1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Support for INET connection oriented protocols.
9 * Authors: See the TCP sources
12 #include <linux/module.h>
13 #include <linux/jhash.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr
*sk1_rcv_saddr6
,
35 const struct in6_addr
*sk2_rcv_saddr6
,
36 __be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
37 bool sk1_ipv6only
, bool sk2_ipv6only
,
38 bool match_sk1_wildcard
,
39 bool match_sk2_wildcard
)
41 int addr_type
= ipv6_addr_type(sk1_rcv_saddr6
);
42 int addr_type2
= sk2_rcv_saddr6
? ipv6_addr_type(sk2_rcv_saddr6
) : IPV6_ADDR_MAPPED
;
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type
== IPV6_ADDR_MAPPED
&& addr_type2
== IPV6_ADDR_MAPPED
) {
47 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
49 return (match_sk1_wildcard
&& !sk1_rcv_saddr
) ||
50 (match_sk2_wildcard
&& !sk2_rcv_saddr
);
55 if (addr_type
== IPV6_ADDR_ANY
&& addr_type2
== IPV6_ADDR_ANY
)
58 if (addr_type2
== IPV6_ADDR_ANY
&& match_sk2_wildcard
&&
59 !(sk2_ipv6only
&& addr_type
== IPV6_ADDR_MAPPED
))
62 if (addr_type
== IPV6_ADDR_ANY
&& match_sk1_wildcard
&&
63 !(sk1_ipv6only
&& addr_type2
== IPV6_ADDR_MAPPED
))
67 ipv6_addr_equal(sk1_rcv_saddr6
, sk2_rcv_saddr6
))
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr
, __be32 sk2_rcv_saddr
,
79 bool sk2_ipv6only
, bool match_sk1_wildcard
,
80 bool match_sk2_wildcard
)
83 if (sk1_rcv_saddr
== sk2_rcv_saddr
)
85 return (match_sk1_wildcard
&& !sk1_rcv_saddr
) ||
86 (match_sk2_wildcard
&& !sk2_rcv_saddr
);
91 bool inet_rcv_saddr_equal(const struct sock
*sk
, const struct sock
*sk2
,
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk
->sk_family
== AF_INET6
)
96 return ipv6_rcv_saddr_equal(&sk
->sk_v6_rcv_saddr
,
105 return ipv4_rcv_saddr_equal(sk
->sk_rcv_saddr
, sk2
->sk_rcv_saddr
,
106 ipv6_only_sock(sk2
), match_wildcard
,
109 EXPORT_SYMBOL(inet_rcv_saddr_equal
);
111 bool inet_rcv_saddr_any(const struct sock
*sk
)
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk
->sk_family
== AF_INET6
)
115 return ipv6_addr_any(&sk
->sk_v6_rcv_saddr
);
117 return !sk
->sk_rcv_saddr
;
120 void inet_get_local_port_range(struct net
*net
, int *low
, int *high
)
125 seq
= read_seqbegin(&net
->ipv4
.ip_local_ports
.lock
);
127 *low
= net
->ipv4
.ip_local_ports
.range
[0];
128 *high
= net
->ipv4
.ip_local_ports
.range
[1];
129 } while (read_seqretry(&net
->ipv4
.ip_local_ports
.lock
, seq
));
131 EXPORT_SYMBOL(inet_get_local_port_range
);
133 static int inet_csk_bind_conflict(const struct sock
*sk
,
134 const struct inet_bind_bucket
*tb
,
135 bool relax
, bool reuseport_ok
)
138 bool reuse
= sk
->sk_reuse
;
139 bool reuseport
= !!sk
->sk_reuseport
;
140 kuid_t uid
= sock_i_uid((struct sock
*)sk
);
143 * Unlike other sk lookup places we do not check
144 * for sk_net here, since _all_ the socks listed
145 * in tb->owners list belong to the same net - the
146 * one this bucket belongs to.
