Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / net / ipv4 / inet_connection_sock.c
blobfd8b8800a2c3022666f46b9ba2ac984f7cf6b04d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Support for INET connection oriented protocols.
9 * Authors: See the TCP sources
12 #include <linux/module.h>
13 #include <linux/jhash.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
52 return false;
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
70 return false;
72 #endif
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
88 return false;
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
111 bool inet_rcv_saddr_any(const struct sock *sk)
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
122 unsigned int seq;
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
131 EXPORT_SYMBOL(inet_get_local_port_range);
133 static int inet_csk_bind_conflict(const struct sock *sk,
134 const struct inet_bind_bucket *tb,
135 bool relax, bool reuseport_ok)
137 struct sock *sk2;
138 bool reuse = sk->sk_reuse;
139 bool reuseport = !!sk->sk_reuseport;
140 kuid_t uid = sock_i_uid((struct sock *)sk);
143 * Unlike other sk lookup places we do not check
144 * for sk_net here, since _all_ the socks listed
145 * in tb->owners list belong to the same net - the
146 * one this bucket belongs to.
149 sk_for_each_bound(sk2, &tb->owners) {
150 if (sk != sk2 &&
151 (!sk->sk_bound_dev_if ||
152 !sk2->sk_bound_dev_if ||
153 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154 if (reuse && sk2->sk_reuse &&
155 sk2->sk_state != TCP_LISTEN) {
156 if ((!relax ||
157 (!reuseport_ok &&
158 reuseport && sk2->sk_reuseport &&
159 !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 (sk2->sk_state == TCP_TIME_WAIT ||
161 uid_eq(uid, sock_i_uid(sk2))))) &&
162 inet_rcv_saddr_equal(sk, sk2, true))
163 break;
164 } else if (!reuseport_ok ||
165 !reuseport || !sk2->sk_reuseport ||
166 rcu_access_pointer(sk->sk_reuseport_cb) ||
167 (sk2->sk_state != TCP_TIME_WAIT &&
168 !uid_eq(uid, sock_i_uid(sk2)))) {
169 if (inet_rcv_saddr_equal(sk, sk2, true))
170 break;
174 return sk2 != NULL;
178 * Find an open port number for the socket. Returns with the
179 * inet_bind_hashbucket lock held.
181 static struct inet_bind_hashbucket *
182 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
184 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
185 int port = 0;
186 struct inet_bind_hashbucket *head;
187 struct net *net = sock_net(sk);
188 bool relax = false;
189 int i, low, high, attempt_half;
190 struct inet_bind_bucket *tb;
191 u32 remaining, offset;
192 int l3mdev;
194 l3mdev = inet_sk_bound_l3mdev(sk);
195 ports_exhausted:
196 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
197 other_half_scan:
198 inet_get_local_port_range(net, &low, &high);
199 high++; /* [32768, 60999] -> [32768, 61000[ */
200 if (high - low < 4)
201 attempt_half = 0;
202 if (attempt_half) {
203 int half = low + (((high - low) >> 2) << 1);
205 if (attempt_half == 1)
206 high = half;
207 else
208 low = half;
210 remaining = high - low;
211 if (likely(remaining > 1))
212 remaining &= ~1U;
214 offset = prandom_u32() % remaining;
215 /* __inet_hash_connect() favors ports having @low parity
216 * We do the opposite to not pollute connect() users.
