1 // SPDX-License-Identifier: GPL-2.0
5 static bool tcp_rack_sent_after(u64 t1
, u64 t2
, u32 seq1
, u32 seq2
)
7 return t1
> t2
|| (t1
== t2
&& after(seq1
, seq2
));
10 static u32
tcp_rack_reo_wnd(const struct sock
*sk
)
12 struct tcp_sock
*tp
= tcp_sk(sk
);
14 if (!tp
->reord_seen
) {
15 /* If reordering has not been observed, be aggressive during
16 * the recovery or starting the recovery by DUPACK threshold.
18 if (inet_csk(sk
)->icsk_ca_state
>= TCP_CA_Recovery
)
21 if (tp
->sacked_out
>= tp
->reordering
&&
22 !(sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_NO_DUPTHRESH
))
26 /* To be more reordering resilient, allow min_rtt/4 settling delay.
27 * Use min_rtt instead of the smoothed RTT because reordering is
28 * often a path property and less related to queuing or delayed ACKs.
29 * Upon receiving DSACKs, linearly increase the window up to the
32 return min((tcp_min_rtt(tp
) >> 2) * tp
->rack
.reo_wnd_steps
,
36 s32
tcp_rack_skb_timeout(struct tcp_sock
*tp
, struct sk_buff
*skb
, u32 reo_wnd
)
38 return tp
->rack
.rtt_us
+ reo_wnd
-
39 tcp_stamp_us_delta(tp
->tcp_mstamp
, tcp_skb_timestamp_us(skb
));
42 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
44 * Marks a packet lost, if some packet sent later has been (s)acked.
45 * The underlying idea is similar to the traditional dupthresh and FACK
46 * but they look at different metrics:
48 * dupthresh: 3 OOO packets delivered (packet count)
49 * FACK: sequence delta to highest sacked sequence (sequence space)
50 * RACK: sent time delta to the latest delivered packet (time domain)
52 * The advantage of RACK is it applies to both original and retransmitted
53 * packet and therefore is robust against tail losses. Another advantage
54 * is being more resilient to reordering by simply allowing some
55 * "settling delay", instead of tweaking the dupthresh.
57 * When tcp_rack_detect_loss() detects some packets are lost and we
58 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
59 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
60 * make us enter the CA_Recovery state.
62 static void tcp_rack_detect_loss(struct sock
*sk
, u32
*reo_timeout
)
64 struct tcp_sock
*tp
= tcp_sk(sk
);
65 struct sk_buff
*skb
, *n
;
69 reo_wnd
= tcp_rack_reo_wnd(sk
);
70 list_for_each_entry_safe(skb
, n
, &tp
->tsorted_sent_queue
,
72 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
75 /* Skip ones marked lost but not yet retransmitted */
76 if ((scb
->sacked
& TCPCB_LOST
) &&
77 !(scb
->sacked
& TCPCB_SACKED_RETRANS
))
80 if (!tcp_rack_sent_after(tp
->rack
.mstamp
,
81 tcp_skb_timestamp_us(skb
),
82 tp
->rack
.end_seq
, scb
->end_seq
))
85 /* A packet is lost if it has not been s/acked beyond
86 * the recent RTT plus the reordering window.
88 remaining
= tcp_rack_skb_timeout(tp
, skb
, reo_wnd
);
90 tcp_mark_skb_lost(sk
, skb
);
91 list_del_init(&skb
->tcp_tsorted_anchor
);
93 /* Record maximum wait time */
94 *reo_timeout
= max_t(u32
, *reo_timeout
, remaining
);
99 void tcp_rack_mark_lost(struct sock
*sk
)
101 struct tcp_sock
*tp
= tcp_sk(sk
);
104 if (!tp
->rack
.advanced
)
107 /* Reset the advanced flag to avoid unnecessary queue scanning */
108 tp
->rack
.advanced
= 0;
109 tcp_rack_detect_loss(sk
, &timeout
);
111 timeout
= usecs_to_jiffies(timeout
) + TCP_TIMEOUT_MIN
;
112 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_REO_TIMEOUT
,
113 timeout
, inet_csk(sk
)->icsk_rto
);
117 /* Record the most recently (re)sent time among the (s)acked packets
118 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
119 * draft-cheng-tcpm-rack-00.txt
121 void tcp_rack_advance(struct tcp_sock
*tp
, u8 sacked
, u32 end_seq
,
126 rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, xmit_time
);
127 if (rtt_us
< tcp_min_rtt(tp
) && (sacked
& TCPCB_RETRANS
)) {
128 /* If the sacked packet was retransmitted, it's ambiguous
129 * whether the retransmission or the original (or the prior
130 * retransmission) was sacked.
