ALSA: usb-audio: Fix an out-of-bound read in create_composite_quirks
[linux/fpc-iii.git] / net / core / flow_dissector.c
blob697c4212129a10422607901917814c97d6e30540
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23 enum flow_dissector_key_id key_id)
25 return flow_dissector->used_keys & (1 << key_id);
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29 enum flow_dissector_key_id key_id)
31 flow_dissector->used_keys |= (1 << key_id);
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35 enum flow_dissector_key_id key_id,
36 void *target_container)
38 return ((char *) target_container) + flow_dissector->offset[key_id];
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42 const struct flow_dissector_key *key,
43 unsigned int key_count)
45 unsigned int i;
47 memset(flow_dissector, 0, sizeof(*flow_dissector));
49 for (i = 0; i < key_count; i++, key++) {
50 /* User should make sure that every key target offset is withing
51 * boundaries of unsigned short.
53 BUG_ON(key->offset > USHRT_MAX);
54 BUG_ON(dissector_uses_key(flow_dissector,
55 key->key_id));
57 dissector_set_key(flow_dissector, key->key_id);
58 flow_dissector->offset[key->key_id] = key->offset;
61 /* Ensure that the dissector always includes control and basic key.
62 * That way we are able to avoid handling lack of these in fast path.
64 BUG_ON(!dissector_uses_key(flow_dissector,
65 FLOW_DISSECTOR_KEY_CONTROL));
66 BUG_ON(!dissector_uses_key(flow_dissector,
67 FLOW_DISSECTOR_KEY_BASIC));
69 EXPORT_SYMBOL(skb_flow_dissector_init);
71 /**
72 * __skb_flow_get_ports - extract the upper layer ports and return them
73 * @skb: sk_buff to extract the ports from
74 * @thoff: transport header offset
75 * @ip_proto: protocol for which to get port offset
76 * @data: raw buffer pointer to the packet, if NULL use skb->data
77 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
79 * The function will try to retrieve the ports at offset thoff + poff where poff
80 * is the protocol port offset returned from proto_ports_offset
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83 void *data, int hlen)
85 int poff = proto_ports_offset(ip_proto);
87 if (!data) {
88 data = skb->data;
89 hlen = skb_headlen(skb);
92 if (poff >= 0) {
93 __be32 *ports, _ports;
95 ports = __skb_header_pointer(skb, thoff + poff,
96 sizeof(_ports), data, hlen, &_ports);
97 if (ports)
98 return *ports;
101 return 0;
103 EXPORT_SYMBOL(__skb_flow_get_ports);
106 * __skb_flow_dissect - extract the flow_keys struct and return it
107 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108 * @flow_dissector: list of keys to dissect
109 * @target_container: target structure to put dissected values into
110 * @data: raw buffer pointer to the packet, if NULL use skb->data
111 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
115 * The function will try to retrieve individual keys into target specified
116 * by flow_dissector from either the skbuff or a raw buffer specified by the
117 * rest parameters.
119 * Caller must take care of zeroing target container memory.
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122 struct flow_dissector *flow_dissector,
123 void *target_container,
124 void *data, __be16 proto, int nhoff, int hlen,
125 unsigned int flags)
127 struct flow_dissector_key_control *key_control;
128 struct flow_dissector_key_basic *key_basic;
129 struct flow_dissector_key_addrs *key_addrs;
130 struct flow_dissector_key_ports *key_ports;
131 struct flow_dissector_key_tags *key_tags;
132 struct flow_dissector_key_keyid *key_keyid;
133 u8 ip_proto = 0;
134 bool ret;
136 if (!data) {
137 data = skb->data;
138 proto = skb->protocol;
139 nhoff = skb_network_offset(skb);
140 hlen = skb_headlen(skb);
143 /* It is ensured by skb_flow_dissector_init() that control key will
144 * be always present.
146 key_control = skb_flow_dissector_target(flow_dissector,
147 FLOW_DISSECTOR_KEY_CONTROL,
148 target_container);
150 /* It is ensured by skb_flow_dissector_init() that basic key will
151 * be always present.
