344 dec_cluster_info_page(p, p->cluster_info, offset);
1345 unlock_cluster(ci);
1347 mem_cgroup_uncharge_swap(entry, 1);
1348 swap_range_free(p, offset, 1);
1352 * Caller has made sure that the swap device corresponding to entry
1353 * is still around or has not been recycled.
1355 void swap_free(swp_entry_t entry)
1357 struct swap_info_struct *p;
1359 p = _swap_info_get(entry);
1360 if (p)
1361 __swap_entry_free(p, entry);
1365 * Called after dropping swapcache to decrease refcnt to swap entries.
1367 void put_swap_page(struct page *page, swp_entry_t entry)
1369 unsigned long offset = swp_offset(entry);
1370 unsigned long idx = offset / SWAPFILE_CLUSTER;
1371 struct swap_cluster_info *ci;
1372 struct swap_info_struct *si;
1373 unsigned char *map;
1374 unsigned int i, free_entries = 0;
1375 unsigned char val;
1376 int size = swap_entry_size(thp_nr_pages(page));
1378 si = _swap_info_get(entry);
1379 if (!si)
1380 return;
1382 ci = lock_cluster_or_swap_info(si, offset);
1383 if (size == SWAPFILE_CLUSTER) {
1384 VM_BUG_ON(!cluster_is_huge(ci));
1385 map = si->swap_map + offset;
1386 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1387 val = map[i];
1388 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1389 if (val == SWAP_HAS_CACHE)
1390 free_entries++;
1392 cluster_clear_huge(ci);
1393 if (free_entries == SWAPFILE_CLUSTER) {
1394 unlock_cluster_or_swap_info(si, ci);
1395 spin_lock(&si->lock);
1396 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1397 swap_free_cluster(si, idx);
1398 spin_unlock(&si->lock);
1399 return;
1402 for (i = 0; i < size; i++, entry.val++) {
1403 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1404 unlock_cluster_or_swap_info(si, ci);
1405 free_swap_slot(entry);
1406 if (i == size - 1)
1407 return;
1408 lock_cluster_or_swap_info(si, offset);
1411 unlock_cluster_or_swap_info(si, ci);
1414 #ifdef CONFIG_THP_SWAP
1415 int split_swap_cluster(swp_entry_t entry)
1417 struct swap_info_struct *si;
1418 struct swap_cluster_info *ci;
1419 unsigned long offset = swp_offset(entry);
1421 si = _swap_info_get(entry);
1422 if (!si)
1423 return -EBUSY;
1424 ci = lock_cluster(si, offset);
1425 cluster_clear_huge(ci);
1426 unlock_cluster(ci);
1427 return 0;
1429 #endif
1431 static int swp_entry_cmp(const void *ent1, const void *ent2)
1433 const swp_entry_t *e1 = ent1, *e2 = ent2;
1435 return (int)swp_type(*e1) - (int)swp_type(*e2);
1438 void swapcache_free_entries(swp_entry_t *entries, int n)
1440 struct swap_info_struct *p, *prev;
1441 int i;
1443 if (n <= 0)
1444 return;
1446 prev = NULL;
1447 p = NULL;
1450 * Sort swap entries by swap device, so each lock is only taken once.
1451 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1452 * so low that it isn't necessary to optimize further.
1454 if (nr_swapfiles > 1)
1455 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1456 for (i = 0; i < n; ++i) {
1457 p = swap_info_get_cont(entries[i], prev);
1458 if (p)
1459 swap_entry_free(p, entries[i]);
1460 prev = p;
1462 if (p)
1463 spin_unlock(&p->lock);
1467 * How many references to page are currently swapped out?
1468 * This does not give an exact answer when swap count is continued,
1469 * but does include the high COUNT_CONTINUED flag to allow for that.
1471 int page_swapcount(struct page *page)
1473 int count = 0;
1474 struct swap_info_struct *p;
1475 struct swap_cluster_info *ci;
1476 swp_entry_t entry;
1477 unsigned long offset;
1479 entry.val = page_private(page);
1480 p = _swap_info_get(entry);
1481 if (p) {
1482 offset = swp_offset(entry);
1483 ci = lock_cluster_or_swap_info(p, offset);
1484 count = swap_count(p->swap_map[offset]);
1485 unlock_cluster_or_swap_info(p, ci);
1487 return count;
1490 int __swap_count(swp_entry_t entry)
1492 struct swap_info_struct *si;
1493 pgoff_t offset = swp_offset(entry);
1494 int count = 0;
1496 si = get_swap_device(entry);
1497 if (si) {
1498 count = swap_count(si->swap_map[offset]);
1499 put_swap_device(si);
1501 return count;
1504 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1506 int count = 0;
1507 pgoff_t offset = swp_offset(entry);
1508 struct swap_cluster_info *ci;
1510 ci = lock_cluster_or_swap_info(si, offset);
1511 count = swap_count(si->swap_map[offset]);
1512 unlock_cluster_or_swap_info(si, ci);
1513 return count;
1517 * How many references to @entry are currently swapped out?
1518 * This does not give an exact answer when swap count is continued,
1519 * but does include the high COUNT_CONTINUED flag to allow for that.
1521 int __swp_swapcount(swp_entry_t entry)
1523 int count = 0;
1524 struct swap_info_struct *si;
1526 si = get_swap_device(entry);
1527 if (si) {
1528 count = swap_swapcount(si, entry);
1529 put_swap_device(si);
1531 return count;
1535 * How many references to @entry are currently swapped out?
1536 * This considers COUNT_CONTINUED so it returns exact answer.
1538 int swp_swapcount(swp_entry_t entry)
1540 int count, tmp_count, n;
1541 struct swap_info_struct *p;
1542 struct swap_cluster_info *ci;
1543 struct page *page;
1544 pgoff_t offset;
1545 unsigned char *map;
1547 p = _swap_info_get(entry);
1548 if (!p)
1549 return 0;
1551 offset = swp_offset(entry);
1553 ci = lock_cluster_or_swap_info(p, offset);
1555 count = swap_count(p->swap_map[offset]);
1556 if (!(count & COUNT_CONTINUED))
1557 goto out;
1559 count &= ~COUNT_CONTINUED;
1560 n = SWAP_MAP_MAX + 1;
1562 page = vmalloc_to_page(p->swap_map + offset);
1563 offset &= ~PAGE_MASK;
1564 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1566 do {
1567 page = list_next_entry(page, lru);
1568 map = kmap_atomic(page);
1569 tmp_count = map[offset];
1570 kunmap_atomic(map);
1572 count += (tmp_count & ~COUNT_CONTINUED) * n;
1573 n *= (SWAP_CONT_MAX + 1);
1574 } while (tmp_count & COUNT_CONTINUED);
1575 out:
1576 unlock_cluster_or_swap_info(p, ci);
1577 return count;
1580 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1581 swp_entry_t entry)
1583 struct swap_cluster_info *ci;
1584 unsigned char *map = si->swap_map;
1585 unsigned long roffset = swp_offset(entry);
1586 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1587 int i;
1588 bool ret = false;
1590 ci = lock_cluster_or_swap_info(si, offset);
1591 if (!ci || !cluster_is_huge(ci)) {
1592 if (swap_count(map[roffset]))
1593 ret = true;
1594 goto unlock_out;
1596 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1597 if (swap_count(map[offset + i])) {
1598 ret = true;
1599 break;
1602 unlock_out:
1603 unlock_cluster_or_swap_info(si, ci);
1604 return ret;
1607 static bool page_swapped(struct page *page)
1609 swp_entry_t entry;
1610 struct swap_info_struct *si;
1612 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1613 return page_swapcount(page) != 0;
1615 page = compound_head(page);
1616 entry.val = page_private(page);
1617 si = _swap_info_get(entry);
1618 if (si)
1619 return swap_page_trans_huge_swapped(si, entry);
1620 return false;
1623 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1624 int *total_swapcount)
1626 int i, map_swapcount, _total_mapcount, _total_swapcount;
1627 unsigned long offset = 0;
1628 struct swap_info_struct *si;
1629 struct swap_cluster_info *ci = NULL;
1630 unsigned char *map = NULL;
1631 int mapcount, swapcount = 0;
1633 /* hugetlbfs shouldn't call it */
1634 VM_BUG_ON_PAGE(PageHuge(page), page);
1636 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1637 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1638 if (PageSwapCache(page))
1639 swapcount = page_swapcount(page);
1640 if (total_swapcount)
1641 *total_swapcount = swapcount;
1642 return mapcount + swapcount;
1645 page = compound_head(page);
1647 _total_mapcount = _total_swapcount = map_swapcount = 0;
1648 if (PageSwapCache(page)) {
1649 swp_entry_t entry;
1651 entry.val = page_private(page);
1652 si = _swap_info_get(entry);
1653 if (si) {
1654 map = si->swap_map;
1655 offset = swp_offset(entry);
1658 if (map)
1659 ci = lock_cluster(si, offset);
1660 for (i = 0; i < HPAGE_PMD_NR; i++) {
1661 mapcount = atomic_read(&page[i]._mapcount) + 1;
1662 _total_mapcount += mapcount;
1663 if (map) {
1664 swapcount = swap_count(map[offset + i]);
1665 _total_swapcount += swapcount;
1667 map_swapcount = max(map_swapcount, mapcount + swapcount);
1669 unlock_cluster(ci);
1670 if (PageDoubleMap(page)) {
1671 map_swapcount -= 1;
1672 _total_mapcount -= HPAGE_PMD_NR;
1674 mapcount = compound_mapcount(page);
1675 map_swapcount += mapcount;
1676 _total_mapcount += mapcount;
1677 if (total_mapcount)
1678 *total_mapcount = _total_mapcount;
1679 if (total_swapcount)
1680 *total_swapcount = _total_swapcount;
1682 return map_swapcount;
1686 * We can write to an anon page without COW if there are no other references
1687 * to it. And as a side-effect, free up its swap: because the old content
1688 * on disk will never be read, and seeking back there to write new content
1689 * later would only waste time away from clustering.
