2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
48 * Also, it seems fairer to not let one busy connection stall all the
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
55 static int send_batch_count
= SZ_1K
;
56 module_param(send_batch_count
, int, 0444);
57 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
);
62 * Reset the send state. Callers must ensure that this doesn't race with
65 void rds_send_path_reset(struct rds_conn_path
*cp
)
67 struct rds_message
*rm
, *tmp
;
72 cp
->cp_xmit_rm
= NULL
;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm
);
82 cp
->cp_xmit_hdr_off
= 0;
83 cp
->cp_xmit_data_off
= 0;
84 cp
->cp_xmit_atomic_sent
= 0;
85 cp
->cp_xmit_rdma_sent
= 0;
86 cp
->cp_xmit_data_sent
= 0;
88 cp
->cp_conn
->c_map_queued
= 0;
90 cp
->cp_unacked_packets
= rds_sysctl_max_unacked_packets
;
91 cp
->cp_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp
->cp_lock
, flags
);
95 list_for_each_entry_safe(rm
, tmp
, &cp
->cp_retrans
, m_conn_item
) {
96 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
97 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
99 list_splice_init(&cp
->cp_retrans
, &cp
->cp_send_queue
);
100 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
102 EXPORT_SYMBOL_GPL(rds_send_path_reset
);
104 static int acquire_in_xmit(struct rds_conn_path
*cp
)
106 return test_and_set_bit(RDS_IN_XMIT
, &cp
->cp_flags
) == 0;
109 static void release_in_xmit(struct rds_conn_path
*cp
)
111 clear_bit(RDS_IN_XMIT
, &cp
->cp_flags
);
112 smp_mb__after_atomic();
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
119 if (waitqueue_active(&cp
->cp_waitq
))
120 wake_up_all(&cp
->cp_waitq
);
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
132 * - queued acks can be delayed behind large messages
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
137 int rds_send_xmit(struct rds_conn_path
*cp
)
139 struct rds_connection
*conn
= cp
->cp_conn
;
140 struct rds_message
*rm
;
143 struct scatterlist
*sg
;
145 LIST_HEAD(to_be_dropped
);
147 unsigned long send_gen
= 0;
154 * sendmsg calls here after having queued its message on the send
155 * queue. We only have one task feeding the connection at a time. If
156 * another thread is already feeding the queue then we back off. This
157 * avoids blocking the caller and trading per-connection data between
158 * caches per message.
160 if (!acquire_in_xmit(cp
)) {
161 rds_stats_inc(s_send_lock_contention
);
166 if (rds_destroy_pending(cp
->cp_conn
)) {
168 ret
= -ENETUNREACH
; /* dont requeue send work */
173 * we record the send generation after doing the xmit acquire.
174 * if someone else manages to jump in and do some work, we'll use
175 * this to avoid a goto restart farther down.
177 * The acquire_in_xmit() check above ensures that only one
178 * caller can increment c_send_gen at any time.
180 send_gen
= READ_ONCE(cp
->cp_send_gen
) + 1;
181 WRITE_ONCE(cp
->cp_send_gen
, send_gen
);
184 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
185 * we do the opposite to avoid races.
187 if (!rds_conn_path_up(cp
)) {
193 if (conn
->c_trans
->xmit_path_prepare
)
194 conn
->c_trans
->xmit_path_prepare(cp
);
197 * spin trying to push headers and data down the connection until
198 * the connection doesn't make forward progress.
208 if (same_rm
>= 4096) {
209 rds_stats_inc(s_send_stuck_rm
);
216 * If between sending messages, we can send a pending congestion
219 if (!rm
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
220 rm
= rds_cong_update_alloc(conn
);
225 rm
->data
.op_active
= 1;
226 rm
->m_inc
.i_conn_path
= cp
;
227 rm
->m_inc
.i_conn
= cp
->cp_conn
;
233 * If not already working on one, grab the next message.
235 * cp_xmit_rm holds a ref while we're sending this message down
236 * the connction. We can use this ref while holding the
237 * send_sem.. rds_send_reset() is serialized with it.
244 /* we want to process as big a batch as we can, but
245 * we also want to avoid softlockups. If we've been
246 * through a lot of messages, lets back off and see
247 * if anyone else jumps in
249 if (batch_count
>= send_batch_count
)
252 spin_lock_irqsave(&cp
->cp_lock
, flags
);
254 if (!list_empty(&cp
->cp_send_queue
)) {
255 rm
= list_entry(cp
->cp_send_queue
.next
,
258 rds_message_addref(rm
);
261 * Move the message from the send queue to the retransmit
264 list_move_tail(&rm
->m_conn_item
,
268 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
273 /* Unfortunately, the way Infiniband deals with
274 * RDMA to a bad MR key is by moving the entire
275 * queue pair to error state. We cold possibly
276 * recover from that, but right now we drop the
278 * Therefore, we never retransmit messages with RDMA ops.
