1 // SPDX-License-Identifier: GPL-2.0-only
3 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
5 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
6 * This is from the implementation of CUBIC TCP in
7 * Sangtae Ha, Injong Rhee and Lisong Xu,
8 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
9 * in ACM SIGOPS Operating System Review, July 2008.
11 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
13 * CUBIC integrates a new slow start algorithm, called HyStart.
14 * The details of HyStart are presented in
15 * Sangtae Ha and Injong Rhee,
16 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
18 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
20 * All testing results are available from:
21 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
23 * Unless CUBIC is enabled and congestion window is large
24 * this behaves the same as the original Reno.
28 #include <linux/module.h>
29 #include <linux/math64.h>
32 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
33 * max_cwnd = snd_cwnd * beta
35 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
37 /* Two methods of hybrid slow start */
38 #define HYSTART_ACK_TRAIN 0x1
39 #define HYSTART_DELAY 0x2
41 /* Number of delay samples for detecting the increase of delay */
42 #define HYSTART_MIN_SAMPLES 8
43 #define HYSTART_DELAY_MIN (4000U) /* 4 ms */
44 #define HYSTART_DELAY_MAX (16000U) /* 16 ms */
45 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
47 static int fast_convergence __read_mostly
= 1;
48 static int beta __read_mostly
= 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
49 static int initial_ssthresh __read_mostly
;
50 static int bic_scale __read_mostly
= 41;
51 static int tcp_friendliness __read_mostly
= 1;
53 static int hystart __read_mostly
= 1;
54 static int hystart_detect __read_mostly
= HYSTART_ACK_TRAIN
| HYSTART_DELAY
;
55 static int hystart_low_window __read_mostly
= 16;
56 static int hystart_ack_delta_us __read_mostly
= 2000;
58 static u32 cube_rtt_scale __read_mostly
;
59 static u32 beta_scale __read_mostly
;
60 static u64 cube_factor __read_mostly
;
62 /* Note parameters that are used for precomputing scale factors are read-only */
63 module_param(fast_convergence
, int, 0644);
64 MODULE_PARM_DESC(fast_convergence
, "turn on/off fast convergence");
65 module_param(beta
, int, 0644);
66 MODULE_PARM_DESC(beta
, "beta for multiplicative increase");
67 module_param(initial_ssthresh
, int, 0644);
68 MODULE_PARM_DESC(initial_ssthresh
, "initial value of slow start threshold");
69 module_param(bic_scale
, int, 0444);
70 MODULE_PARM_DESC(bic_scale
, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
71 module_param(tcp_friendliness
, int, 0644);
72 MODULE_PARM_DESC(tcp_friendliness
, "turn on/off tcp friendliness");
73 module_param(hystart
, int, 0644);
74 MODULE_PARM_DESC(hystart
, "turn on/off hybrid slow start algorithm");
75 module_param(hystart_detect
, int, 0644);
76 MODULE_PARM_DESC(hystart_detect
, "hybrid slow start detection mechanisms"
77 " 1: packet-train 2: delay 3: both packet-train and delay");
78 module_param(hystart_low_window
, int, 0644);
79 MODULE_PARM_DESC(hystart_low_window
, "lower bound cwnd for hybrid slow start");
80 module_param(hystart_ack_delta_us
, int, 0644);
81 MODULE_PARM_DESC(hystart_ack_delta_us
, "spacing between ack's indicating train (usecs)");
83 /* BIC TCP Parameters */
85 u32 cnt
; /* increase cwnd by 1 after ACKs */
86 u32 last_max_cwnd
; /* last maximum snd_cwnd */
87 u32 last_cwnd
; /* the last snd_cwnd */
88 u32 last_time
; /* time when updated last_cwnd */
89 u32 bic_origin_point
;/* origin point of bic function */
90 u32 bic_K
; /* time to origin point
91 from the beginning of the current epoch */
92 u32 delay_min
; /* min delay (usec) */
93 u32 epoch_start
; /* beginning of an epoch */
94 u32 ack_cnt
; /* number of acks */
95 u32 tcp_cwnd
; /* estimated tcp cwnd */
97 u8 sample_cnt
; /* number of samples to decide curr_rtt */
98 u8 found
; /* the exit point is found? */
99 u32 round_start
; /* beginning of each round */
100 u32 end_seq
; /* end_seq of the round */
101 u32 last_ack
; /* last time when the ACK spacing is close */
102 u32 curr_rtt
; /* the minimum rtt of current round */
105 static inline void bictcp_reset(struct bictcp
*ca
)
108 ca
->last_max_cwnd
= 0;
111 ca
->bic_origin_point
= 0;
120 static inline u32
bictcp_clock_us(const struct sock
*sk
)
122 return tcp_sk(sk
)->tcp_mstamp
;
125 static inline void bictcp_hystart_reset(struct sock
*sk
)
127 struct tcp_sock
*tp
= tcp_sk(sk
);
128 struct bictcp
*ca
= inet_csk_ca(sk
);
130 ca
->round_start
= ca
->last_ack
= bictcp_clock_us(sk
);
131 ca
->end_seq
= tp
->snd_nxt
;
136 static void bictcp_init(struct sock
*sk
)
138 struct bictcp
*ca
= inet_csk_ca(sk
);
143 bictcp_hystart_reset(sk
);
145 if (!hystart
&& initial_ssthresh
)
146 tcp_sk(sk
)->snd_ssthresh
= initial_ssthresh
;
149 static void bictcp_cwnd_event(struct sock
*sk
, enum tcp_ca_event event
)
151 if (event
== CA_EVENT_TX_START
) {
152 struct bictcp
*ca
= inet_csk_ca(sk
);
153 u32 now
= tcp_jiffies32
;
156 delta
= now
- tcp_sk(sk
)->lsndtime
;
158 /* We were application limited (idle) for a while.