149 sk_for_each_bound(sk2
, &tb
->owners
) {
151 (!sk
->sk_bound_dev_if
||
152 !sk2
->sk_bound_dev_if
||
153 sk
->sk_bound_dev_if
== sk2
->sk_bound_dev_if
)) {
154 if (reuse
&& sk2
->sk_reuse
&&
155 sk2
->sk_state
!= TCP_LISTEN
) {
158 reuseport
&& sk2
->sk_reuseport
&&
159 !rcu_access_pointer(sk
->sk_reuseport_cb
) &&
160 (sk2
->sk_state
== TCP_TIME_WAIT
||
161 uid_eq(uid
, sock_i_uid(sk2
))))) &&
162 inet_rcv_saddr_equal(sk
, sk2
, true))
164 } else if (!reuseport_ok
||
165 !reuseport
|| !sk2
->sk_reuseport
||
166 rcu_access_pointer(sk
->sk_reuseport_cb
) ||
167 (sk2
->sk_state
!= TCP_TIME_WAIT
&&
168 !uid_eq(uid
, sock_i_uid(sk2
)))) {
169 if (inet_rcv_saddr_equal(sk
, sk2
, true))
178 * Find an open port number for the socket. Returns with the
179 * inet_bind_hashbucket lock held.
181 static struct inet_bind_hashbucket
*
182 inet_csk_find_open_port(struct sock
*sk
, struct inet_bind_bucket
**tb_ret
, int *port_ret
)
184 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
186 struct inet_bind_hashbucket
*head
;
187 struct net
*net
= sock_net(sk
);
189 int i
, low
, high
, attempt_half
;
190 struct inet_bind_bucket
*tb
;
191 u32 remaining
, offset
;
194 l3mdev
= inet_sk_bound_l3mdev(sk
);
196 attempt_half
= (sk
->sk_reuse
== SK_CAN_REUSE
) ? 1 : 0;
198 inet_get_local_port_range(net
, &low
, &high
);
199 high
++; /* [32768, 60999] -> [32768, 61000[ */
203 int half
= low
+ (((high
- low
) >> 2) << 1);
205 if (attempt_half
== 1)
210 remaining
= high
- low
;
211 if (likely(remaining
> 1))
214 offset
= prandom_u32() % remaining
;
215 /* __inet_hash_connect() favors ports having @low parity
216 * We do the opposite to not pollute connect() users.
222 for (i
= 0; i
< remaining
; i
+= 2, port
+= 2) {
223 if (unlikely(port
>= high
))
225 if (inet_is_local_reserved_port(net
, port
))
227 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
229 spin_lock_bh(&head
->lock
);
230 inet_bind_bucket_for_each(tb
, &head
->chain
)
231 if (net_eq(ib_net(tb
), net
) && tb
->l3mdev
== l3mdev
&&
233 if (!inet_csk_bind_conflict(sk
, tb
, relax
, false))
240 spin_unlock_bh(&head
->lock
);
246 goto other_parity_scan
;
248 if (attempt_half
== 1) {
249 /* OK we now try the upper half of the range */
251 goto other_half_scan
;
254 if (net
->ipv4
.sysctl_ip_autobind_reuse
&& !relax
) {
255 /* We still have a chance to connect to different destinations */
257 goto ports_exhausted
;
266 static inline int sk_reuseport_match(struct inet_bind_bucket
*tb
,
269 kuid_t uid
= sock_i_uid(sk
);
271 if (tb
->fastreuseport
<= 0)
273 if (!sk
->sk_reuseport
)
275 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
277 if (!uid_eq(tb
->fastuid
, uid
))
279 /* We only need to check the rcv_saddr if this tb was once marked
280 * without fastreuseport and then was reset, as we can only know that
281 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
284 if (tb
->fastreuseport
== FASTREUSEPORT_ANY
)
286 #if IS_ENABLED(CONFIG_IPV6)
287 if (tb
->fast_sk_family
== AF_INET6
)
288 return ipv6_rcv_saddr_equal(&tb
->fast_v6_rcv_saddr
,
293 ipv6_only_sock(sk
), true, false);
295 return ipv4_rcv_saddr_equal(tb
->fast_rcv_saddr
, sk
->sk_rcv_saddr
,
296 ipv6_only_sock(sk
), true, false);
299 void inet_csk_update_fastreuse(struct inet_bind_bucket
*tb
,
302 kuid_t uid
= sock_i_uid(sk
);
303 bool reuse
= sk
->sk_reuse
&& sk
->sk_state
!= TCP_LISTEN
;
305 if (hlist_empty(&tb
->owners
)) {
306 tb
->fastreuse
= reuse
;
307 if (sk
->sk_reuseport
) {
308 tb
->fastreuseport
= FASTREUSEPORT_ANY
;
310 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
311 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
312 tb
->fast_sk_family
= sk
->sk_family
;
313 #if IS_ENABLED(CONFIG_IPV6)
314 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
317 tb
->fastreuseport
= 0;
322 if (sk
->sk_reuseport
) {
323 /* We didn't match or we don't have fastreuseport set on
324 * the tb, but we have sk_reuseport set on this socket
325 * and we know that there are no bind conflicts with
326 * this socket in this tb, so reset our tb's reuseport
327 * settings so that any subsequent sockets that match
328 * our current socket will be put on the fast path.