218 offset |= 1U;
220 other_parity_scan:
221 port = low + offset;
222 for (i = 0; i < remaining; i += 2, port += 2) {
223 if (unlikely(port >= high))
224 port -= remaining;
225 if (inet_is_local_reserved_port(net, port))
226 continue;
227 head = &hinfo->bhash[inet_bhashfn(net, port,
228 hinfo->bhash_size)];
229 spin_lock_bh(&head->lock);
230 inet_bind_bucket_for_each(tb, &head->chain)
231 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
232 tb->port == port) {
233 if (!inet_csk_bind_conflict(sk, tb, relax, false))
234 goto success;
235 goto next_port;
237 tb = NULL;
238 goto success;
239 next_port:
240 spin_unlock_bh(&head->lock);
241 cond_resched();
244 offset--;
245 if (!(offset & 1))
246 goto other_parity_scan;
248 if (attempt_half == 1) {
249 /* OK we now try the upper half of the range */
250 attempt_half = 2;
251 goto other_half_scan;
254 if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
255 /* We still have a chance to connect to different destinations */
256 relax = true;
257 goto ports_exhausted;
259 return NULL;
260 success:
261 *port_ret = port;
262 *tb_ret = tb;
263 return head;
266 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
267 struct sock *sk)
269 kuid_t uid = sock_i_uid(sk);
271 if (tb->fastreuseport <= 0)
272 return 0;
273 if (!sk->sk_reuseport)
274 return 0;
275 if (rcu_access_pointer(sk->sk_reuseport_cb))
276 return 0;
277 if (!uid_eq(tb->fastuid, uid))
278 return 0;
279 /* We only need to check the rcv_saddr if this tb was once marked
280 * without fastreuseport and then was reset, as we can only know that
281 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
282 * owners list.
284 if (tb->fastreuseport == FASTREUSEPORT_ANY)
285 return 1;
286 #if IS_ENABLED(CONFIG_IPV6)
287 if (tb->fast_sk_family == AF_INET6)
288 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
289 inet6_rcv_saddr(sk),
290 tb->fast_rcv_saddr,
291 sk->sk_rcv_saddr,
292 tb->fast_ipv6_only,
293 ipv6_only_sock(sk), true, false);
294 #endif
295 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
296 ipv6_only_sock(sk), true, false);
299 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
300 struct sock *sk)
302 kuid_t uid = sock_i_uid(sk);
303 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
305 if (hlist_empty(&tb->owners)) {
306 tb->fastreuse = reuse;
307 if (sk->sk_reuseport) {
308 tb->fastreuseport = FASTREUSEPORT_ANY;
309 tb->fastuid = uid;
310 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
311 tb->fast_ipv6_only = ipv6_only_sock(sk);
312 tb->fast_sk_family = sk->sk_family;
313 #if IS_ENABLED(CONFIG_IPV6)
314 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
315 #endif
316 } else {
317 tb->fastreuseport = 0;
319 } else {
320 if (!reuse)
321 tb->fastreuse = 0;
322 if (sk->sk_reuseport) {
323 /* We didn't match or we don't have fastreuseport set on
324 * the tb, but we have sk_reuseport set on this socket
325 * and we know that there are no bind conflicts with
326 * this socket in this tb, so reset our tb's reuseport
327 * settings so that any subsequent sockets that match
328 * our current socket will be put on the fast path.
330 * If we reset we need to set FASTREUSEPORT_STRICT so we
331 * do extra checking for all subsequent sk_reuseport
332 * socks.
334 if (!sk_reuseport_match(tb, sk)) {
335 tb->fastreuseport = FASTREUSEPORT_STRICT;
336 tb->fastuid = uid;
337 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
338 tb->fast_ipv6_only = ipv6_only_sock(sk);
339 tb->fast_sk_family = sk->sk_family;
340 #if IS_ENABLED(CONFIG_IPV6)
341 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
342 #endif
344 } else {
345 tb->fastreuseport = 0;
350 /* Obtain a reference to a local port for the given sock,
351 * if snum is zero it means select any available local port.