153 key_basic = skb_flow_dissector_target(flow_dissector,
154 FLOW_DISSECTOR_KEY_BASIC,
155 target_container);
157 if (dissector_uses_key(flow_dissector,
158 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159 struct ethhdr *eth = eth_hdr(skb);
160 struct flow_dissector_key_eth_addrs *key_eth_addrs;
162 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163 FLOW_DISSECTOR_KEY_ETH_ADDRS,
164 target_container);
165 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
168 again:
169 switch (proto) {
170 case htons(ETH_P_IP): {
171 const struct iphdr *iph;
172 struct iphdr _iph;
174 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175 if (!iph || iph->ihl < 5)
176 goto out_bad;
177 nhoff += iph->ihl * 4;
179 ip_proto = iph->protocol;
181 if (!dissector_uses_key(flow_dissector,
182 FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183 break;
185 key_addrs = skb_flow_dissector_target(flow_dissector,
186 FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187 memcpy(&key_addrs->v4addrs, &iph->saddr,
188 sizeof(key_addrs->v4addrs));
189 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
191 if (ip_is_fragment(iph)) {
192 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
194 if (iph->frag_off & htons(IP_OFFSET)) {
195 goto out_good;
196 } else {
197 key_control->flags |= FLOW_DIS_FIRST_FRAG;
198 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199 goto out_good;
203 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204 goto out_good;
206 break;
208 case htons(ETH_P_IPV6): {
209 const struct ipv6hdr *iph;
210 struct ipv6hdr _iph;
212 ipv6:
213 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
214 if (!iph)
215 goto out_bad;
217 ip_proto = iph->nexthdr;
218 nhoff += sizeof(struct ipv6hdr);
220 if (dissector_uses_key(flow_dissector,
221 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
222 struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
224 key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
225 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
226 target_container);
228 memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
229 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
232 if ((dissector_uses_key(flow_dissector,
233 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
234 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
235 ip6_flowlabel(iph)) {
236 __be32 flow_label = ip6_flowlabel(iph);
238 if (dissector_uses_key(flow_dissector,
239 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
240 key_tags = skb_flow_dissector_target(flow_dissector,
241 FLOW_DISSECTOR_KEY_FLOW_LABEL,
242 target_container);
243 key_tags->flow_label = ntohl(flow_label);
245 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
246 goto out_good;
249 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
250 goto out_good;
252 break;
254 case htons(ETH_P_8021AD):
255 case htons(ETH_P_8021Q): {
256 const struct vlan_hdr *vlan;
257 struct vlan_hdr _vlan;
259 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
260 if (!vlan)
261 goto out_bad;
263 if (dissector_uses_key(flow_dissector,
264 FLOW_DISSECTOR_KEY_VLANID)) {
265 key_tags = skb_flow_dissector_target(flow_dissector,
266 FLOW_DISSECTOR_KEY_VLANID,
267 target_container);
269 key_tags->vlan_id = skb_vlan_tag_get_id(skb);
272 proto = vlan->h_vlan_encapsulated_proto;
273 nhoff += sizeof(*vlan);
274 goto again;
276 case htons(ETH_P_PPP_SES): {
277 struct {
278 struct pppoe_hdr hdr;
279 __be16 proto;
280 } *hdr, _hdr;
281 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
282 if (!hdr)
283 goto out_bad;
284 proto = hdr->proto;
285 nhoff += PPPOE_SES_HLEN;
286 switch (proto) {
287 case htons(PPP_IP):
288 goto ip;
289 case htons(PPP_IPV6):
290 goto ipv6;
291 default:
292 goto out_bad;
295 case htons(ETH_P_TIPC): {
296 struct {
297 __be32 pre[3];
298 __be32 srcnode;
299 } *hdr, _hdr;
300 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
301 if (!hdr)
302 goto out_bad;
304 if (dissector_uses_key(flow_dissector,
305 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