330 * If we reset we need to set FASTREUSEPORT_STRICT so we
331 * do extra checking for all subsequent sk_reuseport
334 if (!sk_reuseport_match(tb
, sk
)) {
335 tb
->fastreuseport
= FASTREUSEPORT_STRICT
;
337 tb
->fast_rcv_saddr
= sk
->sk_rcv_saddr
;
338 tb
->fast_ipv6_only
= ipv6_only_sock(sk
);
339 tb
->fast_sk_family
= sk
->sk_family
;
340 #if IS_ENABLED(CONFIG_IPV6)
341 tb
->fast_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
345 tb
->fastreuseport
= 0;
350 /* Obtain a reference to a local port for the given sock,
351 * if snum is zero it means select any available local port.
352 * We try to allocate an odd port (and leave even ports for connect())
354 int inet_csk_get_port(struct sock
*sk
, unsigned short snum
)
356 bool reuse
= sk
->sk_reuse
&& sk
->sk_state
!= TCP_LISTEN
;
357 struct inet_hashinfo
*hinfo
= sk
->sk_prot
->h
.hashinfo
;
358 int ret
= 1, port
= snum
;
359 struct inet_bind_hashbucket
*head
;
360 struct net
*net
= sock_net(sk
);
361 struct inet_bind_bucket
*tb
= NULL
;
364 l3mdev
= inet_sk_bound_l3mdev(sk
);
367 head
= inet_csk_find_open_port(sk
, &tb
, &port
);
374 head
= &hinfo
->bhash
[inet_bhashfn(net
, port
,
376 spin_lock_bh(&head
->lock
);
377 inet_bind_bucket_for_each(tb
, &head
->chain
)
378 if (net_eq(ib_net(tb
), net
) && tb
->l3mdev
== l3mdev
&&
382 tb
= inet_bind_bucket_create(hinfo
->bind_bucket_cachep
,
383 net
, head
, port
, l3mdev
);
387 if (!hlist_empty(&tb
->owners
)) {
388 if (sk
->sk_reuse
== SK_FORCE_REUSE
)
391 if ((tb
->fastreuse
> 0 && reuse
) ||
392 sk_reuseport_match(tb
, sk
))
394 if (inet_csk_bind_conflict(sk
, tb
, true, true))
398 inet_csk_update_fastreuse(tb
, sk
);
400 if (!inet_csk(sk
)->icsk_bind_hash
)
401 inet_bind_hash(sk
, tb
, port
);
402 WARN_ON(inet_csk(sk
)->icsk_bind_hash
!= tb
);
406 spin_unlock_bh(&head
->lock
);
409 EXPORT_SYMBOL_GPL(inet_csk_get_port
);
412 * Wait for an incoming connection, avoid race conditions. This must be called
413 * with the socket locked.
415 static int inet_csk_wait_for_connect(struct sock
*sk
, long timeo
)
417 struct inet_connection_sock
*icsk
= inet_csk(sk
);
422 * True wake-one mechanism for incoming connections: only
423 * one process gets woken up, not the 'whole herd'.
424 * Since we do not 'race & poll' for established sockets
425 * anymore, the common case will execute the loop only once.
427 * Subtle issue: "add_wait_queue_exclusive()" will be added
428 * after any current non-exclusive waiters, and we know that
429 * it will always _stay_ after any new non-exclusive waiters
430 * because all non-exclusive waiters are added at the
431 * beginning of the wait-queue. As such, it's ok to "drop"
432 * our exclusiveness temporarily when we get woken up without
433 * having to remove and re-insert us on the wait queue.
436 prepare_to_wait_exclusive(sk_sleep(sk
), &wait
,
439 if (reqsk_queue_empty(&icsk
->icsk_accept_queue
))
440 timeo
= schedule_timeout(timeo
);
441 sched_annotate_sleep();
444 if (!reqsk_queue_empty(&icsk
->icsk_accept_queue
))
447 if (sk
->sk_state
!= TCP_LISTEN
)
449 err
= sock_intr_errno(timeo
);
450 if (signal_pending(current
))
456 finish_wait(sk_sleep(sk
), &wait
);
461 * This will accept the next outstanding connection.