352 * We try to allocate an odd port (and leave even ports for connect())
354 int inet_csk_get_port(struct sock *sk, unsigned short snum)
356 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
357 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
358 int ret = 1, port = snum;
359 struct inet_bind_hashbucket *head;
360 struct net *net = sock_net(sk);
361 struct inet_bind_bucket *tb = NULL;
362 int l3mdev;
364 l3mdev = inet_sk_bound_l3mdev(sk);
366 if (!port) {
367 head = inet_csk_find_open_port(sk, &tb, &port);
368 if (!head)
369 return ret;
370 if (!tb)
371 goto tb_not_found;
372 goto success;
374 head = &hinfo->bhash[inet_bhashfn(net, port,
375 hinfo->bhash_size)];
376 spin_lock_bh(&head->lock);
377 inet_bind_bucket_for_each(tb, &head->chain)
378 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
379 tb->port == port)
380 goto tb_found;
381 tb_not_found:
382 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
383 net, head, port, l3mdev);
384 if (!tb)
385 goto fail_unlock;
386 tb_found:
387 if (!hlist_empty(&tb->owners)) {
388 if (sk->sk_reuse == SK_FORCE_REUSE)
389 goto success;
391 if ((tb->fastreuse > 0 && reuse) ||
392 sk_reuseport_match(tb, sk))
393 goto success;
394 if (inet_csk_bind_conflict(sk, tb, true, true))
395 goto fail_unlock;
397 success:
398 inet_csk_update_fastreuse(tb, sk);
400 if (!inet_csk(sk)->icsk_bind_hash)
401 inet_bind_hash(sk, tb, port);
402 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
403 ret = 0;
405 fail_unlock:
406 spin_unlock_bh(&head->lock);
407 return ret;
409 EXPORT_SYMBOL_GPL(inet_csk_get_port);
412 * Wait for an incoming connection, avoid race conditions. This must be called
413 * with the socket locked.
415 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
417 struct inet_connection_sock *icsk = inet_csk(sk);
418 DEFINE_WAIT(wait);
419 int err;
422 * True wake-one mechanism for incoming connections: only
423 * one process gets woken up, not the 'whole herd'.
424 * Since we do not 'race & poll' for established sockets
425 * anymore, the common case will execute the loop only once.
427 * Subtle issue: "add_wait_queue_exclusive()" will be added
428 * after any current non-exclusive waiters, and we know that
429 * it will always _stay_ after any new non-exclusive waiters
430 * because all non-exclusive waiters are added at the
431 * beginning of the wait-queue. As such, it's ok to "drop"
432 * our exclusiveness temporarily when we get woken up without
433 * having to remove and re-insert us on the wait queue.
435 for (;;) {
436 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
437 TASK_INTERRUPTIBLE);
438 release_sock(sk);
439 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
440 timeo = schedule_timeout(timeo);
441 sched_annotate_sleep();
442 lock_sock(sk);
443 err = 0;
444 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
445 break;
446 err = -EINVAL;
447 if (sk->sk_state != TCP_LISTEN)
448 break;
449 err = sock_intr_errno(timeo);
450 if (signal_pending(current))
451 break;
452 err = -EAGAIN;
453 if (!timeo)
454 break;
456 finish_wait(sk_sleep(sk), &wait);
457 return err;
461 * This will accept the next outstanding connection.
463 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
465 struct inet_connection_sock *icsk = inet_csk(sk);
466 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
467 struct request_sock *req;
468 struct sock *newsk;
469 int error;
471 lock_sock(sk);
473 /* We need to make sure that this socket is listening,
474 * and that it has something pending.
476 error = -EINVAL;
477 if (sk->sk_state != TCP_LISTEN)
478 goto out_err;
480 /* Find already established connection */
481 if (reqsk_queue_empty(queue)) {
482 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
484 /* If this is a non blocking socket don't sleep */
485 error = -EAGAIN;
486 if (!timeo)
487 goto out_err;
489 error = inet_csk_wait_for_connect(sk, timeo);
490 if (error)
491 goto out_err;
493 req = reqsk_queue_remove(queue, sk);
494 newsk = req->sk;
496 if (sk->sk_protocol == IPPROTO_TCP &&
497 tcp_rsk(req)->tfo_listener) {
498 spin_lock_bh(&queue->fastopenq.lock);
499 if (tcp_rsk(req)->tfo_listener) {
500 /* We are still waiting for the final ACK from 3WHS
501 * so can't free req now. Instead, we set req->sk to
502 * NULL to signify that the child socket is taken
503 * so reqsk_fastopen_remove() will free the req
504 * when 3WHS finishes (or is aborted).
506 req->sk = NULL;
507 req = NULL;
509 spin_unlock_bh(&queue->fastopenq.lock);
512 out:
513 release_sock(sk);
514 if (newsk && mem_cgroup_sockets_enabled) {
515 int amt;
517 /* atomically get the memory usage, set and charge the
518 * newsk->sk_memcg.
520 lock_sock(newsk);
522 /* The socket has not been accepted yet, no need to look at
523 * newsk->sk_wmem_queued.