306 key_addrs = skb_flow_dissector_target(flow_dissector,
307 FLOW_DISSECTOR_KEY_TIPC_ADDRS,
308 target_container);
309 key_addrs->tipcaddrs.srcnode = hdr->srcnode;
310 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
312 goto out_good;
315 case htons(ETH_P_MPLS_UC):
316 case htons(ETH_P_MPLS_MC): {
317 struct mpls_label *hdr, _hdr[2];
318 mpls:
319 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
320 hlen, &_hdr);
321 if (!hdr)
322 goto out_bad;
324 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
325 MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
326 if (dissector_uses_key(flow_dissector,
327 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
328 key_keyid = skb_flow_dissector_target(flow_dissector,
329 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
330 target_container);
331 key_keyid->keyid = hdr[1].entry &
332 htonl(MPLS_LS_LABEL_MASK);
335 goto out_good;
338 goto out_good;
341 case htons(ETH_P_FCOE):
342 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
343 /* fall through */
344 default:
345 goto out_bad;
348 ip_proto_again:
349 switch (ip_proto) {
350 case IPPROTO_GRE: {
351 struct gre_hdr {
352 __be16 flags;
353 __be16 proto;
354 } *hdr, _hdr;
356 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
357 if (!hdr)
358 goto out_bad;
360 * Only look inside GRE if version zero and no
361 * routing
363 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
364 break;
366 proto = hdr->proto;
367 nhoff += 4;
368 if (hdr->flags & GRE_CSUM)
369 nhoff += 4;
370 if (hdr->flags & GRE_KEY) {
371 const __be32 *keyid;
372 __be32 _keyid;
374 keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
375 data, hlen, &_keyid);
377 if (!keyid)
378 goto out_bad;
380 if (dissector_uses_key(flow_dissector,
381 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
382 key_keyid = skb_flow_dissector_target(flow_dissector,
383 FLOW_DISSECTOR_KEY_GRE_KEYID,
384 target_container);
385 key_keyid->keyid = *keyid;
387 nhoff += 4;
389 if (hdr->flags & GRE_SEQ)
390 nhoff += 4;
391 if (proto == htons(ETH_P_TEB)) {
392 const struct ethhdr *eth;
393 struct ethhdr _eth;
395 eth = __skb_header_pointer(skb, nhoff,
396 sizeof(_eth),
397 data, hlen, &_eth);
398 if (!eth)
399 goto out_bad;
400 proto = eth->h_proto;
401 nhoff += sizeof(*eth);
403 /* Cap headers that we access via pointers at the
404 * end of the Ethernet header as our maximum alignment
405 * at that point is only 2 bytes.
407 if (NET_IP_ALIGN)
408 hlen = nhoff;
411 key_control->flags |= FLOW_DIS_ENCAPSULATION;
412 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
413 goto out_good;
415 goto again;
417 case NEXTHDR_HOP:
418 case NEXTHDR_ROUTING:
419 case NEXTHDR_DEST: {
420 u8 _opthdr[2], *opthdr;
422 if (proto != htons(ETH_P_IPV6))
423 break;
425 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
426 data, hlen, &_opthdr);
427 if (!opthdr)
428 goto out_bad;
430 ip_proto = opthdr[0];
431 nhoff += (opthdr[1] + 1) << 3;
433 goto ip_proto_again;
435 case NEXTHDR_FRAGMENT: {
436 struct frag_hdr _fh, *fh;
438 if (proto != htons(ETH_P_IPV6))
439 break;
441 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
442 data, hlen, &_fh);
444 if (!fh)
445 goto out_bad;
447 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
449 nhoff += sizeof(_fh);
451 if (!(fh->frag_off & htons(IP6_OFFSET))) {
452 key_control->flags |= FLOW_DIS_FIRST_FRAG;
453 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
454 ip_proto = fh->nexthdr;
455 goto ip_proto_again;
458 goto out_good;
460 case IPPROTO_IPIP:
461 proto = htons(ETH_P_IP);
463 key_control->flags |= FLOW_DIS_ENCAPSULATION;
464 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465 goto out_good;
467 goto ip;
468 case IPPROTO_IPV6:
469 proto = htons(ETH_P_IPV6);
471 key_control->flags |= FLOW_DIS_ENCAPSULATION;
472 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
473 goto out_good;
475 goto ipv6;
476 case IPPROTO_MPLS:
477 proto = htons(ETH_P_MPLS_UC);
478 goto mpls;
479 default:
480 break;
483 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
