1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * Alan Cox : Tidied tcp_data to avoid a potential
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
209 * Description of States:
211 * TCP_SYN_SENT sent a connection request, waiting for ack
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
216 * TCP_ESTABLISHED connection established
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
241 * TCP_CLOSE socket is finished
244 #define pr_fmt(fmt) "TCP: " fmt
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
277 #include <net/sock.h>
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
283 struct percpu_counter tcp_orphan_count
;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
286 long sysctl_tcp_mem
[3] __read_mostly
;
287 EXPORT_SYMBOL(sysctl_tcp_mem
);
289 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated
);
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc
);
294 EXPORT_SYMBOL(tcp_have_smc
);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated
;
301 EXPORT_SYMBOL(tcp_sockets_allocated
);
306 struct tcp_splice_state
{
307 struct pipe_inode_info
*pipe
;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 unsigned long tcp_memory_pressure __read_mostly
;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key
);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key
);
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key
);
326 void tcp_enter_memory_pressure(struct sock
*sk
)
330 if (READ_ONCE(tcp_memory_pressure
))
336 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
337 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure
);
341 void tcp_leave_memory_pressure(struct sock
*sk
)
345 if (!READ_ONCE(tcp_memory_pressure
))
347 val
= xchg(&tcp_memory_pressure
, 0);
349 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
350 jiffies_to_msecs(jiffies
- val
));
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure
);
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
360 int period
= timeout
;
363 while (seconds
> period
&& res
< 255) {
366 if (timeout
> rto_max
)
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
383 if (timeout
> rto_max
)
391 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
393 u32 rate
= READ_ONCE(tp
->rate_delivered
);
394 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
398 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
399 do_div(rate64
, intv
);
404 /* Address-family independent initialization for a tcp_sock.
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
409 void tcp_init_sock(struct sock
*sk
)
411 struct inet_connection_sock
*icsk
= inet_csk(sk
);
412 struct tcp_sock
*tp
= tcp_sk(sk
);
414 tp
->out_of_order_queue
= RB_ROOT
;
415 sk
->tcp_rtx_queue
= RB_ROOT
;
416 tcp_init_xmit_timers(sk
);
417 INIT_LIST_HEAD(&tp
->tsq_node
);
418 INIT_LIST_HEAD(&tp
->tsorted_sent_queue
);
420 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
421 icsk
->icsk_rto_min
= TCP_RTO_MIN
;
422 icsk
->icsk_delack_max
= TCP_DELACK_MAX
;
423 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
424 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
426 /* So many TCP implementations out there (incorrectly) count the
427 * initial SYN frame in their delayed-ACK and congestion control
428 * algorithms that we must have the following bandaid to talk
429 * efficiently to them. -DaveM
431 tp
->snd_cwnd
= TCP_INIT_CWND
;
433 /* There's a bubble in the pipe until at least the first ACK. */
434 tp
->app_limited
= ~0U;
436 /* See draft-stevens-tcpca-spec-01 for discussion of the
437 * initialization of these values.
439 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
440 tp
->snd_cwnd_clamp
= ~0;
441 tp
->mss_cache
= TCP_MSS_DEFAULT
;
443 tp
->reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
444 tcp_assign_congestion_control(sk
);
447 tp
->rack
.reo_wnd_steps
= 1;
449 sk
->sk_write_space
= sk_stream_write_space
;
450 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
452 icsk
->icsk_sync_mss
= tcp_sync_mss
;
454 WRITE_ONCE(sk
->sk_sndbuf
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[1]);
455 WRITE_ONCE(sk
->sk_rcvbuf
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[1]);
457 sk_sockets_allocated_inc(sk
);
458 sk
->sk_route_forced_caps
= NETIF_F_GSO
;
460 EXPORT_SYMBOL(tcp_init_sock
);
462 static void tcp_tx_timestamp(struct sock
*sk
, u16 tsflags
)
464 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
466 if (tsflags
&& skb
) {
467 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
468 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
470 sock_tx_timestamp(sk
, tsflags
, &shinfo
->tx_flags
);
471 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
472 tcb
->txstamp_ack
= 1;
473 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
474 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
478 static inline bool tcp_stream_is_readable(const struct tcp_sock
*tp
,
479 int target
, struct sock
*sk
)
481 int avail
= READ_ONCE(tp
->rcv_nxt
) - READ_ONCE(tp
->copied_seq
);
486 if (tcp_rmem_pressure(sk
))
488 if (tcp_receive_window(tp
) <= inet_csk(sk
)->icsk_ack
.rcv_mss
)
491 if (sk
->sk_prot
->stream_memory_read
)
492 return sk
->sk_prot
->stream_memory_read(sk
);
497 * Wait for a TCP event.
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
503 __poll_t
tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
506 struct sock
*sk
= sock
->sk
;
507 const struct tcp_sock
*tp
= tcp_sk(sk
);
510 sock_poll_wait(file
, sock
, wait
);
512 state
= inet_sk_state_load(sk
);
513 if (state
== TCP_LISTEN
)
514 return inet_csk_listen_poll(sk
);
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
550 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
552 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
553 mask
|= EPOLLIN
| EPOLLRDNORM
| EPOLLRDHUP
;
555 /* Connected or passive Fast Open socket? */
556 if (state
!= TCP_SYN_SENT
&&
557 (state
!= TCP_SYN_RECV
|| rcu_access_pointer(tp
->fastopen_rsk
))) {
558 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
560 if (READ_ONCE(tp
->urg_seq
) == READ_ONCE(tp
->copied_seq
) &&
561 !sock_flag(sk
, SOCK_URGINLINE
) &&
565 if (tcp_stream_is_readable(tp
, target
, sk
))
566 mask
|= EPOLLIN
| EPOLLRDNORM
;
568 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
569 if (__sk_stream_is_writeable(sk
, 1)) {
570 mask
|= EPOLLOUT
| EPOLLWRNORM
;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
573 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
580 smp_mb__after_atomic();
581 if (__sk_stream_is_writeable(sk
, 1))
582 mask
|= EPOLLOUT
| EPOLLWRNORM
;
585 mask
|= EPOLLOUT
| EPOLLWRNORM
;
587 if (tp
->urg_data
& TCP_URG_VALID
)
589 } else if (state
== TCP_SYN_SENT
&& inet_sk(sk
)->defer_connect
) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
594 mask
|= EPOLLOUT
| EPOLLWRNORM
;
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
598 if (sk
->sk_err
|| !skb_queue_empty_lockless(&sk
->sk_error_queue
))
603 EXPORT_SYMBOL(tcp_poll
);
605 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
607 struct tcp_sock
*tp
= tcp_sk(sk
);
613 if (sk
->sk_state
== TCP_LISTEN
)
616 slow
= lock_sock_fast(sk
);
618 unlock_sock_fast(sk
, slow
);
621 answ
= tp
->urg_data
&&
622 READ_ONCE(tp
->urg_seq
) == READ_ONCE(tp
->copied_seq
);
625 if (sk
->sk_state
== TCP_LISTEN
)
628 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
631 answ
= READ_ONCE(tp
->write_seq
) - tp
->snd_una
;
634 if (sk
->sk_state
== TCP_LISTEN
)
637 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
640 answ
= READ_ONCE(tp
->write_seq
) -
641 READ_ONCE(tp
->snd_nxt
);
647 return put_user(answ
, (int __user
*)arg
);
649 EXPORT_SYMBOL(tcp_ioctl
);
651 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
653 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
654 tp
->pushed_seq
= tp
->write_seq
;
657 static inline bool forced_push(const struct tcp_sock
*tp
)
659 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
662 static void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
664 struct tcp_sock
*tp
= tcp_sk(sk
);
665 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
668 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
669 tcb
->tcp_flags
= TCPHDR_ACK
;
671 __skb_header_release(skb
);
672 tcp_add_write_queue_tail(sk
, skb
);
673 sk_wmem_queued_add(sk
, skb
->truesize
);
674 sk_mem_charge(sk
, skb
->truesize
);
675 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
676 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
678 tcp_slow_start_after_idle_check(sk
);
681 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
684 tp
->snd_up
= tp
->write_seq
;
687 /* If a not yet filled skb is pushed, do not send it if
688 * we have data packets in Qdisc or NIC queues :
689 * Because TX completion will happen shortly, it gives a chance
690 * to coalesce future sendmsg() payload into this skb, without
691 * need for a timer, and with no latency trade off.
692 * As packets containing data payload have a bigger truesize
693 * than pure acks (dataless) packets, the last checks prevent
694 * autocorking if we only have an ACK in Qdisc/NIC queues,
695 * or if TX completion was delayed after we processed ACK packet.
697 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
700 return skb
->len
< size_goal
&&
701 sock_net(sk
)->ipv4
.sysctl_tcp_autocorking
&&
702 !tcp_rtx_queue_empty(sk
) &&
703 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
706 void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
707 int nonagle
, int size_goal
)
709 struct tcp_sock
*tp
= tcp_sk(sk
);
712 skb
= tcp_write_queue_tail(sk
);
715 if (!(flags
& MSG_MORE
) || forced_push(tp
))
716 tcp_mark_push(tp
, skb
);
718 tcp_mark_urg(tp
, flags
);
720 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
722 /* avoid atomic op if TSQ_THROTTLED bit is already set */
723 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
724 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
725 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
730 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
734 if (flags
& MSG_MORE
)
735 nonagle
= TCP_NAGLE_CORK
;
737 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
740 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
741 unsigned int offset
, size_t len
)
743 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
746 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
747 min(rd_desc
->count
, len
), tss
->flags
);
749 rd_desc
->count
-= ret
;
753 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc
= {
761 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
773 * Will read pages from given socket and fill them into a pipe.
776 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
777 struct pipe_inode_info
*pipe
, size_t len
,
780 struct sock
*sk
= sock
->sk
;
781 struct tcp_splice_state tss
= {
790 sock_rps_record_flow(sk
);
792 * We can't seek on a socket input
801 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
803 ret
= __tcp_splice_read(sk
, &tss
);
809 if (sock_flag(sk
, SOCK_DONE
))
812 ret
= sock_error(sk
);
815 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
817 if (sk
->sk_state
== TCP_CLOSE
) {
819 * This occurs when user tries to read
820 * from never connected socket.
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
833 if (!skb_queue_empty(&sk
->sk_receive_queue
))
835 sk_wait_data(sk
, &timeo
, NULL
);
836 if (signal_pending(current
)) {
837 ret
= sock_intr_errno(timeo
);
850 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
851 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
852 signal_pending(current
))
863 EXPORT_SYMBOL(tcp_splice_read
);
865 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
,
871 skb
= sk
->sk_tx_skb_cache
;
873 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
874 sk
->sk_tx_skb_cache
= NULL
;
876 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
877 skb_shinfo(skb
)->tx_flags
= 0;
878 memset(TCP_SKB_CB(skb
), 0, sizeof(struct tcp_skb_cb
));
882 /* The TCP header must be at least 32-bit aligned. */
883 size
= ALIGN(size
, 4);
885 if (unlikely(tcp_under_memory_pressure(sk
)))
886 sk_mem_reclaim_partial(sk
);
888 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
892 if (force_schedule
) {
893 mem_scheduled
= true;
894 sk_forced_mem_schedule(sk
, skb
->truesize
);
896 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
898 if (likely(mem_scheduled
)) {
899 skb_reserve(skb
, sk
->sk_prot
->max_header
);
901 * Make sure that we have exactly size bytes
902 * available to the caller, no more, no less.
904 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
905 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
910 sk
->sk_prot
->enter_memory_pressure(sk
);
911 sk_stream_moderate_sndbuf(sk
);
916 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
919 struct tcp_sock
*tp
= tcp_sk(sk
);
920 u32 new_size_goal
, size_goal
;
925 /* Note : tcp_tso_autosize() will eventually split this later */
926 new_size_goal
= sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
;
927 new_size_goal
= tcp_bound_to_half_wnd(tp
, new_size_goal
);
929 /* We try hard to avoid divides here */
930 size_goal
= tp
->gso_segs
* mss_now
;
931 if (unlikely(new_size_goal
< size_goal
||
932 new_size_goal
>= size_goal
+ mss_now
)) {
933 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
934 sk
->sk_gso_max_segs
);
935 size_goal
= tp
->gso_segs
* mss_now
;
938 return max(size_goal
, mss_now
);
941 int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
945 mss_now
= tcp_current_mss(sk
);
946 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
951 /* In some cases, both sendpage() and sendmsg() could have added
952 * an skb to the write queue, but failed adding payload on it.