525 amt = sk_mem_pages(newsk->sk_forward_alloc +
526 atomic_read(&newsk->sk_rmem_alloc));
527 mem_cgroup_sk_alloc(newsk);
528 if (newsk->sk_memcg && amt)
529 mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
531 release_sock(newsk);
533 if (req)
534 reqsk_put(req);
535 return newsk;
536 out_err:
537 newsk = NULL;
538 req = NULL;
539 *err = error;
540 goto out;
542 EXPORT_SYMBOL(inet_csk_accept);
545 * Using different timers for retransmit, delayed acks and probes
546 * We may wish use just one timer maintaining a list of expire jiffies
547 * to optimize.
549 void inet_csk_init_xmit_timers(struct sock *sk,
550 void (*retransmit_handler)(struct timer_list *t),
551 void (*delack_handler)(struct timer_list *t),
552 void (*keepalive_handler)(struct timer_list *t))
554 struct inet_connection_sock *icsk = inet_csk(sk);
556 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
557 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
558 timer_setup(&sk->sk_timer, keepalive_handler, 0);
559 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
561 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
563 void inet_csk_clear_xmit_timers(struct sock *sk)
565 struct inet_connection_sock *icsk = inet_csk(sk);
567 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
569 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
570 sk_stop_timer(sk, &icsk->icsk_delack_timer);
571 sk_stop_timer(sk, &sk->sk_timer);
573 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
575 void inet_csk_delete_keepalive_timer(struct sock *sk)
577 sk_stop_timer(sk, &sk->sk_timer);
579 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
581 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
583 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
585 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
587 struct dst_entry *inet_csk_route_req(const struct sock *sk,
588 struct flowi4 *fl4,
589 const struct request_sock *req)
591 const struct inet_request_sock *ireq = inet_rsk(req);
592 struct net *net = read_pnet(&ireq->ireq_net);
593 struct ip_options_rcu *opt;
594 struct rtable *rt;
596 rcu_read_lock();
597 opt = rcu_dereference(ireq->ireq_opt);
599 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
600 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
601 sk->sk_protocol, inet_sk_flowi_flags(sk),
602 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
603 ireq->ir_loc_addr, ireq->ir_rmt_port,
604 htons(ireq->ir_num), sk->sk_uid);
605 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
606 rt = ip_route_output_flow(net, fl4, sk);
607 if (IS_ERR(rt))
608 goto no_route;
609 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
610 goto route_err;
611 rcu_read_unlock();
612 return &rt->dst;
614 route_err:
615 ip_rt_put(rt);
616 no_route:
617 rcu_read_unlock();
618 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
619 return NULL;
621 EXPORT_SYMBOL_GPL(inet_csk_route_req);
623 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
624 struct sock *newsk,
625 const struct request_sock *req)
627 const struct inet_request_sock *ireq = inet_rsk(req);
628 struct net *net = read_pnet(&ireq->ireq_net);
629 struct inet_sock *newinet = inet_sk(newsk);
630 struct ip_options_rcu *opt;
631 struct flowi4 *fl4;
632 struct rtable *rt;
634 opt = rcu_dereference(ireq->ireq_opt);
635 fl4 = &newinet->cork.fl.u.ip4;
637 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
638 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
639 sk->sk_protocol, inet_sk_flowi_flags(sk),
640 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
641 ireq->ir_loc_addr, ireq->ir_rmt_port,
642 htons(ireq->ir_num), sk->sk_uid);
643 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
644 rt = ip_route_output_flow(net, fl4, sk);
645 if (IS_ERR(rt))
646 goto no_route;
647 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
648 goto route_err;
649 return &rt->dst;
651 route_err:
652 ip_rt_put(rt);
653 no_route:
654 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
655 return NULL;
657 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
659 /* Decide when to expire the request and when to resend SYN-ACK */
660 static void syn_ack_recalc(struct request_sock *req,
661 const int max_syn_ack_retries,
662 const u8 rskq_defer_accept,
663 int *expire, int *resend)
665 if (!rskq_defer_accept) {
666 *expire = req->num_timeout >= max_syn_ack_retries;
667 *resend = 1;
668 return;
670 *expire = req->num_timeout >= max_syn_ack_retries &&
671 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
672 /* Do not resend while waiting for data after ACK,
673 * start to resend on end of deferring period to give
674 * last chance for data or ACK to create established socket.