159 * Shift epoch_start to keep cwnd growth to cubic curve.
161 if (ca
->epoch_start
&& delta
> 0) {
162 ca
->epoch_start
+= delta
;
163 if (after(ca
->epoch_start
, now
))
164 ca
->epoch_start
= now
;
170 /* calculate the cubic root of x using a table lookup followed by one
171 * Newton-Raphson iteration.
174 static u32
cubic_root(u64 a
)
178 * cbrt(x) MSB values for x MSB values in [0..63].
179 * Precomputed then refined by hand - Willy Tarreau
182 * v = cbrt(x << 18) - 1
183 * cbrt(x) = (v[x] + 10) >> 6
185 static const u8 v
[] = {
186 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
187 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
188 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
189 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
190 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
191 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
192 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
193 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
199 return ((u32
)v
[(u32
)a
] + 35) >> 6;
202 b
= ((b
* 84) >> 8) - 1;
203 shift
= (a
>> (b
* 3));
205 x
= ((u32
)(((u32
)v
[shift
] + 10) << b
)) >> 6;
208 * Newton-Raphson iteration
210 * x = ( 2 * x + a / x ) / 3
213 x
= (2 * x
+ (u32
)div64_u64(a
, (u64
)x
* (u64
)(x
- 1)));
214 x
= ((x
* 341) >> 10);
219 * Compute congestion window to use.
221 static inline void bictcp_update(struct bictcp
*ca
, u32 cwnd
, u32 acked
)
223 u32 delta
, bic_target
, max_cnt
;
226 ca
->ack_cnt
+= acked
; /* count the number of ACKed packets */
228 if (ca
->last_cwnd
== cwnd
&&
229 (s32
)(tcp_jiffies32
- ca
->last_time
) <= HZ
/ 32)
232 /* The CUBIC function can update ca->cnt at most once per jiffy.
233 * On all cwnd reduction events, ca->epoch_start is set to 0,
234 * which will force a recalculation of ca->cnt.
236 if (ca
->epoch_start
&& tcp_jiffies32
== ca
->last_time
)
237 goto tcp_friendliness
;
239 ca
->last_cwnd
= cwnd
;
240 ca
->last_time
= tcp_jiffies32
;
242 if (ca
->epoch_start
== 0) {
243 ca
->epoch_start
= tcp_jiffies32
; /* record beginning */
244 ca
->ack_cnt
= acked
; /* start counting */
245 ca
->tcp_cwnd
= cwnd
; /* syn with cubic */
247 if (ca
->last_max_cwnd
<= cwnd
) {
249 ca
->bic_origin_point
= cwnd
;
251 /* Compute new K based on
252 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
254 ca
->bic_K
= cubic_root(cube_factor
255 * (ca
->last_max_cwnd
- cwnd
));
256 ca
->bic_origin_point
= ca
->last_max_cwnd
;
260 /* cubic function - calc*/
261 /* calculate c * time^3 / rtt,
262 * while considering overflow in calculation of time^3
263 * (so time^3 is done by using 64 bit)
264 * and without the support of division of 64bit numbers
265 * (so all divisions are done by using 32 bit)
266 * also NOTE the unit of those veriables
267 * time = (t - K) / 2^bictcp_HZ
268 * c = bic_scale >> 10
269 * rtt = (srtt >> 3) / HZ
270 * !!! The following code does not have overflow problems,
271 * if the cwnd < 1 million packets !!!
