2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
136 #include <linux/filter.h>
138 #include <trace/events/sock.h>
144 #include <net/busy_poll.h>
146 static DEFINE_MUTEX(proto_list_mutex
);
147 static LIST_HEAD(proto_list
);
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
159 bool sk_ns_capable(const struct sock
*sk
,
160 struct user_namespace
*user_ns
, int cap
)
162 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
163 ns_capable(user_ns
, cap
);
165 EXPORT_SYMBOL(sk_ns_capable
);
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
176 bool sk_capable(const struct sock
*sk
, int cap
)
178 return sk_ns_capable(sk
, &init_user_ns
, cap
);
180 EXPORT_SYMBOL(sk_capable
);
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
191 bool sk_net_capable(const struct sock
*sk
, int cap
)
193 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
195 EXPORT_SYMBOL(sk_net_capable
);
198 #ifdef CONFIG_MEMCG_KMEM
199 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
204 mutex_lock(&proto_list_mutex
);
205 list_for_each_entry(proto
, &proto_list
, node
) {
206 if (proto
->init_cgroup
) {
207 ret
= proto
->init_cgroup(memcg
, ss
);
213 mutex_unlock(&proto_list_mutex
);
216 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
217 if (proto
->destroy_cgroup
)
218 proto
->destroy_cgroup(memcg
);
219 mutex_unlock(&proto_list_mutex
);
223 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
227 mutex_lock(&proto_list_mutex
);
228 list_for_each_entry_reverse(proto
, &proto_list
, node
)
229 if (proto
->destroy_cgroup
)
230 proto
->destroy_cgroup(memcg
);
231 mutex_unlock(&proto_list_mutex
);
236 * Each address family might have different locking rules, so we have
237 * one slock key per address family:
239 static struct lock_class_key af_family_keys
[AF_MAX
];
240 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled
;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
248 * Make lock validator output more readable. (we pre-construct these
249 * strings build-time, so that runtime initialization of socket
252 static const char *const af_family_key_strings
[AF_MAX
+1] = {
253 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
254 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
255 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
256 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
257 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
258 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
259 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
260 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
261 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
262 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
263 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
264 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
265 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
266 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
268 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
269 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
270 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
271 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
272 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
273 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
274 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
275 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
276 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
277 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
278 "slock-27" , "slock-28" , "slock-AF_CAN" ,
279 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
280 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
281 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
282 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
284 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
285 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
286 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
287 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
288 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
289 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
290 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
291 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
292 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
293 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
294 "clock-27" , "clock-28" , "clock-AF_CAN" ,
295 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
296 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
297 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
298 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
302 * sk_callback_lock locking rules are per-address-family,
303 * so split the lock classes by using a per-AF key:
305 static struct lock_class_key af_callback_keys
[AF_MAX
];
307 /* Take into consideration the size of the struct sk_buff overhead in the
308 * determination of these values, since that is non-constant across
309 * platforms. This makes socket queueing behavior and performance
310 * not depend upon such differences.
312 #define _SK_MEM_PACKETS 256
313 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
319 EXPORT_SYMBOL(sysctl_wmem_max
);
320 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
321 EXPORT_SYMBOL(sysctl_rmem_max
);
322 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
323 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
327 EXPORT_SYMBOL(sysctl_optmem_max
);
329 int sysctl_tstamp_allow_data __read_mostly
= 1;
331 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
332 EXPORT_SYMBOL_GPL(memalloc_socks
);
335 * sk_set_memalloc - sets %SOCK_MEMALLOC
336 * @sk: socket to set it on
338 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339 * It's the responsibility of the admin to adjust min_free_kbytes
340 * to meet the requirements
342 void sk_set_memalloc(struct sock
*sk
)
344 sock_set_flag(sk
, SOCK_MEMALLOC
);
345 sk
->sk_allocation
|= __GFP_MEMALLOC
;
346 static_key_slow_inc(&memalloc_socks
);
348 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
350 void sk_clear_memalloc(struct sock
*sk
)
352 sock_reset_flag(sk
, SOCK_MEMALLOC
);
353 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
354 static_key_slow_dec(&memalloc_socks
);
357 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 * it has rmem allocations due to the last swapfile being deactivated
360 * but there is a risk that the socket is unusable due to exceeding
361 * the rmem limits. Reclaim the reserves and obey rmem limits again.