676 *resend = !inet_rsk(req)->acked ||
677 req->num_timeout >= rskq_defer_accept - 1;
680 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
682 int err = req->rsk_ops->rtx_syn_ack(parent, req);
684 if (!err)
685 req->num_retrans++;
686 return err;
688 EXPORT_SYMBOL(inet_rtx_syn_ack);
690 /* return true if req was found in the ehash table */
691 static bool reqsk_queue_unlink(struct request_sock *req)
693 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
694 bool found = false;
696 if (sk_hashed(req_to_sk(req))) {
697 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
699 spin_lock(lock);
700 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
701 spin_unlock(lock);
703 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
704 reqsk_put(req);
705 return found;
708 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
710 if (reqsk_queue_unlink(req)) {
711 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
712 reqsk_put(req);
715 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
717 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
719 inet_csk_reqsk_queue_drop(sk, req);
720 reqsk_put(req);
722 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
724 static void reqsk_timer_handler(struct timer_list *t)
726 struct request_sock *req = from_timer(req, t, rsk_timer);
727 struct sock *sk_listener = req->rsk_listener;
728 struct net *net = sock_net(sk_listener);
729 struct inet_connection_sock *icsk = inet_csk(sk_listener);
730 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
731 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
733 if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
734 goto drop;
736 max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
737 /* Normally all the openreqs are young and become mature
738 * (i.e. converted to established socket) for first timeout.
739 * If synack was not acknowledged for 1 second, it means
740 * one of the following things: synack was lost, ack was lost,
741 * rtt is high or nobody planned to ack (i.e. synflood).
742 * When server is a bit loaded, queue is populated with old
743 * open requests, reducing effective size of queue.
744 * When server is well loaded, queue size reduces to zero
745 * after several minutes of work. It is not synflood,
746 * it is normal operation. The solution is pruning
747 * too old entries overriding normal timeout, when
748 * situation becomes dangerous.
750 * Essentially, we reserve half of room for young
751 * embrions; and abort old ones without pity, if old
752 * ones are about to clog our table.
754 qlen = reqsk_queue_len(queue);
755 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
756 int young = reqsk_queue_len_young(queue) << 1;
758 while (max_syn_ack_retries > 2) {
759 if (qlen < young)
760 break;
761 max_syn_ack_retries--;
762 young <<= 1;
765 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
766 &expire, &resend);
767 req->rsk_ops->syn_ack_timeout(req);
768 if (!expire &&
769 (!resend ||
770 !inet_rtx_syn_ack(sk_listener, req) ||
771 inet_rsk(req)->acked)) {
772 unsigned long timeo;
774 if (req->num_timeout++ == 0)
775 atomic_dec(&queue->young);
776 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
777 mod_timer(&req->rsk_timer, jiffies + timeo);
778 return;
780 drop:
781 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
784 static void reqsk_queue_hash_req(struct request_sock *req,
785 unsigned long timeout)
787 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
788 mod_timer(&req->rsk_timer, jiffies + timeout);
790 inet_ehash_insert(req_to_sk(req), NULL, NULL);
791 /* before letting lookups find us, make sure all req fields
792 * are committed to memory and refcnt initialized.