1691 * NOTE: total_map_swapcount should not be relied upon by the caller if
1692 * reuse_swap_page() returns false, but it may be always overwritten
1693 * (see the other implementation for CONFIG_SWAP=n).
1695 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1697 int count, total_mapcount, total_swapcount;
1699 VM_BUG_ON_PAGE(!PageLocked(page), page);
1700 if (unlikely(PageKsm(page)))
1701 return false;
1702 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1703 &total_swapcount);
1704 if (total_map_swapcount)
1705 *total_map_swapcount = total_mapcount + total_swapcount;
1706 if (count == 1 && PageSwapCache(page) &&
1707 (likely(!PageTransCompound(page)) ||
1708 /* The remaining swap count will be freed soon */
1709 total_swapcount == page_swapcount(page))) {
1710 if (!PageWriteback(page)) {
1711 page = compound_head(page);
1712 delete_from_swap_cache(page);
1713 SetPageDirty(page);
1714 } else {
1715 swp_entry_t entry;
1716 struct swap_info_struct *p;
1718 entry.val = page_private(page);
1719 p = swap_info_get(entry);
1720 if (p->flags & SWP_STABLE_WRITES) {
1721 spin_unlock(&p->lock);
1722 return false;
1724 spin_unlock(&p->lock);
1728 return count <= 1;
1732 * If swap is getting full, or if there are no more mappings of this page,
1733 * then try_to_free_swap is called to free its swap space.
1735 int try_to_free_swap(struct page *page)
1737 VM_BUG_ON_PAGE(!PageLocked(page), page);
1739 if (!PageSwapCache(page))
1740 return 0;
1741 if (PageWriteback(page))
1742 return 0;
1743 if (page_swapped(page))
1744 return 0;
1747 * Once hibernation has begun to create its image of memory,
1748 * there's a danger that one of the calls to try_to_free_swap()
1749 * - most probably a call from __try_to_reclaim_swap() while
1750 * hibernation is allocating its own swap pages for the image,
1751 * but conceivably even a call from memory reclaim - will free
1752 * the swap from a page which has already been recorded in the
1753 * image as a clean swapcache page, and then reuse its swap for
1754 * another page of the image. On waking from hibernation, the
1755 * original page might be freed under memory pressure, then
1756 * later read back in from swap, now with the wrong data.
1758 * Hibernation suspends storage while it is writing the image
1759 * to disk so check that here.
1761 if (pm_suspended_storage())
1762 return 0;
1764 page = compound_head(page);
1765 delete_from_swap_cache(page);
1766 SetPageDirty(page);
1767 return 1;
1771 * Free the swap entry like above, but also try to
1772 * free the page cache entry if it is the last user.
1774 int free_swap_and_cache(swp_entry_t entry)
1776 struct swap_info_struct *p;
1777 unsigned char count;
1779 if (non_swap_entry(entry))
1780 return 1;
1782 p = _swap_info_get(entry);
1783 if (p) {
1784 count = __swap_entry_free(p, entry);
1785 if (count == SWAP_HAS_CACHE &&
1786 !swap_page_trans_huge_swapped(p, entry))
1787 __try_to_reclaim_swap(p, swp_offset(entry),
1788 TTRS_UNMAPPED | TTRS_FULL);
1790 return p != NULL;
1793 #ifdef CONFIG_HIBERNATION
1795 * Find the swap type that corresponds to given device (if any).
1797 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1798 * from 0, in which the swap header is expected to be located.
1800 * This is needed for the suspend to disk (aka swsusp).
1802 int swap_type_of(dev_t device, sector_t offset)
1804 int type;
1806 if (!device)
1807 return -1;
1809 spin_lock(&swap_lock);
1810 for (type = 0; type < nr_swapfiles; type++) {
1811 struct swap_info_struct *sis = swap_info[type];
1813 if (!(sis->flags & SWP_WRITEOK))
1814 continue;
1816 if (device == sis->bdev->bd_dev) {
1817 struct swap_extent *se = first_se(sis);
1819 if (se->start_block == offset) {
1820 spin_unlock(&swap_lock);
1821 return type;
1825 spin_unlock(&swap_lock);
1826 return -ENODEV;
1829 int find_first_swap(dev_t *device)
1831 int type;
1833 spin_lock(&swap_lock);
1834 for (type = 0; type < nr_swapfiles; type++) {
1835 struct swap_info_struct *sis = swap_info[type];
1837 if (!(sis->flags & SWP_WRITEOK))
1838 continue;
1839 *device = sis->bdev->bd_dev;
1840 spin_unlock(&swap_lock);
1841 return type;
1843 spin_unlock(&swap_lock);
1844 return -ENODEV;
1848 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849 * corresponding to given index in swap_info (swap type).
1851 sector_t swapdev_block(int type, pgoff_t offset)
1853 struct block_device *bdev;
1854 struct swap_info_struct *si = swap_type_to_swap_info(type);
1856 if (!si || !(si->flags & SWP_WRITEOK))
1857 return 0;
1858 return map_swap_entry(swp_entry(type, offset), &bdev);
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1865 * This is needed for software suspend
1867 unsigned int count_swap_pages(int type, int free)
1869 unsigned int n = 0;
1871 spin_lock(&swap_lock);
1872 if ((unsigned int)type < nr_swapfiles) {
1873 struct swap_info_struct *sis = swap_info[type];
1875 spin_lock(&sis->lock);
1876 if (sis->flags & SWP_WRITEOK) {
1877 n = sis->pages;
1878 if (free)
1879 n -= sis->inuse_pages;
1881 spin_unlock(&sis->lock);
1883 spin_unlock(&swap_lock);
1884 return n;
1886 #endif /* CONFIG_HIBERNATION */
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1890 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 unsigned long addr, swp_entry_t entry, struct page *page)
1901 struct page *swapcache;
1902 spinlock_t *ptl;
1903 pte_t *pte;
1904 int ret = 1;
1906 swapcache = page;
1907 page = ksm_might_need_to_copy(page, vma, addr);
1908 if (unlikely(!page))
1909 return -ENOMEM;
1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 ret = 0;
1914 goto out;
1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 get_page(page);
1920 set_pte_at(vma->vm_mm, addr, pte,
1921 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 if (page == swapcache) {
1923 page_add_anon_rmap(page, vma, addr, false);
1924 } else { /* ksm created a completely new copy */
1925 page_add_new_anon_rmap(page, vma, addr, false);
1926 lru_cache_add_inactive_or_unevictable(page, vma);
1928 swap_free(entry);
1929 out:
1930 pte_unmap_unlock(pte, ptl);
1931 if (page != swapcache) {
1932 unlock_page(page);
1933 put_page(page);
1935 return ret;
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 unsigned long addr, unsigned long end,
1940 unsigned int type, bool frontswap,
1941 unsigned long *fs_pages_to_unuse)
1943 struct page *page;
1944 swp_entry_t entry;
1945 pte_t *pte;
1946 struct swap_info_struct *si;
1947 unsigned long offset;
1948 int ret = 0;
1949 volatile unsigned char *swap_map;
1951 si = swap_info[type];
1952 pte = pte_offset_map(pmd, addr);
1953 do {
1954 struct vm_fault vmf;
1956 if (!is_swap_pte(*pte))
1957 continue;
1959 entry = pte_to_swp_entry(*pte);
1960 if (swp_type(entry) != type)
1961 continue;
1963 offset = swp_offset(entry);
1964 if (frontswap && !frontswap_test(si, offset))
1965 continue;
1967 pte_unmap(pte);
1968 swap_map = &si->swap_map[offset];
1969 page = lookup_swap_cache(entry, vma, addr);
1970 if (!page) {
1971 vmf.vma = vma;
1972 vmf.address = addr;
1973 vmf.pmd = pmd;
1974 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1975 &vmf);
1977 if (!page) {
1978 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1979 goto try_next;
1980 return -ENOMEM;
1983 lock_page(page);
1984 wait_on_page_writeback(page);
1985 ret = unuse_pte(vma, pmd, addr, entry, page);
1986 if (ret < 0) {