274 t
= (s32
)(tcp_jiffies32
- ca
->epoch_start
);
275 t
+= usecs_to_jiffies(ca
->delay_min
);
276 /* change the unit from HZ to bictcp_HZ */
280 if (t
< ca
->bic_K
) /* t - K */
281 offs
= ca
->bic_K
- t
;
283 offs
= t
- ca
->bic_K
;
285 /* c/rtt * (t-K)^3 */
286 delta
= (cube_rtt_scale
* offs
* offs
* offs
) >> (10+3*BICTCP_HZ
);
287 if (t
< ca
->bic_K
) /* below origin*/
288 bic_target
= ca
->bic_origin_point
- delta
;
289 else /* above origin*/
290 bic_target
= ca
->bic_origin_point
+ delta
;
292 /* cubic function - calc bictcp_cnt*/
293 if (bic_target
> cwnd
) {
294 ca
->cnt
= cwnd
/ (bic_target
- cwnd
);
296 ca
->cnt
= 100 * cwnd
; /* very small increment*/
300 * The initial growth of cubic function may be too conservative
301 * when the available bandwidth is still unknown.
303 if (ca
->last_max_cwnd
== 0 && ca
->cnt
> 20)
304 ca
->cnt
= 20; /* increase cwnd 5% per RTT */
308 if (tcp_friendliness
) {
309 u32 scale
= beta_scale
;
311 delta
= (cwnd
* scale
) >> 3;
312 while (ca
->ack_cnt
> delta
) { /* update tcp cwnd */
313 ca
->ack_cnt
-= delta
;
317 if (ca
->tcp_cwnd
> cwnd
) { /* if bic is slower than tcp */
318 delta
= ca
->tcp_cwnd
- cwnd
;
319 max_cnt
= cwnd
/ delta
;
320 if (ca
->cnt
> max_cnt
)
325 /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
326 * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
328 ca
->cnt
= max(ca
->cnt
, 2U);
331 static void bictcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
333 struct tcp_sock
*tp
= tcp_sk(sk
);
334 struct bictcp
*ca
= inet_csk_ca(sk
);
336 if (!tcp_is_cwnd_limited(sk
))
339 if (tcp_in_slow_start(tp
)) {
340 if (hystart
&& after(ack
, ca
->end_seq
))
341 bictcp_hystart_reset(sk
);
342 acked
= tcp_slow_start(tp
, acked
);
346 bictcp_update(ca
, tp
->snd_cwnd
, acked
);
347 tcp_cong_avoid_ai(tp
, ca
->cnt
, acked
);
350 static u32
bictcp_recalc_ssthresh(struct sock
*sk
)
352 const struct tcp_sock
*tp
= tcp_sk(sk
);
353 struct bictcp
*ca
= inet_csk_ca(sk
);
355 ca
->epoch_start
= 0; /* end of epoch */
357 /* Wmax and fast convergence */
358 if (tp
->snd_cwnd
< ca
->last_max_cwnd
&& fast_convergence
)
359 ca
->last_max_cwnd
= (tp
->snd_cwnd
* (BICTCP_BETA_SCALE
+ beta
))
360 / (2 * BICTCP_BETA_SCALE
);
362 ca
->last_max_cwnd
= tp
->snd_cwnd
;
364 return max((tp
->snd_cwnd
* beta
) / BICTCP_BETA_SCALE
, 2U);
367 static void bictcp_state(struct sock
*sk
, u8 new_state
)
369 if (new_state
== TCP_CA_Loss
) {
370 bictcp_reset(inet_csk_ca(sk
));
371 bictcp_hystart_reset(sk
);
375 /* Account for TSO/GRO delays.
376 * Otherwise short RTT flows could get too small ssthresh, since during
377 * slow start we begin with small TSO packets and ca->delay_min would
378 * not account for long aggregation delay when TSO packets get bigger.
379 * Ideally even with a very small RTT we would like to have at least one
380 * TSO packet being sent and received by GRO, and another one in qdisc layer.
381 * We apply another 100% factor because @rate is doubled at this point.
382 * We cap the cushion to 1ms.