794 smp_wmb();
795 refcount_set(&req->rsk_refcnt, 2 + 1);
798 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
799 unsigned long timeout)
801 reqsk_queue_hash_req(req, timeout);
802 inet_csk_reqsk_queue_added(sk);
804 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
806 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
807 const gfp_t priority)
809 struct inet_connection_sock *icsk = inet_csk(newsk);
811 if (!icsk->icsk_ulp_ops)
812 return;
814 if (icsk->icsk_ulp_ops->clone)
815 icsk->icsk_ulp_ops->clone(req, newsk, priority);
819 * inet_csk_clone_lock - clone an inet socket, and lock its clone
820 * @sk: the socket to clone
821 * @req: request_sock
822 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
824 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
826 struct sock *inet_csk_clone_lock(const struct sock *sk,
827 const struct request_sock *req,
828 const gfp_t priority)
830 struct sock *newsk = sk_clone_lock(sk, priority);
832 if (newsk) {
833 struct inet_connection_sock *newicsk = inet_csk(newsk);
835 inet_sk_set_state(newsk, TCP_SYN_RECV);
836 newicsk->icsk_bind_hash = NULL;
838 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
839 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
840 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
842 /* listeners have SOCK_RCU_FREE, not the children */
843 sock_reset_flag(newsk, SOCK_RCU_FREE);
845 inet_sk(newsk)->mc_list = NULL;
847 newsk->sk_mark = inet_rsk(req)->ir_mark;
848 atomic64_set(&newsk->sk_cookie,
849 atomic64_read(&inet_rsk(req)->ir_cookie));
851 newicsk->icsk_retransmits = 0;
852 newicsk->icsk_backoff = 0;
853 newicsk->icsk_probes_out = 0;
855 /* Deinitialize accept_queue to trap illegal accesses. */
856 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
858 inet_clone_ulp(req, newsk, priority);
860 security_inet_csk_clone(newsk, req);
862 return newsk;
864 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
867 * At this point, there should be no process reference to this
868 * socket, and thus no user references at all. Therefore we
869 * can assume the socket waitqueue is inactive and nobody will
870 * try to jump onto it.
872 void inet_csk_destroy_sock(struct sock *sk)
874 WARN_ON(sk->sk_state != TCP_CLOSE);
875 WARN_ON(!sock_flag(sk, SOCK_DEAD));
877 /* It cannot be in hash table! */
878 WARN_ON(!sk_unhashed(sk));
880 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
881 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
883 sk->sk_prot->destroy(sk);
885 sk_stream_kill_queues(sk);
887 xfrm_sk_free_policy(sk);
889 sk_refcnt_debug_release(sk);
891 percpu_counter_dec(sk->sk_prot->orphan_count);
893 sock_put(sk);
895 EXPORT_SYMBOL(inet_csk_destroy_sock);
897 /* This function allows to force a closure of a socket after the call to
898 * tcp/dccp_create_openreq_child().
900 void inet_csk_prepare_forced_close(struct sock *sk)
901 __releases(&sk->sk_lock.slock)
903 /* sk_clone_lock locked the socket and set refcnt to 2 */
904 bh_unlock_sock(sk);
905 sock_put(sk);
906 inet_csk_prepare_for_destroy_sock(sk);
907 inet_sk(sk)->inet_num = 0;
909 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
911 int inet_csk_listen_start(struct sock *sk, int backlog)
913 struct inet_connection_sock *icsk = inet_csk(sk);
914 struct inet_sock *inet = inet_sk(sk);
915 int err = -EADDRINUSE;
917 reqsk_queue_alloc(&icsk->icsk_accept_queue);
919 sk->sk_ack_backlog = 0;
920 inet_csk_delack_init(sk);
922 /* There is race window here: we announce ourselves listening,
923 * but this transition is still not validated by get_port().
924 * It is OK, because this socket enters to hash table only
925 * after validation is complete.
927 inet_sk_state_store(sk, TCP_LISTEN);
928 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
929 inet->inet_sport = htons(inet->inet_num);
931 sk_dst_reset(sk);
932 err = sk->sk_prot->hash(sk);
934 if (likely(!err))
935 return 0;
938 inet_sk_set_state(sk, TCP_CLOSE);
939 return err;
941 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
943 static void inet_child_forget(struct sock *sk, struct request_sock *req,
944 struct sock *child)
946 sk->sk_prot->disconnect(child, O_NONBLOCK);
948 sock_orphan(child);
950 percpu_counter_inc(sk->sk_prot->orphan_count);
952 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
953 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
954 BUG_ON(sk != req->rsk_listener);
956 /* Paranoid, to prevent race condition if
957 * an inbound pkt destined for child is
958 * blocked by sock lock in tcp_v4_rcv().
959 * Also to satisfy an assertion in
960 * tcp_v4_destroy_sock().