1987 unlock_page(page);
1988 put_page(page);
1989 goto out;
1992 try_to_free_swap(page);
1993 unlock_page(page);
1994 put_page(page);
1996 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1997 ret = FRONTSWAP_PAGES_UNUSED;
1998 goto out;
2000 try_next:
2001 pte = pte_offset_map(pmd, addr);
2002 } while (pte++, addr += PAGE_SIZE, addr != end);
2003 pte_unmap(pte - 1);
2005 ret = 0;
2006 out:
2007 return ret;
2010 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2011 unsigned long addr, unsigned long end,
2012 unsigned int type, bool frontswap,
2013 unsigned long *fs_pages_to_unuse)
2015 pmd_t *pmd;
2016 unsigned long next;
2017 int ret;
2019 pmd = pmd_offset(pud, addr);
2020 do {
2021 cond_resched();
2022 next = pmd_addr_end(addr, end);
2023 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2024 continue;
2025 ret = unuse_pte_range(vma, pmd, addr, next, type,
2026 frontswap, fs_pages_to_unuse);
2027 if (ret)
2028 return ret;
2029 } while (pmd++, addr = next, addr != end);
2030 return 0;
2033 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2034 unsigned long addr, unsigned long end,
2035 unsigned int type, bool frontswap,
2036 unsigned long *fs_pages_to_unuse)
2038 pud_t *pud;
2039 unsigned long next;
2040 int ret;
2042 pud = pud_offset(p4d, addr);
2043 do {
2044 next = pud_addr_end(addr, end);
2045 if (pud_none_or_clear_bad(pud))
2046 continue;
2047 ret = unuse_pmd_range(vma, pud, addr, next, type,
2048 frontswap, fs_pages_to_unuse);
2049 if (ret)
2050 return ret;
2051 } while (pud++, addr = next, addr != end);
2052 return 0;
2055 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2056 unsigned long addr, unsigned long end,
2057 unsigned int type, bool frontswap,
2058 unsigned long *fs_pages_to_unuse)
2060 p4d_t *p4d;
2061 unsigned long next;
2062 int ret;
2064 p4d = p4d_offset(pgd, addr);
2065 do {
2066 next = p4d_addr_end(addr, end);
2067 if (p4d_none_or_clear_bad(p4d))
2068 continue;
2069 ret = unuse_pud_range(vma, p4d, addr, next, type,
2070 frontswap, fs_pages_to_unuse);
2071 if (ret)
2072 return ret;
2073 } while (p4d++, addr = next, addr != end);
2074 return 0;
2077 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2078 bool frontswap, unsigned long *fs_pages_to_unuse)
2080 pgd_t *pgd;
2081 unsigned long addr, end, next;
2082 int ret;
2084 addr = vma->vm_start;
2085 end = vma->vm_end;
2087 pgd = pgd_offset(vma->vm_mm, addr);
2088 do {
2089 next = pgd_addr_end(addr, end);
2090 if (pgd_none_or_clear_bad(pgd))
2091 continue;
2092 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2093 frontswap, fs_pages_to_unuse);
2094 if (ret)
2095 return ret;
2096 } while (pgd++, addr = next, addr != end);
2097 return 0;
2100 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2101 bool frontswap, unsigned long *fs_pages_to_unuse)
2103 struct vm_area_struct *vma;
2104 int ret = 0;
2106 mmap_read_lock(mm);
2107 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2108 if (vma->anon_vma) {
2109 ret = unuse_vma(vma, type, frontswap,
2110 fs_pages_to_unuse);
2111 if (ret)
2112 break;
2114 cond_resched();
2116 mmap_read_unlock(mm);
2117 return ret;
2121 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2122 * from current position to next entry still in use. Return 0
2123 * if there are no inuse entries after prev till end of the map.
2125 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2126 unsigned int prev, bool frontswap)
2128 unsigned int i;
2129 unsigned char count;
2132 * No need for swap_lock here: we're just looking
2133 * for whether an entry is in use, not modifying it; false
2134 * hits are okay, and sys_swapoff() has already prevented new
2135 * allocations from this area (while holding swap_lock).
2137 for (i = prev + 1; i < si->max; i++) {
2138 count = READ_ONCE(si->swap_map[i]);
2139 if (count && swap_count(count) != SWAP_MAP_BAD)
2140 if (!frontswap || frontswap_test(si, i))
2141 break;
2142 if ((i % LATENCY_LIMIT) == 0)
2143 cond_resched();
2146 if (i == si->max)
2147 i = 0;
2149 return i;
2153 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2154 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156 int try_to_unuse(unsigned int type, bool frontswap,
2157 unsigned long pages_to_unuse)
2159 struct mm_struct *prev_mm;
2160 struct mm_struct *mm;
2161 struct list_head *p;
2162 int retval = 0;
2163 struct swap_info_struct *si = swap_info[type];
2164 struct page *page;
2165 swp_entry_t entry;
2166 unsigned int i;
2168 if (!READ_ONCE(si->inuse_pages))
2169 return 0;
2171 if (!frontswap)
2172 pages_to_unuse = 0;
2174 retry:
2175 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2176 if (retval)
2177 goto out;
2179 prev_mm = &init_mm;
2180 mmget(prev_mm);
2182 spin_lock(&mmlist_lock);
2183 p = &init_mm.mmlist;
2184 while (READ_ONCE(si->inuse_pages) &&
2185 !signal_pending(current) &&
2186 (p = p->next) != &init_mm.mmlist) {
2188 mm = list_entry(p, struct mm_struct, mmlist);
2189 if (!mmget_not_zero(mm))
2190 continue;
2191 spin_unlock(&mmlist_lock);
2192 mmput(prev_mm);
2193 prev_mm = mm;
2194 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196 if (retval) {
2197 mmput(prev_mm);
2198 goto out;
2202 * Make sure that we aren't completely killing
2203 * interactive performance.
2205 cond_resched();
2206 spin_lock(&mmlist_lock);
2208 spin_unlock(&mmlist_lock);
2210 mmput(prev_mm);
2212 i = 0;
2213 while (READ_ONCE(si->inuse_pages) &&
2214 !signal_pending(current) &&
2215 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217 entry = swp_entry(type, i);
2218 page = find_get_page(swap_address_space(entry), i);
2219 if (!page)
2220 continue;
2223 * It is conceivable that a racing task removed this page from
2224 * swap cache just before we acquired the page lock. The page
2225 * might even be back in swap cache on another swap area. But
2226 * that is okay, try_to_free_swap() only removes stale pages.
2228 lock_page(page);
2229 wait_on_page_writeback(page);
2230 try_to_free_swap(page);
2231 unlock_page(page);
2232 put_page(page);
2235 * For frontswap, we just need to unuse pages_to_unuse, if
2236 * it was specified. Need not check frontswap again here as
2237 * we already zeroed out pages_to_unuse if not frontswap.
2239 if (pages_to_unuse && --pages_to_unuse == 0)
2240 goto out;
2244 * Lets check again to see if there are still swap entries in the map.
2245 * If yes, we would need to do retry the unuse logic again.
2246 * Under global memory pressure, swap entries can be reinserted back
2247 * into process space after the mmlist loop above passes over them.
2249 * Limit the number of retries? No: when mmget_not_zero() above fails,
2250 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2251 * at its own independent pace; and even shmem_writepage() could have
2252 * been preempted after get_swap_page(), temporarily hiding that swap.
2253 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255 if (READ_ONCE(si->inuse_pages)) {
2256 if (!signal_pending(current))
2257 goto retry;
2258 retval = -EINTR;
2260 out:
2261 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2265 * After a successful try_to_unuse, if no swap is now in use, we know
2266 * we can empty the mmlist. swap_lock must be held on entry and exit.
2267 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2268 * added to the mmlist just after page_duplicate - before would be racy.