463 struct sock
*inet_csk_accept(struct sock
*sk
, int flags
, int *err
, bool kern
)
465 struct inet_connection_sock
*icsk
= inet_csk(sk
);
466 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
467 struct request_sock
*req
;
473 /* We need to make sure that this socket is listening,
474 * and that it has something pending.
477 if (sk
->sk_state
!= TCP_LISTEN
)
480 /* Find already established connection */
481 if (reqsk_queue_empty(queue
)) {
482 long timeo
= sock_rcvtimeo(sk
, flags
& O_NONBLOCK
);
484 /* If this is a non blocking socket don't sleep */
489 error
= inet_csk_wait_for_connect(sk
, timeo
);
493 req
= reqsk_queue_remove(queue
, sk
);
496 if (sk
->sk_protocol
== IPPROTO_TCP
&&
497 tcp_rsk(req
)->tfo_listener
) {
498 spin_lock_bh(&queue
->fastopenq
.lock
);
499 if (tcp_rsk(req
)->tfo_listener
) {
500 /* We are still waiting for the final ACK from 3WHS
501 * so can't free req now. Instead, we set req->sk to
502 * NULL to signify that the child socket is taken
503 * so reqsk_fastopen_remove() will free the req
504 * when 3WHS finishes (or is aborted).
509 spin_unlock_bh(&queue
->fastopenq
.lock
);
514 if (newsk
&& mem_cgroup_sockets_enabled
) {
517 /* atomically get the memory usage, set and charge the
522 /* The socket has not been accepted yet, no need to look at
523 * newsk->sk_wmem_queued.
525 amt
= sk_mem_pages(newsk
->sk_forward_alloc
+
526 atomic_read(&newsk
->sk_rmem_alloc
));
527 mem_cgroup_sk_alloc(newsk
);
528 if (newsk
->sk_memcg
&& amt
)
529 mem_cgroup_charge_skmem(newsk
->sk_memcg
, amt
);
542 EXPORT_SYMBOL(inet_csk_accept
);
545 * Using different timers for retransmit, delayed acks and probes
546 * We may wish use just one timer maintaining a list of expire jiffies
549 void inet_csk_init_xmit_timers(struct sock
*sk
,
550 void (*retransmit_handler
)(struct timer_list
*t
),
551 void (*delack_handler
)(struct timer_list
*t
),
552 void (*keepalive_handler
)(struct timer_list
*t
))
554 struct inet_connection_sock
*icsk
= inet_csk(sk
);
556 timer_setup(&icsk
->icsk_retransmit_timer
, retransmit_handler
, 0);
557 timer_setup(&icsk
->icsk_delack_timer
, delack_handler
, 0);
558 timer_setup(&sk
->sk_timer
, keepalive_handler
, 0);
559 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= 0;
561 EXPORT_SYMBOL(inet_csk_init_xmit_timers
);
563 void inet_csk_clear_xmit_timers(struct sock
*sk
)
565 struct inet_connection_sock
*icsk
= inet_csk(sk
);
567 icsk
->icsk_pending
= icsk
->icsk_ack
.pending
= 0;
569 sk_stop_timer(sk
, &icsk
->icsk_retransmit_timer
);
570 sk_stop_timer(sk
, &icsk
->icsk_delack_timer
);
571 sk_stop_timer(sk
, &sk
->sk_timer
);
573 EXPORT_SYMBOL(inet_csk_clear_xmit_timers
);
575 void inet_csk_delete_keepalive_timer(struct sock
*sk
)
577 sk_stop_timer(sk
, &sk
->sk_timer
);
579 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer
);
581 void inet_csk_reset_keepalive_timer(struct sock
*sk
, unsigned long len
)
583 sk_reset_timer(sk
, &sk
->sk_timer
, jiffies
+ len
);
585 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer
);
587 struct dst_entry
*inet_csk_route_req(const struct sock
*sk
,
589 const struct request_sock
*req
)
591 const struct inet_request_sock
*ireq
= inet_rsk(req
);
592 struct net
*net
= read_pnet(&ireq
->ireq_net
);
593 struct ip_options_rcu
*opt
;
597 opt
= rcu_dereference(ireq
->ireq_opt
);
599 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
600 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
601 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
602 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
603 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
604 htons(ireq
->ir_num
), sk
->sk_uid
);
605 security_req_classify_flow(req
