ALSA: usb-audio: Fix an out-of-bound read in create_composite_quirks
[linux/fpc-iii.git] / arch / arm / mm / fault.c
blob0d20cd5940171c6b5fc33969f5e142efdfdfca03
1 /*
2 * linux/arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
23 #include <asm/exception.h>
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
29 #include "fault.h"
31 #ifdef CONFIG_MMU
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
36 int ret = 0;
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
46 return ret;
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
51 return 0;
53 #endif
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
59 void show_pte(struct mm_struct *mm, unsigned long addr)
61 pgd_t *pgd;
63 if (!mm)
64 mm = &init_mm;
66 pr_alert("pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 pr_alert("[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
76 if (pgd_none(*pgd))
77 break;
79 if (pgd_bad(*pgd)) {
80 pr_cont("(bad)");
81 break;
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
88 if (pud_none(*pud))
89 break;
91 if (pud_bad(*pud)) {
92 pr_cont("(bad)");
93 break;
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
100 if (pmd_none(*pmd))
101 break;
103 if (pmd_bad(*pmd)) {
104 pr_cont("(bad)");
105 break;
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
112 pte = pte_offset_map(pmd, addr);
113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 pr_cont(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 pte_unmap(pte);
119 } while(0);
121 pr_cont("\n");
123 #else /* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
126 #endif /* CONFIG_MMU */
129 * Oops. The kernel tried to access some page that wasn't present.
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
136 * Are we prepared to handle this kernel fault?
138 if (fixup_exception(regs))
139 return;
142 * No handler, we'll have to terminate things with extreme prejudice.
144 bust_spinlocks(1);
145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 "paging request", addr);
149 show_pte(mm, addr);
150 die("Oops", regs, fsr);
151 bust_spinlocks(0);
152 do_exit(SIGKILL);
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
159 static void
160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 unsigned int fsr, unsigned int sig, int code,
162 struct pt_regs *regs)
164 struct siginfo si;
166 #ifdef CONFIG_DEBUG_USER
167 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
168 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
169 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170 tsk->comm, sig, addr, fsr);
171 show_pte(tsk->mm, addr);
172 show_regs(regs);
174 #endif
176 tsk->thread.address = addr;
177 tsk->thread.error_code = fsr;
178 tsk->thread.trap_no = 14;
179 si.si_signo = sig;
180 si.si_errno = 0;
181 si.si_code = code;
182 si.si_addr = (void __user *)addr;
183 force_sig_info(sig, &si, tsk);
186 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188 struct task_struct *tsk = current;
189 struct mm_struct *mm = tsk->active_mm;
192 * If we are in kernel mode at this point, we
193 * have no context to handle this fault with.
195 if (user_mode(regs))
196 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197 else
198 __do_kernel_fault(mm, addr, fsr, regs);
201 #ifdef CONFIG_MMU
202 #define VM_FAULT_BADMAP 0x010000
203 #define VM_FAULT_BADACCESS 0x020000
206 * Check that the permissions on the VMA allow for the fault which occurred.
207 * If we encountered a write fault, we must have write permission, otherwise
208 * we allow any permission.
210 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214 if (fsr & FSR_WRITE)
215 mask = VM_WRITE;
216 if (fsr & FSR_LNX_PF)
217 mask = VM_EXEC;
219 return vma->vm_flags & mask ? false : true;
222 static int __kprobes
223 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224 unsigned int flags, struct task_struct *tsk)
226 struct vm_area_struct *vma;
227 int fault;
229 vma = find_vma(mm, addr);
230 fault = VM_FAULT_BADMAP;
231 if (unlikely(!vma))
232 goto out;
233 if (unlikely(vma->vm_start > addr))
234 goto check_stack;
237 * Ok, we have a good vm_area for this
238 * memory access, so we can handle it.
240 good_area:
241 if (access_error(fsr, vma)) {
242 fault = VM_FAULT_BADACCESS;
243 goto out;
246 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
248 check_stack:
249 /* Don't allow expansion below FIRST_USER_ADDRESS */
250 if (vma->vm_flags & VM_GROWSDOWN &&
251 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252 goto good_area;
253 out:
254 return fault;
257 static int __kprobes
258 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260 struct task_struct *tsk;
261 struct mm_struct *mm;
262 int fault, sig, code;
263 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265 if (notify_page_fault(regs, fsr))
266 return 0;
268 tsk = current;
269 mm = tsk->mm;
271 /* Enable interrupts if they were enabled in the parent context. */
272 if (interrupts_enabled(regs))
273 local_irq_enable();
276 * If we're in an interrupt or have no user
277 * context, we must not take the fault..