953 * We need to remove it to consume less memory, but more
954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
957 void tcp_remove_empty_skb(struct sock
*sk
, struct sk_buff
*skb
)
959 if (skb
&& !skb
->len
) {
960 tcp_unlink_write_queue(skb
, sk
);
961 if (tcp_write_queue_empty(sk
))
962 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
963 sk_wmem_free_skb(sk
, skb
);
967 struct sk_buff
*tcp_build_frag(struct sock
*sk
, int size_goal
, int flags
,
968 struct page
*page
, int offset
, size_t *size
)
970 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
971 struct tcp_sock
*tp
= tcp_sk(sk
);
975 if (!skb
|| (copy
= size_goal
- skb
->len
) <= 0 ||
976 !tcp_skb_can_collapse_to(skb
)) {
978 if (!sk_stream_memory_free(sk
))
981 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
982 tcp_rtx_and_write_queues_empty(sk
));
986 #ifdef CONFIG_TLS_DEVICE
987 skb
->decrypted
= !!(flags
& MSG_SENDPAGE_DECRYPTED
);
996 i
= skb_shinfo(skb
)->nr_frags
;
997 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
998 if (!can_coalesce
&& i
>= sysctl_max_skb_frags
) {
999 tcp_mark_push(tp
, skb
);
1002 if (!sk_wmem_schedule(sk
, copy
))
1006 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1009 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
1012 if (!(flags
& MSG_NO_SHARED_FRAGS
))
1013 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
1016 skb
->data_len
+= copy
;
1017 skb
->truesize
+= copy
;
1018 sk_wmem_queued_add(sk
, copy
);
1019 sk_mem_charge(sk
, copy
);
1020 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1021 WRITE_ONCE(tp
->write_seq
, tp
->write_seq
+ copy
);
1022 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1023 tcp_skb_pcount_set(skb
, 0);
1029 ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
1030 size_t size
, int flags
)
1032 struct tcp_sock
*tp
= tcp_sk(sk
);
1033 int mss_now
, size_goal
;
1036 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1038 if (IS_ENABLED(CONFIG_DEBUG_VM
) &&
1039 WARN_ONCE(!sendpage_ok(page
),
1040 "page must not be a Slab one and have page_count > 0"))
1043 /* Wait for a connection to finish. One exception is TCP Fast Open
1044 * (passive side) where data is allowed to be sent before a connection
1045 * is fully established.
1047 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1048 !tcp_passive_fastopen(sk
)) {
1049 err
= sk_stream_wait_connect(sk
, &timeo
);
1054 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1056 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1060 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1064 struct sk_buff
*skb
;
1067 skb
= tcp_build_frag(sk
, size_goal
, flags
, page
, offset
, ©
);
1069 goto wait_for_space
;
1072 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1080 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
1083 if (forced_push(tp
)) {
1084 tcp_mark_push(tp
, skb
);
1085 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1086 } else if (skb
== tcp_send_head(sk
))
1087 tcp_push_one(sk
, mss_now
);
1091 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1092 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1093 TCP_NAGLE_PUSH
, size_goal
);
1095 err
= sk_stream_wait_memory(sk
, &timeo
);
1099 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1104 tcp_tx_timestamp(sk
, sk
->sk_tsflags
);
1105 if (!(flags
& MSG_SENDPAGE_NOTLAST
))
1106 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1111 tcp_remove_empty_skb(sk
, tcp_write_queue_tail(sk
));
1115 /* make sure we wake any epoll edge trigger waiter */
1116 if (unlikely(tcp_rtx_and_write_queues_empty(sk
) && err
== -EAGAIN
)) {
1117 sk
->sk_write_space(sk
);
1118 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1120 return sk_stream_error(sk
, flags
, err
);
1122 EXPORT_SYMBOL_GPL(do_tcp_sendpages
);
1124 int tcp_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
1125 size_t size
, int flags
)
1127 if (!(sk
->sk_route_caps
& NETIF_F_SG
))
1128 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
1130 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1132 return do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1134 EXPORT_SYMBOL_GPL(tcp_sendpage_locked
);
1136 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1137 size_t size
, int flags
)
1142 ret
= tcp_sendpage_locked(sk
, page
, offset
, size
, flags
);
1147 EXPORT_SYMBOL(tcp_sendpage
);
1149 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1151 if (tp
->fastopen_req
) {
1152 kfree(tp
->fastopen_req
);
1153 tp
->fastopen_req
= NULL
;
1157 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
,
1158 int *copied
, size_t size
,
1159 struct ubuf_info
*uarg
)
1161 struct tcp_sock
*tp
= tcp_sk(sk
);
1162 struct inet_sock
*inet
= inet_sk(sk
);
1163 struct sockaddr
*uaddr
= msg
->msg_name
;
1166 if (!(sock_net(sk
)->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) ||
1167 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1168 uaddr
->sa_family
== AF_UNSPEC
))
1170 if (tp
->fastopen_req
)
1171 return -EALREADY
; /* Another Fast Open is in progress */
1173 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1175 if (unlikely(!tp
->fastopen_req
))
1177 tp
->fastopen_req
->data
= msg
;
1178 tp
->fastopen_req
->size
= size
;
1179 tp
->fastopen_req
->uarg
= uarg
;
1181 if (inet
->defer_connect
) {
1182 err
= tcp_connect(sk
);
1183 /* Same failure procedure as in tcp_v4/6_connect */
1185 tcp_set_state(sk
, TCP_CLOSE
);
1186 inet
->inet_dport
= 0;
1187 sk
->sk_route_caps
= 0;
1190 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1191 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1192 msg
->msg_namelen
, flags
, 1);
1193 /* fastopen_req could already be freed in __inet_stream_connect
1194 * if the connection times out or gets rst
1196 if (tp
->fastopen_req
) {
1197 *copied
= tp
->fastopen_req
->copied
;
1198 tcp_free_fastopen_req(tp
);
1199 inet
->defer_connect
= 0;
1204 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1206 struct tcp_sock
*tp
= tcp_sk(sk
);
1207 struct ubuf_info
*uarg
= NULL
;
1208 struct sk_buff
*skb
;
1209 struct sockcm_cookie sockc
;
1210 int flags
, err
, copied
= 0;
1211 int mss_now
= 0, size_goal
, copied_syn
= 0;
1212 int process_backlog
= 0;
1216 flags
= msg
->msg_flags
;
1218 if (flags
& MSG_ZEROCOPY
&& size
&& sock_flag(sk
, SOCK_ZEROCOPY
)) {
1219 skb
= tcp_write_queue_tail(sk
);
1220 uarg
= sock_zerocopy_realloc(sk
, size
, skb_zcopy(skb
));
1226 zc
= sk
->sk_route_caps
& NETIF_F_SG
;
1231 if (unlikely(flags
& MSG_FASTOPEN
|| inet_sk(sk
)->defer_connect
) &&
1233 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
, uarg
);
1234 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1240 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1242 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1244 /* Wait for a connection to finish. One exception is TCP Fast Open
1245 * (passive side) where data is allowed to be sent before a connection
1246 * is fully established.
1248 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1249 !tcp_passive_fastopen(sk
)) {
1250 err
= sk_stream_wait_connect(sk
, &timeo
);
1255 if (unlikely(tp
->repair
)) {
1256 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1257 copied
= tcp_send_rcvq(sk
, msg
, size
);
1262 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1265 /* 'common' sending to sendq */
1268 sockcm_init(&sockc
, sk
);
1269 if (msg
->msg_controllen
) {
1270 err
= sock_cmsg_send(sk
, msg
, &sockc
);
1271 if (unlikely(err
)) {
1277 /* This should be in poll */
1278 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1280 /* Ok commence sending. */
1284 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1287 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1290 while (msg_data_left(msg
)) {
1293 skb
= tcp_write_queue_tail(sk
);
1295 copy
= size_goal
- skb
->len
;
1297 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1301 if (!sk_stream_memory_free(sk
))
1302 goto wait_for_space
;
1304 if (unlikely(process_backlog
>= 16)) {
1305 process_backlog
= 0;
1306 if (sk_flush_backlog(sk
))
1309 first_skb
= tcp_rtx_and_write_queues_empty(sk
);
1310 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
1313 goto wait_for_space
;
1316 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1318 skb_entail(sk
, skb
);
1321 /* All packets are restored as if they have
1322 * already been sent. skb_mstamp_ns isn't set to
1323 * avoid wrong rtt estimation.
1326 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1329 /* Try to append data to the end of skb. */
1330 if (copy
> msg_data_left(msg
))
1331 copy
= msg_data_left(msg
);
1333 /* Where to copy to? */
1334 if (skb_availroom(skb
) > 0 && !zc
) {
1335 /* We have some space in skb head. Superb! */
1336 copy
= min_t(int, copy
, skb_availroom(skb
));
1337 err
= skb_add_data_nocache(sk
, skb
, &msg
->msg_iter
, copy
);
1342 int i
= skb_shinfo(skb
)->nr_frags
;
1343 struct page_frag
*pfrag
= sk_page_frag(sk
);
1345 if (!sk_page_frag_refill(sk
, pfrag
))
1346 goto wait_for_space
;
1348 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1350 if (i
>= sysctl_max_skb_frags
) {
1351 tcp_mark_push(tp
, skb
);
1357 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1359 if (!sk_wmem_schedule(sk
, copy
))
1360 goto wait_for_space
;
1362 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1369 /* Update the skb. */
1371 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1373 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1374 pfrag
->offset
, copy
);
1375 page_ref_inc(pfrag
->page
);
1377 pfrag
->offset
+= copy
;
1379 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
);
1380 if (err
== -EMSGSIZE
|| err
== -EEXIST
) {
1381 tcp_mark_push(tp
, skb
);
1390 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1392 WRITE_ONCE(tp
->write_seq
, tp
->write_seq
+ copy
);
1393 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1394 tcp_skb_pcount_set(skb
, 0);
1397 if (!msg_data_left(msg
)) {
1398 if (unlikely(flags
& MSG_EOR
))
1399 TCP_SKB_CB(skb
)->eor
= 1;
1403 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1406 if (forced_push(tp
)) {
1407 tcp_mark_push(tp
, skb
);
1408 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1409 } else if (skb
== tcp_send_head(sk
))
1410 tcp_push_one(sk
, mss_now
);
1414 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1416 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1417 TCP_NAGLE_PUSH
, size_goal
);
1419 err
= sk_stream_wait_memory(sk
, &timeo
);
1423 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1428 tcp_tx_timestamp(sk
, sockc
.tsflags
);
1429 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1432 sock_zerocopy_put(uarg
);
1433 return copied
+ copied_syn
;
1436 skb
= tcp_write_queue_tail(sk
);
1438 tcp_remove_empty_skb(sk
, skb
);
1440 if (copied
+ copied_syn
)
1443 sock_zerocopy_put_abort(uarg
, true);
1444 err
= sk_stream_error(sk
, flags
, err
);
1445 /* make sure we wake any epoll edge trigger waiter */
1446 if (unlikely(tcp_rtx_and_write_queues_empty(sk
) && err
== -EAGAIN
)) {
1447 sk
->sk_write_space(sk
);
1448 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1452 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1454 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1459 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1464 EXPORT_SYMBOL(tcp_sendmsg
);
1467 * Handle reading urgent data. BSD has very simple semantics for
1468 * this, no blocking and very strange errors 8)
1471 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1473 struct tcp_sock
*tp
= tcp_sk(sk
);
1475 /* No URG data to read. */
1476 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1477 tp
->urg_data
== TCP_URG_READ
)
1478 return -EINVAL
; /* Yes this is right ! */
1480 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1483 if (tp
->urg_data
& TCP_URG_VALID
) {
1485 char c
= tp
->urg_data
;
1487 if (!(flags
& MSG_PEEK
))
1488 tp
->urg_data
= TCP_URG_READ
;
1490 /* Read urgent data. */
1491 msg
->msg_flags
|= MSG_OOB
;
1494 if (!(flags
& MSG_TRUNC
))
1495 err
= memcpy_to_msg(msg
, &c
, 1);
1498 msg
->msg_flags
|= MSG_TRUNC
;
1500 return err
? -EFAULT
: len
;
1503 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1506 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1507 * the available implementations agree in this case:
1508 * this call should never block, independent of the
1509 * blocking state of the socket.
1510 * Mike <pall@rz.uni-karlsruhe.de>
1515 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1517 struct sk_buff
*skb
;
1518 int copied
= 0, err
= 0;
1520 /* XXX -- need to support SO_PEEK_OFF */
1522 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
1523 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1529 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1530 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1537 return err
?: copied
;
1540 /* Clean up the receive buffer for full frames taken by the user,
1541 * then send an ACK if necessary. COPIED is the number of bytes
1542 * tcp_recvmsg has given to the user so far, it speeds up the
1543 * calculation of whether or not we must ACK for the sake of
1546 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1548 struct tcp_sock
*tp
= tcp_sk(sk
);
1549 bool time_to_ack
= false;
1551 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1553 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1554 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1555 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1557 if (inet_csk_ack_scheduled(sk
)) {
1558 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1560 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1561 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1563 * If this read emptied read buffer, we send ACK, if
1564 * connection is not bidirectional, user drained
1565 * receive buffer and there was a small segment
1569 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1570 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1571 !inet_csk_in_pingpong_mode(sk
))) &&
1572 !atomic_read(&sk
->sk_rmem_alloc
)))
1576 /* We send an ACK if we can now advertise a non-zero window
1577 * which has been raised "significantly".