, flowi4_to_flowi_common(fl4
));
606 rt
= ip_route_output_flow(net
, fl4
, sk
);
609 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
618 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
621 EXPORT_SYMBOL_GPL(inet_csk_route_req
);
623 struct dst_entry
*inet_csk_route_child_sock(const struct sock
*sk
,
625 const struct request_sock
*req
)
627 const struct inet_request_sock
*ireq
= inet_rsk(req
);
628 struct net
*net
= read_pnet(&ireq
->ireq_net
);
629 struct inet_sock
*newinet
= inet_sk(newsk
);
630 struct ip_options_rcu
*opt
;
634 opt
= rcu_dereference(ireq
->ireq_opt
);
635 fl4
= &newinet
->cork
.fl
.u
.ip4
;
637 flowi4_init_output(fl4
, ireq
->ir_iif
, ireq
->ir_mark
,
638 RT_CONN_FLAGS(sk
), RT_SCOPE_UNIVERSE
,
639 sk
->sk_protocol
, inet_sk_flowi_flags(sk
),
640 (opt
&& opt
->opt
.srr
) ? opt
->opt
.faddr
: ireq
->ir_rmt_addr
,
641 ireq
->ir_loc_addr
, ireq
->ir_rmt_port
,
642 htons(ireq
->ir_num
), sk
->sk_uid
);
643 security_req_classify_flow(req
, flowi4_to_flowi_common(fl4
));
644 rt
= ip_route_output_flow(net
, fl4
, sk
);
647 if (opt
&& opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
654 __IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
657 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock
);
659 /* Decide when to expire the request and when to resend SYN-ACK */
660 static void syn_ack_recalc(struct request_sock
*req
,
661 const int max_syn_ack_retries
,
662 const u8 rskq_defer_accept
,
663 int *expire
, int *resend
)
665 if (!rskq_defer_accept
) {
666 *expire
= req
->num_timeout
>= max_syn_ack_retries
;
670 *expire
= req
->num_timeout
>= max_syn_ack_retries
&&
671 (!inet_rsk(req
)->acked
|| req
->num_timeout
>= rskq_defer_accept
);
672 /* Do not resend while waiting for data after ACK,
673 * start to resend on end of deferring period to give
674 * last chance for data or ACK to create established socket.
676 *resend
= !inet_rsk(req
)->acked
||
677 req
->num_timeout
>= rskq_defer_accept
- 1;
680 int inet_rtx_syn_ack(const struct sock
*parent
, struct request_sock
*req
)
682 int err
= req
->rsk_ops
->rtx_syn_ack(parent
, req
);
688 EXPORT_SYMBOL(inet_rtx_syn_ack
);
690 /* return true if req was found in the ehash table */
691 static bool reqsk_queue_unlink(struct request_sock
*req
)
693 struct inet_hashinfo
*hashinfo
= req_to_sk(req
)->sk_prot
->h
.hashinfo
;
696 if (sk_hashed(req_to_sk(req
))) {
697 spinlock_t
*lock
= inet_ehash_lockp(hashinfo
, req
->rsk_hash
);
700 found
= __sk_nulls_del_node_init_rcu(req_to_sk(req
));
703 if (timer_pending(&req
->rsk_timer
) && del_timer_sync(&req
->rsk_timer
))
708 void inet_csk_reqsk_queue_drop(struct sock
*sk
, struct request_sock
*req
)
710 if (reqsk_queue_unlink(req
)) {
711 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
715 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop
);
717 void inet_csk_reqsk_queue_drop_and_put(struct sock
*sk
, struct request_sock
*req
)
719 inet_csk_reqsk_queue_drop(sk
, req
);
722 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put
);
724 static void reqsk_timer_handler(struct timer_list
*t
)
726 struct request_sock
*req
= from_timer(req
, t
, rsk_timer
);
727 struct sock
*sk_listener
= req
->rsk_listener
;
728 struct net
*net
= sock_net(sk_listener
);
729 struct inet_connection_sock
*icsk
= inet_csk(sk_listener
);
730 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
731 int max_syn_ack_retries
, qlen
, expire
= 0, resend
= 0;
733 if (inet_sk_state_load(sk_listener
) != TCP_LISTEN
)
736 max_syn_ack_retries
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_synack_retries
;
737 /* Normally all the openreqs are young and become mature
738 * (i.e. converted to established socket) for first timeout.