279 if (faulthandler_disabled() || !mm)
280 goto no_context;
282 if (user_mode(regs))
283 flags |= FAULT_FLAG_USER;
284 if (fsr & FSR_WRITE)
285 flags |= FAULT_FLAG_WRITE;
288 * As per x86, we may deadlock here. However, since the kernel only
289 * validly references user space from well defined areas of the code,
290 * we can bug out early if this is from code which shouldn't.
292 if (!down_read_trylock(&mm->mmap_sem)) {
293 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
294 goto no_context;
295 retry:
296 down_read(&mm->mmap_sem);
297 } else {
299 * The above down_read_trylock() might have succeeded in
300 * which case, we'll have missed the might_sleep() from
301 * down_read()
303 might_sleep();
304 #ifdef CONFIG_DEBUG_VM
305 if (!user_mode(regs) &&
306 !search_exception_tables(regs->ARM_pc))
307 goto no_context;
308 #endif
311 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313 /* If we need to retry but a fatal signal is pending, handle the
314 * signal first. We do not need to release the mmap_sem because
315 * it would already be released in __lock_page_or_retry in
316 * mm/filemap.c. */
317 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
318 if (!user_mode(regs))
319 goto no_context;
320 return 0;
324 * Major/minor page fault accounting is only done on the
325 * initial attempt. If we go through a retry, it is extremely
326 * likely that the page will be found in page cache at that point.
329 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
330 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
331 if (fault & VM_FAULT_MAJOR) {
332 tsk->maj_flt++;
333 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
334 regs, addr);
335 } else {
336 tsk->min_flt++;
337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
338 regs, addr);
340 if (fault & VM_FAULT_RETRY) {
341 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
342 * of starvation. */
343 flags &= ~FAULT_FLAG_ALLOW_RETRY;
344 flags |= FAULT_FLAG_TRIED;
345 goto retry;
349 up_read(&mm->mmap_sem);
352 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
354 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
355 return 0;
358 * If we are in kernel mode at this point, we
359 * have no context to handle this fault with.
361 if (!user_mode(regs))
362 goto no_context;
364 if (fault & VM_FAULT_OOM) {
366 * We ran out of memory, call the OOM killer, and return to
367 * userspace (which will retry the fault, or kill us if we
368 * got oom-killed)
370 pagefault_out_of_memory();
371 return 0;
374 if (fault & VM_FAULT_SIGBUS) {
376 * We had some memory, but were unable to
377 * successfully fix up this page fault.
379 sig = SIGBUS;
380 code = BUS_ADRERR;
381 } else {
383 * Something tried to access memory that
384 * isn't in our memory map..
386 sig = SIGSEGV;
387 code = fault == VM_FAULT_BADACCESS ?
388 SEGV_ACCERR : SEGV_MAPERR;
391 __do_user_fault(tsk, addr, fsr, sig, code, regs);
392 return 0;
394 no_context:
395 __do_kernel_fault(mm, addr, fsr, regs);
396 return 0;
398 #else /* CONFIG_MMU */
399 static int
400 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
402 return 0;
404 #endif /* CONFIG_MMU */
407 * First Level Translation Fault Handler
409 * We enter here because the first level page table doesn't contain
410 * a valid entry for the address.
412 * If the address is in kernel space (>= TASK_SIZE), then we are
413 * probably faulting in the vmalloc() area.
415 * If the init_task's first level page tables contains the relevant
416 * entry, we copy the it to this task. If not, we send the process
417 * a signal, fixup the exception, or oops the kernel.
419 * NOTE! We MUST NOT take any locks for this case. We may be in an
420 * interrupt or a critical region, and should only copy the information
421 * from the master page table, nothing more.
423 #ifdef CONFIG_MMU
424 static int __kprobes
425 do_translation_fault(unsigned long addr, unsigned int fsr,
426 struct pt_regs *regs)
428 unsigned int index;
429 pgd_t *pgd, *pgd_k;
430 pud_t *pud, *pud_k;
431 pmd_t *pmd, *pmd_k;
433 if (addr < TASK_SIZE)
434 return do_page_fault(addr, fsr, regs);
436 if (user_mode(regs))
437 goto bad_area;
439 index = pgd_index(addr);
441 pgd = cpu_get_pgd() + index;
442 pgd_k = init_mm.pgd + index;
444 if (pgd_none(*pgd_k))
445 goto bad_area;
446 if (!pgd_present(*pgd))
447 set_pgd(pgd, *pgd_k);
449 pud = pud_offset(pgd, addr);
450 pud_k = pud_offset(pgd_k, addr);
452 if (pud_none(*pud_k))
453 goto bad_area;
454 if (!pud_present(*pud))
455 set_pud(pud, *pud_k);
457 pmd = pmd_offset(pud, addr);
458 pmd_k = pmd_offset(pud_k, addr);
460 #ifdef CONFIG_ARM_LPAE
462 * Only one hardware entry per PMD with LPAE.