1579 * Even if window raised up to infinity, do not send window open ACK
1580 * in states, where we will not receive more. It is useless.
1582 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1583 __u32 rcv_window_now
= tcp_receive_window(tp
);
1585 /* Optimize, __tcp_select_window() is not cheap. */
1586 if (2*rcv_window_now
<= tp
->window_clamp
) {
1587 __u32 new_window
= __tcp_select_window(sk
);
1589 /* Send ACK now, if this read freed lots of space
1590 * in our buffer. Certainly, new_window is new window.
1591 * We can advertise it now, if it is not less than current one.
1592 * "Lots" means "at least twice" here.
1594 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1602 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1604 struct sk_buff
*skb
;
1607 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1608 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1609 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1610 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1613 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1617 /* This looks weird, but this can happen if TCP collapsing
1618 * splitted a fat GRO packet, while we released socket lock
1619 * in skb_splice_bits()
1621 sk_eat_skb(sk
, skb
);
1627 * This routine provides an alternative to tcp_recvmsg() for routines
1628 * that would like to handle copying from skbuffs directly in 'sendfile'
1631 * - It is assumed that the socket was locked by the caller.
1632 * - The routine does not block.
1633 * - At present, there is no support for reading OOB data
1634 * or for 'peeking' the socket using this routine
1635 * (although both would be easy to implement).
1637 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1638 sk_read_actor_t recv_actor
)
1640 struct sk_buff
*skb
;
1641 struct tcp_sock
*tp
= tcp_sk(sk
);
1642 u32 seq
= tp
->copied_seq
;
1646 if (sk
->sk_state
== TCP_LISTEN
)
1648 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1649 if (offset
< skb
->len
) {
1653 len
= skb
->len
- offset
;
1654 /* Stop reading if we hit a patch of urgent data */
1656 u32 urg_offset
= tp
->urg_seq
- seq
;
1657 if (urg_offset
< len
)
1662 used
= recv_actor(desc
, skb
, offset
, len
);
1667 } else if (used
<= len
) {
1672 /* If recv_actor drops the lock (e.g. TCP splice
1673 * receive) the skb pointer might be invalid when
1674 * getting here: tcp_collapse might have deleted it
1675 * while aggregating skbs from the socket queue.
1677 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1680 /* TCP coalescing might have appended data to the skb.
1681 * Try to splice more frags
1683 if (offset
+ 1 != skb
->len
)
1686 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1687 sk_eat_skb(sk
, skb
);
1691 sk_eat_skb(sk
, skb
);
1694 WRITE_ONCE(tp
->copied_seq
, seq
);
1696 WRITE_ONCE(tp
->copied_seq
, seq
);
1698 tcp_rcv_space_adjust(sk
);
1700 /* Clean up data we have read: This will do ACK frames. */
1702 tcp_recv_skb(sk
, seq
, &offset
);
1703 tcp_cleanup_rbuf(sk
, copied
);
1707 EXPORT_SYMBOL(tcp_read_sock
);
1709 int tcp_peek_len(struct socket
*sock
)
1711 return tcp_inq(sock
->sk
);
1713 EXPORT_SYMBOL(tcp_peek_len
);
1715 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1716 int tcp_set_rcvlowat(struct sock
*sk
, int val
)
1720 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1721 cap
= sk
->sk_rcvbuf
>> 1;
1723 cap
= sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2] >> 1;
1724 val
= min(val
, cap
);
1725 WRITE_ONCE(sk
->sk_rcvlowat
, val
? : 1);
1727 /* Check if we need to signal EPOLLIN right now */
1730 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)
1734 if (val
> sk
->sk_rcvbuf
) {
1735 WRITE_ONCE(sk
->sk_rcvbuf
, val
);
1736 tcp_sk(sk
)->window_clamp
= tcp_win_from_space(sk
, val
);
1740 EXPORT_SYMBOL(tcp_set_rcvlowat
);
1743 static const struct vm_operations_struct tcp_vm_ops
= {
1746 int tcp_mmap(struct file
*file
, struct socket
*sock
,
1747 struct vm_area_struct
*vma
)
1749 if (vma
->vm_flags
& (VM_WRITE
| VM_EXEC
))
1751 vma
->vm_flags
&= ~(VM_MAYWRITE
| VM_MAYEXEC
);
1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1754 vma
->vm_flags
|= VM_MIXEDMAP
;
1756 vma
->vm_ops
= &tcp_vm_ops
;
1759 EXPORT_SYMBOL(tcp_mmap
);
1761 static skb_frag_t
*skb_advance_to_frag(struct sk_buff
*skb
, u32 offset_skb
,
1766 offset_skb
-= skb_headlen(skb
);
1767 if ((int)offset_skb
< 0 || skb_has_frag_list(skb
))
1770 frag
= skb_shinfo(skb
)->frags
;
1771 while (offset_skb
) {
1772 if (skb_frag_size(frag
) > offset_skb
) {
1773 *offset_frag
= offset_skb
;
1776 offset_skb
-= skb_frag_size(frag
);
1783 static bool can_map_frag(const skb_frag_t
*frag
)
1785 return skb_frag_size(frag
) == PAGE_SIZE
&& !skb_frag_off(frag
);
1788 static int find_next_mappable_frag(const skb_frag_t
*frag
,
1789 int remaining_in_skb
)
1793 if (likely(can_map_frag(frag
)))
1796 while (offset
< remaining_in_skb
&& !can_map_frag(frag
)) {
1797 offset
+= skb_frag_size(frag
);
1803 static void tcp_zerocopy_set_hint_for_skb(struct sock
*sk
,
1804 struct tcp_zerocopy_receive
*zc
,
1805 struct sk_buff
*skb
, u32 offset
)
1807 u32 frag_offset
, partial_frag_remainder
= 0;
1808 int mappable_offset
;
1811 /* worst case: skip to next skb. try to improve on this case below */
1812 zc
->recv_skip_hint
= skb
->len
- offset
;
1814 /* Find the frag containing this offset (and how far into that frag) */
1815 frag
= skb_advance_to_frag(skb
, offset
, &frag_offset
);
1820 struct skb_shared_info
*info
= skb_shinfo(skb
);
1822 /* We read part of the last frag, must recvmsg() rest of skb. */
1823 if (frag
== &info
->frags
[info
->nr_frags
- 1])
1826 /* Else, we must at least read the remainder in this frag. */
1827 partial_frag_remainder
= skb_frag_size(frag
) - frag_offset
;
1828 zc
->recv_skip_hint
-= partial_frag_remainder
;
1832 /* partial_frag_remainder: If part way through a frag, must read rest.
1833 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1834 * in partial_frag_remainder.
1836 mappable_offset
= find_next_mappable_frag(frag
, zc
->recv_skip_hint
);
1837 zc
->recv_skip_hint
= mappable_offset
+ partial_frag_remainder
;
1840 static int tcp_recvmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t len
,
1841 int nonblock
, int flags
,
1842 struct scm_timestamping_internal
*tss
,
1844 static int receive_fallback_to_copy(struct sock
*sk
,
1845 struct tcp_zerocopy_receive
*zc
, int inq
)
1847 unsigned long copy_address
= (unsigned long)zc
->copybuf_address
;
1848 struct scm_timestamping_internal tss_unused
;
1849 int err
, cmsg_flags_unused
;
1850 struct msghdr msg
= {};
1854 zc
->recv_skip_hint
= 0;
1856 if (copy_address
!= zc
->copybuf_address
)
1859 err
= import_single_range(READ
, (void __user
*)copy_address
,
1860 inq
, &iov
, &msg
.msg_iter
);
1864 err
= tcp_recvmsg_locked(sk
, &msg
, inq
, /*nonblock=*/1, /*flags=*/0,
1865 &tss_unused
, &cmsg_flags_unused
);
1869 zc
->copybuf_len
= err
;
1870 if (likely(zc
->copybuf_len
)) {
1871 struct sk_buff
*skb
;
1874 skb
= tcp_recv_skb(sk
, tcp_sk(sk
)->copied_seq
, &offset
);
1876 tcp_zerocopy_set_hint_for_skb(sk
, zc
, skb
, offset
);
1881 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive
*zc
,
1882 struct sk_buff
*skb
, u32 copylen
,
1883 u32
*offset
, u32
*seq
)
1885 unsigned long copy_address
= (unsigned long)zc
->copybuf_address
;
1886 struct msghdr msg
= {};
1890 if (copy_address
!= zc
->copybuf_address
)
1893 err
= import_single_range(READ
, (void __user
*)copy_address
,
1894 copylen
, &iov
, &msg
.msg_iter
);
1897 err
= skb_copy_datagram_msg(skb
, *offset
, &msg
, copylen
);
1900 zc
->recv_skip_hint
-= copylen
;
1903 return (__s32
)copylen
;
1906 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive
*zc
,
1908 struct sk_buff
*skb
,
1912 u32 offset
, copylen
= min_t(u32
, copybuf_len
, zc
->recv_skip_hint
);
1916 /* skb is null if inq < PAGE_SIZE. */
1918 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1920 skb
= tcp_recv_skb(sk
, *seq
, &offset
);
1922 zc
->copybuf_len
= tcp_copy_straggler_data(zc
, skb
, copylen
, &offset
,
1924 return zc
->copybuf_len
< 0 ? 0 : copylen
;
1927 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct
*vma
,
1928 struct page
**pending_pages
,
1929 unsigned long pages_remaining
,
1930 unsigned long *address
,
1933 struct tcp_zerocopy_receive
*zc
,
1934 u32 total_bytes_to_map
,
1937 /* At least one page did not map. Try zapping if we skipped earlier. */
1938 if (err
== -EBUSY
&&
1939 zc
->flags
& TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT
) {
1942 maybe_zap_len
= total_bytes_to_map
- /* All bytes to map */
1943 *length
+ /* Mapped or pending */
1944 (pages_remaining
* PAGE_SIZE
); /* Failed map. */
1945 zap_page_range(vma
, *address
, maybe_zap_len
);
1950 unsigned long leftover_pages
= pages_remaining
;
1953 /* We called zap_page_range, try to reinsert. */
1954 err
= vm_insert_pages(vma
, *address
,
1957 bytes_mapped
= PAGE_SIZE
* (leftover_pages
- pages_remaining
);
1958 *seq
+= bytes_mapped
;
1959 *address
+= bytes_mapped
;
1962 /* Either we were unable to zap, OR we zapped, retried an
1963 * insert, and still had an issue. Either ways, pages_remaining
1964 * is the number of pages we were unable to map, and we unroll
1965 * some state we speculatively touched before.
1967 const int bytes_not_mapped
= PAGE_SIZE
* pages_remaining
;
1969 *length
-= bytes_not_mapped
;
1970 zc
->recv_skip_hint
+= bytes_not_mapped
;
1975 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct
*vma
,
1976 struct page
**pages
,
1977 unsigned int pages_to_map
,
1978 unsigned long *address
,
1981 struct tcp_zerocopy_receive
*zc
,
1982 u32 total_bytes_to_map
)
1984 unsigned long pages_remaining
= pages_to_map
;
1985 unsigned int pages_mapped
;
1986 unsigned int bytes_mapped
;
1989 err
= vm_insert_pages(vma
, *address
, pages
, &pages_remaining
);
1990 pages_mapped
= pages_to_map
- (unsigned int)pages_remaining
;
1991 bytes_mapped
= PAGE_SIZE
* pages_mapped
;
1992 /* Even if vm_insert_pages fails, it may have partially succeeded in
1993 * mapping (some but not all of the pages).