132 * If the original is lost, there is no ambiguity. Otherwise
133 * we assume the original can be delayed up to aRTT + min_rtt.
134 * the aRTT term is bounded by the fast recovery or timeout,
135 * so it's at least one RTT (i.e., retransmission is at least
140 tp
->rack
.advanced
= 1;
141 tp
->rack
.rtt_us
= rtt_us
;
142 if (tcp_rack_sent_after(xmit_time
, tp
->rack
.mstamp
,
143 end_seq
, tp
->rack
.end_seq
)) {
144 tp
->rack
.mstamp
= xmit_time
;
145 tp
->rack
.end_seq
= end_seq
;
149 /* We have waited long enough to accommodate reordering. Mark the expired
150 * packets lost and retransmit them.
152 void tcp_rack_reo_timeout(struct sock
*sk
)
154 struct tcp_sock
*tp
= tcp_sk(sk
);
155 u32 timeout
, prior_inflight
;
158 prior_inflight
= tcp_packets_in_flight(tp
);
159 tcp_rack_detect_loss(sk
, &timeout
);
160 if (prior_inflight
!= tcp_packets_in_flight(tp
)) {
161 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Recovery
) {
162 tcp_enter_recovery(sk
, false);
163 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
164 tcp_cwnd_reduction(sk
, 1, tp
->lost
- lost
, 0);
166 tcp_xmit_retransmit_queue(sk
);
168 if (inet_csk(sk
)->icsk_pending
!= ICSK_TIME_RETRANS
)
172 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
174 * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
175 * by srtt), since there is possibility that spurious retransmission was
176 * due to reordering delay longer than reo_wnd.
178 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
179 * no. of successful recoveries (accounts for full DSACK-based loss
180 * recovery undo). After that, reset it to default (min_rtt/4).
182 * At max, reo_wnd is incremented only once per rtt. So that the new
183 * DSACK on which we are reacting, is due to the spurious retx (approx)
184 * after the reo_wnd has been updated last time.
186 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
187 * absolute value to account for change in rtt.
189 void tcp_rack_update_reo_wnd(struct sock
*sk
, struct rate_sample
*rs
)
191 struct tcp_sock
*tp
= tcp_sk(sk
);
193 if (sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_STATIC_REO_WND
||
194 !rs
->prior_delivered
)
197 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
198 if (before(rs
->prior_delivered
, tp
->rack
.last_delivered
))
199 tp
->rack
.dsack_seen
= 0;
201 /* Adjust the reo_wnd if update is pending */
202 if (tp
->rack
.dsack_seen
) {
203 tp
->rack
.reo_wnd_steps
= min_t(u32
, 0xFF,
204 tp
->rack
.reo_wnd_steps
+ 1);
205 tp
->rack
.dsack_seen
= 0;
206 tp
->rack
.last_delivered
= tp
->delivered
;
207 tp
->rack
.reo_wnd_persist
= TCP_RACK_RECOVERY_THRESH
;
208 } else if (!tp
->rack
.reo_wnd_persist
) {
209 tp
->rack
.reo_wnd_steps
= 1;
213 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
214 * the next unacked packet upon receiving
215 * a) three or more DUPACKs to start the fast recovery
216 * b) an ACK acknowledging new data during the fast recovery.
218 void tcp_newreno_mark_lost(struct sock
*sk
, bool snd_una_advanced
)
220 const u8 state
= inet_csk(sk
)->icsk_ca_state
;
221 struct tcp_sock
*tp
= tcp_sk(sk
);
223 if ((state
< TCP_CA_Recovery
&& tp
->sacked_out
>= tp
->reordering
) ||
224 (state
== TCP_CA_Recovery
&& snd_una_advanced
)) {
225 struct sk_buff
*skb
= tcp_rtx_queue_head(sk
);
228 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
231 mss
= tcp_skb_mss(skb
);
232 if (tcp_skb_pcount(skb
) > 1 && skb
->len
> mss
)
233 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
234 mss
, mss
, GFP_ATOMIC
);
236 tcp_mark_skb_lost(sk
, skb
);