739 * If synack was not acknowledged for 1 second, it means
740 * one of the following things: synack was lost, ack was lost,
741 * rtt is high or nobody planned to ack (i.e. synflood).
742 * When server is a bit loaded, queue is populated with old
743 * open requests, reducing effective size of queue.
744 * When server is well loaded, queue size reduces to zero
745 * after several minutes of work. It is not synflood,
746 * it is normal operation. The solution is pruning
747 * too old entries overriding normal timeout, when
748 * situation becomes dangerous.
750 * Essentially, we reserve half of room for young
751 * embrions; and abort old ones without pity, if old
752 * ones are about to clog our table.
754 qlen
= reqsk_queue_len(queue
);
755 if ((qlen
<< 1) > max(8U, READ_ONCE(sk_listener
->sk_max_ack_backlog
))) {
756 int young
= reqsk_queue_len_young(queue
) << 1;
758 while (max_syn_ack_retries
> 2) {
761 max_syn_ack_retries
--;
765 syn_ack_recalc(req
, max_syn_ack_retries
, READ_ONCE(queue
->rskq_defer_accept
),
767 req
->rsk_ops
->syn_ack_timeout(req
);
770 !inet_rtx_syn_ack(sk_listener
, req
) ||
771 inet_rsk(req
)->acked
)) {
774 if (req
->num_timeout
++ == 0)
775 atomic_dec(&queue
->young
);
776 timeo
= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
, TCP_RTO_MAX
);
777 mod_timer(&req
->rsk_timer
, jiffies
+ timeo
);
781 inet_csk_reqsk_queue_drop_and_put(sk_listener
, req
);
784 static void reqsk_queue_hash_req(struct request_sock
*req
,
785 unsigned long timeout
)
787 timer_setup(&req
->rsk_timer
, reqsk_timer_handler
, TIMER_PINNED
);
788 mod_timer(&req
->rsk_timer
, jiffies
+ timeout
);
790 inet_ehash_insert(req_to_sk(req
), NULL
, NULL
);
791 /* before letting lookups find us, make sure all req fields
792 * are committed to memory and refcnt initialized.
795 refcount_set(&req
->rsk_refcnt
, 2 + 1);
798 void inet_csk_reqsk_queue_hash_add(struct sock
*sk
, struct request_sock
*req
,
799 unsigned long timeout
)
801 reqsk_queue_hash_req(req
, timeout
);
802 inet_csk_reqsk_queue_added(sk
);
804 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add
);
806 static void inet_clone_ulp(const struct request_sock
*req
, struct sock
*newsk
,
807 const gfp_t priority
)
809 struct inet_connection_sock
*icsk
= inet_csk(newsk
);
811 if (!icsk
->icsk_ulp_ops
)
814 if (icsk
->icsk_ulp_ops
->clone
)
815 icsk
->icsk_ulp_ops
->clone(req
, newsk
, priority
);
819 * inet_csk_clone_lock - clone an inet socket, and lock its clone
820 * @sk: the socket to clone
822 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
824 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
826 struct sock
*inet_csk_clone_lock(const struct sock
*sk
,
827 const struct request_sock
*req
,
828 const gfp_t priority
)
830 struct sock
*newsk
= sk_clone_lock(sk
, priority
);
833 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
835 inet_sk_set_state(newsk
, TCP_SYN_RECV
);
836 newicsk
->icsk_bind_hash
= NULL
;
838 inet_sk(newsk
)->inet_dport
= inet_rsk(req
)->ir_rmt_port
;
839 inet_sk(newsk
)->inet_num
= inet_rsk(req
)->ir_num
;
840 inet_sk(newsk
)->inet_sport
= htons(inet_rsk(req
)->ir_num
);
842 /* listeners have SOCK_RCU_FREE, not the children */
843 sock_reset_flag(newsk
, SOCK_RCU_FREE
);
845 inet_sk(newsk
)->mc_list
= NULL
;
847 newsk
->sk_mark
= inet_rsk(req
)->ir_mark
;
848 atomic64_set(&newsk
->sk_cookie
,
849 atomic64_read(&inet_rsk(req
)->ir_cookie
));
851 newicsk
->icsk_retransmits
= 0;
852 newicsk
->icsk_backoff
= 0;
853 newicsk
->icsk_probes_out
= 0;
855 /* Deinitialize accept_queue to trap illegal accesses. */
856 memset(&newicsk
->icsk_accept_queue
, 0, sizeof(newicsk
->icsk_accept_queue
));
858 inet_clone_ulp(req
, newsk
, priority
);
860 security_inet_csk_clone(newsk
, req
);
864 EXPORT_SYMBOL_GPL(inet_csk_clone_lock
);
867 * At this point, there should be no process reference to this
868 * socket, and thus no user references at all. Therefore we
869 * can assume the socket waitqueue is inactive and nobody will
870 * try to jump onto it.