1995 *seq
+= bytes_mapped
;
1996 *address
+= bytes_mapped
;
2001 /* Error: maybe zap and retry + rollback state for failed inserts. */
2002 return tcp_zerocopy_vm_insert_batch_error(vma
, pages
+ pages_mapped
,
2003 pages_remaining
, address
, length
, seq
, zc
, total_bytes_to_map
,
2007 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2008 static int tcp_zerocopy_receive(struct sock
*sk
,
2009 struct tcp_zerocopy_receive
*zc
)
2011 u32 length
= 0, offset
, vma_len
, avail_len
, copylen
= 0;
2012 unsigned long address
= (unsigned long)zc
->address
;
2013 struct page
*pages
[TCP_ZEROCOPY_PAGE_BATCH_SIZE
];
2014 s32 copybuf_len
= zc
->copybuf_len
;
2015 struct tcp_sock
*tp
= tcp_sk(sk
);
2016 const skb_frag_t
*frags
= NULL
;
2017 unsigned int pages_to_map
= 0;
2018 struct vm_area_struct
*vma
;
2019 struct sk_buff
*skb
= NULL
;
2020 u32 seq
= tp
->copied_seq
;
2021 u32 total_bytes_to_map
;
2022 int inq
= tcp_inq(sk
);
2025 zc
->copybuf_len
= 0;
2027 if (address
& (PAGE_SIZE
- 1) || address
!= zc
->address
)
2030 if (sk
->sk_state
== TCP_LISTEN
)
2033 sock_rps_record_flow(sk
);
2035 if (inq
&& inq
<= copybuf_len
)
2036 return receive_fallback_to_copy(sk
, zc
, inq
);
2038 if (inq
< PAGE_SIZE
) {
2040 zc
->recv_skip_hint
= inq
;
2041 if (!inq
&& sock_flag(sk
, SOCK_DONE
))
2046 mmap_read_lock(current
->mm
);
2048 vma
= find_vma(current
->mm
, address
);
2049 if (!vma
|| vma
->vm_start
> address
|| vma
->vm_ops
!= &tcp_vm_ops
) {
2050 mmap_read_unlock(current
->mm
);
2053 vma_len
= min_t(unsigned long, zc
->length
, vma
->vm_end
- address
);
2054 avail_len
= min_t(u32
, vma_len
, inq
);
2055 total_bytes_to_map
= avail_len
& ~(PAGE_SIZE
- 1);
2056 if (total_bytes_to_map
) {
2057 if (!(zc
->flags
& TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT
))
2058 zap_page_range(vma
, address
, total_bytes_to_map
);
2059 zc
->length
= total_bytes_to_map
;
2060 zc
->recv_skip_hint
= 0;
2062 zc
->length
= avail_len
;
2063 zc
->recv_skip_hint
= avail_len
;
2066 while (length
+ PAGE_SIZE
<= zc
->length
) {
2067 int mappable_offset
;
2070 if (zc
->recv_skip_hint
< PAGE_SIZE
) {
2074 if (zc
->recv_skip_hint
> 0)
2077 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
2079 skb
= tcp_recv_skb(sk
, seq
, &offset
);
2081 zc
->recv_skip_hint
= skb
->len
- offset
;
2082 frags
= skb_advance_to_frag(skb
, offset
, &offset_frag
);
2083 if (!frags
|| offset_frag
)
2087 mappable_offset
= find_next_mappable_frag(frags
,
2088 zc
->recv_skip_hint
);
2089 if (mappable_offset
) {
2090 zc
->recv_skip_hint
= mappable_offset
;
2093 page
= skb_frag_page(frags
);
2095 pages
[pages_to_map
++] = page
;
2096 length
+= PAGE_SIZE
;
2097 zc
->recv_skip_hint
-= PAGE_SIZE
;
2099 if (pages_to_map
== TCP_ZEROCOPY_PAGE_BATCH_SIZE
||
2100 zc
->recv_skip_hint
< PAGE_SIZE
) {
2101 /* Either full batch, or we're about to go to next skb
2102 * (and we cannot unroll failed ops across skbs).
2104 ret
= tcp_zerocopy_vm_insert_batch(vma
, pages
,
2108 total_bytes_to_map
);
2115 ret
= tcp_zerocopy_vm_insert_batch(vma
, pages
, pages_to_map
,
2116 &address
, &length
, &seq
,
2117 zc
, total_bytes_to_map
);
2120 mmap_read_unlock(current
->mm
);
2121 /* Try to copy straggler data. */
2123 copylen
= tcp_zerocopy_handle_leftover_data(zc
, sk
, skb
, &seq
,
2126 if (length
+ copylen
) {
2127 WRITE_ONCE(tp
->copied_seq
, seq
);
2128 tcp_rcv_space_adjust(sk
);
2130 /* Clean up data we have read: This will do ACK frames. */
2131 tcp_recv_skb(sk
, seq
, &offset
);
2132 tcp_cleanup_rbuf(sk
, length
+ copylen
);
2134 if (length
== zc
->length
)
2135 zc
->recv_skip_hint
= 0;
2137 if (!zc
->recv_skip_hint
&& sock_flag(sk
, SOCK_DONE
))
2140 zc
->length
= length
;
2145 static void tcp_update_recv_tstamps(struct sk_buff
*skb
,
2146 struct scm_timestamping_internal
*tss
)
2149 tss
->ts
[0] = ktime_to_timespec64(skb
->tstamp
);
2151 tss
->ts
[0] = (struct timespec64
) {0};
2153 if (skb_hwtstamps(skb
)->hwtstamp
)
2154 tss
->ts
[2] = ktime_to_timespec64(skb_hwtstamps(skb
)->hwtstamp
);
2156 tss
->ts
[2] = (struct timespec64
) {0};
2159 /* Similar to __sock_recv_timestamp, but does not require an skb */
2160 static void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
2161 struct scm_timestamping_internal
*tss
)
2163 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
2164 bool has_timestamping
= false;
2166 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
2167 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
2168 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
2170 struct __kernel_timespec kts
= {
2171 .tv_sec
= tss
->ts
[0].tv_sec
,
2172 .tv_nsec
= tss
->ts
[0].tv_nsec
,
2174 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
2177 struct __kernel_old_timespec ts_old
= {
2178 .tv_sec
= tss
->ts
[0].tv_sec
,
2179 .tv_nsec
= tss
->ts
[0].tv_nsec
,
2181 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
2182 sizeof(ts_old
), &ts_old
);
2186 struct __kernel_sock_timeval stv
= {
2187 .tv_sec
= tss
->ts
[0].tv_sec
,
2188 .tv_usec
= tss
->ts
[0].tv_nsec
/ 1000,
2190 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
2193 struct __kernel_old_timeval tv
= {
2194 .tv_sec
= tss
->ts
[0].tv_sec
,
2195 .tv_usec
= tss
->ts
[0].tv_nsec
/ 1000,
2197 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
2203 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
)
2204 has_timestamping
= true;
2206 tss
->ts
[0] = (struct timespec64
) {0};
2209 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
2210 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)
2211 has_timestamping
= true;
2213 tss
->ts
[2] = (struct timespec64
) {0};
2216 if (has_timestamping
) {
2217 tss
->ts
[1] = (struct timespec64
) {0};
2218 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
2219 put_cmsg_scm_timestamping64(msg
, tss
);
2221 put_cmsg_scm_timestamping(msg
, tss
);
2225 static int tcp_inq_hint(struct sock
*sk
)
2227 const struct tcp_sock
*tp
= tcp_sk(sk
);
2228 u32 copied_seq
= READ_ONCE(tp
->copied_seq
);
2229 u32 rcv_nxt
= READ_ONCE(tp
->rcv_nxt
);
2232 inq
= rcv_nxt
- copied_seq
;
2233 if (unlikely(inq
< 0 || copied_seq
!= READ_ONCE(tp
->copied_seq
))) {
2235 inq
= tp
->rcv_nxt
- tp
->copied_seq
;
2238 /* After receiving a FIN, tell the user-space to continue reading
2239 * by returning a non-zero inq.
2241 if (inq
== 0 && sock_flag(sk
, SOCK_DONE
))
2247 * This routine copies from a sock struct into the user buffer.
2249 * Technical note: in 2.3 we work on _locked_ socket, so that
2250 * tricks with *seq access order and skb->users are not required.
2251 * Probably, code can be easily improved even more.
2254 static int tcp_recvmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t len
,
2255 int nonblock
, int flags
,
2256 struct scm_timestamping_internal
*tss
,
2259 struct tcp_sock
*tp
= tcp_sk(sk
);
2265 int target
; /* Read at least this many bytes */
2267 struct sk_buff
*skb
, *last
;
2271 if (sk
->sk_state
== TCP_LISTEN
)
2274 if (tp
->recvmsg_inq
)
2276 timeo
= sock_rcvtimeo(sk
, nonblock
);
2278 /* Urgent data needs to be handled specially. */
2279 if (flags
& MSG_OOB
)
2282 if (unlikely(tp
->repair
)) {
2284 if (!(flags
& MSG_PEEK
))
2287 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2291 if (tp
->repair_queue
== TCP_NO_QUEUE
)
2294 /* 'common' recv queue MSG_PEEK-ing */
2297 seq
= &tp
->copied_seq
;
2298 if (flags
& MSG_PEEK
) {
2299 peek_seq
= tp
->copied_seq
;
2303 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
2308 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2309 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
2312 if (signal_pending(current
)) {
2313 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
2318 /* Next get a buffer. */
2320 last
= skb_peek_tail(&sk
->sk_receive_queue
);
2321 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
2323 /* Now that we have two receive queues this
2326 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
2327 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2328 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
2332 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
2333 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2334 pr_err_once("%s: found a SYN, please report !\n", __func__
);
2337 if (offset
< skb
->len
)
2339 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2341 WARN(!(flags
& MSG_PEEK
),
2342 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2343 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
2346 /* Well, if we have backlog, try to process it now yet. */
2348 if (copied
>= target
&& !READ_ONCE(sk
->sk_backlog
.tail
))
2353 sk
->sk_state
== TCP_CLOSE
||
2354 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
2356 signal_pending(current
))
2359 if (sock_flag(sk
, SOCK_DONE
))
2363 copied
= sock_error(sk
);
2367 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
2370 if (sk
->sk_state
== TCP_CLOSE
) {
2371 /* This occurs when user tries to read
2372 * from never connected socket.
2383 if (signal_pending(current
)) {
2384 copied
= sock_intr_errno(timeo
);
2389 tcp_cleanup_rbuf(sk
, copied
);
2391 if (copied
>= target
) {
2392 /* Do not sleep, just process backlog. */
2396 sk_wait_data(sk
, &timeo
, last
);
2399 if ((flags
& MSG_PEEK
) &&
2400 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
2401 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2403 task_pid_nr(current
));
2404 peek_seq
= tp
->copied_seq
;
2409 /* Ok so how much can we use? */
2410 used
= skb
->len
- offset
;
2414 /* Do we have urgent data here? */
2416 u32 urg_offset
= tp
->urg_seq
- *seq
;
2417 if (urg_offset
< used
) {
2419 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
2420 WRITE_ONCE(*seq
, *seq
+ 1);
2432 if (!(flags
& MSG_TRUNC
)) {
2433 err
= skb_copy_datagram_msg(skb
, offset
, msg
, used
);
2435 /* Exception. Bailout! */
2442 WRITE_ONCE(*seq
, *seq
+ used
);
2446 tcp_rcv_space_adjust(sk
);
2449 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
2451 tcp_fast_path_check(sk
);
2454 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
2455 tcp_update_recv_tstamps(skb
, tss
);
2459 if (used
+ offset
< skb
->len
)
2462 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2464 if (!(flags
& MSG_PEEK
))
2465 sk_eat_skb(sk
, skb
);
2469 /* Process the FIN. */
2470 WRITE_ONCE(*seq
, *seq
+ 1);
2471 if (!(flags
& MSG_PEEK
))
2472 sk_eat_skb(sk
, skb
);
2476 /* According to UNIX98, msg_name/msg_namelen are ignored
2477 * on connected socket. I was just happy when found this 8) --ANK
2480 /* Clean up data we have read: This will do ACK frames. */
2481 tcp_cleanup_rbuf(sk
, copied
);
2488 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2492 err
= tcp_peek_sndq(sk
, msg
, len
);
2496 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int nonblock
,
2497 int flags
, int *addr_len
)
2499 int cmsg_flags
= 0, ret
, inq
;
2500 struct scm_timestamping_internal tss
;
2502 if (unlikely(flags
& MSG_ERRQUEUE
))
2503 return inet_recv_error(sk
, msg
, len
, addr_len
);
2505 if (sk_can_busy_loop(sk
) &&
2506 skb_queue_empty_lockless(&sk
->sk_receive_queue
) &&
2507 sk
->sk_state
== TCP_ESTABLISHED
)
2508 sk_busy_loop(sk
, nonblock
);
2511 ret
= tcp_recvmsg_locked(sk
, msg
, len
, nonblock
, flags
, &tss
,
2515 if (cmsg_flags
&& ret
>= 0) {
2517 tcp_recv_timestamp(msg
, sk
, &tss
);
2518 if (cmsg_flags
& 1) {
2519 inq
= tcp_inq_hint(sk
);
2520 put_cmsg(msg
, SOL_TCP
, TCP_CM_INQ
, sizeof(inq
), &inq
);
2525 EXPORT_SYMBOL(tcp_recvmsg
);
2527 void tcp_set_state(struct sock
*sk
, int state
)
2529 int oldstate
= sk
->sk_state
;
2531 /* We defined a new enum for TCP states that are exported in BPF
2532 * so as not force the internal TCP states to be frozen. The
2533 * following checks will detect if an internal state value ever
2534 * differs from the BPF value. If this ever happens, then we will
2535 * need to remap the internal value to the BPF value before calling
2536 * tcp_call_bpf_2arg.