280 if (test_bit(RDS_MSG_FLUSH
, &rm
->m_flags
) ||
281 (rm
->rdma
.op_active
&&
282 test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
))) {
283 spin_lock_irqsave(&cp
->cp_lock
, flags
);
284 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
285 list_move(&rm
->m_conn_item
, &to_be_dropped
);
286 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
290 /* Require an ACK every once in a while */
291 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
292 if (cp
->cp_unacked_packets
== 0 ||
293 cp
->cp_unacked_bytes
< len
) {
294 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
296 cp
->cp_unacked_packets
=
297 rds_sysctl_max_unacked_packets
;
298 cp
->cp_unacked_bytes
=
299 rds_sysctl_max_unacked_bytes
;
300 rds_stats_inc(s_send_ack_required
);
302 cp
->cp_unacked_bytes
-= len
;
303 cp
->cp_unacked_packets
--;
309 /* The transport either sends the whole rdma or none of it */
310 if (rm
->rdma
.op_active
&& !cp
->cp_xmit_rdma_sent
) {
311 rm
->m_final_op
= &rm
->rdma
;
312 /* The transport owns the mapped memory for now.
313 * You can't unmap it while it's on the send queue
315 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
316 ret
= conn
->c_trans
->xmit_rdma(conn
, &rm
->rdma
);
318 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
319 wake_up_interruptible(&rm
->m_flush_wait
);
322 cp
->cp_xmit_rdma_sent
= 1;
326 if (rm
->atomic
.op_active
&& !cp
->cp_xmit_atomic_sent
) {
327 rm
->m_final_op
= &rm
->atomic
;
328 /* The transport owns the mapped memory for now.
329 * You can't unmap it while it's on the send queue
331 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
332 ret
= conn
->c_trans
->xmit_atomic(conn
, &rm
->atomic
);
334 clear_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
335 wake_up_interruptible(&rm
->m_flush_wait
);
338 cp
->cp_xmit_atomic_sent
= 1;
343 * A number of cases require an RDS header to be sent
344 * even if there is no data.
345 * We permit 0-byte sends; rds-ping depends on this.
346 * However, if there are exclusively attached silent ops,
347 * we skip the hdr/data send, to enable silent operation.
349 if (rm
->data
.op_nents
== 0) {
351 int all_ops_are_silent
= 1;
353 ops_present
= (rm
->atomic
.op_active
|| rm
->rdma
.op_active
);
354 if (rm
->atomic
.op_active
&& !rm
->atomic
.op_silent
)
355 all_ops_are_silent
= 0;
356 if (rm
->rdma
.op_active
&& !rm
->rdma
.op_silent
)
357 all_ops_are_silent
= 0;
359 if (ops_present
&& all_ops_are_silent
360 && !rm
->m_rdma_cookie
)
361 rm
->data
.op_active
= 0;
364 if (rm
->data
.op_active
&& !cp
->cp_xmit_data_sent
) {
365 rm
->m_final_op
= &rm
->data
;
367 ret
= conn
->c_trans
->xmit(conn
, rm
,
370 cp
->cp_xmit_data_off
);
374 if (cp
->cp_xmit_hdr_off
< sizeof(struct rds_header
)) {
375 tmp
= min_t(int, ret
,
376 sizeof(struct rds_header
) -
377 cp
->cp_xmit_hdr_off
);
378 cp
->cp_xmit_hdr_off
+= tmp
;
382 sg
= &rm
->data
.op_sg
[cp
->cp_xmit_sg
];
384 tmp
= min_t(int, ret
, sg
->length
-
385 cp
->cp_xmit_data_off
);
386 cp
->cp_xmit_data_off
+= tmp
;
388 if (cp
->cp_xmit_data_off
== sg
->length
) {
389 cp
->cp_xmit_data_off
= 0;
392 BUG_ON(ret
!= 0 && cp
->cp_xmit_sg
==
397 if (cp
->cp_xmit_hdr_off
== sizeof(struct rds_header
) &&
398 (cp
->cp_xmit_sg
== rm
->data
.op_nents
))
399 cp
->cp_xmit_data_sent
= 1;
403 * A rm will only take multiple times through this loop
404 * if there is a data op. Thus, if the data is sent (or there was
405 * none), then we're done with the rm.