2270 static void drain_mmlist(void)
2272 struct list_head *p, *next;
2273 unsigned int type;
2275 for (type = 0; type < nr_swapfiles; type++)
2276 if (swap_info[type]->inuse_pages)
2277 return;
2278 spin_lock(&mmlist_lock);
2279 list_for_each_safe(p, next, &init_mm.mmlist)
2280 list_del_init(p);
2281 spin_unlock(&mmlist_lock);
2285 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2286 * corresponds to page offset for the specified swap entry.
2287 * Note that the type of this function is sector_t, but it returns page offset
2288 * into the bdev, not sector offset.
2290 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2292 struct swap_info_struct *sis;
2293 struct swap_extent *se;
2294 pgoff_t offset;
2296 sis = swp_swap_info(entry);
2297 *bdev = sis->bdev;
2299 offset = swp_offset(entry);
2300 se = offset_to_swap_extent(sis, offset);
2301 return se->start_block + (offset - se->start_page);
2305 * Returns the page offset into bdev for the specified page's swap entry.
2307 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2309 swp_entry_t entry;
2310 entry.val = page_private(page);
2311 return map_swap_entry(entry, bdev);
2315 * Free all of a swapdev's extent information
2317 static void destroy_swap_extents(struct swap_info_struct *sis)
2319 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2320 struct rb_node *rb = sis->swap_extent_root.rb_node;
2321 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2323 rb_erase(rb, &sis->swap_extent_root);
2324 kfree(se);
2327 if (sis->flags & SWP_ACTIVATED) {
2328 struct file *swap_file = sis->swap_file;
2329 struct address_space *mapping = swap_file->f_mapping;
2331 sis->flags &= ~SWP_ACTIVATED;
2332 if (mapping->a_ops->swap_deactivate)
2333 mapping->a_ops->swap_deactivate(swap_file);
2338 * Add a block range (and the corresponding page range) into this swapdev's
2339 * extent tree.
2341 * This function rather assumes that it is called in ascending page order.
2344 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2345 unsigned long nr_pages, sector_t start_block)
2347 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2348 struct swap_extent *se;
2349 struct swap_extent *new_se;
2352 * place the new node at the right most since the
2353 * function is called in ascending page order.
2355 while (*link) {
2356 parent = *link;
2357 link = &parent->rb_right;
2360 if (parent) {
2361 se = rb_entry(parent, struct swap_extent, rb_node);
2362 BUG_ON(se->start_page + se->nr_pages != start_page);
2363 if (se->start_block + se->nr_pages == start_block) {
2364 /* Merge it */
2365 se->nr_pages += nr_pages;
2366 return 0;
2370 /* No merge, insert a new extent. */
2371 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2372 if (new_se == NULL)
2373 return -ENOMEM;
2374 new_se->start_page = start_page;
2375 new_se->nr_pages = nr_pages;
2376 new_se->start_block = start_block;
2378 rb_link_node(&new_se->rb_node, parent, link);
2379 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2380 return 1;
2382 EXPORT_SYMBOL_GPL(add_swap_extent);
2385 * A `swap extent' is a simple thing which maps a contiguous range of pages
2386 * onto a contiguous range of disk blocks. An ordered list of swap extents
2387 * is built at swapon time and is then used at swap_writepage/swap_readpage
2388 * time for locating where on disk a page belongs.
2390 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2391 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2392 * swap files identically.
2394 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2395 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2396 * swapfiles are handled *identically* after swapon time.
2398 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2399 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2400 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2401 * requirements, they are simply tossed out - we will never use those blocks
2402 * for swapping.
2404 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2405 * prevents users from writing to the swap device, which will corrupt memory.
2407 * The amount of disk space which a single swap extent represents varies.
2408 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2409 * extents in the list. To avoid much list walking, we cache the previous
2410 * search location in `curr_swap_extent', and start new searches from there.
2411 * This is extremely effective. The average number of iterations in
2412 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2414 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2416 struct file *swap_file = sis->swap_file;
2417 struct address_space *mapping = swap_file->f_mapping;
2418 struct inode *inode = mapping->host;
2419 int ret;
2421 if (S_ISBLK(inode->i_mode)) {
2422 ret = add_swap_extent(sis, 0, sis->max, 0);
2423 *span = sis->pages;
2424 return ret;
2427 if (mapping->a_ops->swap_activate) {
2428 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2429 if (ret >= 0)
2430 sis->flags |= SWP_ACTIVATED;
2431 if (!ret) {
2432 sis->flags |= SWP_FS_OPS;
2433 ret = add_swap_extent(sis, 0, sis->max, 0);
2434 *span = sis->pages;
2436 return ret;
2439 return generic_swapfile_activate(sis, swap_file, span);
2442 static int swap_node(struct swap_info_struct *p)
2444 struct block_device *bdev;
2446 if (p->bdev)
2447 bdev = p->bdev;
2448 else
2449 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2451 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2454 static void setup_swap_info(struct swap_info_struct *p, int prio,
2455 unsigned char *swap_map,
2456 struct swap_cluster_info *cluster_info)
2458 int i;
2460 if (prio >= 0)
2461 p->prio = prio;
2462 else
2463 p->prio = --least_priority;
2465 * the plist prio is negated because plist ordering is
2466 * low-to-high, while swap ordering is high-to-low
2468 p->list.prio = -p->prio;
2469 for_each_node(i) {
2470 if (p->prio >= 0)
2471 p->avail_lists[i].prio = -p->prio;
2472 else {
2473 if (swap_node(p) == i)
2474 p->avail_lists[i].prio = 1;
2475 else
2476 p->avail_lists[i].prio = -p->prio;
2479 p->swap_map = swap_map;
2480 p->cluster_info = cluster_info;
2483 static void _enable_swap_info(struct swap_info_struct *p)
2485 p->flags |= SWP_WRITEOK | SWP_VALID;
2486 atomic_long_add(p->pages, &nr_swap_pages);
2487 total_swap_pages += p->pages;
2489 assert_spin_locked(&swap_lock);
2491 * both lists are plists, and thus priority ordered.
2492 * swap_active_head needs to be priority ordered for swapoff(),
2493 * which on removal of any swap_info_struct with an auto-assigned
2494 * (i.e. negative) priority increments the auto-assigned priority
2495 * of any lower-priority swap_info_structs.
2496 * swap_avail_head needs to be priority ordered for get_swap_page(),
2497 * which allocates swap pages from the highest available priority
2498 * swap_info_struct.