464 index = 0;
465 #else
467 * On ARM one Linux PGD entry contains two hardware entries (see page
468 * tables layout in pgtable.h). We normally guarantee that we always
469 * fill both L1 entries. But create_mapping() doesn't follow the rule.
470 * It can create inidividual L1 entries, so here we have to call
471 * pmd_none() check for the entry really corresponded to address, not
472 * for the first of pair.
474 index = (addr >> SECTION_SHIFT) & 1;
475 #endif
476 if (pmd_none(pmd_k[index]))
477 goto bad_area;
479 copy_pmd(pmd, pmd_k);
480 return 0;
482 bad_area:
483 do_bad_area(addr, fsr, regs);
484 return 0;
486 #else /* CONFIG_MMU */
487 static int
488 do_translation_fault(unsigned long addr, unsigned int fsr,
489 struct pt_regs *regs)
491 return 0;
493 #endif /* CONFIG_MMU */
496 * Some section permission faults need to be handled gracefully.
497 * They can happen due to a __{get,put}_user during an oops.
499 #ifndef CONFIG_ARM_LPAE
500 static int
501 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
503 do_bad_area(addr, fsr, regs);
504 return 0;
506 #endif /* CONFIG_ARM_LPAE */
509 * This abort handler always returns "fault".
511 static int
512 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
514 return 1;
517 struct fsr_info {
518 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
519 int sig;
520 int code;
521 const char *name;
524 /* FSR definition */
525 #ifdef CONFIG_ARM_LPAE
526 #include "fsr-3level.c"
527 #else
528 #include "fsr-2level.c"
529 #endif
531 void __init
532 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
533 int sig, int code, const char *name)
535 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
536 BUG();
538 fsr_info[nr].fn = fn;
539 fsr_info[nr].sig = sig;
540 fsr_info[nr].code = code;
541 fsr_info[nr].name = name;
545 * Dispatch a data abort to the relevant handler.
547 asmlinkage void __exception
548 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
550 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
551 struct siginfo info;
553 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
554 return;
556 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
557 inf->name, fsr, addr);
558 show_pte(current->mm, addr);
560 info.si_signo = inf->sig;
561 info.si_errno = 0;
562 info.si_code = inf->code;
563 info.si_addr = (void __user *)addr;
564 arm_notify_die("", regs, &info, fsr, 0);
567 void __init
568 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
569 int sig, int code, const char *name)
571 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
572 BUG();
574 ifsr_info[nr].fn = fn;
575 ifsr_info[nr].sig = sig;
576 ifsr_info[nr].code = code;
577 ifsr_info[nr].name = name;
580 asmlinkage void __exception
581 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
583 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
584 struct siginfo info;
586 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
587 return;
589 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
590 inf->name, ifsr, addr);
592 info.si_signo = inf->sig;
593 info.si_errno = 0;
594 info.si_code = inf->code;
595 info.si_addr = (void __user *)addr;
596 arm_notify_die("", regs, &info, ifsr, 0);
600 * Abort handler to be used only during first unmasking of asynchronous aborts
601 * on the boot CPU. This makes sure that the machine will not die if the
602 * firmware/bootloader left an imprecise abort pending for us to trip over.
604 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
605 struct pt_regs *regs)
607 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
608 "first unmask, this is most likely caused by a "
609 "firmware/bootloader bug.\n", fsr);
611 return 0;
614 void __init early_abt_enable(void)
616 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
617 local_abt_enable();
618 fsr_info[FSR_FS_AEA].fn = do_bad;
621 #ifndef CONFIG_ARM_LPAE
622 static int __init exceptions_init(void)
624 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
625 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
626 "I-cache maintenance fault");
629 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
631 * TODO: Access flag faults introduced in ARMv6K.
632 * Runtime check for 'K' extension is needed
634 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
635 "section access flag fault");
636 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
637 "section access flag fault");
640 return 0;
643 arch_initcall(exceptions_init);
644 #endif