Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / net / ipv4 / tcp_recovery.c
blob177307a3081f9583e5e488e1a1d73035fb4bc3fd
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/tcp.h>
3 #include <net/tcp.h>
5 static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
7 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
10 static u32 tcp_rack_reo_wnd(const struct sock *sk)
12 struct tcp_sock *tp = tcp_sk(sk);
14 if (!tp->reord_seen) {
15 /* If reordering has not been observed, be aggressive during
16 * the recovery or starting the recovery by DUPACK threshold.
18 if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
19 return 0;
21 if (tp->sacked_out >= tp->reordering &&
22 !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH))
23 return 0;
26 /* To be more reordering resilient, allow min_rtt/4 settling delay.
27 * Use min_rtt instead of the smoothed RTT because reordering is
28 * often a path property and less related to queuing or delayed ACKs.
29 * Upon receiving DSACKs, linearly increase the window up to the
30 * smoothed RTT.
32 return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
33 tp->srtt_us >> 3);
36 s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
38 return tp->rack.rtt_us + reo_wnd -
39 tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb));
42 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
44 * Marks a packet lost, if some packet sent later has been (s)acked.
45 * The underlying idea is similar to the traditional dupthresh and FACK
46 * but they look at different metrics:
48 * dupthresh: 3 OOO packets delivered (packet count)
49 * FACK: sequence delta to highest sacked sequence (sequence space)
50 * RACK: sent time delta to the latest delivered packet (time domain)
52 * The advantage of RACK is it applies to both original and retransmitted
53 * packet and therefore is robust against tail losses. Another advantage
54 * is being more resilient to reordering by simply allowing some
55 * "settling delay", instead of tweaking the dupthresh.
57 * When tcp_rack_detect_loss() detects some packets are lost and we
58 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
59 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
60 * make us enter the CA_Recovery state.
62 static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
64 struct tcp_sock *tp = tcp_sk(sk);
65 struct sk_buff *skb, *n;
66 u32 reo_wnd;
68 *reo_timeout = 0;
69 reo_wnd = tcp_rack_reo_wnd(sk);
70 list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
71 tcp_tsorted_anchor) {
72 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
73 s32 remaining;
75 /* Skip ones marked lost but not yet retransmitted */
76 if ((scb->sacked & TCPCB_LOST) &&
77 !(scb->sacked & TCPCB_SACKED_RETRANS))
78 continue;
80 if (!tcp_rack_sent_after(tp->rack.mstamp,
81 tcp_skb_timestamp_us(skb),
82 tp->rack.end_seq, scb->end_seq))
83 break;
85 /* A packet is lost if it has not been s/acked beyond
86 * the recent RTT plus the reordering window.
88 remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
89 if (remaining <= 0) {
90 tcp_mark_skb_lost(sk, skb);
91 list_del_init(&skb->tcp_tsorted_anchor);
92 } else {
93 /* Record maximum wait time */
94 *reo_timeout = max_t(u32, *reo_timeout, remaining);
99 void tcp_rack_mark_lost(struct sock *sk)
101 struct tcp_sock *tp = tcp_sk(sk);
102 u32 timeout;
104 if (!tp->rack.advanced)
105 return;
107 /* Reset the advanced flag to avoid unnecessary queue scanning */
108 tp->rack.advanced = 0;
109 tcp_rack_detect_loss(sk, &timeout);
110 if (timeout) {
111 timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN;
112 inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
113 timeout, inet_csk(sk)->icsk_rto);
117 /* Record the most recently (re)sent time among the (s)acked packets
118 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
119 * draft-cheng-tcpm-rack-00.txt
121 void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
122 u64 xmit_time)
124 u32 rtt_us;
126 rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
127 if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
128 /* If the sacked packet was retransmitted, it's ambiguous
129 * whether the retransmission or the original (or the prior
130 * retransmission) was sacked.
132 * If the original is lost, there is no ambiguity. Otherwise
133 * we assume the original can be delayed up to aRTT + min_rtt.
134 * the aRTT term is bounded by the fast recovery or timeout,
135 * so it's at least one RTT (i.e., retransmission is at least
136 * an RTT later).
138 return;
140 tp->rack.advanced = 1;
141 tp->rack.rtt_us = rtt_us;
142 if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
143 end_seq, tp->rack.end_seq)) {
144 tp->rack.mstamp = xmit_time;
145 tp->rack.end_seq = end_seq;
149 /* We have waited long enough to accommodate reordering. Mark the expired
150 * packets lost and retransmit them.
152 void tcp_rack_reo_timeout(struct sock *sk)
154 struct tcp_sock *tp = tcp_sk(sk);
155 u32 timeout, prior_inflight;
156 u32 lost = tp->lost;
158 prior_inflight = tcp_packets_in_flight(tp);
159 tcp_rack_detect_loss(sk, &timeout);
160 if (prior_inflight != tcp_packets_in_flight(tp)) {
161 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
162 tcp_enter_recovery(sk, false);
163 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
164 tcp_cwnd_reduction(sk, 1, tp->lost - lost, 0);
166 tcp_xmit_retransmit_queue(sk);
168 if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
169 tcp_rearm_rto(sk);
172 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
174 * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
175 * by srtt), since there is possibility that spurious retransmission was
176 * due to reordering delay longer than reo_wnd.
178 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
179 * no. of successful recoveries (accounts for full DSACK-based loss
180 * recovery undo). After that, reset it to default (min_rtt/4).
182 * At max, reo_wnd is incremented only once per rtt. So that the new
183 * DSACK on which we are reacting, is due to the spurious retx (approx)
184 * after the reo_wnd has been updated last time.
186 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
187 * absolute value to account for change in rtt.
189 void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
191 struct tcp_sock *tp = tcp_sk(sk);
193 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND ||
194 !rs->prior_delivered)
195 return;
197 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
198 if (before(rs->prior_delivered, tp->rack.last_delivered))
199 tp->rack.dsack_seen = 0;
201 /* Adjust the reo_wnd if update is pending */
202 if (tp->rack.dsack_seen) {
203 tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
204 tp->rack.reo_wnd_steps + 1);
205 tp->rack.dsack_seen = 0;
206 tp->rack.last_delivered = tp->delivered;
207 tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
208 } else if (!tp->rack.reo_wnd_persist) {
209 tp->rack.reo_wnd_steps = 1;
213 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
214 * the next unacked packet upon receiving
215 * a) three or more DUPACKs to start the fast recovery
216 * b) an ACK acknowledging new data during the fast recovery.
218 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
220 const u8 state = inet_csk(sk)->icsk_ca_state;
221 struct tcp_sock *tp = tcp_sk(sk);
223 if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
224 (state == TCP_CA_Recovery && snd_una_advanced)) {
225 struct sk_buff *skb = tcp_rtx_queue_head(sk);
226 u32 mss;
228 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
229 return;
231 mss = tcp_skb_mss(skb);
232 if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
233 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
234 mss, mss, GFP_ATOMIC);
236 tcp_mark_skb_lost(sk, skb);