962 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
964 inet_csk_destroy_sock(child);
967 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
968 struct request_sock *req,
969 struct sock *child)
971 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
973 spin_lock(&queue->rskq_lock);
974 if (unlikely(sk->sk_state != TCP_LISTEN)) {
975 inet_child_forget(sk, req, child);
976 child = NULL;
977 } else {
978 req->sk = child;
979 req->dl_next = NULL;
980 if (queue->rskq_accept_head == NULL)
981 WRITE_ONCE(queue->rskq_accept_head, req);
982 else
983 queue->rskq_accept_tail->dl_next = req;
984 queue->rskq_accept_tail = req;
985 sk_acceptq_added(sk);
987 spin_unlock(&queue->rskq_lock);
988 return child;
990 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
992 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
993 struct request_sock *req, bool own_req)
995 if (own_req) {
996 inet_csk_reqsk_queue_drop(sk, req);
997 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
998 if (inet_csk_reqsk_queue_add(sk, req, child))
999 return child;
1001 /* Too bad, another child took ownership of the request, undo. */
1002 bh_unlock_sock(child);
1003 sock_put(child);
1004 return NULL;
1006 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1009 * This routine closes sockets which have been at least partially
1010 * opened, but not yet accepted.
1012 void inet_csk_listen_stop(struct sock *sk)
1014 struct inet_connection_sock *icsk = inet_csk(sk);
1015 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1016 struct request_sock *next, *req;
1018 /* Following specs, it would be better either to send FIN
1019 * (and enter FIN-WAIT-1, it is normal close)
1020 * or to send active reset (abort).
1021 * Certainly, it is pretty dangerous while synflood, but it is
1022 * bad justification for our negligence 8)
1023 * To be honest, we are not able to make either
1024 * of the variants now. --ANK
1026 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1027 struct sock *child = req->sk;
1029 local_bh_disable();
1030 bh_lock_sock(child);
1031 WARN_ON(sock_owned_by_user(child));
1032 sock_hold(child);
1034 inet_child_forget(sk, req, child);
1035 reqsk_put(req);
1036 bh_unlock_sock(child);
1037 local_bh_enable();
1038 sock_put(child);
1040 cond_resched();
1042 if (queue->fastopenq.rskq_rst_head) {
1043 /* Free all the reqs queued in rskq_rst_head. */
1044 spin_lock_bh(&queue->fastopenq.lock);
1045 req = queue->fastopenq.rskq_rst_head;
1046 queue->fastopenq.rskq_rst_head = NULL;
1047 spin_unlock_bh(&queue->fastopenq.lock);
1048 while (req != NULL) {
1049 next = req->dl_next;
1050 reqsk_put(req);
1051 req = next;
1054 WARN_ON_ONCE(sk->sk_ack_backlog);
1056 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1058 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1060 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1061 const struct inet_sock *inet = inet_sk(sk);
1063 sin->sin_family = AF_INET;
1064 sin->sin_addr.s_addr = inet->inet_daddr;
1065 sin->sin_port = inet->inet_dport;
1067 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1069 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1071 const struct inet_sock *inet = inet_sk(sk);
1072 const struct ip_options_rcu *inet_opt;
1073 __be32 daddr = inet->inet_daddr;
1074 struct flowi4 *fl4;
1075 struct rtable *rt;
1077 rcu_read_lock();
1078 inet_opt = rcu_dereference(inet->inet_opt);
1079 if (inet_opt && inet_opt->opt.srr)
1080 daddr = inet_opt->opt.faddr;
1081 fl4 = &fl->u.ip4;
1082 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1083 inet->inet_saddr, inet->inet_dport,
1084 inet->inet_sport, sk->sk_protocol,
1085 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1086 if (IS_ERR(rt))
1087 rt = NULL;
1088 if (rt)
1089 sk_setup_caps(sk, &rt->dst);
1090 rcu_read_unlock();
1092 return &rt->dst;
1095 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1097 struct dst_entry *dst = __sk_dst_check(sk, 0);
1098 struct inet_sock *inet = inet_sk(sk);
1100 if (!dst) {
1101 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1102 if (!dst)
1103 goto out;
1105 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1107 dst = __sk_dst_check(sk, 0);
1108 if (!dst)
1109 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1110 out:
1111 return dst;
1113 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);