2538 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED
!= (int)TCP_ESTABLISHED
);
2539 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT
!= (int)TCP_SYN_SENT
);
2540 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV
!= (int)TCP_SYN_RECV
);
2541 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1
!= (int)TCP_FIN_WAIT1
);
2542 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2
!= (int)TCP_FIN_WAIT2
);
2543 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT
!= (int)TCP_TIME_WAIT
);
2544 BUILD_BUG_ON((int)BPF_TCP_CLOSE
!= (int)TCP_CLOSE
);
2545 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT
!= (int)TCP_CLOSE_WAIT
);
2546 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK
!= (int)TCP_LAST_ACK
);
2547 BUILD_BUG_ON((int)BPF_TCP_LISTEN
!= (int)TCP_LISTEN
);
2548 BUILD_BUG_ON((int)BPF_TCP_CLOSING
!= (int)TCP_CLOSING
);
2549 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV
!= (int)TCP_NEW_SYN_RECV
);
2550 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES
!= (int)TCP_MAX_STATES
);
2552 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
), BPF_SOCK_OPS_STATE_CB_FLAG
))
2553 tcp_call_bpf_2arg(sk
, BPF_SOCK_OPS_STATE_CB
, oldstate
, state
);
2556 case TCP_ESTABLISHED
:
2557 if (oldstate
!= TCP_ESTABLISHED
)
2558 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2562 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2563 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2565 sk
->sk_prot
->unhash(sk
);
2566 if (inet_csk(sk
)->icsk_bind_hash
&&
2567 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2571 if (oldstate
== TCP_ESTABLISHED
)
2572 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2575 /* Change state AFTER socket is unhashed to avoid closed
2576 * socket sitting in hash tables.
2578 inet_sk_state_store(sk
, state
);
2580 EXPORT_SYMBOL_GPL(tcp_set_state
);
2583 * State processing on a close. This implements the state shift for
2584 * sending our FIN frame. Note that we only send a FIN for some
2585 * states. A shutdown() may have already sent the FIN, or we may be
2589 static const unsigned char new_state
[16] = {
2590 /* current state: new state: action: */
2591 [0 /* (Invalid) */] = TCP_CLOSE
,
2592 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2593 [TCP_SYN_SENT
] = TCP_CLOSE
,
2594 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2595 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
2596 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
2597 [TCP_TIME_WAIT
] = TCP_CLOSE
,
2598 [TCP_CLOSE
] = TCP_CLOSE
,
2599 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
2600 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
2601 [TCP_LISTEN
] = TCP_CLOSE
,
2602 [TCP_CLOSING
] = TCP_CLOSING
,
2603 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
2606 static int tcp_close_state(struct sock
*sk
)
2608 int next
= (int)new_state
[sk
->sk_state
];
2609 int ns
= next
& TCP_STATE_MASK
;
2611 tcp_set_state(sk
, ns
);
2613 return next
& TCP_ACTION_FIN
;
2617 * Shutdown the sending side of a connection. Much like close except
2618 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2621 void tcp_shutdown(struct sock
*sk
, int how
)
2623 /* We need to grab some memory, and put together a FIN,
2624 * and then put it into the queue to be sent.
2625 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2627 if (!(how
& SEND_SHUTDOWN
))
2630 /* If we've already sent a FIN, or it's a closed state, skip this. */
2631 if ((1 << sk
->sk_state
) &
2632 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2633 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2634 /* Clear out any half completed packets. FIN if needed. */
2635 if (tcp_close_state(sk
))
2639 EXPORT_SYMBOL(tcp_shutdown
);
2641 bool tcp_check_oom(struct sock
*sk
, int shift
)
2643 bool too_many_orphans
, out_of_socket_memory
;
2645 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2646 out_of_socket_memory
= tcp_out_of_memory(sk
);
2648 if (too_many_orphans
)
2649 net_info_ratelimited("too many orphaned sockets\n");
2650 if (out_of_socket_memory
)
2651 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2652 return too_many_orphans
|| out_of_socket_memory
;
2655 void __tcp_close(struct sock
*sk
, long timeout
)
2657 struct sk_buff
*skb
;
2658 int data_was_unread
= 0;
2661 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2663 if (sk
->sk_state
== TCP_LISTEN
) {
2664 tcp_set_state(sk
, TCP_CLOSE
);
2667 inet_csk_listen_stop(sk
);
2669 goto adjudge_to_death
;
2672 /* We need to flush the recv. buffs. We do this only on the
2673 * descriptor close, not protocol-sourced closes, because the
2674 * reader process may not have drained the data yet!
2676 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2677 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
2679 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2681 data_was_unread
+= len
;
2687 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2688 if (sk
->sk_state
== TCP_CLOSE
)
2689 goto adjudge_to_death
;
2691 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2692 * data was lost. To witness the awful effects of the old behavior of
2693 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2694 * GET in an FTP client, suspend the process, wait for the client to
2695 * advertise a zero window, then kill -9 the FTP client, wheee...
2696 * Note: timeout is always zero in such a case.
2698 if (unlikely(tcp_sk(sk
)->repair
)) {
2699 sk
->sk_prot
->disconnect(sk
, 0);
2700 } else if (data_was_unread
) {
2701 /* Unread data was tossed, zap the connection. */
2702 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2703 tcp_set_state(sk
, TCP_CLOSE
);
2704 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2705 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2706 /* Check zero linger _after_ checking for unread data. */
2707 sk
->sk_prot
->disconnect(sk
, 0);
2708 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2709 } else if (tcp_close_state(sk
)) {
2710 /* We FIN if the application ate all the data before
2711 * zapping the connection.
2714 /* RED-PEN. Formally speaking, we have broken TCP state
2715 * machine. State transitions:
2717 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2718 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2719 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2721 * are legal only when FIN has been sent (i.e. in window),
2722 * rather than queued out of window. Purists blame.
2724 * F.e. "RFC state" is ESTABLISHED,
2725 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2727 * The visible declinations are that sometimes
2728 * we enter time-wait state, when it is not required really
2729 * (harmless), do not send active resets, when they are
2730 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2731 * they look as CLOSING or LAST_ACK for Linux)
2732 * Probably, I missed some more holelets.
2734 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2735 * in a single packet! (May consider it later but will
2736 * probably need API support or TCP_CORK SYN-ACK until
2737 * data is written and socket is closed.)
2742 sk_stream_wait_close(sk
, timeout
);
2745 state
= sk
->sk_state
;
2751 /* remove backlog if any, without releasing ownership. */
2754 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2756 /* Have we already been destroyed by a softirq or backlog? */
2757 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2760 /* This is a (useful) BSD violating of the RFC. There is a
2761 * problem with TCP as specified in that the other end could
2762 * keep a socket open forever with no application left this end.
2763 * We use a 1 minute timeout (about the same as BSD) then kill
2764 * our end. If they send after that then tough - BUT: long enough
2765 * that we won't make the old 4*rto = almost no time - whoops
2768 * Nope, it was not mistake. It is really desired behaviour
2769 * f.e. on http servers, when such sockets are useless, but
2770 * consume significant resources. Let's do it with special
2771 * linger2 option. --ANK
2774 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2775 struct tcp_sock
*tp
= tcp_sk(sk
);
2776 if (tp
->linger2
< 0) {
2777 tcp_set_state(sk
, TCP_CLOSE
);
2778 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2779 __NET_INC_STATS(sock_net(sk
),
2780 LINUX_MIB_TCPABORTONLINGER
);
2782 const int tmo
= tcp_fin_time(sk
);
2784 if (tmo
> TCP_TIMEWAIT_LEN
) {
2785 inet_csk_reset_keepalive_timer(sk
,
2786 tmo
- TCP_TIMEWAIT_LEN
);
2788 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2793 if (sk
->sk_state
!= TCP_CLOSE
) {
2795 if (tcp_check_oom(sk
, 0)) {
2796 tcp_set_state(sk
, TCP_CLOSE
);
2797 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2798 __NET_INC_STATS(sock_net(sk
),
2799 LINUX_MIB_TCPABORTONMEMORY
);
2800 } else if (!check_net(sock_net(sk
))) {
2801 /* Not possible to send reset; just close */
2802 tcp_set_state(sk
, TCP_CLOSE
);
2806 if (sk
->sk_state
== TCP_CLOSE
) {
2807 struct request_sock
*req
;
2809 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
,
2810 lockdep_sock_is_held(sk
));
2811 /* We could get here with a non-NULL req if the socket is
2812 * aborted (e.g., closed with unread data) before 3WHS
2816 reqsk_fastopen_remove(sk
, req
, false);
2817 inet_csk_destroy_sock(sk
);
2819 /* Otherwise, socket is reprieved until protocol close. */
2826 void tcp_close(struct sock
*sk
, long timeout
)
2829 __tcp_close(sk
, timeout
);
2833 EXPORT_SYMBOL(tcp_close
);
2835 /* These states need RST on ABORT according to RFC793 */
2837 static inline bool tcp_need_reset(int state
)
2839 return (1 << state
) &
2840 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2841 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2844 static void tcp_rtx_queue_purge(struct sock
*sk
)
2846 struct rb_node
*p
= rb_first(&sk
->tcp_rtx_queue
);
2848 tcp_sk(sk
)->highest_sack
= NULL
;
2850 struct sk_buff
*skb
= rb_to_skb(p
);
2853 /* Since we are deleting whole queue, no need to
2854 * list_del(&skb->tcp_tsorted_anchor)
2856 tcp_rtx_queue_unlink(skb
, sk
);
2857 sk_wmem_free_skb(sk
, skb
);
2861 void tcp_write_queue_purge(struct sock
*sk
)
2863 struct sk_buff
*skb
;
2865 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
2866 while ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
2867 tcp_skb_tsorted_anchor_cleanup(skb
);
2868 sk_wmem_free_skb(sk
, skb
);
2870 tcp_rtx_queue_purge(sk
);
2871 skb
= sk
->sk_tx_skb_cache
;
2874 sk
->sk_tx_skb_cache
= NULL
;
2876 INIT_LIST_HEAD(&tcp_sk(sk
)->tsorted_sent_queue
);
2878 tcp_clear_all_retrans_hints(tcp_sk(sk
));
2879 tcp_sk(sk
)->packets_out
= 0;
2880 inet_csk(sk
)->icsk_backoff
= 0;
2883 int tcp_disconnect(struct sock
*sk
, int flags
)
2885 struct inet_sock
*inet
= inet_sk(sk
);
2886 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2887 struct tcp_sock
*tp
= tcp_sk(sk
);
2888 int old_state
= sk
->sk_state
;
2891 if (old_state
!= TCP_CLOSE
)
2892 tcp_set_state(sk
, TCP_CLOSE
);
2894 /* ABORT function of RFC793 */
2895 if (old_state
== TCP_LISTEN
) {
2896 inet_csk_listen_stop(sk
);
2897 } else if (unlikely(tp
->repair
)) {
2898 sk
->sk_err
= ECONNABORTED
;
2899 } else if (tcp_need_reset(old_state
) ||
2900 (tp
->snd_nxt
!= tp
->write_seq
&&
2901 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2902 /* The last check adjusts for discrepancy of Linux wrt. RFC
2905 tcp_send_active_reset(sk
, gfp_any());
2906 sk
->sk_err
= ECONNRESET
;
2907 } else if (old_state
== TCP_SYN_SENT
)
2908 sk
->sk_err
= ECONNRESET
;
2910 tcp_clear_xmit_timers(sk
);
2911 __skb_queue_purge(&sk
->sk_receive_queue
);
2912 if (sk
->sk_rx_skb_cache
) {
2913 __kfree_skb(sk
->sk_rx_skb_cache
);
2914 sk
->sk_rx_skb_cache
= NULL
;
2916 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
2918 tcp_write_queue_purge(sk
);
2919 tcp_fastopen_active_disable_ofo_check(sk
);
2920 skb_rbtree_purge(&tp
->out_of_order_queue
);
2922 inet
->inet_dport
= 0;
2924 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2925 inet_reset_saddr(sk
);
2927 sk
->sk_shutdown
= 0;
2928 sock_reset_flag(sk