407 if (!rm
->data
.op_active
|| cp
->cp_xmit_data_sent
) {
408 cp
->cp_xmit_rm
= NULL
;
410 cp
->cp_xmit_hdr_off
= 0;
411 cp
->cp_xmit_data_off
= 0;
412 cp
->cp_xmit_rdma_sent
= 0;
413 cp
->cp_xmit_atomic_sent
= 0;
414 cp
->cp_xmit_data_sent
= 0;
421 if (conn
->c_trans
->xmit_path_complete
)
422 conn
->c_trans
->xmit_path_complete(cp
);
425 /* Nuke any messages we decided not to retransmit. */
426 if (!list_empty(&to_be_dropped
)) {
427 /* irqs on here, so we can put(), unlike above */
428 list_for_each_entry(rm
, &to_be_dropped
, m_conn_item
)
430 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
434 * Other senders can queue a message after we last test the send queue
435 * but before we clear RDS_IN_XMIT. In that case they'd back off and
436 * not try and send their newly queued message. We need to check the
437 * send queue after having cleared RDS_IN_XMIT so that their message
438 * doesn't get stuck on the send queue.
440 * If the transport cannot continue (i.e ret != 0), then it must
441 * call us when more room is available, such as from the tx
442 * completion handler.
444 * We have an extra generation check here so that if someone manages
445 * to jump in after our release_in_xmit, we'll see that they have done
446 * some work and we will skip our goto
452 raced
= send_gen
!= READ_ONCE(cp
->cp_send_gen
);
454 if ((test_bit(0, &conn
->c_map_queued
) ||
455 !list_empty(&cp
->cp_send_queue
)) && !raced
) {
456 if (batch_count
< send_batch_count
)
459 if (rds_destroy_pending(cp
->cp_conn
))
462 queue_delayed_work(rds_wq
, &cp
->cp_send_w
, 1);
465 rds_stats_inc(s_send_lock_queue_raced
);
471 EXPORT_SYMBOL_GPL(rds_send_xmit
);
473 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
475 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
477 assert_spin_locked(&rs
->rs_lock
);
479 BUG_ON(rs
->rs_snd_bytes
< len
);
480 rs
->rs_snd_bytes
-= len
;
482 if (rs
->rs_snd_bytes
== 0)
483 rds_stats_inc(s_send_queue_empty
);
486 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
487 is_acked_func is_acked
)
490 return is_acked(rm
, ack
);
491 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
495 * This is pretty similar to what happens below in the ACK
496 * handling code - except that we call here as soon as we get
497 * the IB send completion on the RDMA op and the accompanying
500 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
502 struct rds_sock
*rs
= NULL
;
503 struct rm_rdma_op
*ro
;
504 struct rds_notifier
*notifier
;
507 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
510 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
) &&
511 ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
512 notifier
= ro
->op_notifier
;
514 sock_hold(rds_rs_to_sk(rs
));
516 notifier
->n_status
= status
;
517 spin_lock(&rs
->rs_lock
);
518 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
519 spin_unlock(&rs
->rs_lock
);
521 ro
->op_notifier
= NULL
;
524 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
527 rds_wake_sk_sleep(rs
);
528 sock_put(rds_rs_to_sk(rs
));
531 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
534 * Just like above, except looks at atomic op
536 void rds_atomic_send_complete(struct rds_message
*rm
, int status
)
538 struct rds_sock
*rs
= NULL
;
539 struct rm_atomic_op
*ao
;
540 struct rds_notifier
*notifier
;
543 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
546 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
547 && ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
548 notifier
= ao
->op_notifier
;
550 sock_hold(rds_rs_to_sk(rs
));
552 notifier
->n_status
= status
;
553 spin_lock(&rs
->rs_lock
);
554 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
555 spin_unlock(&rs
->rs_lock
);
557 ao
->op_notifier
= NULL
;
560 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
563 rds_wake_sk_sleep(rs
);
564 sock_put(rds_rs_to_sk(rs
));
567 EXPORT_SYMBOL_GPL(rds_atomic_send_complete
);
570 * This is the same as rds_rdma_send_complete except we
571 * don't do any locking - we have all the ingredients (message,
572 * socket, socket lock) and can just move the notifier.
575 __rds_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
577 struct rm_rdma_op
*ro
;
578 struct rm_atomic_op
*ao
;
581 if (ro
->op_active
&& ro
->op_notify
&& ro
->op_notifier
) {
582 ro
->op_notifier
->n_status
= status
;
583 list_add_tail(&ro
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
584 ro
->op_notifier
= NULL
;
588 if (ao
->op_active
&& ao
->op_notify
&& ao
->op_notifier
) {
589 ao
->op_notifier
->n_status
= status
;
590 list_add_tail(&ao
->op_notifier
->n_list
, &rs
->rs_notify_queue
);
591 ao
->op_notifier
= NULL
;
594 /* No need to wake the app - caller does this */
598 * This removes messages from the socket's list if they're on it. The list
599 * argument must be private to the caller, we must be able to modify it
600 * without locks. The messages must have a reference held for their
601 * position on the list. This function will drop that reference after
602 * removing the messages from the 'messages' list regardless of if it found
603 * the messages on the socket list or not.