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
367 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
370 unsigned long pflags
= current
->flags
;
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
375 current
->flags
|= PF_MEMALLOC
;
376 ret
= sk
->sk_backlog_rcv(sk
, skb
);
377 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
381 EXPORT_SYMBOL(__sk_backlog_rcv
);
383 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
387 if (optlen
< sizeof(tv
))
389 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
391 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
395 static int warned __read_mostly
;
398 if (warned
< 10 && net_ratelimit()) {
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__
, current
->comm
, task_pid_nr(current
));
405 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
406 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
408 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
409 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
413 static void sock_warn_obsolete_bsdism(const char *name
)
416 static char warncomm
[TASK_COMM_LEN
];
417 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
418 strcpy(warncomm
, current
->comm
);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 static bool sock_needs_netstamp(const struct sock
*sk
)
427 switch (sk
->sk_family
) {
436 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
438 if (sk
->sk_flags
& flags
) {
439 sk
->sk_flags
&= ~flags
;
440 if (sock_needs_netstamp(sk
) &&
441 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
442 net_disable_timestamp();
447 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
451 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
453 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
454 atomic_inc(&sk
->sk_drops
);
455 trace_sock_rcvqueue_full(sk
, skb
);
459 err
= sk_filter(sk
, skb
);
463 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
464 atomic_inc(&sk
->sk_drops
);
469 skb_set_owner_r(skb
, sk
);
471 /* we escape from rcu protected region, make sure we dont leak
476 spin_lock_irqsave(&list
->lock
, flags
);
477 sock_skb_set_dropcount(sk
, skb
);
478 __skb_queue_tail(list
, skb
);
479 spin_unlock_irqrestore(&list
->lock
, flags
);
481 if (!sock_flag(sk
, SOCK_DEAD
))
482 sk
->sk_data_ready(sk
);
485 EXPORT_SYMBOL(sock_queue_rcv_skb
);
487 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
489 int rc
= NET_RX_SUCCESS
;
491 if (sk_filter(sk
, skb
))
492 goto discard_and_relse
;
496 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
497 atomic_inc(&sk
->sk_drops
);
498 goto discard_and_relse
;
501 bh_lock_sock_nested(sk
);
504 if (!sock_owned_by_user(sk
)) {
506 * trylock + unlock semantics:
508 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
510 rc
= sk_backlog_rcv(sk
, skb
);
512 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
513 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
515 atomic_inc(&sk
->sk_drops
);
516 goto discard_and_relse
;
527 EXPORT_SYMBOL(sk_receive_skb
);
529 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
531 struct dst_entry
*dst
= __sk_dst_get(sk
);
533 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
534 sk_tx_queue_clear(sk
);
535 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
542 EXPORT_SYMBOL(__sk_dst_check
);
544 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
546 struct dst_entry
*dst
= sk_dst_get(sk
);
548 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
556 EXPORT_SYMBOL(sk_dst_check
);
558 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
561 int ret
= -ENOPROTOOPT
;
562 #ifdef CONFIG_NETDEVICES
563 struct net
*net
= sock_net(sk
);
564 char devname
[IFNAMSIZ
];
569 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
576 /* Bind this socket to a particular device like "eth0",
577 * as specified in the passed interface name. If the
578 * name is "" or the option length is zero the socket
581 if (optlen
> IFNAMSIZ
- 1)
582 optlen
= IFNAMSIZ
- 1;
583 memset(devname
, 0, sizeof(devname
));
586 if (copy_from_user(devname
, optval
, optlen
))
590 if (devname
[0] != '\0') {
591 struct net_device
*dev
;
594 dev
= dev_get_by_name_rcu(net
, devname
);
596 index
= dev
->ifindex
;
604 sk
->sk_bound_dev_if
= index
;
616 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
617 int __user
*optlen
, int len
)
619 int ret
= -ENOPROTOOPT
;
620 #ifdef CONFIG_NETDEVICES
621 struct net
*net
= sock_net(sk
);
622 char devname
[IFNAMSIZ
];
624 if (sk
->sk_bound_dev_if
== 0) {
633 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
637 len
= strlen(devname
) + 1;
640 if (copy_to_user(optval
, devname
, len
))
645 if (put_user(len
, optlen
))
656 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
659 sock_set_flag(sk
, bit
);
661 sock_reset_flag(sk
, bit
);
664 bool sk_mc_loop(struct sock
*sk
)
666 if (dev_recursion_level())
670 switch (sk
->sk_family
) {
672 return inet_sk(sk
)->mc_loop
;
673 #if IS_ENABLED(CONFIG_IPV6)
675 return inet6_sk(sk
)->mc_loop
;
681 EXPORT_SYMBOL(sk_mc_loop
);
684 * This is meant for all protocols to use and covers goings on
685 * at the socket level. Everything here is generic.
688 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
689 char __user
*optval
, unsigned int optlen
)
691 struct sock
*sk
= sock
->sk
;
698 * Options without arguments
701 if (optname
== SO_BINDTODEVICE
)
702 return sock_setbindtodevice(sk
, optval
, optlen
);
704 if (optlen
< sizeof(int))
707 if (get_user(val
, (int __user
*)optval
))
710 valbool
= val
? 1 : 0;
716 if (val
&& !capable(CAP_NET_ADMIN
))
719 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
722 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
725 sk
->sk_reuseport
= valbool
;
734 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
737 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
740 /* Don't error on this BSD doesn't and if you think
741 * about it this is right. Otherwise apps have to
742 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743 * are treated in BSD as hints
745 val
= min_t(u32
, val
, sysctl_wmem_max
);
747 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
748 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
749 /* Wake up sending tasks if we upped the value. */
750 sk
->sk_write_space(sk
);
754 if (!capable(CAP_NET_ADMIN
)) {
761 /* Don't error on this BSD doesn't and if you think
762 * about it this is right. Otherwise apps have to
763 * play 'guess the biggest size' games. RCVBUF/SNDBUF
764 * are treated in BSD as hints
766 val
= min_t(u32
, val
, sysctl_rmem_max
);
768 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
770 * We double it on the way in to account for
771 * "struct sk_buff" etc. overhead. Applications
772 * assume that the SO_RCVBUF setting they make will
773 * allow that much actual data to be received on that
776 * Applications are unaware that "struct sk_buff" and
777 * other overheads allocate from the receive buffer
778 * during socket buffer allocation.
