Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / sound / mips / hal2.h
blobf70cce9a14066f785080dd1bdd4bf43414d7b814
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __HAL2_H
3 #define __HAL2_H
5 /*
6 * Driver for HAL2 sound processors
7 * Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
8 * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
9 */
11 #include <linux/types.h>
13 /* Indirect status register */
15 #define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
16 #define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
17 #define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
18 #define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
19 #define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
21 /* Revision register */
23 #define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
24 #define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
25 #define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
26 #define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
28 /* Indirect address register */
31 * Address of indirect internal register to be accessed. A write to this
32 * register initiates read or write access to the indirect registers in the
33 * HAL2. Note that there af four indirect data registers for write access to
34 * registers larger than 16 byte.
37 #define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
38 /* block the register resides in */
39 /* 1=DMA Port */
40 /* 9=Global DMA Control */
41 /* 2=Bresenham */
42 /* 3=Unix Timer */
43 #define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
44 /* blockin which the indirect */
45 /* register resides */
46 /* If IAR_TYPE_M=DMA Port: */
47 /* 1=Synth In */
48 /* 2=AES In */
49 /* 3=AES Out */
50 /* 4=DAC Out */
51 /* 5=ADC Out */
52 /* 6=Synth Control */
53 /* If IAR_TYPE_M=Global DMA Control: */
54 /* 1=Control */
55 /* If IAR_TYPE_M=Bresenham: */
56 /* 1=Bresenham Clock Gen 1 */
57 /* 2=Bresenham Clock Gen 2 */
58 /* 3=Bresenham Clock Gen 3 */
59 /* If IAR_TYPE_M=Unix Timer: */
60 /* 1=Unix Timer */
61 #define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
62 #define H2_IAR_PARAM 0x000C /* Parameter Select */
63 #define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
64 /* 00:word0 */
65 /* 01:word1 */
66 /* 10:word2 */
67 /* 11:word3 */
69 * HAL2 internal addressing
71 * The HAL2 has "indirect registers" (idr) which are accessed by writing to the
72 * Indirect Data registers. Write the address to the Indirect Address register
73 * to transfer the data.
75 * We define the H2IR_* to the read address and H2IW_* to the write address and
76 * H2I_* to be fields in whatever register is referred to.
78 * When we write to indirect registers which are larger than one word (16 bit)
79 * we have to fill more than one indirect register before writing. When we read
80 * back however we have to read several times, each time with different Read
81 * Back Indexes (there are defs for doing this easily).
85 * Relay Control
87 #define H2I_RELAY_C 0x9100
88 #define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
90 /* DMA port enable */
92 #define H2I_DMA_PORT_EN 0x9104
93 #define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
94 #define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
95 #define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
96 #define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
97 #define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
99 #define H2I_DMA_END 0x9108 /* global dma endian select */
100 #define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
101 #define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
102 #define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
103 #define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
104 #define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
105 /* 0=b_end 1=l_end */
107 #define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
109 #define H2I_SYNTH_C 0x1104 /* Synth DMA control */
111 #define H2I_AESRX_C 0x1204 /* AES RX dma control */
113 #define H2I_C_TS_EN 0x20 /* Timestamp enable */
114 #define H2I_C_TS_FRMT 0x40 /* Timestamp format */
115 #define H2I_C_NAUDIO 0x80 /* Sign extend */
117 /* AESRX CTL, 16 bit */
119 #define H2I_AESTX_C 0x1304 /* AES TX DMA control */
120 #define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
121 #define H2I_AESTX_C_CLKID_M 0x18
122 #define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
123 #define H2I_AESTX_C_DATAT_M 0x300
125 /* CODEC registers */
127 #define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
128 #define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
129 #define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
130 #define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
132 /* Bits in CTL1 register */
134 #define H2I_C1_DMA_SHIFT 0 /* DMA channel */
135 #define H2I_C1_DMA_M 0x7
136 #define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
137 #define H2I_C1_CLKID_M 0x18
138 #define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
139 #define H2I_C1_DATAT_M 0x300
141 /* Bits in CTL2 register */
143 #define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
144 #define H2I_C2_R_GAIN_M 0xf
145 #define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
146 #define H2I_C2_L_GAIN_M 0xf0
147 #define H2I_C2_R_SEL 0x100 /* right input select */
148 #define H2I_C2_L_SEL 0x200 /* left input select */
149 #define H2I_C2_MUTE 0x400 /* mute */
150 #define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
151 #define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
152 #define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
153 #define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
154 #define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
155 #define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
157 #define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
159 /* Clock generator CTL 1, 16 bit */
161 #define H2I_BRES1_C1 0x2104
162 #define H2I_BRES2_C1 0x2204
163 #define H2I_BRES3_C1 0x2304
165 #define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
166 #define H2I_BRES_C1_M 0x03
168 /* Clock generator CTL 2, 32 bit */
170 #define H2I_BRES1_C2 0x2108
171 #define H2I_BRES2_C2 0x2208
172 #define H2I_BRES3_C2 0x2308
174 #define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
175 #define H2I_BRES_C2_INC_M 0xffff
176 #define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
177 #define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
179 /* Unix timer, 64 bit */
181 #define H2I_UTIME 0x3104
182 #define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
183 #define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
184 #define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
185 #define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
186 #define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
188 struct hal2_ctl_regs {
189 u32 _unused0[4];
190 u32 isr; /* 0x10 Status Register */
191 u32 _unused1[3];
192 u32 rev; /* 0x20 Revision Register */
193 u32 _unused2[3];
194 u32 iar; /* 0x30 Indirect Address Register */
195 u32 _unused3[3];
196 u32 idr0; /* 0x40 Indirect Data Register 0 */
197 u32 _unused4[3];
198 u32 idr1; /* 0x50 Indirect Data Register 1 */
199 u32 _unused5[3];
200 u32 idr2; /* 0x60 Indirect Data Register 2 */
201 u32 _unused6[3];
202 u32 idr3; /* 0x70 Indirect Data Register 3 */
205 struct hal2_aes_regs {
206 u32 rx_stat[2]; /* Status registers */
207 u32 rx_cr[2]; /* Control registers */
208 u32 rx_ud[4]; /* User data window */
209 u32 rx_st[24]; /* Channel status data */
211 u32 tx_stat[1]; /* Status register */
212 u32 tx_cr[3]; /* Control registers */
213 u32 tx_ud[4]; /* User data window */
214 u32 tx_st[24]; /* Channel status data */
217 struct hal2_vol_regs {
218 u32 right; /* Right volume */
219 u32 left; /* Left volume */
222 struct hal2_syn_regs {
223 u32 _unused0[2];
224 u32 page; /* DOC Page register */
225 u32 regsel; /* DOC Register selection */
226 u32 dlow; /* DOC Data low */
227 u32 dhigh; /* DOC Data high */
228 u32 irq; /* IRQ Status */
229 u32 dram; /* DRAM Access */
232 #endif /* __HAL2_H */