2500 plist_add(&p->list, &swap_active_head);
2501 add_to_avail_list(p);
2504 static void enable_swap_info(struct swap_info_struct *p, int prio,
2505 unsigned char *swap_map,
2506 struct swap_cluster_info *cluster_info,
2507 unsigned long *frontswap_map)
2509 frontswap_init(p->type, frontswap_map);
2510 spin_lock(&swap_lock);
2511 spin_lock(&p->lock);
2512 setup_swap_info(p, prio, swap_map, cluster_info);
2513 spin_unlock(&p->lock);
2514 spin_unlock(&swap_lock);
2516 * Guarantee swap_map, cluster_info, etc. fields are valid
2517 * between get/put_swap_device() if SWP_VALID bit is set
2519 synchronize_rcu();
2520 spin_lock(&swap_lock);
2521 spin_lock(&p->lock);
2522 _enable_swap_info(p);
2523 spin_unlock(&p->lock);
2524 spin_unlock(&swap_lock);
2527 static void reinsert_swap_info(struct swap_info_struct *p)
2529 spin_lock(&swap_lock);
2530 spin_lock(&p->lock);
2531 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2532 _enable_swap_info(p);
2533 spin_unlock(&p->lock);
2534 spin_unlock(&swap_lock);
2537 bool has_usable_swap(void)
2539 bool ret = true;
2541 spin_lock(&swap_lock);
2542 if (plist_head_empty(&swap_active_head))
2543 ret = false;
2544 spin_unlock(&swap_lock);
2545 return ret;
2548 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2550 struct swap_info_struct *p = NULL;
2551 unsigned char *swap_map;
2552 struct swap_cluster_info *cluster_info;
2553 unsigned long *frontswap_map;
2554 struct file *swap_file, *victim;
2555 struct address_space *mapping;
2556 struct inode *inode;
2557 struct filename *pathname;
2558 int err, found = 0;
2559 unsigned int old_block_size;
2561 if (!capable(CAP_SYS_ADMIN))
2562 return -EPERM;
2564 BUG_ON(!current->mm);
2566 pathname = getname(specialfile);
2567 if (IS_ERR(pathname))
2568 return PTR_ERR(pathname);
2570 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2571 err = PTR_ERR(victim);
2572 if (IS_ERR(victim))
2573 goto out;
2575 mapping = victim->f_mapping;
2576 spin_lock(&swap_lock);
2577 plist_for_each_entry(p, &swap_active_head, list) {
2578 if (p->flags & SWP_WRITEOK) {
2579 if (p->swap_file->f_mapping == mapping) {
2580 found = 1;
2581 break;
2585 if (!found) {
2586 err = -EINVAL;
2587 spin_unlock(&swap_lock);
2588 goto out_dput;
2590 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2591 vm_unacct_memory(p->pages);
2592 else {
2593 err = -ENOMEM;
2594 spin_unlock(&swap_lock);
2595 goto out_dput;
2597 del_from_avail_list(p);
2598 spin_lock(&p->lock);
2599 if (p->prio < 0) {
2600 struct swap_info_struct *si = p;
2601 int nid;
2603 plist_for_each_entry_continue(si, &swap_active_head, list) {
2604 si->prio++;
2605 si->list.prio--;
2606 for_each_node(nid) {
2607 if (si->avail_lists[nid].prio != 1)
2608 si->avail_lists[nid].prio--;
2611 least_priority++;
2613 plist_del(&p->list, &swap_active_head);
2614 atomic_long_sub(p->pages, &nr_swap_pages);
2615 total_swap_pages -= p->pages;
2616 p->flags &= ~SWP_WRITEOK;
2617 spin_unlock(&p->lock);
2618 spin_unlock(&swap_lock);
2620 disable_swap_slots_cache_lock();
2622 set_current_oom_origin();
2623 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2624 clear_current_oom_origin();
2626 if (err) {
2627 /* re-insert swap space back into swap_list */
2628 reinsert_swap_info(p);
2629 reenable_swap_slots_cache_unlock();
2630 goto out_dput;
2633 reenable_swap_slots_cache_unlock();
2635 spin_lock(&swap_lock);
2636 spin_lock(&p->lock);
2637 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2638 spin_unlock(&p->lock);
2639 spin_unlock(&swap_lock);
2641 * wait for swap operations protected by get/put_swap_device()
2642 * to complete
2644 synchronize_rcu();
2646 flush_work(&p->discard_work);
2648 destroy_swap_extents(p);
2649 if (p->flags & SWP_CONTINUED)
2650 free_swap_count_continuations(p);
2652 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2653 atomic_dec(&nr_rotate_swap);
2655 mutex_lock(&swapon_mutex);
2656 spin_lock(&swap_lock);
2657 spin_lock(&p->lock);
2658 drain_mmlist();
2660 /* wait for anyone still in scan_swap_map */
2661 p->highest_bit = 0; /* cuts scans short */
2662 while (p->flags >= SWP_SCANNING) {
2663 spin_unlock(&p->lock);
2664 spin_unlock(&swap_lock);
2665 schedule_timeout_uninterruptible(1);
2666 spin_lock(&swap_lock);
2667 spin_lock(&p->lock);
2670 swap_file = p->swap_file;
2671 old_block_size = p->old_block_size;
2672 p->swap_file = NULL;
2673 p->max = 0;
2674 swap_map = p->swap_map;
2675 p->swap_map = NULL;
2676 cluster_info = p->cluster_info;
2677 p->cluster_info = NULL;
2678 frontswap_map = frontswap_map_get(p);
2679 spin_unlock(&p->lock);
2680 spin_unlock(&swap_lock);
2681 arch_swap_invalidate_area(p->type);
2682 frontswap_invalidate_area(p->type);
2683 frontswap_map_set(p, NULL);
2684 mutex_unlock(&swapon_mutex);
2685 free_percpu(p->percpu_cluster);
2686 p->percpu_cluster = NULL;
2687 free_percpu(p->cluster_next_cpu);
2688 p->cluster_next_cpu = NULL;
2689 vfree(swap_map);
2690 kvfree(cluster_info);
2691 kvfree(frontswap_map);
2692 /* Destroy swap account information */
2693 swap_cgroup_swapoff(p->type);
2694 exit_swap_address_space(p->type);
2696 inode = mapping->host;
2697 if (S_ISBLK(inode->i_mode)) {
2698 struct block_device *bdev = I_BDEV(inode);
2700 set_blocksize(bdev, old_block_size);
2701 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2704 inode_lock(inode);
2705 inode->i_flags &= ~S_SWAPFILE;
2706 inode_unlock(inode);
2707 filp_close(swap_file, NULL);
2710 * Clear the SWP_USED flag after all resources are freed so that swapon
2711 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2712 * not hold p->lock after we cleared its SWP_WRITEOK.
2714 spin_lock(&swap_lock);
2715 p->flags = 0;
2716 spin_unlock(&swap_lock);
2718 err = 0;
2719 atomic_inc(&proc_poll_event);
2720 wake_up_interruptible(&proc_poll_wait);
2722 out_dput:
2723 filp_close(victim, NULL);
2724 out:
2725 putname(pathname);
2726 return err;
2729 #ifdef CONFIG_PROC_FS
2730 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2732 struct seq_file *seq = file->private_data;
2734 poll_wait(file, &proc_poll_wait, wait);
2736 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2737 seq->poll_event = atomic_read(&proc_poll_event);
2738 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2741 return EPOLLIN | EPOLLRDNORM;
2744 /* iterator */
2745 static void *swap_start(struct seq_file *swap, loff_t *pos)
2747 struct swap_info_struct *si;
2748 int type;
2749 loff_t l = *pos;
2751 mutex_lock(&swapon_mutex);
2753 if (!l)
2754 return SEQ_START_TOKEN;
2756 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2757 if (!(si->flags & SWP_USED) || !si->swap_map)
2758 continue;
2759 if (!--l)
2760 return si;
2763 return NULL;
2766 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2768 struct swap_info_struct *si = v;
2769 int type;
2771 if (v == SEQ_START_TOKEN)
2772 type = 0;
2773 else
2774 type = si->type + 1;
2776 ++(*pos);
2777 for (; (si = swap_type_to_swap_info(type)); type++) {
2778 if (!(si->flags & SWP_USED) || !si->swap_map)
2779 continue;
2780 return si;
2783 return NULL;
2786 static void swap_stop(struct seq_file *swap, void *v)
2788 mutex_unlock(&swapon_mutex);
2791 static int swap_show(struct seq_file *swap, void *v)
2793 struct swap_info_struct *si = v;
2794 struct file *file;
2795 int len;
2796 unsigned int bytes, inuse;
2798 if (si == SEQ_START_TOKEN) {
2799 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2800 return 0;
2803 bytes = si->pages << (PAGE_SHIFT - 10);
2804 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2806 file = si->swap_file;
2807 len = seq_file_path(swap, file, " \t\n\\");
2808 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2809 len < 40 ? 40 - len : 1, " ",
2810 S_ISBLK(file_inode(file)->i_mode) ?
2811 "partition" : "file\t",
2812 bytes, bytes < 10000000 ? "\t" : "",
2813 inuse, inuse < 10000000 ? "\t" : "",
2814 si->prio);
2815 return 0;
2818 static const struct seq_operations swaps_op = {
2819 .start = swap_start,
2820 .next = swap_next,
2821 .stop = swap_stop,
2822 .show = swap_show
2825 static int swaps_open(struct inode *inode, struct file *file)
2827 struct seq_file *seq;
2828 int ret;
2830 ret = seq_open(file, &swaps_op);
2831 if (ret)
2832 return ret;
2834 seq = file->private_data;
2835 seq->poll_event = atomic_read(&proc_poll_event);
2836 return 0;
2839 static const struct proc_ops swaps_proc_ops = {
2840 .proc_flags = PROC_ENTRY_PERMANENT,
2841 .proc_open = swaps_open,
2842 .proc_read = seq_read,
2843 .proc_lseek = seq_lseek,
2844 .proc_release = seq_release,
2845 .proc_poll = swaps_poll,
2848 static int __init procswaps_init(void)
2850 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2851 return 0;
2853 __initcall(procswaps_init);
2854 #endif /* CONFIG_PROC_FS */
2856 #ifdef MAX_SWAPFILES_CHECK
2857 static int __init max_swapfiles_check(void)
2859 MAX_SWAPFILES_CHECK();
2860 return 0;
2862 late_initcall(max_swapfiles_check);
2863 #endif
2865 static struct swap_info_struct *alloc_swap_info(void)
2867 struct swap_info_struct *p;
2868 struct swap_info_struct *defer = NULL;
2869 unsigned int type;
2870 int i;
2872 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2873 if (!p)
2874 return ERR_PTR(-ENOMEM);
2876 spin_lock(&swap_lock);
2877 for (type = 0; type < nr_swapfiles; type++) {
2878 if (!(swap_info[type]->flags & SWP_USED))
2879 break;
2881 if (type >= MAX_SWAPFILES) {
2882 spin_unlock(&swap_lock);
2883 kvfree(p);
2884 return ERR_PTR(-EPERM);
2886 if (type >= nr_swapfiles) {
2887 p->type = type;
2888 WRITE_ONCE(swap_info[type], p);
2890 * Write swap_info[type] before nr_swapfiles, in case a
2891 * racing procfs swap_start() or swap_next() is reading them.