605 static void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
608 struct rds_sock
*rs
= NULL
;
609 struct rds_message
*rm
;
611 while (!list_empty(messages
)) {
614 rm
= list_entry(messages
->next
, struct rds_message
,
616 list_del_init(&rm
->m_conn_item
);
619 * If we see this flag cleared then we're *sure* that someone
620 * else beat us to removing it from the sock. If we race
621 * with their flag update we'll get the lock and then really
622 * see that the flag has been cleared.
624 * The message spinlock makes sure nobody clears rm->m_rs
625 * while we're messing with it. It does not prevent the
626 * message from being removed from the socket, though.
628 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
629 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
630 goto unlock_and_drop
;
632 if (rs
!= rm
->m_rs
) {
634 rds_wake_sk_sleep(rs
);
635 sock_put(rds_rs_to_sk(rs
));
639 sock_hold(rds_rs_to_sk(rs
));
642 goto unlock_and_drop
;
643 spin_lock(&rs
->rs_lock
);
645 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
646 struct rm_rdma_op
*ro
= &rm
->rdma
;
647 struct rds_notifier
*notifier
;
649 list_del_init(&rm
->m_sock_item
);
650 rds_send_sndbuf_remove(rs
, rm
);
652 if (ro
->op_active
&& ro
->op_notifier
&&
653 (ro
->op_notify
|| (ro
->op_recverr
&& status
))) {
654 notifier
= ro
->op_notifier
;
655 list_add_tail(¬ifier
->n_list
,
656 &rs
->rs_notify_queue
);
657 if (!notifier
->n_status
)
658 notifier
->n_status
= status
;
659 rm
->rdma
.op_notifier
= NULL
;
663 spin_unlock(&rs
->rs_lock
);
666 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
673 rds_wake_sk_sleep(rs
);
674 sock_put(rds_rs_to_sk(rs
));
679 * Transports call here when they've determined that the receiver queued
680 * messages up to, and including, the given sequence number. Messages are
681 * moved to the retrans queue when rds_send_xmit picks them off the send
682 * queue. This means that in the TCP case, the message may not have been
683 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
684 * checks the RDS_MSG_HAS_ACK_SEQ bit.
686 void rds_send_path_drop_acked(struct rds_conn_path
*cp
, u64 ack
,
687 is_acked_func is_acked
)
689 struct rds_message
*rm
, *tmp
;
693 spin_lock_irqsave(&cp
->cp_lock
, flags
);
695 list_for_each_entry_safe(rm
, tmp
, &cp
->cp_retrans
, m_conn_item
) {
696 if (!rds_send_is_acked(rm
, ack
, is_acked
))
699 list_move(&rm
->m_conn_item
, &list
);
700 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
703 /* order flag updates with spin locks */
704 if (!list_empty(&list
))
705 smp_mb__after_atomic();
707 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
709 /* now remove the messages from the sock list as needed */
710 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
712 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked
);
714 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
715 is_acked_func is_acked
)
717 WARN_ON(conn
->c_trans
->t_mp_capable
);
718 rds_send_path_drop_acked(&conn
->c_path
[0], ack
, is_acked
);
720 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
722 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in6
*dest
)
724 struct rds_message
*rm
, *tmp
;
725 struct rds_connection
*conn
;
726 struct rds_conn_path
*cp
;
730 /* get all the messages we're dropping under the rs lock */
731 spin_lock_irqsave(&rs
->rs_lock
, flags
);
733 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
735 (!ipv6_addr_equal(&dest
->sin6_addr
, &rm
->m_daddr
) ||
736 dest
->sin6_port
!= rm
->m_inc
.i_hdr
.h_dport
))
739 list_move(&rm
->m_sock_item
, &list
);
740 rds_send_sndbuf_remove(rs
, rm
);
741 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
744 /* order flag updates with the rs lock */
745 smp_mb__after_atomic();
747 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
749 if (list_empty(&list
))
752 /* Remove the messages from the conn */
753 list_for_each_entry(rm
, &list
, m_sock_item
) {
755 conn
= rm
->m_inc
.i_conn
;
756 if (conn
->c_trans
->t_mp_capable
)
757 cp
= rm
->m_inc
.i_conn_path
;
759 cp
= &conn
->c_path
[0];
761 spin_lock_irqsave(&cp
->cp_lock
, flags
);
763 * Maybe someone else beat us to removing rm from the conn.
764 * If we race with their flag update we'll get the lock and
765 * then really see that the flag has been cleared.
767 if (!test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
768 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
771 list_del_init(&rm
->m_conn_item
);
772 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
775 * Couldn't grab m_rs_lock in top loop (lock ordering),
778 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
780 spin_lock(&rs
->rs_lock
);
781 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
782 spin_unlock(&rs
->rs_lock
);
784 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
789 rds_wake_sk_sleep(rs
);
791 while (!list_empty(&list
)) {
792 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
793 list_del_init(&rm
->m_sock_item
);
794 rds_message_wait(rm
);
796 /* just in case the code above skipped this message
797 * because RDS_MSG_ON_CONN wasn't set, run it again here
798 * taking m_rs_lock is the only thing that keeps us
799 * from racing with ack processing.