384 static u32
hystart_ack_delay(struct sock
*sk
)
388 rate
= READ_ONCE(sk
->sk_pacing_rate
);
391 return min_t(u64
, USEC_PER_MSEC
,
392 div64_ul((u64
)GSO_MAX_SIZE
* 4 * USEC_PER_SEC
, rate
));
395 static void hystart_update(struct sock
*sk
, u32 delay
)
397 struct tcp_sock
*tp
= tcp_sk(sk
);
398 struct bictcp
*ca
= inet_csk_ca(sk
);
401 if (hystart_detect
& HYSTART_ACK_TRAIN
) {
402 u32 now
= bictcp_clock_us(sk
);
404 /* first detection parameter - ack-train detection */
405 if ((s32
)(now
- ca
->last_ack
) <= hystart_ack_delta_us
) {
408 threshold
= ca
->delay_min
+ hystart_ack_delay(sk
);
410 /* Hystart ack train triggers if we get ack past
412 * Pacing might have delayed packets up to RTT/2
415 if (sk
->sk_pacing_status
== SK_PACING_NONE
)
418 if ((s32
)(now
- ca
->round_start
) > threshold
) {
420 pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
421 now
- ca
->round_start
, threshold
,
422 ca
->delay_min
, hystart_ack_delay(sk
), tp
->snd_cwnd
);
423 NET_INC_STATS(sock_net(sk
),
424 LINUX_MIB_TCPHYSTARTTRAINDETECT
);
425 NET_ADD_STATS(sock_net(sk
),
426 LINUX_MIB_TCPHYSTARTTRAINCWND
,
428 tp
->snd_ssthresh
= tp
->snd_cwnd
;
433 if (hystart_detect
& HYSTART_DELAY
) {
434 /* obtain the minimum delay of more than sampling packets */
435 if (ca
->curr_rtt
> delay
)
436 ca
->curr_rtt
= delay
;
437 if (ca
->sample_cnt
< HYSTART_MIN_SAMPLES
) {
440 if (ca
->curr_rtt
> ca
->delay_min
+
441 HYSTART_DELAY_THRESH(ca
->delay_min
>> 3)) {
443 NET_INC_STATS(sock_net(sk
),
444 LINUX_MIB_TCPHYSTARTDELAYDETECT
);
445 NET_ADD_STATS(sock_net(sk
),
446 LINUX_MIB_TCPHYSTARTDELAYCWND
,
448 tp
->snd_ssthresh
= tp
->snd_cwnd
;
454 static void bictcp_acked(struct sock
*sk
, const struct ack_sample
*sample
)
456 const struct tcp_sock
*tp
= tcp_sk(sk
);
457 struct bictcp
*ca
= inet_csk_ca(sk
);
460 /* Some calls are for duplicates without timetamps */
461 if (sample
->rtt_us
< 0)
464 /* Discard delay samples right after fast recovery */
465 if (ca
->epoch_start
&& (s32
)(tcp_jiffies32
- ca
->epoch_start
) < HZ
)
468 delay
= sample
->rtt_us
;
472 /* first time call or link delay decreases */
473 if (ca
->delay_min
== 0 || ca
->delay_min
> delay
)
474 ca
->delay_min
= delay
;
476 /* hystart triggers when cwnd is larger than some threshold */
477 if (!ca
->found
&& tcp_in_slow_start(tp
) && hystart
&&
478 tp
->snd_cwnd
>= hystart_low_window
)
479 hystart_update(sk
, delay
);
482 static struct tcp_congestion_ops cubictcp __read_mostly
= {
484 .ssthresh
= bictcp_recalc_ssthresh
,
485 .cong_avoid
= bictcp_cong_avoid
,
486 .set_state
= bictcp_state
,
487 .undo_cwnd
= tcp_reno_undo_cwnd
,
488 .cwnd_event
= bictcp_cwnd_event
,
489 .pkts_acked
= bictcp_acked
,
490 .owner
= THIS_MODULE
,
494 static int __init
cubictcp_register(void)
496 BUILD_BUG_ON(sizeof(struct bictcp
) > ICSK_CA_PRIV_SIZE
);
498 /* Precompute a bunch of the scaling factors that are used per-packet
499 * based on SRTT of 100ms
502 beta_scale
= 8*(BICTCP_BETA_SCALE
+beta
) / 3
503 / (BICTCP_BETA_SCALE
- beta
);
505 cube_rtt_scale
= (bic_scale
* 10); /* 1024*c/rtt */
507 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
508 * so K = cubic_root( (wmax-cwnd)*rtt/c )
509 * the unit of K is bictcp_HZ=2^10, not HZ
511 * c = bic_scale >> 10
514 * the following code has been designed and tested for
515 * cwnd < 1 million packets
517 * HZ < 1,000,00 (corresponding to 10 nano-second)
520 /* 1/c * 2^2*bictcp_HZ * srtt */
521 cube_factor
= 1ull << (10+3*BICTCP_HZ
); /* 2^40 */
523 /* divide by bic_scale and by constant Srtt (100ms) */
524 do_div(cube_factor
, bic_scale
* 10);
526 return tcp_register_congestion_control(&cubictcp
);
529 static void __exit
cubictcp_unregister(void)
531 tcp_unregister_congestion_control(&cubictcp
);
534 module_init(cubictcp_register
);
535 module_exit(cubictcp_unregister
);
537 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
538 MODULE_LICENSE("GPL");
539 MODULE_DESCRIPTION("CUBIC TCP");
540 MODULE_VERSION("2.3");