2892 * (We never shrink nr_swapfiles, we never free this entry.)
2894 smp_wmb();
2895 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2896 } else {
2897 defer = p;
2898 p = swap_info[type];
2900 * Do not memset this entry: a racing procfs swap_next()
2901 * would be relying on p->type to remain valid.
2904 p->swap_extent_root = RB_ROOT;
2905 plist_node_init(&p->list, 0);
2906 for_each_node(i)
2907 plist_node_init(&p->avail_lists[i], 0);
2908 p->flags = SWP_USED;
2909 spin_unlock(&swap_lock);
2910 kvfree(defer);
2911 spin_lock_init(&p->lock);
2912 spin_lock_init(&p->cont_lock);
2914 return p;
2917 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2919 int error;
2921 if (S_ISBLK(inode->i_mode)) {
2922 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2923 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2924 if (IS_ERR(p->bdev)) {
2925 error = PTR_ERR(p->bdev);
2926 p->bdev = NULL;
2927 return error;
2929 p->old_block_size = block_size(p->bdev);
2930 error = set_blocksize(p->bdev, PAGE_SIZE);
2931 if (error < 0)
2932 return error;
2934 * Zoned block devices contain zones that have a sequential
2935 * write only restriction. Hence zoned block devices are not
2936 * suitable for swapping. Disallow them here.
2938 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2939 return -EINVAL;
2940 p->flags |= SWP_BLKDEV;
2941 } else if (S_ISREG(inode->i_mode)) {
2942 p->bdev = inode->i_sb->s_bdev;
2945 return 0;
2950 * Find out how many pages are allowed for a single swap device. There
2951 * are two limiting factors:
2952 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2953 * 2) the number of bits in the swap pte, as defined by the different
2954 * architectures.
2956 * In order to find the largest possible bit mask, a swap entry with
2957 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2958 * decoded to a swp_entry_t again, and finally the swap offset is
2959 * extracted.
2961 * This will mask all the bits from the initial ~0UL mask that can't
2962 * be encoded in either the swp_entry_t or the architecture definition
2963 * of a swap pte.
2965 unsigned long generic_max_swapfile_size(void)
2967 return swp_offset(pte_to_swp_entry(
2968 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2971 /* Can be overridden by an architecture for additional checks. */
2972 __weak unsigned long max_swapfile_size(void)
2974 return generic_max_swapfile_size();
2977 static unsigned long read_swap_header(struct swap_info_struct *p,
2978 union swap_header *swap_header,
2979 struct inode *inode)
2981 int i;
2982 unsigned long maxpages;
2983 unsigned long swapfilepages;
2984 unsigned long last_page;
2986 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2987 pr_err("Unable to find swap-space signature\n");
2988 return 0;
2991 /* swap partition endianess hack... */
2992 if (swab32(swap_header->info.version) == 1) {
2993 swab32s(&swap_header->info.version);
2994 swab32s(&swap_header->info.last_page);
2995 swab32s(&swap_header->info.nr_badpages);
2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997 return 0;
2998 for (i = 0; i < swap_header->info.nr_badpages; i++)
2999 swab32s(&swap_header->info.badpages[i]);
3001 /* Check the swap header's sub-version */
3002 if (swap_header->info.version != 1) {
3003 pr_warn("Unable to handle swap header version %d\n",
3004 swap_header->info.version);
3005 return 0;
3008 p->lowest_bit = 1;
3009 p->cluster_next = 1;
3010 p->cluster_nr = 0;
3012 maxpages = max_swapfile_size();
3013 last_page = swap_header->info.last_page;
3014 if (!last_page) {
3015 pr_warn("Empty swap-file\n");
3016 return 0;
3018 if (last_page > maxpages) {
3019 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3020 maxpages << (PAGE_SHIFT - 10),
3021 last_page << (PAGE_SHIFT - 10));
3023 if (maxpages > last_page) {
3024 maxpages = last_page + 1;
3025 /* p->max is an unsigned int: don't overflow it */
3026 if ((unsigned int)maxpages == 0)
3027 maxpages = UINT_MAX;
3029 p->highest_bit = maxpages - 1;
3031 if (!maxpages)
3032 return 0;
3033 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3034 if (swapfilepages && maxpages > swapfilepages) {
3035 pr_warn("Swap area shorter than signature indicates\n");
3036 return 0;
3038 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3039 return 0;
3040 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3041 return 0;
3043 return maxpages;
3046 #define SWAP_CLUSTER_INFO_COLS \
3047 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3048 #define SWAP_CLUSTER_SPACE_COLS \
3049 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3050 #define SWAP_CLUSTER_COLS \
3051 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3053 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3054 union swap_header *swap_header,
3055 unsigned char *swap_map,
3056 struct swap_cluster_info *cluster_info,
3057 unsigned long maxpages,
3058 sector_t *span)
3060 unsigned int j, k;
3061 unsigned int nr_good_pages;
3062 int nr_extents;
3063 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3064 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3065 unsigned long i, idx;
3067 nr_good_pages = maxpages - 1; /* omit header page */
3069 cluster_list_init(&p->free_clusters);
3070 cluster_list_init(&p->discard_clusters);
3072 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3073 unsigned int page_nr = swap_header->info.badpages[i];
3074 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3075 return -EINVAL;
3076 if (page_nr < maxpages) {
3077 swap_map[page_nr] = SWAP_MAP_BAD;
3078 nr_good_pages--;
3080 * Haven't marked the cluster free yet, no list
3081 * operation involved
3083 inc_cluster_info_page(p, cluster_info, page_nr);
3087 /* Haven't marked the cluster free yet, no list operation involved */
3088 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3089 inc_cluster_info_page(p, cluster_info, i);
3091 if (nr_good_pages) {
3092 swap_map[0] = SWAP_MAP_BAD;
3094 * Not mark the cluster free yet, no list
3095 * operation involved
3097 inc_cluster_info_page(p, cluster_info, 0);
3098 p->max = maxpages;
3099 p->pages = nr_good_pages;
3100 nr_extents = setup_swap_extents(p, span);
3101 if (nr_extents < 0)
3102 return nr_extents;
3103 nr_good_pages = p->pages;
3105 if (!nr_good_pages) {
3106 pr_warn("Empty swap-file\n");
3107 return -EINVAL;
3110 if (!cluster_info)
3111 return nr_extents;
3115 * Reduce false cache line sharing between cluster_info and
3116 * sharing same address space.
3118 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3119 j = (k + col) % SWAP_CLUSTER_COLS;
3120 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3121 idx = i * SWAP_CLUSTER_COLS + j;
3122 if (idx >= nr_clusters)
3123 continue;
3124 if (cluster_count(&cluster_info[idx]))
3125 continue;
3126 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3127 cluster_list_add_tail(&p->free_clusters, cluster_info,
3128 idx);
3131 return nr_extents;
3135 * Helper to sys_swapon determining if a given swap
3136 * backing device queue supports DISCARD operations.
3138 static bool swap_discardable(struct swap_info_struct *si)
3140 struct request_queue *q = bdev_get_queue(si->bdev);
3142 if (!q || !blk_queue_discard(q))
3143 return false;
3145 return true;
3148 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3150 struct swap_info_struct *p;
3151 struct filename *name;
3152 struct file *swap_file = NULL;
3153 struct address_space *mapping;
3154 int prio;
3155 int error;
3156 union swap_header *swap_header;
3157 int nr_extents;
3158 sector_t span;
3159 unsigned long maxpages;
3160 unsigned char *swap_map = NULL;
3161 struct swap_cluster_info *cluster_info = NULL;
3162 unsigned long *frontswap_map = NULL;
3163 struct page *page = NULL;
3164 struct inode *inode = NULL;
3165 bool inced_nr_rotate_swap = false;
3167 if (swap_flags & ~SWAP_FLAGS_VALID)
3168 return -EINVAL;
3170 if (!capable(CAP_SYS_ADMIN))
3171 return -EPERM;
3173 if (!swap_avail_heads)
3174 return -ENOMEM;
3176 p = alloc_swap_info();
3177 if (IS_ERR(p))
3178 return PTR_ERR(p);
3180 INIT_WORK(&p->discard_work, swap_discard_work);
3182 name = getname(specialfile);
3183 if (IS_ERR(name)) {
3184 error = PTR_ERR(name);
3185 name = NULL;
3186 goto bad_swap;
3188 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3189 if (IS_ERR(swap_file)) {
3190 error = PTR_ERR(swap_file);
3191 swap_file = NULL;
3192 goto bad_swap;
3195 p->swap_file = swap_file;
3196 mapping = swap_file->f_mapping;
3197 inode = mapping->host;
3199 error = claim_swapfile(p, inode);
3200 if (unlikely(error))
3201 goto bad_swap;
3203 inode_lock(inode);
3204 if (IS_SWAPFILE(inode)) {
3205 error = -EBUSY;
3206 goto bad_swap_unlock_inode;
3210 * Read the swap header.