872 void inet_csk_destroy_sock(struct sock
*sk
)
874 WARN_ON(sk
->sk_state
!= TCP_CLOSE
);
875 WARN_ON(!sock_flag(sk
, SOCK_DEAD
));
877 /* It cannot be in hash table! */
878 WARN_ON(!sk_unhashed(sk
));
880 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
881 WARN_ON(inet_sk(sk
)->inet_num
&& !inet_csk(sk
)->icsk_bind_hash
);
883 sk
->sk_prot
->destroy(sk
);
885 sk_stream_kill_queues(sk
);
887 xfrm_sk_free_policy(sk
);
889 sk_refcnt_debug_release(sk
);
891 percpu_counter_dec(sk
->sk_prot
->orphan_count
);
895 EXPORT_SYMBOL(inet_csk_destroy_sock
);
897 /* This function allows to force a closure of a socket after the call to
898 * tcp/dccp_create_openreq_child().
900 void inet_csk_prepare_forced_close(struct sock
*sk
)
901 __releases(&sk
->sk_lock
.slock
)
903 /* sk_clone_lock locked the socket and set refcnt to 2 */
906 inet_csk_prepare_for_destroy_sock(sk
);
907 inet_sk(sk
)->inet_num
= 0;
909 EXPORT_SYMBOL(inet_csk_prepare_forced_close
);
911 int inet_csk_listen_start(struct sock
*sk
, int backlog
)
913 struct inet_connection_sock
*icsk
= inet_csk(sk
);
914 struct inet_sock
*inet
= inet_sk(sk
);
915 int err
= -EADDRINUSE
;
917 reqsk_queue_alloc(&icsk
->icsk_accept_queue
);
919 sk
->sk_ack_backlog
= 0;
920 inet_csk_delack_init(sk
);
922 /* There is race window here: we announce ourselves listening,
923 * but this transition is still not validated by get_port().
924 * It is OK, because this socket enters to hash table only
925 * after validation is complete.
927 inet_sk_state_store(sk
, TCP_LISTEN
);
928 if (!sk
->sk_prot
->get_port(sk
, inet
->inet_num
)) {
929 inet
->inet_sport
= htons(inet
->inet_num
);
932 err
= sk
->sk_prot
->hash(sk
);
938 inet_sk_set_state(sk
, TCP_CLOSE
);
941 EXPORT_SYMBOL_GPL(inet_csk_listen_start
);
943 static void inet_child_forget(struct sock
*sk
, struct request_sock
*req
,
946 sk
->sk_prot
->disconnect(child
, O_NONBLOCK
);
950 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
952 if (sk
->sk_protocol
== IPPROTO_TCP
&& tcp_rsk(req
)->tfo_listener
) {
953 BUG_ON(rcu_access_pointer(tcp_sk(child
)->fastopen_rsk
) != req
);
954 BUG_ON(sk
!= req
->rsk_listener
);
956 /* Paranoid, to prevent race condition if
957 * an inbound pkt destined for child is
958 * blocked by sock lock in tcp_v4_rcv().
959 * Also to satisfy an assertion in
960 * tcp_v4_destroy_sock().