484 !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
485 key_ports = skb_flow_dissector_target(flow_dissector,
486 FLOW_DISSECTOR_KEY_PORTS,
487 target_container);
488 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
489 data, hlen);
492 out_good:
493 ret = true;
495 out:
496 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
497 key_basic->n_proto = proto;
498 key_basic->ip_proto = ip_proto;
500 return ret;
502 out_bad:
503 ret = false;
504 goto out;
506 EXPORT_SYMBOL(__skb_flow_dissect);
508 static u32 hashrnd __read_mostly;
509 static __always_inline void __flow_hash_secret_init(void)
511 net_get_random_once(&hashrnd, sizeof(hashrnd));
514 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
515 u32 keyval)
517 return jhash2(words, length, keyval);
520 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
522 const void *p = flow;
524 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
525 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
528 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
530 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
531 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
532 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
533 sizeof(*flow) - sizeof(flow->addrs));
535 switch (flow->control.addr_type) {
536 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
537 diff -= sizeof(flow->addrs.v4addrs);
538 break;
539 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
540 diff -= sizeof(flow->addrs.v6addrs);
541 break;
542 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
543 diff -= sizeof(flow->addrs.tipcaddrs);
544 break;
546 return (sizeof(*flow) - diff) / sizeof(u32);
549 __be32 flow_get_u32_src(const struct flow_keys *flow)
551 switch (flow->control.addr_type) {
552 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
553 return flow->addrs.v4addrs.src;
554 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
555 return (__force __be32)ipv6_addr_hash(
556 &flow->addrs.v6addrs.src);
557 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
558 return flow->addrs.tipcaddrs.srcnode;
559 default:
560 return 0;
563 EXPORT_SYMBOL(flow_get_u32_src);
565 __be32 flow_get_u32_dst(const struct flow_keys *flow)
567 switch (flow->control.addr_type) {
568 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
569 return flow->addrs.v4addrs.dst;
570 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
571 return (__force __be32)ipv6_addr_hash(
572 &flow->addrs.v6addrs.dst);
573 default:
574 return 0;
577 EXPORT_SYMBOL(flow_get_u32_dst);
579 static inline void __flow_hash_consistentify(struct flow_keys *keys)
581 int addr_diff, i;
583 switch (keys->control.addr_type) {
584 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
585 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
586 (__force u32)keys->addrs.v4addrs.src;
587 if ((addr_diff < 0) ||
588 (addr_diff == 0 &&
589 ((__force u16)keys->ports.dst <
590 (__force u16)keys->ports.src))) {
591 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
592 swap(keys->ports.src, keys->ports.dst);
594 break;
595 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
596 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
597 &keys->addrs.v6addrs.src,
598 sizeof(keys->addrs.v6addrs.dst));
599 if ((addr_diff < 0) ||
600 (addr_diff == 0 &&
601 ((__force u16)keys->ports.dst <
602 (__force u16)keys->ports.src))) {
603 for (i = 0; i < 4; i++)
604 swap(keys->addrs.v6addrs.src.s6_addr32[i],
605 keys->addrs.v6addrs.dst.s6_addr32[i]);
606 swap(keys->ports.src, keys->ports.dst);
608 break;
612 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
614 u32 hash;
616 __flow_hash_consistentify(keys);
618 hash = __flow_hash_words(flow_keys_hash_start(keys),
619 flow_keys_hash_length(keys), keyval);
620 if (!hash)
621 hash = 1;
623 return hash;
626 u32 flow_hash_from_keys(struct flow_keys *keys)
628 __flow_hash_secret_init();
629 return __flow_hash_from_keys(keys, hashrnd);
631 EXPORT_SYMBOL(flow_hash_from_keys);
633 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