801 spin_lock_irqsave(&rm
->m_rs_lock
, flags
);
803 spin_lock(&rs
->rs_lock
);
804 __rds_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
805 spin_unlock(&rs
->rs_lock
);
807 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags
);
814 * we only want this to fire once so we use the callers 'queued'. It's
815 * possible that another thread can race with us and remove the
816 * message from the flow with RDS_CANCEL_SENT_TO.
818 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
819 struct rds_conn_path
*cp
,
820 struct rds_message
*rm
, __be16 sport
,
821 __be16 dport
, int *queued
)
829 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
831 /* this is the only place which holds both the socket's rs_lock
832 * and the connection's c_lock */
833 spin_lock_irqsave(&rs
->rs_lock
, flags
);
836 * If there is a little space in sndbuf, we don't queue anything,
837 * and userspace gets -EAGAIN. But poll() indicates there's send
838 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
839 * freed up by incoming acks. So we check the *old* value of
840 * rs_snd_bytes here to allow the last msg to exceed the buffer,
841 * and poll() now knows no more data can be sent.
843 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
844 rs
->rs_snd_bytes
+= len
;
846 /* let recv side know we are close to send space exhaustion.
847 * This is probably not the optimal way to do it, as this
848 * means we set the flag on *all* messages as soon as our
849 * throughput hits a certain threshold.
851 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
852 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
854 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
855 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
856 rds_message_addref(rm
);
857 sock_hold(rds_rs_to_sk(rs
));
860 /* The code ordering is a little weird, but we're
861 trying to minimize the time we hold c_lock */
862 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
863 rm
->m_inc
.i_conn
= conn
;
864 rm
->m_inc
.i_conn_path
= cp
;
865 rds_message_addref(rm
);
867 spin_lock(&cp
->cp_lock
);
868 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(cp
->cp_next_tx_seq
++);
869 list_add_tail(&rm
->m_conn_item
, &cp
->cp_send_queue
);
870 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
871 spin_unlock(&cp
->cp_lock
);
873 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
874 rm
, len
, rs
, rs
->rs_snd_bytes
,
875 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
880 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
886 * rds_message is getting to be quite complicated, and we'd like to allocate
887 * it all in one go. This figures out how big it needs to be up front.
889 static int rds_rm_size(struct msghdr
*msg
, int num_sgs
,
890 struct rds_iov_vector_arr
*vct
)
892 struct cmsghdr
*cmsg
;
896 bool zcopy_cookie
= false;
897 struct rds_iov_vector
*iov
, *tmp_iov
;
902 for_each_cmsghdr(cmsg
, msg
) {
903 if (!CMSG_OK(msg
, cmsg
))
906 if (cmsg
->cmsg_level
!= SOL_RDS
)
909 switch (cmsg
->cmsg_type
) {
910 case RDS_CMSG_RDMA_ARGS
:
911 if (vct
->indx
>= vct
->len
) {
912 vct
->len
+= vct
->incr
;
916 sizeof(struct rds_iov_vector
),
919 vct
->len
-= vct
->incr
;
924 iov
= &vct
->vec
[vct
->indx
];
925 memset(iov
, 0, sizeof(struct rds_iov_vector
));
928 retval
= rds_rdma_extra_size(CMSG_DATA(cmsg
), iov
);
935 case RDS_CMSG_ZCOPY_COOKIE
:
939 case RDS_CMSG_RDMA_DEST
:
940 case RDS_CMSG_RDMA_MAP
:
942 /* these are valid but do no add any size */
945 case RDS_CMSG_ATOMIC_CSWP
:
946 case RDS_CMSG_ATOMIC_FADD
:
947 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
948 case RDS_CMSG_MASKED_ATOMIC_FADD
:
950 size
+= sizeof(struct scatterlist
);
959 if ((msg
->msg_flags
& MSG_ZEROCOPY
) && !zcopy_cookie
)
962 size
+= num_sgs
* sizeof(struct scatterlist
);
964 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
965 if (cmsg_groups
== 3)
971 static int rds_cmsg_zcopy(struct rds_sock
*rs
, struct rds_message
*rm
,
972 struct cmsghdr
*cmsg
)
976 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(*cookie
)) ||
977 !rm
->data
.op_mmp_znotifier
)
979 cookie
= CMSG_DATA(cmsg
);
980 rm
->data
.op_mmp_znotifier
->z_cookie
= *cookie
;
984 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
985 struct msghdr
*msg
, int *allocated_mr
,
986 struct rds_iov_vector_arr
*vct
)
988 struct cmsghdr
*cmsg
;
989 int ret
= 0, ind
= 0;
991 for_each_cmsghdr(cmsg
, msg
) {
992 if (!CMSG_OK(msg
, cmsg
))
995 if (cmsg
->cmsg_level
!= SOL_RDS
)
998 /* As a side effect, RDMA_DEST and RDMA_MAP will set
999 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
1001 switch (cmsg
->cmsg_type
) {
1002 case RDS_CMSG_RDMA_ARGS
:
1003 if (ind
>= vct
->indx
)
1005 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
, &vct
->vec
[ind
]);
1009 case RDS_CMSG_RDMA_DEST
:
1010 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
1013 case RDS_CMSG_RDMA_MAP
:
1014 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
1017 else if (ret
== -ENODEV
)
1018 /* Accommodate the get_mr() case which can fail
1019 * if connection isn't established yet.