, SOCK_DONE
);
2930 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
2931 tp
->rcv_rtt_last_tsecr
= 0;
2933 seq
= tp
->write_seq
+ tp
->max_window
+ 2;
2936 WRITE_ONCE(tp
->write_seq
, seq
);
2938 icsk
->icsk_backoff
= 0;
2939 icsk
->icsk_probes_out
= 0;
2940 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
2941 icsk
->icsk_rto_min
= TCP_RTO_MIN
;
2942 icsk
->icsk_delack_max
= TCP_DELACK_MAX
;
2943 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2944 tp
->snd_cwnd
= TCP_INIT_CWND
;
2945 tp
->snd_cwnd_cnt
= 0;
2946 tp
->window_clamp
= 0;
2948 tp
->delivered_ce
= 0;
2949 if (icsk
->icsk_ca_ops
->release
)
2950 icsk
->icsk_ca_ops
->release(sk
);
2951 memset(icsk
->icsk_ca_priv
, 0, sizeof(icsk
->icsk_ca_priv
));
2952 icsk
->icsk_ca_initialized
= 0;
2953 tcp_set_ca_state(sk
, TCP_CA_Open
);
2954 tp
->is_sack_reneg
= 0;
2955 tcp_clear_retrans(tp
);
2956 tp
->total_retrans
= 0;
2957 inet_csk_delack_init(sk
);
2958 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2959 * issue in __tcp_select_window()
2961 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
2962 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2964 dst_release(sk
->sk_rx_dst
);
2965 sk
->sk_rx_dst
= NULL
;
2966 tcp_saved_syn_free(tp
);
2967 tp
->compressed_ack
= 0;
2971 tp
->bytes_acked
= 0;
2972 tp
->bytes_received
= 0;
2973 tp
->bytes_retrans
= 0;
2974 tp
->data_segs_in
= 0;
2975 tp
->data_segs_out
= 0;
2976 tp
->duplicate_sack
[0].start_seq
= 0;
2977 tp
->duplicate_sack
[0].end_seq
= 0;
2980 tp
->retrans_out
= 0;
2982 tp
->tlp_high_seq
= 0;
2983 tp
->last_oow_ack_time
= 0;
2984 /* There's a bubble in the pipe until at least the first ACK. */
2985 tp
->app_limited
= ~0U;
2986 tp
->rack
.mstamp
= 0;
2987 tp
->rack
.advanced
= 0;
2988 tp
->rack
.reo_wnd_steps
= 1;
2989 tp
->rack
.last_delivered
= 0;
2990 tp
->rack
.reo_wnd_persist
= 0;
2991 tp
->rack
.dsack_seen
= 0;
2992 tp
->syn_data_acked
= 0;
2993 tp
->rx_opt
.saw_tstamp
= 0;
2994 tp
->rx_opt
.dsack
= 0;
2995 tp
->rx_opt
.num_sacks
= 0;
2996 tp
->rcv_ooopack
= 0;
2999 /* Clean up fastopen related fields */
3000 tcp_free_fastopen_req(tp
);
3001 inet
->defer_connect
= 0;
3002 tp
->fastopen_client_fail
= 0;
3004 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
3006 if (sk
->sk_frag
.page
) {
3007 put_page(sk
->sk_frag
.page
);
3008 sk
->sk_frag
.page
= NULL
;
3009 sk
->sk_frag
.offset
= 0;
3012 sk
->sk_error_report(sk
);
3015 EXPORT_SYMBOL(tcp_disconnect
);
3017 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
3019 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
3020 (sk
->sk_state
!= TCP_LISTEN
);
3023 static int tcp_repair_set_window(struct tcp_sock
*tp
, sockptr_t optbuf
, int len
)
3025 struct tcp_repair_window opt
;
3030 if (len
!= sizeof(opt
))
3033 if (copy_from_sockptr(&opt
, optbuf
, sizeof(opt
)))
3036 if (opt
.max_window
< opt
.snd_wnd
)
3039 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
3042 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
3045 tp
->snd_wl1
= opt
.snd_wl1
;
3046 tp
->snd_wnd
= opt
.snd_wnd
;
3047 tp
->max_window
= opt
.max_window
;
3049 tp
->rcv_wnd
= opt
.rcv_wnd
;
3050 tp
->rcv_wup
= opt
.rcv_wup
;
3055 static int tcp_repair_options_est(struct sock
*sk
, sockptr_t optbuf
,
3058 struct tcp_sock
*tp
= tcp_sk(sk
);
3059 struct tcp_repair_opt opt
;
3062 while (len
>= sizeof(opt
)) {
3063 if (copy_from_sockptr_offset(&opt
, optbuf
, offset
, sizeof(opt
)))
3066 offset
+= sizeof(opt
);
3069 switch (opt
.opt_code
) {
3071 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
3076 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
3077 u16 rcv_wscale
= opt
.opt_val
>> 16;
3079 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
3082 tp
->rx_opt
.snd_wscale
= snd_wscale
;
3083 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3084 tp
->rx_opt
.wscale_ok
= 1;
3087 case TCPOPT_SACK_PERM
:
3088 if (opt
.opt_val
!= 0)
3091 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
3093 case TCPOPT_TIMESTAMP
:
3094 if (opt
.opt_val
!= 0)
3097 tp
->rx_opt
.tstamp_ok
= 1;
3105 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled
);
3106 EXPORT_SYMBOL(tcp_tx_delay_enabled
);
3108 static void tcp_enable_tx_delay(void)
3110 if (!static_branch_unlikely(&tcp_tx_delay_enabled
)) {
3111 static int __tcp_tx_delay_enabled
= 0;
3113 if (cmpxchg(&__tcp_tx_delay_enabled
, 0, 1) == 0) {
3114 static_branch_enable(&tcp_tx_delay_enabled
);
3115 pr_info("TCP_TX_DELAY enabled\n");
3120 /* When set indicates to always queue non-full frames. Later the user clears
3121 * this option and we transmit any pending partial frames in the queue. This is
3122 * meant to be used alongside sendfile() to get properly filled frames when the
3123 * user (for example) must write out headers with a write() call first and then
3124 * use sendfile to send out the data parts.
3126 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3129 static void __tcp_sock_set_cork(struct sock
*sk
, bool on
)
3131 struct tcp_sock
*tp
= tcp_sk(sk
);
3134 tp
->nonagle
|= TCP_NAGLE_CORK
;
3136 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
3137 if (tp
->nonagle
& TCP_NAGLE_OFF
)
3138 tp
->nonagle
|= TCP_NAGLE_PUSH
;
3139 tcp_push_pending_frames(sk
);
3143 void tcp_sock_set_cork(struct sock
*sk
, bool on
)
3146 __tcp_sock_set_cork(sk
, on
);
3149 EXPORT_SYMBOL(tcp_sock_set_cork
);
3151 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3152 * remembered, but it is not activated until cork is cleared.
3154 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3155 * even TCP_CORK for currently queued segments.
3157 static void __tcp_sock_set_nodelay(struct sock
*sk
, bool on
)
3160 tcp_sk(sk
)->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
3161 tcp_push_pending_frames(sk
);
3163 tcp_sk(sk
)->nonagle
&= ~TCP_NAGLE_OFF
;
3167 void tcp_sock_set_nodelay(struct sock
*sk
)
3170 __tcp_sock_set_nodelay(sk
, true);
3173 EXPORT_SYMBOL(tcp_sock_set_nodelay
);
3175 static void __tcp_sock_set_quickack(struct sock
*sk
, int val
)
3178 inet_csk_enter_pingpong_mode(sk
);
3182 inet_csk_exit_pingpong_mode(sk
);
3183 if ((1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
3184 inet_csk_ack_scheduled(sk
)) {
3185 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
3186 tcp_cleanup_rbuf(sk
, 1);
3188 inet_csk_enter_pingpong_mode(sk
);
3192 void tcp_sock_set_quickack(struct sock
*sk
, int val
)
3195 __tcp_sock_set_quickack(sk
, val
);
3198 EXPORT_SYMBOL(tcp_sock_set_quickack
);
3200 int tcp_sock_set_syncnt(struct sock
*sk
, int val
)
3202 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
3206 inet_csk(sk
)->icsk_syn_retries
= val
;
3210 EXPORT_SYMBOL(tcp_sock_set_syncnt
);
3212 void tcp_sock_set_user_timeout(struct sock
*sk
, u32 val
)
3215 inet_csk(sk
)->icsk_user_timeout
= val
;
3218 EXPORT_SYMBOL(tcp_sock_set_user_timeout
);
3220 int tcp_sock_set_keepidle_locked(struct sock
*sk
, int val
)
3222 struct tcp_sock
*tp
= tcp_sk(sk
);
3224 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
3227 tp
->keepalive_time
= val
* HZ
;
3228 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
3229 !((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
))) {
3230 u32 elapsed
= keepalive_time_elapsed(tp
);
3232 if (tp
->keepalive_time
> elapsed
)
3233 elapsed
= tp
->keepalive_time
- elapsed
;
3236 inet_csk_reset_keepalive_timer(sk
, elapsed
);
3242 int tcp_sock_set_keepidle(struct sock
*sk
, int val
)
3247 err
= tcp_sock_set_keepidle_locked(sk
, val
);
3251 EXPORT_SYMBOL(tcp_sock_set_keepidle
);
3253 int tcp_sock_set_keepintvl(struct sock
*sk
, int val
)
3255 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
3259 tcp_sk(sk
)->keepalive_intvl
= val
* HZ
;
3263 EXPORT_SYMBOL(tcp_sock_set_keepintvl
);
3265 int tcp_sock_set_keepcnt(struct sock
*sk
, int val
)
3267 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
3271 tcp_sk(sk
)->keepalive_probes
= val
;
3275 EXPORT_SYMBOL(tcp_sock_set_keepcnt
);
3277 int tcp_set_window_clamp(struct sock
*sk
, int val
)
3279 struct tcp_sock
*tp
= tcp_sk(sk
);
3282 if (sk
->sk_state
!= TCP_CLOSE
)
3284 tp
->window_clamp
= 0;
3286 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
3287 SOCK_MIN_RCVBUF
/ 2 : val
;
3293 * Socket option code for TCP.
3295 static int do_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
3296 sockptr_t optval
, unsigned int optlen
)
3298 struct tcp_sock
*tp
= tcp_sk(sk
);
3299 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3300 struct net
*net
= sock_net(sk
);
3304 /* These are data/string values, all the others are ints */
3306 case TCP_CONGESTION
: {
3307 char name
[TCP_CA_NAME_MAX
];
3312 val
= strncpy_from_sockptr(name
, optval
,
3313 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
3319 err
= tcp_set_congestion_control(sk
, name
, true,
3320 ns_capable(sock_net(sk
)->user_ns
,
3326 char name
[TCP_ULP_NAME_MAX
];
3331 val
= strncpy_from_sockptr(name
, optval
,
3332 min_t(long, TCP_ULP_NAME_MAX
- 1,
3339 err
= tcp_set_ulp(sk
, name
);
3343 case TCP_FASTOPEN_KEY
: {
3344 __u8 key
[TCP_FASTOPEN_KEY_BUF_LENGTH
];
3345 __u8
*backup_key
= NULL
;
3347 /* Allow a backup key as well to facilitate key rotation
3348 * First key is the active one.
3350 if (optlen
!= TCP_FASTOPEN_KEY_LENGTH
&&
3351 optlen
!= TCP_FASTOPEN_KEY_BUF_LENGTH
)
3354 if (copy_from_sockptr(key
, optval
, optlen
))
3357 if (optlen
== TCP_FASTOPEN_KEY_BUF_LENGTH
)
3358 backup_key
= key
+ TCP_FASTOPEN_KEY_LENGTH
;
3360 return tcp_fastopen_reset_cipher(net
, sk
, key
, backup_key
);
3367 if (optlen
< sizeof(int))
3370 if (copy_from_sockptr(&val
, optval
, sizeof(val
)))
3377 /* Values greater than interface MTU won't take effect. However
3378 * at the point when this call is done we typically don't yet
3379 * know which interface is going to be used
3381 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
3385 tp
->rx_opt
.user_mss
= val
;
3389 __tcp_sock_set_nodelay(sk
, val
);
3392 case TCP_THIN_LINEAR_TIMEOUTS
:
3393 if (val
< 0 || val
> 1)
3399 case TCP_THIN_DUPACK
:
3400 if (val
< 0 || val
> 1)
3405 if (!tcp_can_repair_sock(sk
))
3407 else if (val
== TCP_REPAIR_ON
) {
3409 sk
->sk_reuse
= SK_FORCE_REUSE
;
3410 tp
->repair_queue
= TCP_NO_QUEUE
;
3411 } else if (val
== TCP_REPAIR_OFF
) {
3413 sk
->sk_reuse
= SK_NO_REUSE
;
3414 tcp_send_window_probe(sk
);
3415 } else if (val
== TCP_REPAIR_OFF_NO_WP
) {
3417 sk
->sk_reuse
= SK_NO_REUSE
;
3423 case TCP_REPAIR_QUEUE
:
3426 else if ((unsigned int)val
< TCP_QUEUES_NR
)
3427 tp
->repair_queue
= val
;
3433 if (sk
->sk_state
!= TCP_CLOSE
)
3435 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
3436 WRITE_ONCE(tp
->write_seq
, val
);
3437 else if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
3438 WRITE_ONCE(tp
->rcv_nxt
, val
);
3439 WRITE_ONCE(tp
->copied_seq
, val
);
3445 case TCP_REPAIR_OPTIONS
:
3448 else if (sk
->sk_state
== TCP_ESTABLISHED
)
3449 err
= tcp_repair_options_est(sk
, optval
, optlen
);
3455 __tcp_sock_set_cork(sk
, val
);
3459 err
= tcp_sock_set_keepidle_locked(sk
, val
);
3462 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
3465 tp
->keepalive_intvl
= val
* HZ
;
3468 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
3471 tp
->keepalive_probes
= val
;
3474 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
3477 icsk
->icsk_syn_retries
= val
;
3481 /* 0: disable, 1: enable, 2: start from ether_header */
3482 if (val
< 0 || val
> 2)
3491 else if (val
> TCP_FIN_TIMEOUT_MAX
/ HZ
)
3492 tp
->linger2
= TCP_FIN_TIMEOUT_MAX
;
3494 tp
->linger2
= val
* HZ
;
3497 case TCP_DEFER_ACCEPT
:
3498 /* Translate value in seconds to number of retransmits */
3499 icsk
->icsk_accept_queue
.rskq_defer_accept
=
3500 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
3504 case TCP_WINDOW_CLAMP
:
3505 err
= tcp_set_window_clamp(sk
, val
);
3509 __tcp_sock_set_quickack(sk
, val
);
3512 #ifdef CONFIG_TCP_MD5SIG
3514 case TCP_MD5SIG_EXT
:
3515 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
3518 case TCP_USER_TIMEOUT
:
3519 /* Cap the max time in ms TCP will retry or probe the window
3520 * before giving up and aborting (ETIMEDOUT) a connection.