634 struct flow_keys *keys, u32 keyval)
636 skb_flow_dissect_flow_keys(skb, keys,
637 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
639 return __flow_hash_from_keys(keys, keyval);
642 struct _flow_keys_digest_data {
643 __be16 n_proto;
644 u8 ip_proto;
645 u8 padding;
646 __be32 ports;
647 __be32 src;
648 __be32 dst;
651 void make_flow_keys_digest(struct flow_keys_digest *digest,
652 const struct flow_keys *flow)
654 struct _flow_keys_digest_data *data =
655 (struct _flow_keys_digest_data *)digest;
657 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
659 memset(digest, 0, sizeof(*digest));
661 data->n_proto = flow->basic.n_proto;
662 data->ip_proto = flow->basic.ip_proto;
663 data->ports = flow->ports.ports;
664 data->src = flow->addrs.v4addrs.src;
665 data->dst = flow->addrs.v4addrs.dst;
667 EXPORT_SYMBOL(make_flow_keys_digest);
669 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
671 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
673 struct flow_keys keys;
675 __flow_hash_secret_init();
677 memset(&keys, 0, sizeof(keys));
678 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
679 NULL, 0, 0, 0,
680 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
682 return __flow_hash_from_keys(&keys, hashrnd);
684 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
687 * __skb_get_hash: calculate a flow hash
688 * @skb: sk_buff to calculate flow hash from
690 * This function calculates a flow hash based on src/dst addresses
691 * and src/dst port numbers. Sets hash in skb to non-zero hash value
692 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
693 * if hash is a canonical 4-tuple hash over transport ports.
695 void __skb_get_hash(struct sk_buff *skb)
697 struct flow_keys keys;
699 __flow_hash_secret_init();
701 __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
702 flow_keys_have_l4(&keys));
704 EXPORT_SYMBOL(__skb_get_hash);
706 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
708 struct flow_keys keys;
710 return ___skb_get_hash(skb, &keys, perturb);
712 EXPORT_SYMBOL(skb_get_hash_perturb);
714 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
716 struct flow_keys keys;
718 memset(&keys, 0, sizeof(keys));
720 memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
721 sizeof(keys.addrs.v6addrs.src));
722 memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
723 sizeof(keys.addrs.v6addrs.dst));
724 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
725 keys.ports.src = fl6->fl6_sport;
726 keys.ports.dst = fl6->fl6_dport;
727 keys.keyid.keyid = fl6->fl6_gre_key;
728 keys.tags.flow_label = (__force u32)fl6->flowlabel;
729 keys.basic.ip_proto = fl6->flowi6_proto;
731 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
732 flow_keys_have_l4(&keys));
734 return skb->hash;
736 EXPORT_SYMBOL(__skb_get_hash_flowi6);
738 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
740 struct flow_keys keys;
742 memset(&keys, 0, sizeof(keys));
744 keys.addrs.v4addrs.src = fl4->saddr;
745 keys.addrs.v4addrs.dst = fl4->daddr;
746 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
747 keys.ports.src = fl4->fl4_sport;
748 keys.ports.dst = fl4->fl4_dport;
749 keys.keyid.keyid = fl4->fl4_gre_key;
750 keys.basic.ip_proto = fl4->flowi4_proto;
752 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
753 flow_keys_have_l4(&keys));
755 return skb->hash;
757 EXPORT_SYMBOL(__skb_get_hash_flowi4);
759 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
760 const struct flow_keys *keys, int hlen)
762 u32 poff = keys->control.thoff;
764 switch (keys->basic.ip_proto) {
765 case IPPROTO_TCP: {
766 /* access doff as u8 to avoid unaligned access */
767 const u8 *doff;
768 u8 _doff;
770 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
771 data, hlen, &_doff);
772 if (!doff)
773 return poff;
775 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
776 break;
778 case IPPROTO_UDP:
779 case IPPROTO_UDPLITE:
780 poff += sizeof(struct udphdr);
781 break;
782 /* For the rest, we do not really care about header
783 * extensions at this point for now.