1023 case RDS_CMSG_ATOMIC_CSWP
:
1024 case RDS_CMSG_ATOMIC_FADD
:
1025 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
1026 case RDS_CMSG_MASKED_ATOMIC_FADD
:
1027 ret
= rds_cmsg_atomic(rs
, rm
, cmsg
);
1030 case RDS_CMSG_ZCOPY_COOKIE
:
1031 ret
= rds_cmsg_zcopy(rs
, rm
, cmsg
);
1045 static int rds_send_mprds_hash(struct rds_sock
*rs
,
1046 struct rds_connection
*conn
, int nonblock
)
1050 if (conn
->c_npaths
== 0)
1051 hash
= RDS_MPATH_HASH(rs
, RDS_MPATH_WORKERS
);
1053 hash
= RDS_MPATH_HASH(rs
, conn
->c_npaths
);
1054 if (conn
->c_npaths
== 0 && hash
!= 0) {
1055 rds_send_ping(conn
, 0);
1057 /* The underlying connection is not up yet. Need to wait
1058 * until it is up to be sure that the non-zero c_path can be
1059 * used. But if we are interrupted, we have to use the zero
1060 * c_path in case the connection ends up being non-MP capable.
1062 if (conn
->c_npaths
== 0) {
1063 /* Cannot wait for the connection be made, so just use
1068 if (wait_event_interruptible(conn
->c_hs_waitq
,
1069 conn
->c_npaths
!= 0))
1072 if (conn
->c_npaths
== 1)
1078 static int rds_rdma_bytes(struct msghdr
*msg
, size_t *rdma_bytes
)
1080 struct rds_rdma_args
*args
;
1081 struct cmsghdr
*cmsg
;
1083 for_each_cmsghdr(cmsg
, msg
) {
1084 if (!CMSG_OK(msg
, cmsg
))
1087 if (cmsg
->cmsg_level
!= SOL_RDS
)
1090 if (cmsg
->cmsg_type
== RDS_CMSG_RDMA_ARGS
) {
1091 if (cmsg
->cmsg_len
<
1092 CMSG_LEN(sizeof(struct rds_rdma_args
)))
1094 args
= CMSG_DATA(cmsg
);
1095 *rdma_bytes
+= args
->remote_vec
.bytes
;
1101 int rds_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t payload_len
)
1103 struct sock
*sk
= sock
->sk
;
1104 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
1105 DECLARE_SOCKADDR(struct sockaddr_in6
*, sin6
, msg
->msg_name
);
1106 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
1108 struct rds_message
*rm
= NULL
;
1109 struct rds_connection
*conn
;
1111 int queued
= 0, allocated_mr
= 0;
1112 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
1113 long timeo
= sock_sndtimeo(sk
, nonblock
);
1114 struct rds_conn_path
*cpath
;
1115 struct in6_addr daddr
;
1117 size_t total_payload_len
= payload_len
, rdma_payload_len
= 0;
1118 bool zcopy
= ((msg
->msg_flags
& MSG_ZEROCOPY
) &&
1119 sock_flag(rds_rs_to_sk(rs
), SOCK_ZEROCOPY
));
1120 int num_sgs
= DIV_ROUND_UP(payload_len
, PAGE_SIZE
);
1122 struct rds_iov_vector_arr vct
;
1125 memset(&vct
, 0, sizeof(vct
));
1127 /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1130 /* Mirror Linux UDP mirror of BSD error message compatibility */
1131 /* XXX: Perhaps MSG_MORE someday */
1132 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
| MSG_ZEROCOPY
)) {
1137 namelen
= msg
->msg_namelen
;
1139 if (namelen
< sizeof(*usin
)) {
1143 switch (usin
->sin_family
) {
1145 if (usin
->sin_addr
.s_addr
== htonl(INADDR_ANY
) ||
1146 usin
->sin_addr
.s_addr
== htonl(INADDR_BROADCAST
) ||
1147 ipv4_is_multicast(usin
->sin_addr
.s_addr
)) {
1151 ipv6_addr_set_v4mapped(usin
->sin_addr
.s_addr
, &daddr
);
1152 dport
= usin
->sin_port
;
1155 #if IS_ENABLED(CONFIG_IPV6)
1159 if (namelen
< sizeof(*sin6
)) {
1163 addr_type
= ipv6_addr_type(&sin6
->sin6_addr
);
1164 if (!(addr_type
& IPV6_ADDR_UNICAST
)) {
1167 if (!(addr_type
& IPV6_ADDR_MAPPED
)) {
1172 /* It is a mapped address. Need to do some
1175 addr4
= sin6
->sin6_addr
.s6_addr32
[3];
1176 if (addr4
== htonl(INADDR_ANY
) ||
1177 addr4
== htonl(INADDR_BROADCAST
) ||
1178 ipv4_is_multicast(addr4
)) {
1183 if (addr_type
& IPV6_ADDR_LINKLOCAL
) {
1184 if (sin6
->sin6_scope_id
== 0) {
1188 scope_id
= sin6
->sin6_scope_id
;
1191 daddr