3212 if (!mapping->a_ops->readpage) {
3213 error = -EINVAL;
3214 goto bad_swap_unlock_inode;
3216 page = read_mapping_page(mapping, 0, swap_file);
3217 if (IS_ERR(page)) {
3218 error = PTR_ERR(page);
3219 goto bad_swap_unlock_inode;
3221 swap_header = kmap(page);
3223 maxpages = read_swap_header(p, swap_header, inode);
3224 if (unlikely(!maxpages)) {
3225 error = -EINVAL;
3226 goto bad_swap_unlock_inode;
3229 /* OK, set up the swap map and apply the bad block list */
3230 swap_map = vzalloc(maxpages);
3231 if (!swap_map) {
3232 error = -ENOMEM;
3233 goto bad_swap_unlock_inode;
3236 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3237 p->flags |= SWP_STABLE_WRITES;
3239 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3240 p->flags |= SWP_SYNCHRONOUS_IO;
3242 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3243 int cpu;
3244 unsigned long ci, nr_cluster;
3246 p->flags |= SWP_SOLIDSTATE;
3247 p->cluster_next_cpu = alloc_percpu(unsigned int);
3248 if (!p->cluster_next_cpu) {
3249 error = -ENOMEM;
3250 goto bad_swap_unlock_inode;
3253 * select a random position to start with to help wear leveling
3254 * SSD
3256 for_each_possible_cpu(cpu) {
3257 per_cpu(*p->cluster_next_cpu, cpu) =
3258 1 + prandom_u32_max(p->highest_bit);
3260 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3262 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3263 GFP_KERNEL);
3264 if (!cluster_info) {
3265 error = -ENOMEM;
3266 goto bad_swap_unlock_inode;
3269 for (ci = 0; ci < nr_cluster; ci++)
3270 spin_lock_init(&((cluster_info + ci)->lock));
3272 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3273 if (!p->percpu_cluster) {
3274 error = -ENOMEM;
3275 goto bad_swap_unlock_inode;
3277 for_each_possible_cpu(cpu) {
3278 struct percpu_cluster *cluster;
3279 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3280 cluster_set_null(&cluster->index);
3282 } else {
3283 atomic_inc(&nr_rotate_swap);
3284 inced_nr_rotate_swap = true;
3287 error = swap_cgroup_swapon(p->type, maxpages);
3288 if (error)
3289 goto bad_swap_unlock_inode;
3291 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3292 cluster_info, maxpages, &span);
3293 if (unlikely(nr_extents < 0)) {
3294 error = nr_extents;
3295 goto bad_swap_unlock_inode;
3297 /* frontswap enabled? set up bit-per-page map for frontswap */
3298 if (IS_ENABLED(CONFIG_FRONTSWAP))
3299 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3300 sizeof(long),
3301 GFP_KERNEL);
3303 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3305 * When discard is enabled for swap with no particular
3306 * policy flagged, we set all swap discard flags here in
3307 * order to sustain backward compatibility with older
3308 * swapon(8) releases.
3310 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3311 SWP_PAGE_DISCARD);
3314 * By flagging sys_swapon, a sysadmin can tell us to
3315 * either do single-time area discards only, or to just
3316 * perform discards for released swap page-clusters.
3317 * Now it's time to adjust the p->flags accordingly.
3319 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3320 p->flags &= ~SWP_PAGE_DISCARD;
3321 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3322 p->flags &= ~SWP_AREA_DISCARD;
3324 /* issue a swapon-time discard if it's still required */
3325 if (p->flags & SWP_AREA_DISCARD) {
3326 int err = discard_swap(p);
3327 if (unlikely(err))
3328 pr_err("swapon: discard_swap(%p): %d\n",
3329 p, err);
3333 error = init_swap_address_space(p->type, maxpages);
3334 if (error)
3335 goto bad_swap_unlock_inode;
3338 * Flush any pending IO and dirty mappings before we start using this
3339 * swap device.
3341 inode->i_flags |= S_SWAPFILE;
3342 error = inode_drain_writes(inode);
3343 if (error) {
3344 inode->i_flags &= ~S_SWAPFILE;
3345 goto free_swap_address_space;
3348 mutex_lock(&swapon_mutex);
3349 prio = -1;
3350 if (swap_flags & SWAP_FLAG_PREFER)
3351 prio =
3352 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3353 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3355 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3356 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3357 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3358 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3359 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3360 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3361 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3362 (frontswap_map) ? "FS" : "");
3364 mutex_unlock(&swapon_mutex);
3365 atomic_inc(&proc_poll_event);
3366 wake_up_interruptible(&proc_poll_wait);
3368 error = 0;
3369 goto out;
3370 free_swap_address_space:
3371 exit_swap_address_space(p->type);
3372 bad_swap_unlock_inode:
3373 inode_unlock(inode);
3374 bad_swap:
3375 free_percpu(p->percpu_cluster);
3376 p->percpu_cluster = NULL;
3377 free_percpu(p->cluster_next_cpu);
3378 p->cluster_next_cpu = NULL;
3379 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3380 set_blocksize(p->bdev, p->old_block_size);
3381 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3383 inode = NULL;
3384 destroy_swap_extents(p);
3385 swap_cgroup_swapoff(p->type);
3386 spin_lock(&swap_lock);
3387 p->swap_file = NULL;
3388 p->flags = 0;
3389 spin_unlock(&swap_lock);
3390 vfree(swap_map);
3391 kvfree(cluster_info);
3392 kvfree(frontswap_map);
3393 if (inced_nr_rotate_swap)
3394 atomic_dec(&nr_rotate_swap);
3395 if (swap_file)
3396 filp_close(swap_file, NULL);
3397 out:
3398 if (page && !IS_ERR(page)) {
3399 kunmap(page);
3400 put_page(page);
3402 if (name)
3403 putname(name);
3404 if (inode)
3405 inode_unlock(inode);
3406 if (!error)
3407 enable_swap_slots_cache();
3408 return error;
3411 void si_swapinfo(struct sysinfo *val)
3413 unsigned int type;
3414 unsigned long nr_to_be_unused = 0;
3416 spin_lock(&swap_lock);
3417 for (type = 0; type < nr_swapfiles; type++) {
3418 struct swap_info_struct *si = swap_info[type];
3420 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3421 nr_to_be_unused += si->inuse_pages;
3423 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3424 val->totalswap = total_swap_pages + nr_to_be_unused;
3425 spin_unlock(&swap_lock);
3429 * Verify that a swap entry is valid and increment its swap map count.
3431 * Returns error code in following case.
3432 * - success -> 0
3433 * - swp_entry is invalid -> EINVAL
3434 * - swp_entry is migration entry -> EINVAL
3435 * - swap-cache reference is requested but there is already one. -> EEXIST
3436 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3437 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3439 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3441 struct swap_info_struct *p;
3442 struct swap_cluster_info *ci;
3443 unsigned long offset;
3444 unsigned char count;
3445 unsigned char has_cache;
3446 int err;
3448 p = get_swap_device(entry);
3449 if (!p)
3450 return -EINVAL;
3452 offset = swp_offset(entry);
3453 ci = lock_cluster_or_swap_info(p, offset);
3455 count = p->swap_map[offset];
3458 * swapin_readahead() doesn't check if a swap entry is valid, so the
3459 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3461 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3462 err = -ENOENT;
3463 goto unlock_out;
3466 has_cache = count & SWAP_HAS_CACHE;
3467 count &= ~SWAP_HAS_CACHE;
3468 err = 0;
3470 if (usage == SWAP_HAS_CACHE) {
3472 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3473 if (!has_cache && count)
3474 has_cache = SWAP_HAS_CACHE;
3475 else if (has_cache) /* someone else added cache */
3476 err = -EEXIST;
3477 else /* no users remaining */
3478 err = -ENOENT;
3480 } else if (count || has_cache) {
3482 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3483 count += usage;
3484 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3485 err = -EINVAL;
3486 else if (swap_count_continued(p, offset, count))
3487 count = COUNT_CONTINUED;
3488 else
3489 err = -ENOMEM;
3490 } else
3491 err = -ENOENT; /* unused swap entry */
3493 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3495 unlock_out:
3496 unlock_cluster_or_swap_info(p, ci);
3497 if (p)
3498 put_swap_device(p);
3499 return err;
3503 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3504 * (in which case its reference count is never incremented).