962 RCU_INIT_POINTER(tcp_sk(child
)->fastopen_rsk
, NULL
);
964 inet_csk_destroy_sock(child
);
967 struct sock
*inet_csk_reqsk_queue_add(struct sock
*sk
,
968 struct request_sock
*req
,
971 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
973 spin_lock(&queue
->rskq_lock
);
974 if (unlikely(sk
->sk_state
!= TCP_LISTEN
)) {
975 inet_child_forget(sk
, req
, child
);
980 if (queue
->rskq_accept_head
== NULL
)
981 WRITE_ONCE(queue
->rskq_accept_head
, req
);
983 queue
->rskq_accept_tail
->dl_next
= req
;
984 queue
->rskq_accept_tail
= req
;
985 sk_acceptq_added(sk
);
987 spin_unlock(&queue
->rskq_lock
);
990 EXPORT_SYMBOL(inet_csk_reqsk_queue_add
);
992 struct sock
*inet_csk_complete_hashdance(struct sock
*sk
, struct sock
*child
,
993 struct request_sock
*req
, bool own_req
)
996 inet_csk_reqsk_queue_drop(sk
, req
);
997 reqsk_queue_removed(&inet_csk(sk
)->icsk_accept_queue
, req
);
998 if (inet_csk_reqsk_queue_add(sk
, req
, child
))
1001 /* Too bad, another child took ownership of the request, undo. */
1002 bh_unlock_sock(child
);
1006 EXPORT_SYMBOL(inet_csk_complete_hashdance
);
1009 * This routine closes sockets which have been at least partially
1010 * opened, but not yet accepted.
1012 void inet_csk_listen_stop(struct sock
*sk
)
1014 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1015 struct request_sock_queue
*queue
= &icsk
->icsk_accept_queue
;
1016 struct request_sock
*next
, *req
;
1018 /* Following specs, it would be better either to send FIN
1019 * (and enter FIN-WAIT-1, it is normal close)
1020 * or to send active reset (abort).
1021 * Certainly, it is pretty dangerous while synflood, but it is
1022 * bad justification for our negligence 8)
1023 * To be honest, we are not able to make either
1024 * of the variants now. --ANK
1026 while ((req
= reqsk_queue_remove(queue
, sk
)) != NULL
) {
1027 struct sock
*child
= req
->sk
;
1030 bh_lock_sock(child
);
1031 WARN_ON(sock_owned_by_user(child
));
1034 inet_child_forget(sk
, req
, child
);
1036 bh_unlock_sock(child
);
1042 if (queue
->fastopenq
.rskq_rst_head
) {
1043 /* Free all the reqs queued in rskq_rst_head. */
1044 spin_lock_bh(&queue
->fastopenq
.lock
);
1045 req
= queue
->fastopenq
.rskq_rst_head
;
1046 queue
->fastopenq
.rskq_rst_head
= NULL
;
1047 spin_unlock_bh(&queue
->fastopenq
.lock
);
1048 while (req
!= NULL
) {
1049 next
= req
->dl_next
;
1054 WARN_ON_ONCE(sk
->sk_ack_backlog
);
1056 EXPORT_SYMBOL_GPL(inet_csk_listen_stop
);
1058 void inet_csk_addr2sockaddr(struct sock
*sk
, struct sockaddr
*uaddr
)
1060 struct sockaddr_in
*sin
= (struct sockaddr_in
*)uaddr
;
1061 const struct inet_sock
*inet
= inet_sk(sk
);
1063 sin
->sin_family
= AF_INET
;
1064 sin
->sin_addr
.s_addr
= inet
->inet_daddr
;
1065 sin
->sin_port
= inet
->inet_dport
;
1067 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr
);
1069 static struct dst_entry
*inet_csk_rebuild_route(struct sock
*sk
, struct flowi
*fl
)
1071 const struct inet_sock
*inet
= inet_sk(sk
);
1072 const struct ip_options_rcu
*inet_opt
;
1073 __be32 daddr
= inet
->inet_daddr
;
1078 inet_opt
= rcu_dereference(inet
->inet_opt
);
1079 if (inet_opt
&& inet_opt
->opt
.srr
)
1080 daddr
= inet_opt
->opt
.faddr
;
1082 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
, daddr
,
1083 inet
->inet_saddr
, inet
->inet_dport
,
1084 inet
->inet_sport
, sk
->sk_protocol
,
1085 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
);
1089 sk_setup_caps(sk
, &rt
->dst
);
1095 struct dst_entry
*inet_csk_update_pmtu(struct sock
*sk
, u32 mtu
)
1097 struct dst_entry
*dst
= __sk_dst_check(sk
, 0);
1098 struct inet_sock
*inet
= inet_sk(sk
);
1101 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1105 dst
->ops
->update_pmtu(dst
, sk
, NULL
, mtu
, true);
1107 dst
= __sk_dst_check(sk
, 0);
1109 dst
= inet_csk_rebuild_route(sk
, &inet
->cork
.fl
);
1113 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu
);