= sin6
->sin6_addr
;
1192 dport
= sin6
->sin6_port
;
1202 /* We only care about consistency with ->connect() */
1204 daddr
= rs
->rs_conn_addr
;
1205 dport
= rs
->rs_conn_port
;
1206 scope_id
= rs
->rs_bound_scope_id
;
1211 if (ipv6_addr_any(&rs
->rs_bound_addr
) || ipv6_addr_any(&daddr
)) {
1215 } else if (namelen
!= 0) {
1216 /* Cannot send to an IPv4 address using an IPv6 source
1217 * address and cannot send to an IPv6 address using an
1218 * IPv4 source address.
1220 if (ipv6_addr_v4mapped(&daddr
) ^
1221 ipv6_addr_v4mapped(&rs
->rs_bound_addr
)) {
1226 /* If the socket is already bound to a link local address,
1227 * it can only send to peers on the same link. But allow
1228 * communicating beween link local and non-link local address.
1230 if (scope_id
!= rs
->rs_bound_scope_id
) {
1232 scope_id
= rs
->rs_bound_scope_id
;
1233 } else if (rs
->rs_bound_scope_id
) {
1242 ret
= rds_rdma_bytes(msg
, &rdma_payload_len
);
1246 total_payload_len
+= rdma_payload_len
;
1247 if (max_t(size_t, payload_len
, rdma_payload_len
) > RDS_MAX_MSG_SIZE
) {
1252 if (payload_len
> rds_sk_sndbuf(rs
)) {
1258 if (rs
->rs_transport
->t_type
!= RDS_TRANS_TCP
) {
1262 num_sgs
= iov_iter_npages(&msg
->msg_iter
, INT_MAX
);
1264 /* size of rm including all sgs */
1265 ret
= rds_rm_size(msg
, num_sgs
, &vct
);
1269 rm
= rds_message_alloc(ret
, GFP_KERNEL
);
1275 /* Attach data to the rm */
1277 rm
->data
.op_sg
= rds_message_alloc_sgs(rm
, num_sgs
);
1278 if (IS_ERR(rm
->data
.op_sg
)) {
1279 ret
= PTR_ERR(rm
->data
.op_sg
);
1282 ret
= rds_message_copy_from_user(rm
, &msg
->msg_iter
, zcopy
);
1286 rm
->data
.op_active
= 1;
1288 rm
->m_daddr
= daddr
;
1290 /* rds_conn_create has a spinlock that runs with IRQ off.
1291 * Caching the conn in the socket helps a lot. */
1292 if (rs
->rs_conn
&& ipv6_addr_equal(&rs
->rs_conn
->c_faddr
, &daddr
) &&
1293 rs
->rs_tos
== rs
->rs_conn
->c_tos
) {
1296 conn
= rds_conn_create_outgoing(sock_net(sock
->sk
),
1297 &rs
->rs_bound_addr
, &daddr
,
1298 rs
->rs_transport
, rs
->rs_tos
,
1299 sock
->sk
->sk_allocation
,
1302 ret
= PTR_ERR(conn
);
1308 if (conn
->c_trans
->t_mp_capable
)
1309 cpath
= &conn
->c_path
[rds_send_mprds_hash(rs
, conn
, nonblock
)];
1311 cpath
= &conn
->c_path
[0];
1313 rm
->m_conn_path
= cpath
;
1315 /* Parse any control messages the user may have included. */
1316 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
, &vct
);
1318 /* Trigger connection so that its ready for the next retry */
1320 rds_conn_connect_if_down(conn
);
1324 if (rm
->rdma
.op_active
&& !conn
->c_trans
->xmit_rdma
) {
1325 printk_ratelimited(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
1326 &rm
->rdma
, conn
->c_trans
->xmit_rdma
);
1331 if (rm
->atomic
.op_active
&& !conn
->c_trans
->xmit_atomic
) {
1332 printk_ratelimited(KERN_NOTICE
"atomic_op %p conn xmit_atomic %p\n",
1333 &rm
->atomic
, conn
->c_trans
->xmit_atomic
);
1338 if (rds_destroy_pending(conn
)) {
1343 if (rds_conn_path_down(cpath
))
1344 rds_check_all_paths(conn
);
1346 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
1348 rs
->rs_seen_congestion
= 1;
1351 while (!rds_send_queue_rm(rs
, conn
, cpath
, rm
, rs
->rs_bound_port
,
1353 rds_stats_inc(s_send_queue_full
);
1360 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
1361 rds_send_queue_rm(rs
, conn
, cpath
, rm
,
1366 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
1367 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
1377 * By now we've committed to the send. We reuse rds_send_worker()
1378 * to retry sends in the rds thread if the transport asks us to.