3525 icsk
->icsk_user_timeout
= val
;
3529 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
3531 tcp_fastopen_init_key_once(net
);
3533 fastopen_queue_tune(sk
, val
);
3538 case TCP_FASTOPEN_CONNECT
:
3539 if (val
> 1 || val
< 0) {
3541 } else if (net
->ipv4
.sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) {
3542 if (sk
->sk_state
== TCP_CLOSE
)
3543 tp
->fastopen_connect
= val
;
3550 case TCP_FASTOPEN_NO_COOKIE
:
3551 if (val
> 1 || val
< 0)
3553 else if (!((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3556 tp
->fastopen_no_cookie
= val
;
3562 tp
->tsoffset
= val
- tcp_time_stamp_raw();
3564 case TCP_REPAIR_WINDOW
:
3565 err
= tcp_repair_set_window(tp
, optval
, optlen
);
3567 case TCP_NOTSENT_LOWAT
:
3568 tp
->notsent_lowat
= val
;
3569 sk
->sk_write_space(sk
);
3572 if (val
> 1 || val
< 0)
3575 tp
->recvmsg_inq
= val
;
3579 tcp_enable_tx_delay();
3580 tp
->tcp_tx_delay
= val
;
3591 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, sockptr_t optval
,
3592 unsigned int optlen
)
3594 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3596 if (level
!= SOL_TCP
)
3597 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
3599 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
3601 EXPORT_SYMBOL(tcp_setsockopt
);
3603 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
3604 struct tcp_info
*info
)
3606 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
3609 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
3610 stats
[i
] = tp
->chrono_stat
[i
- 1];
3611 if (i
== tp
->chrono_type
)
3612 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
3613 stats
[i
] *= USEC_PER_SEC
/ HZ
;
3617 info
->tcpi_busy_time
= total
;
3618 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
3619 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
3622 /* Return information about state of tcp endpoint in API format. */
3623 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
3625 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
3626 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3632 memset(info
, 0, sizeof(*info
));
3633 if (sk
->sk_type
!= SOCK_STREAM
)
3636 info
->tcpi_state
= inet_sk_state_load(sk
);
3638 /* Report meaningful fields for all TCP states, including listeners */
3639 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3640 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3641 info
->tcpi_pacing_rate
= rate64
;
3643 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
3644 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3645 info
->tcpi_max_pacing_rate
= rate64
;
3647 info
->tcpi_reordering
= tp
->reordering
;
3648 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
3650 if (info
->tcpi_state
== TCP_LISTEN
) {
3651 /* listeners aliased fields :
3652 * tcpi_unacked -> Number of children ready for accept()
3653 * tcpi_sacked -> max backlog
3655 info
->tcpi_unacked
= READ_ONCE(sk
->sk_ack_backlog
);
3656 info
->tcpi_sacked
= READ_ONCE(sk
->sk_max_ack_backlog
);
3660 slow
= lock_sock_fast(sk
);
3662 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
3663 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
3664 info
->tcpi_probes
= icsk
->icsk_probes_out
;
3665 info
->tcpi_backoff
= icsk
->icsk_backoff
;
3667 if (tp
->rx_opt
.tstamp_ok
)
3668 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
3669 if (tcp_is_sack(tp
))
3670 info
->tcpi_options
|= TCPI_OPT_SACK
;
3671 if (tp
->rx_opt
.wscale_ok
) {
3672 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
3673 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
3674 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
3677 if (tp
->ecn_flags
& TCP_ECN_OK
)
3678 info
->tcpi_options
|= TCPI_OPT_ECN
;
3679 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
3680 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
3681 if (tp
->syn_data_acked
)
3682 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
3684 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
3685 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
3686 info
->tcpi_snd_mss
= tp
->mss_cache
;
3687 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
3689 info
->tcpi_unacked
= tp
->packets_out
;
3690 info
->tcpi_sacked
= tp
->sacked_out
;
3692 info
->tcpi_lost
= tp
->lost_out
;
3693 info
->tcpi_retrans
= tp
->retrans_out
;
3695 now
= tcp_jiffies32
;
3696 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
3697 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
3698 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
3700 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
3701 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
3702 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
3703 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
3704 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
3705 info
->tcpi_advmss
= tp
->advmss
;
3707 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
3708 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
3710 info
->tcpi_total_retrans
= tp
->total_retrans
;
3712 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
3713 info
->tcpi_bytes_received
= tp
->bytes_received
;
3714 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
3715 tcp_get_info_chrono_stats(tp
, info
);
3717 info
->tcpi_segs_out
= tp
->segs_out
;
3718 info
->tcpi_segs_in
= tp
->segs_in
;
3720 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
3721 info
->tcpi_data_segs_in
= tp
->data_segs_in
;
3722 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
3724 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
3725 rate64
= tcp_compute_delivery_rate(tp
);
3727 info
->tcpi_delivery_rate
= rate64
;
3728 info
->tcpi_delivered
= tp
->delivered
;
3729 info
->tcpi_delivered_ce
= tp
->delivered_ce
;
3730 info
->tcpi_bytes_sent
= tp
->bytes_sent
;
3731 info
->tcpi_bytes_retrans
= tp
->bytes_retrans
;
3732 info
->tcpi_dsack_dups
= tp
->dsack_dups
;
3733 info
->tcpi_reord_seen
= tp
->reord_seen
;
3734 info
->tcpi_rcv_ooopack
= tp
->rcv_ooopack
;
3735 info
->tcpi_snd_wnd
= tp
->snd_wnd
;
3736 info
->tcpi_fastopen_client_fail
= tp
->fastopen_client_fail
;
3737 unlock_sock_fast(sk
, slow
);
3739 EXPORT_SYMBOL_GPL(tcp_get_info
);
3741 static size_t tcp_opt_stats_get_size(void)
3744 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BUSY */
3745 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_RWND_LIMITED */
3746 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_SNDBUF_LIMITED */
3747 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DATA_SEGS_OUT */
3748 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_TOTAL_RETRANS */
3749 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_PACING_RATE */
3750 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_DELIVERY_RATE */
3751 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_CWND */
3752 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORDERING */
3753 nla_total_size(sizeof(u32
)) + /* TCP_NLA_MIN_RTT */
3754 nla_total_size(sizeof(u8
)) + /* TCP_NLA_RECUR_RETRANS */
3755 nla_total_size(sizeof(u8
)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3756 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SNDQ_SIZE */
3757 nla_total_size(sizeof(u8
)) + /* TCP_NLA_CA_STATE */
3758 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SND_SSTHRESH */
3759 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED */
3760 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DELIVERED_CE */
3761 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_SENT */
3762 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_BYTES_RETRANS */
3763 nla_total_size(sizeof(u32
)) + /* TCP_NLA_DSACK_DUPS */
3764 nla_total_size(sizeof(u32
)) + /* TCP_NLA_REORD_SEEN */
3765 nla_total_size(sizeof(u32
)) + /* TCP_NLA_SRTT */
3766 nla_total_size(sizeof(u16
)) + /* TCP_NLA_TIMEOUT_REHASH */
3767 nla_total_size(sizeof(u32
)) + /* TCP_NLA_BYTES_NOTSENT */
3768 nla_total_size_64bit(sizeof(u64
)) + /* TCP_NLA_EDT */
3772 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
,
3773 const struct sk_buff
*orig_skb
)
3775 const struct tcp_sock
*tp
= tcp_sk(sk
);
3776 struct sk_buff
*stats
;
3777 struct tcp_info info
;
3781 stats
= alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC
);
3785 tcp_get_info_chrono_stats(tp
, &info
);
3786 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
3787 info
.tcpi_busy_time
, TCP_NLA_PAD
);
3788 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
3789 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
3790 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
3791 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
3792 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
3793 tp
->data_segs_out
, TCP_NLA_PAD
);
3794 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
3795 tp
->total_retrans
, TCP_NLA_PAD
);
3797 rate
= READ_ONCE(sk
->sk_pacing_rate
);
3798 rate64
= (rate
!= ~0UL) ? rate
: ~0ULL;
3799 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
3801 rate64
= tcp_compute_delivery_rate(tp
);
3802 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
3804 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tp
->snd_cwnd
);
3805 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
3806 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
3808 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
3809 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
3810 nla_put_u32(stats
, TCP_NLA_SND_SSTHRESH
, tp
->snd_ssthresh
);
3811 nla_put_u32(stats
, TCP_NLA_DELIVERED
, tp
->delivered
);
3812 nla_put_u32(stats
, TCP_NLA_DELIVERED_CE
, tp
->delivered_ce
);
3814 nla_put_u32(stats
, TCP_NLA_SNDQ_SIZE
, tp
->write_seq
- tp
->snd_una
);
3815 nla_put_u8(stats
, TCP_NLA_CA_STATE
, inet_csk(sk
)->icsk_ca_state
);
3817 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_SENT
, tp
->bytes_sent
,
3819 nla_put_u64_64bit(stats
, TCP_NLA_BYTES_RETRANS
, tp
->bytes_retrans
,
3821 nla_put_u32(stats
, TCP_NLA_DSACK_DUPS
, tp
->dsack_dups
);
3822 nla_put_u32(stats
, TCP_NLA_REORD_SEEN
, tp
->reord_seen
);
3823 nla_put_u32(stats
, TCP_NLA_SRTT
, tp
->srtt_us
>> 3);
3824 nla_put_u16(stats
, TCP_NLA_TIMEOUT_REHASH
, tp
->timeout_rehash
);
3825 nla_put_u32(stats
, TCP_NLA_BYTES_NOTSENT
,
3826 max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
));
3827 nla_put_u64_64bit(stats
, TCP_NLA_EDT
, orig_skb
->skb_mstamp_ns
,
3833 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
3834 int optname
, char __user
*optval
, int __user
*optlen
)
3836 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3837 struct tcp_sock
*tp
= tcp_sk(sk
);
3838 struct net
*net
= sock_net(sk
);
3841 if (get_user(len
, optlen
))
3844 len
= min_t(unsigned int, len
, sizeof(int));
3851 val
= tp
->mss_cache
;
3852 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3853 val
= tp
->rx_opt
.user_mss
;
3855 val
= tp
->rx_opt
.mss_clamp
;
3858 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
3861 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
3864 val
= keepalive_time_when(tp
) / HZ
;
3867 val
= keepalive_intvl_when(tp
) / HZ
;
3870 val
= keepalive_probes(tp
);
3873 val
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_syn_retries
;
3878 val
= (val
? : net
->ipv4
.sysctl_tcp_fin_timeout
) / HZ
;
3880 case TCP_DEFER_ACCEPT
:
3881 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3882 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
3884 case TCP_WINDOW_CLAMP
:
3885 val
= tp
->window_clamp
;
3888 struct tcp_info info
;
3890 if (get_user(len
, optlen
))
3893 tcp_get_info(sk
, &info
);
3895 len
= min_t(unsigned int, len
, sizeof(info
));
3896 if (put_user(len
, optlen
))
3898 if (copy_to_user(optval
, &info
, len
))
3903 const struct tcp_congestion_ops
*ca_ops
;
3904 union tcp_cc_info info
;
3908 if (get_user(len
, optlen
))
3911 ca_ops
= icsk
->icsk_ca_ops
;
3912 if (ca_ops
&& ca_ops
->get_info
)
3913 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
3915 len
= min_t(unsigned int, len
, sz
);