785 case IPPROTO_ICMP:
786 poff += sizeof(struct icmphdr);
787 break;
788 case IPPROTO_ICMPV6:
789 poff += sizeof(struct icmp6hdr);
790 break;
791 case IPPROTO_IGMP:
792 poff += sizeof(struct igmphdr);
793 break;
794 case IPPROTO_DCCP:
795 poff += sizeof(struct dccp_hdr);
796 break;
797 case IPPROTO_SCTP:
798 poff += sizeof(struct sctphdr);
799 break;
802 return poff;
806 * skb_get_poff - get the offset to the payload
807 * @skb: sk_buff to get the payload offset from
809 * The function will get the offset to the payload as far as it could
810 * be dissected. The main user is currently BPF, so that we can dynamically
811 * truncate packets without needing to push actual payload to the user
812 * space and can analyze headers only, instead.
814 u32 skb_get_poff(const struct sk_buff *skb)
816 struct flow_keys keys;
818 if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
819 return 0;
821 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
824 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
826 memset(keys, 0, sizeof(*keys));
828 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
829 sizeof(keys->addrs.v6addrs.src));
830 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
831 sizeof(keys->addrs.v6addrs.dst));
832 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
833 keys->ports.src = fl6->fl6_sport;
834 keys->ports.dst = fl6->fl6_dport;
835 keys->keyid.keyid = fl6->fl6_gre_key;
836 keys->tags.flow_label = (__force u32)fl6->flowlabel;
837 keys->basic.ip_proto = fl6->flowi6_proto;
839 return flow_hash_from_keys(keys);
841 EXPORT_SYMBOL(__get_hash_from_flowi6);
843 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
845 memset(keys, 0, sizeof(*keys));
847 keys->addrs.v4addrs.src = fl4->saddr;
848 keys->addrs.v4addrs.dst = fl4->daddr;
849 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
850 keys->ports.src = fl4->fl4_sport;
851 keys->ports.dst = fl4->fl4_dport;
852 keys->keyid.keyid = fl4->fl4_gre_key;
853 keys->basic.ip_proto = fl4->flowi4_proto;
855 return flow_hash_from_keys(keys);
857 EXPORT_SYMBOL(__get_hash_from_flowi4);
859 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
861 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
862 .offset = offsetof(struct flow_keys, control),
865 .key_id = FLOW_DISSECTOR_KEY_BASIC,
866 .offset = offsetof(struct flow_keys, basic),
869 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
870 .offset = offsetof(struct flow_keys, addrs.v4addrs),
873 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
874 .offset = offsetof(struct flow_keys, addrs.v6addrs),
877 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
878 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
881 .key_id = FLOW_DISSECTOR_KEY_PORTS,
882 .offset = offsetof(struct flow_keys, ports),
885 .key_id = FLOW_DISSECTOR_KEY_VLANID,
886 .offset = offsetof(struct flow_keys, tags),
889 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
890 .offset = offsetof(struct flow_keys, tags),
893 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
894 .offset = offsetof(struct flow_keys, keyid),
898 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
900 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
901 .offset = offsetof(struct flow_keys, control),
904 .key_id = FLOW_DISSECTOR_KEY_BASIC,
905 .offset = offsetof(struct flow_keys, basic),
908 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
909 .offset = offsetof(struct flow_keys, addrs.v4addrs),
912 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
913 .offset = offsetof(struct flow_keys, addrs.v6addrs),
916 .key_id = FLOW_DISSECTOR_KEY_PORTS,
917 .offset = offsetof(struct flow_keys, ports),
921 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
923 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
924 .offset = offsetof(struct flow_keys, control),
927 .key_id = FLOW_DISSECTOR_KEY_BASIC,
928 .offset = offsetof(struct flow_keys, basic),
932 struct flow_dissector flow_keys_dissector __read_mostly;
933 EXPORT_SYMBOL(flow_keys_dissector);
935 struct flow_dissector flow_keys_buf_dissector __read_mostly;
937 static int __init init_default_flow_dissectors(void)
939 skb_flow_dissector_init(&flow_keys_dissector,
940 flow_keys_dissector_keys,
941 ARRAY_SIZE(flow_keys_dissector_keys));
942 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
943 flow_keys_dissector_symmetric_keys,
944 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
945 skb_flow_dissector_init(&flow_keys_buf_dissector,
946 flow_keys_buf_dissector_keys,
947 ARRAY_SIZE(flow_keys_buf_dissector_keys));
948 return 0;
951 core_initcall(init_default_flow_dissectors);