1380 rds_stats_inc(s_send_queued
);
1382 ret
= rds_send_xmit(cpath
);
1383 if (ret
== -ENOMEM
|| ret
== -EAGAIN
) {
1386 if (rds_destroy_pending(cpath
->cp_conn
))
1389 queue_delayed_work(rds_wq
, &cpath
->cp_send_w
, 1);
1394 rds_message_put(rm
);
1396 for (ind
= 0; ind
< vct
.indx
; ind
++)
1397 kfree(vct
.vec
[ind
].iov
);
1403 for (ind
= 0; ind
< vct
.indx
; ind
++)
1404 kfree(vct
.vec
[ind
].iov
);
1407 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1408 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1409 * or in any other way, we need to destroy the MR again */
1411 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
1414 rds_message_put(rm
);
1419 * send out a probe. Can be shared by rds_send_ping,
1420 * rds_send_pong, rds_send_hb.
1421 * rds_send_hb should use h_flags
1422 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1424 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1427 rds_send_probe(struct rds_conn_path
*cp
, __be16 sport
,
1428 __be16 dport
, u8 h_flags
)
1430 struct rds_message
*rm
;
1431 unsigned long flags
;
1434 rm
= rds_message_alloc(0, GFP_ATOMIC
);
1440 rm
->m_daddr
= cp
->cp_conn
->c_faddr
;
1441 rm
->data
.op_active
= 1;
1443 rds_conn_path_connect_if_down(cp
);
1445 ret
= rds_cong_wait(cp
->cp_conn
->c_fcong
, dport
, 1, NULL
);
1449 spin_lock_irqsave(&cp
->cp_lock
, flags
);
1450 list_add_tail(&rm
->m_conn_item
, &cp
->cp_send_queue
);
1451 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
1452 rds_message_addref(rm
);
1453 rm
->m_inc
.i_conn
= cp
->cp_conn
;
1454 rm
->m_inc
.i_conn_path
= cp
;
1456 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
,
1457 cp
->cp_next_tx_seq
);
1458 rm
->m_inc
.i_hdr
.h_flags
|= h_flags
;
1459 cp
->cp_next_tx_seq
++;
1461 if (RDS_HS_PROBE(be16_to_cpu(sport
), be16_to_cpu(dport
)) &&
1462 cp
->cp_conn
->c_trans
->t_mp_capable
) {
1463 u16 npaths
= cpu_to_be16(RDS_MPATH_WORKERS
);
1464 u32 my_gen_num
= cpu_to_be32(cp
->cp_conn
->c_my_gen_num
);
1466 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
1467 RDS_EXTHDR_NPATHS
, &npaths
,
1469 rds_message_add_extension(&rm
->m_inc
.i_hdr
,
1474 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1476 rds_stats_inc(s_send_queued
);
1477 rds_stats_inc(s_send_pong
);
1479 /* schedule the send work on rds_wq */
1481 if (!rds_destroy_pending(cp
->cp_conn
))
1482 queue_delayed_work(rds_wq
, &cp
->cp_send_w
, 1);
1485 rds_message_put(rm
);
1490 rds_message_put(rm
);
1495 rds_send_pong(struct rds_conn_path
*cp
, __be16 dport
)
1497 return rds_send_probe(cp
, 0, dport
, 0);
1501 rds_send_ping(struct rds_connection
*conn
, int cp_index
)
1503 unsigned long flags
;
1504 struct rds_conn_path
*cp
= &conn
->c_path
[cp_index
];
1506 spin_lock_irqsave(&cp
->cp_lock
, flags
);
1507 if (conn
->c_ping_triggered
) {
1508 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1511 conn
->c_ping_triggered
= 1;
1512 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
1513 rds_send_probe(cp
, cpu_to_be16(RDS_FLAG_PROBE_PORT
), 0, 0);
1515 EXPORT_SYMBOL_GPL(rds_send_ping
);