3916 if (put_user(len
, optlen
))
3918 if (copy_to_user(optval
, &info
, len
))
3923 val
= !inet_csk_in_pingpong_mode(sk
);
3926 case TCP_CONGESTION
:
3927 if (get_user(len
, optlen
))
3929 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
3930 if (put_user(len
, optlen
))
3932 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
3937 if (get_user(len
, optlen
))
3939 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
3940 if (!icsk
->icsk_ulp_ops
) {
3941 if (put_user(0, optlen
))
3945 if (put_user(len
, optlen
))
3947 if (copy_to_user(optval
, icsk
->icsk_ulp_ops
->name
, len
))
3951 case TCP_FASTOPEN_KEY
: {
3952 u64 key
[TCP_FASTOPEN_KEY_BUF_LENGTH
/ sizeof(u64
)];
3953 unsigned int key_len
;
3955 if (get_user(len
, optlen
))
3958 key_len
= tcp_fastopen_get_cipher(net
, icsk
, key
) *
3959 TCP_FASTOPEN_KEY_LENGTH
;
3960 len
= min_t(unsigned int, len
, key_len
);
3961 if (put_user(len
, optlen
))
3963 if (copy_to_user(optval
, key
, len
))
3967 case TCP_THIN_LINEAR_TIMEOUTS
:
3971 case TCP_THIN_DUPACK
:
3979 case TCP_REPAIR_QUEUE
:
3981 val
= tp
->repair_queue
;
3986 case TCP_REPAIR_WINDOW
: {
3987 struct tcp_repair_window opt
;
3989 if (get_user(len
, optlen
))
3992 if (len
!= sizeof(opt
))
3998 opt
.snd_wl1
= tp
->snd_wl1
;
3999 opt
.snd_wnd
= tp
->snd_wnd
;
4000 opt
.max_window
= tp
->max_window
;
4001 opt
.rcv_wnd
= tp
->rcv_wnd
;
4002 opt
.rcv_wup
= tp
->rcv_wup
;
4004 if (copy_to_user(optval
, &opt
, len
))
4009 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
4010 val
= tp
->write_seq
;
4011 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
4017 case TCP_USER_TIMEOUT
:
4018 val
= icsk
->icsk_user_timeout
;
4022 val
= icsk
->icsk_accept_queue
.fastopenq
.max_qlen
;
4025 case TCP_FASTOPEN_CONNECT
:
4026 val
= tp
->fastopen_connect
;
4029 case TCP_FASTOPEN_NO_COOKIE
:
4030 val
= tp
->fastopen_no_cookie
;
4034 val
= tp
->tcp_tx_delay
;
4038 val
= tcp_time_stamp_raw() + tp
->tsoffset
;
4040 case TCP_NOTSENT_LOWAT
:
4041 val
= tp
->notsent_lowat
;
4044 val
= tp
->recvmsg_inq
;
4049 case TCP_SAVED_SYN
: {
4050 if (get_user(len
, optlen
))
4054 if (tp
->saved_syn
) {
4055 if (len
< tcp_saved_syn_len(tp
->saved_syn
)) {
4056 if (put_user(tcp_saved_syn_len(tp
->saved_syn
),
4064 len
= tcp_saved_syn_len(tp
->saved_syn
);
4065 if (put_user(len
, optlen
)) {
4069 if (copy_to_user(optval
, tp
->saved_syn
->data
, len
)) {
4073 tcp_saved_syn_free(tp
);
4078 if (put_user(len
, optlen
))
4084 case TCP_ZEROCOPY_RECEIVE
: {
4085 struct tcp_zerocopy_receive zc
= {};
4088 if (get_user(len
, optlen
))
4090 if (len
< offsetofend(struct tcp_zerocopy_receive
, length
))
4092 if (len
> sizeof(zc
)) {
4094 if (put_user(len
, optlen
))
4097 if (copy_from_user(&zc
, optval
, len
))
4100 err
= tcp_zerocopy_receive(sk
, &zc
);
4102 if (len
>= offsetofend(struct tcp_zerocopy_receive
, err
))
4103 goto zerocopy_rcv_sk_err
;
4105 case offsetofend(struct tcp_zerocopy_receive
, err
):
4106 goto zerocopy_rcv_sk_err
;
4107 case offsetofend(struct tcp_zerocopy_receive
, inq
):
4108 goto zerocopy_rcv_inq
;
4109 case offsetofend(struct tcp_zerocopy_receive
, length
):
4111 goto zerocopy_rcv_out
;
4113 zerocopy_rcv_sk_err
:
4115 zc
.err
= sock_error(sk
);
4117 zc
.inq
= tcp_inq_hint(sk
);
4119 if (!err
&& copy_to_user(optval
, &zc
, len
))
4125 return -ENOPROTOOPT
;
4128 if (put_user(len
, optlen
))
4130 if (copy_to_user(optval
, &val
, len
))
4135 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
4138 struct inet_connection_sock
*icsk
= inet_csk(sk
);
4140 if (level
!= SOL_TCP
)
4141 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
4143 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
4145 EXPORT_SYMBOL(tcp_getsockopt
);
4147 #ifdef CONFIG_TCP_MD5SIG
4148 static DEFINE_PER_CPU(struct tcp_md5sig_pool
, tcp_md5sig_pool
);
4149 static DEFINE_MUTEX(tcp_md5sig_mutex
);
4150 static bool tcp_md5sig_pool_populated
= false;
4152 static void __tcp_alloc_md5sig_pool(void)
4154 struct crypto_ahash
*hash
;
4157 hash
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
4161 for_each_possible_cpu(cpu
) {
4162 void *scratch
= per_cpu(tcp_md5sig_pool
, cpu
).scratch
;
4163 struct ahash_request
*req
;
4166 scratch
= kmalloc_node(sizeof(union tcp_md5sum_block
) +
4167 sizeof(struct tcphdr
),
4172 per_cpu(tcp_md5sig_pool
, cpu
).scratch
= scratch
;
4174 if (per_cpu(tcp_md5sig_pool
, cpu
).md5_req
)
4177 req
= ahash_request_alloc(hash
, GFP_KERNEL
);
4181 ahash_request_set_callback(req
, 0, NULL
, NULL
);
4183 per_cpu(tcp_md5sig_pool
, cpu
).md5_req
= req
;
4185 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4186 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4189 tcp_md5sig_pool_populated
= true;
4192 bool tcp_alloc_md5sig_pool(void)
4194 if (unlikely(!tcp_md5sig_pool_populated
)) {
4195 mutex_lock(&tcp_md5sig_mutex
);
4197 if (!tcp_md5sig_pool_populated
) {
4198 __tcp_alloc_md5sig_pool();
4199 if (tcp_md5sig_pool_populated
)
4200 static_branch_inc(&tcp_md5_needed
);
4203 mutex_unlock(&tcp_md5sig_mutex
);
4205 return tcp_md5sig_pool_populated
;
4207 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
4211 * tcp_get_md5sig_pool - get md5sig_pool for this user
4213 * We use percpu structure, so if we succeed, we exit with preemption
4214 * and BH disabled, to make sure another thread or softirq handling
4215 * wont try to get same context.
4217 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
4221 if (tcp_md5sig_pool_populated
) {
4222 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4224 return this_cpu_ptr(&tcp_md5sig_pool
);
4229 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
4231 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
4232 const struct sk_buff
*skb
, unsigned int header_len
)
4234 struct scatterlist sg
;
4235 const struct tcphdr
*tp
= tcp_hdr(skb
);
4236 struct ahash_request
*req
= hp
->md5_req
;
4238 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
4239 skb_headlen(skb
) - header_len
: 0;
4240 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
4241 struct sk_buff
*frag_iter
;
4243 sg_init_table(&sg
, 1);
4245 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
4246 ahash_request_set_crypt(req
, &sg
, NULL
, head_data_len
);
4247 if (crypto_ahash_update(req
))
4250 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
4251 const skb_frag_t
*f
= &shi
->frags
[i
];
4252 unsigned int offset
= skb_frag_off(f
);
4253 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
4255 sg_set_page(&sg
, page
, skb_frag_size(f
),
4256 offset_in_page(offset
));
4257 ahash_request_set_crypt(req
, &sg
, NULL
, skb_frag_size(f
));
4258 if (crypto_ahash_update(req
))
4262 skb_walk_frags(skb
, frag_iter
)
4263 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
4268 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
4270 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
4272 u8 keylen
= READ_ONCE(key
->keylen
); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4273 struct scatterlist sg
;
4275 sg_init_one(&sg
, key
->key
, keylen
);
4276 ahash_request_set_crypt(hp
->md5_req
, &sg
, NULL
, keylen
);
4278 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4279 return data_race(crypto_ahash_update(hp
->md5_req
));
4281 EXPORT_SYMBOL(tcp_md5_hash_key
);
4285 void tcp_done(struct sock
*sk
)
4287 struct request_sock
*req
;
4289 /* We might be called with a new socket, after
4290 * inet_csk_prepare_forced_close() has been called
4291 * so we can not use lockdep_sock_is_held(sk)
4293 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
, 1);
4295 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
4296 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
4298 tcp_set_state(sk
, TCP_CLOSE
);
4299 tcp_clear_xmit_timers(sk
);
4301 reqsk_fastopen_remove(sk
, req
, false);
4303 sk
->sk_shutdown
= SHUTDOWN_MASK
;
4305 if (!sock_flag(sk
, SOCK_DEAD
))
4306 sk
->sk_state_change(sk
);
4308 inet_csk_destroy_sock(sk
);
4310 EXPORT_SYMBOL_GPL(tcp_done
);
4312 int tcp_abort(struct sock
*sk
, int err
)
4314 if (!sk_fullsock(sk
)) {
4315 if (sk
->sk_state
== TCP_NEW_SYN_RECV
) {
4316 struct request_sock
*req
= inet_reqsk(sk
);
4319 inet_csk_reqsk_queue_drop(req
->rsk_listener
, req
);
4326 /* Don't race with userspace socket closes such as tcp_close. */
4329 if (sk
->sk_state
== TCP_LISTEN
) {
4330 tcp_set_state(sk
, TCP_CLOSE
);
4331 inet_csk_listen_stop(sk
);
4334 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4338 if (!sock_flag(sk
, SOCK_DEAD
)) {
4340 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4342 sk
->sk_error_report(sk
);
4343 if (tcp_need_reset(sk
->sk_state
))
4344 tcp_send_active_reset(sk
, GFP_ATOMIC
);
4350 tcp_write_queue_purge(sk
);
4354 EXPORT_SYMBOL_GPL(tcp_abort
);
4356 extern struct tcp_congestion_ops tcp_reno
;
4358 static __initdata
unsigned long thash_entries
;
4359 static int __init
set_thash_entries(char *str
)
4366 ret
= kstrtoul(str
, 0, &thash_entries
);
4372 __setup("thash_entries=", set_thash_entries
);
4374 static void __init
tcp_init_mem(void)
4376 unsigned long limit
= nr_free_buffer_pages() / 16;
4378 limit
= max(limit
, 128UL);
4379 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
4380 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
4381 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
4384 void __init
tcp_init(void)
4386 int max_rshare
, max_wshare
, cnt
;
4387 unsigned long limit
;
4390 BUILD_BUG_ON(TCP_MIN_SND_MSS
<= MAX_TCP_OPTION_SPACE
);
4391 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
4392 sizeof_field(struct sk_buff
, cb
));
4394 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
4395 percpu_counter_init(&tcp_orphan_count
, 0, GFP_KERNEL
);
4396 inet_hashinfo_init(&tcp_hashinfo
);
4397 inet_hashinfo2_init(&tcp_hashinfo
, "tcp_listen_portaddr_hash",
4398 thash_entries
, 21, /* one slot per 2 MB*/
4400 tcp_hashinfo
.bind_bucket_cachep
=
4401 kmem_cache_create("tcp_bind_bucket",
4402 sizeof(struct inet_bind_bucket
), 0,
4403 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
4405 /* Size and allocate the main established and bind bucket
4408 * The methodology is similar to that of the buffer cache.
4410 tcp_hashinfo
.ehash
=
4411 alloc_large_system_hash("TCP established",
4412 sizeof(struct inet_ehash_bucket
),
4414 17, /* one slot per 128 KB of memory */
4417 &tcp_hashinfo
.ehash_mask
,
4419 thash_entries
? 0 : 512 * 1024);
4420 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
4421 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
4423 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
4424 panic("TCP: failed to alloc ehash_locks");
4425 tcp_hashinfo
.bhash
=
4426 alloc_large_system_hash("TCP bind",
4427 sizeof(struct inet_bind_hashbucket
),
4428 tcp_hashinfo
.ehash_mask
+ 1,
4429 17, /* one slot per 128 KB of memory */
4431 &tcp_hashinfo
.bhash_size
,
4435 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
4436 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
4437 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
4438 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
4442 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
4443 sysctl_tcp_max_orphans
= cnt
/ 2;
4446 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4447 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
4448 max_wshare
= min(4UL*1024*1024, limit
);
4449 max_rshare
= min(6UL*1024*1024, limit
);
4451 init_net
.ipv4
.sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
4452 init_net
.ipv4
.sysctl_tcp_wmem
[1] = 16*1024;
4453 init_net
.ipv4
.sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
4455 init_net
.ipv4
.sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
4456 init_net
.ipv4
.sysctl_tcp_rmem
[1] = 131072;
4457 init_net
.ipv4
.sysctl_tcp_rmem
[2] = max(131072, max_rshare
);
4459 pr_info("Hash tables configured (established %u bind %u)\n",
4460 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
4464 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);