3506 void swap_shmem_alloc(swp_entry_t entry)
3508 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3512 * Increase reference count of swap entry by 1.
3513 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3514 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3515 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3516 * might occur if a page table entry has got corrupted.
3518 int swap_duplicate(swp_entry_t entry)
3520 int err = 0;
3522 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3523 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3524 return err;
3528 * @entry: swap entry for which we allocate swap cache.
3530 * Called when allocating swap cache for existing swap entry,
3531 * This can return error codes. Returns 0 at success.
3532 * -EEXIST means there is a swap cache.
3533 * Note: return code is different from swap_duplicate().
3535 int swapcache_prepare(swp_entry_t entry)
3537 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3540 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3542 return swap_type_to_swap_info(swp_type(entry));
3545 struct swap_info_struct *page_swap_info(struct page *page)
3547 swp_entry_t entry = { .val = page_private(page) };
3548 return swp_swap_info(entry);
3552 * out-of-line __page_file_ methods to avoid include hell.
3554 struct address_space *__page_file_mapping(struct page *page)
3556 return page_swap_info(page)->swap_file->f_mapping;
3558 EXPORT_SYMBOL_GPL(__page_file_mapping);
3560 pgoff_t __page_file_index(struct page *page)
3562 swp_entry_t swap = { .val = page_private(page) };
3563 return swp_offset(swap);
3565 EXPORT_SYMBOL_GPL(__page_file_index);
3568 * add_swap_count_continuation - called when a swap count is duplicated
3569 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3570 * page of the original vmalloc'ed swap_map, to hold the continuation count
3571 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3572 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3574 * These continuation pages are seldom referenced: the common paths all work
3575 * on the original swap_map, only referring to a continuation page when the
3576 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3578 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3579 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3580 * can be called after dropping locks.
3582 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3584 struct swap_info_struct *si;
3585 struct swap_cluster_info *ci;
3586 struct page *head;
3587 struct page *page;
3588 struct page *list_page;
3589 pgoff_t offset;
3590 unsigned char count;
3591 int ret = 0;
3594 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3595 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3597 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3599 si = get_swap_device(entry);
3600 if (!si) {
3602 * An acceptable race has occurred since the failing
3603 * __swap_duplicate(): the swap device may be swapoff
3605 goto outer;
3607 spin_lock(&si->lock);
3609 offset = swp_offset(entry);
3611 ci = lock_cluster(si, offset);
3613 count = swap_count(si->swap_map[offset]);
3615 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3617 * The higher the swap count, the more likely it is that tasks
3618 * will race to add swap count continuation: we need to avoid
3619 * over-provisioning.
3621 goto out;
3624 if (!page) {
3625 ret = -ENOMEM;
3626 goto out;
3630 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3631 * no architecture is using highmem pages for kernel page tables: so it
3632 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3634 head = vmalloc_to_page(si->swap_map + offset);
3635 offset &= ~PAGE_MASK;
3637 spin_lock(&si->cont_lock);
3639 * Page allocation does not initialize the page's lru field,
3640 * but it does always reset its private field.
3642 if (!page_private(head)) {
3643 BUG_ON(count & COUNT_CONTINUED);
3644 INIT_LIST_HEAD(&head->lru);
3645 set_page_private(head, SWP_CONTINUED);
3646 si->flags |= SWP_CONTINUED;
3649 list_for_each_entry(list_page, &head->lru, lru) {
3650 unsigned char *map;
3653 * If the previous map said no continuation, but we've found
3654 * a continuation page, free our allocation and use this one.
3656 if (!(count & COUNT_CONTINUED))
3657 goto out_unlock_cont;
3659 map = kmap_atomic(list_page) + offset;
3660 count = *map;
3661 kunmap_atomic(map);
3664 * If this continuation count now has some space in it,
3665 * free our allocation and use this one.
3667 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3668 goto out_unlock_cont;
3671 list_add_tail(&page->lru, &head->lru);
3672 page = NULL; /* now it's attached, don't free it */
3673 out_unlock_cont:
3674 spin_unlock(&si->cont_lock);
3675 out:
3676 unlock_cluster(ci);
3677 spin_unlock(&si->lock);
3678 put_swap_device(si);
3679 outer:
3680 if (page)
3681 __free_page(page);
3682 return ret;
3686 * swap_count_continued - when the original swap_map count is incremented
3687 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3688 * into, carry if so, or else fail until a new continuation page is allocated;
3689 * when the original swap_map count is decremented from 0 with continuation,
3690 * borrow from the continuation and report whether it still holds more.
3691 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3692 * lock.
3694 static bool swap_count_continued(struct swap_info_struct *si,
3695 pgoff_t offset, unsigned char count)
3697 struct page *head;
3698 struct page *page;
3699 unsigned char *map;
3700 bool ret;
3702 head = vmalloc_to_page(si->swap_map + offset);
3703 if (page_private(head) != SWP_CONTINUED) {
3704 BUG_ON(count & COUNT_CONTINUED);
3705 return false; /* need to add count continuation */
3708 spin_lock(&si->cont_lock);
3709 offset &= ~PAGE_MASK;
3710 page = list_next_entry(head, lru);
3711 map = kmap_atomic(page) + offset;
3713 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3714 goto init_map; /* jump over SWAP_CONT_MAX checks */
3716 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3718 * Think of how you add 1 to 999
3720 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3721 kunmap_atomic(map);
3722 page = list_next_entry(page, lru);
3723 BUG_ON(page == head);
3724 map = kmap_atomic(page) + offset;
3726 if (*map == SWAP_CONT_MAX) {
3727 kunmap_atomic(map);
3728 page = list_next_entry(page, lru);
3729 if (page == head) {
3730 ret = false; /* add count continuation */
3731 goto out;
3733 map = kmap_atomic(page) + offset;
3734 init_map: *map = 0; /* we didn't zero the page */
3736 *map += 1;
3737 kunmap_atomic(map);
3738 while ((page = list_prev_entry(page, lru)) != head) {
3739 map = kmap_atomic(page) + offset;
3740 *map = COUNT_CONTINUED;
3741 kunmap_atomic(map);
3743 ret = true; /* incremented */
3745 } else { /* decrementing */
3747 * Think of how you subtract 1 from 1000
3749 BUG_ON(count != COUNT_CONTINUED);
3750 while (*map == COUNT_CONTINUED) {
3751 kunmap_atomic(map);
3752 page = list_next_entry(page, lru);
3753 BUG_ON(page == head);
3754 map = kmap_atomic(page) + offset;
3756 BUG_ON(*map == 0);
3757 *map -= 1;
3758 if (*map == 0)
3759 count = 0;
3760 kunmap_atomic(map);
3761 while ((page = list_prev_entry(page, lru)) != head) {
3762 map = kmap_atomic(page) + offset;
3763 *map = SWAP_CONT_MAX | count;
3764 count = COUNT_CONTINUED;
3765 kunmap_atomic(map);
3767 ret = count == COUNT_CONTINUED;
3769 out:
3770 spin_unlock(&si->cont_lock);
3771 return ret;
3775 * free_swap_count_continuations - swapoff free all the continuation pages
3776 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3778 static void free_swap_count_continuations(struct swap_info_struct *si)
3780 pgoff_t offset;
3782 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3783 struct page *head;
3784 head = vmalloc_to_page(si->swap_map + offset);
3785 if (page_private(head)) {
3786 struct page *page, *next;
3788 list_for_each_entry_safe(page, next, &head->lru, lru) {
3789 list_del(&page->lru);
3790 __free_page(page);
3796 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3797 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3799 struct swap_info_struct *si, *next;
3800 int nid = page_to_nid(page);
3802 if (!(gfp_mask & __GFP_IO))
3803 return;
3805 if (!blk_cgroup_congested())
3806 return;
3809 * We've already scheduled a throttle, avoid taking the global swap
3810 * lock.
3812 if (current->throttle_queue)
3813 return;
3815 spin_lock(&swap_avail_lock);
3816 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3817 avail_lists[nid]) {
3818 if (si->bdev) {
3819 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3820 break;
3823 spin_unlock(&swap_avail_lock);
3825 #endif
3827 static int __init swapfile_init(void)
3829 int nid;
3831 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3832 GFP_KERNEL);
3833 if (!swap_avail_heads) {
3834 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3835 return -ENOMEM;
3838 for_each_node(nid)
3839 plist_head_init(&swap_avail_heads[nid]);
3841 return 0;
3843 subsys_initcall(swapfile_init);