780 * And after considering the possible alternatives,
781 * returning the value we actually used in getsockopt
782 * is the most desirable behavior.
784 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
788 if (!capable(CAP_NET_ADMIN
)) {
796 if (sk
->sk_protocol
== IPPROTO_TCP
&&
797 sk
->sk_type
== SOCK_STREAM
)
798 tcp_set_keepalive(sk
, valbool
);
800 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
804 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
808 sk
->sk_no_check_tx
= valbool
;
812 if ((val
>= 0 && val
<= 6) ||
813 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
814 sk
->sk_priority
= val
;
820 if (optlen
< sizeof(ling
)) {
821 ret
= -EINVAL
; /* 1003.1g */
824 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
829 sock_reset_flag(sk
, SOCK_LINGER
);
831 #if (BITS_PER_LONG == 32)
832 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
833 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
836 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
837 sock_set_flag(sk
, SOCK_LINGER
);
842 sock_warn_obsolete_bsdism("setsockopt");
847 set_bit(SOCK_PASSCRED
, &sock
->flags
);
849 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
855 if (optname
== SO_TIMESTAMP
)
856 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
858 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
859 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
860 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
862 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
863 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
867 case SO_TIMESTAMPING
:
868 if (val
& ~SOF_TIMESTAMPING_MASK
) {
873 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
874 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
875 if (sk
->sk_protocol
== IPPROTO_TCP
&&
876 sk
->sk_type
== SOCK_STREAM
) {
877 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
881 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
886 sk
->sk_tsflags
= val
;
887 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
888 sock_enable_timestamp(sk
,
889 SOCK_TIMESTAMPING_RX_SOFTWARE
);
891 sock_disable_timestamp(sk
,
892 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
898 sk
->sk_rcvlowat
= val
? : 1;
902 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
906 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
909 case SO_ATTACH_FILTER
:
911 if (optlen
== sizeof(struct sock_fprog
)) {
912 struct sock_fprog fprog
;
915 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
918 ret
= sk_attach_filter(&fprog
, sk
);
924 if (optlen
== sizeof(u32
)) {
928 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
931 ret
= sk_attach_bpf(ufd
, sk
);
935 case SO_DETACH_FILTER
:
936 ret
= sk_detach_filter(sk
);
940 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
943 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
948 set_bit(SOCK_PASSSEC
, &sock
->flags
);
950 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
953 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
960 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
964 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
968 if (sock
->ops
->set_peek_off
)
969 ret
= sock
->ops
->set_peek_off(sk
, val
);
975 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
978 case SO_SELECT_ERR_QUEUE
:
979 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
982 #ifdef CONFIG_NET_RX_BUSY_POLL
984 /* allow unprivileged users to decrease the value */
985 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
991 sk
->sk_ll_usec
= val
;
996 case SO_MAX_PACING_RATE
:
997 sk
->sk_max_pacing_rate
= val
;
998 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
999 sk
->sk_max_pacing_rate
);
1002 case SO_INCOMING_CPU
:
1003 sk
->sk_incoming_cpu
= val
;
1013 EXPORT_SYMBOL(sock_setsockopt
);
1016 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1017 struct ucred
*ucred
)
1019 ucred
->pid
= pid_vnr(pid
);
1020 ucred
->uid
= ucred
->gid
= -1;
1022 struct user_namespace
*current_ns
= current_user_ns();
1024 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1025 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1029 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1030 char __user
*optval
, int __user
*optlen
)
1032 struct sock
*sk
= sock
->sk
;
1040 int lv
= sizeof(int);
1043 if (get_user(len
, optlen
))
1048 memset(&v
, 0, sizeof(v
));
1052 v
.val
= sock_flag(sk
, SOCK_DBG
);
1056 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1060 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1064 v
.val
= sk
->sk_sndbuf
;
1068 v
.val
= sk
->sk_rcvbuf
;
1072 v
.val
= sk
->sk_reuse
;
1076 v
.val
= sk
->sk_reuseport
;
1080 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1084 v
.val
= sk
->sk_type
;
1088 v
.val
= sk
->sk_protocol
;
1092 v
.val
= sk
->sk_family
;
1096 v
.val
= -sock_error(sk
);
1098 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1102 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1106 v
.val
= sk
->sk_no_check_tx
;
1110 v
.val
= sk
->sk_priority
;
1114 lv
= sizeof(v
.ling
);
1115 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1116 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1120 sock_warn_obsolete_bsdism("getsockopt");
1124 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1125 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1128 case SO_TIMESTAMPNS
:
1129 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1132 case SO_TIMESTAMPING
:
1133 v
.val
= sk
->sk_tsflags
;
1137 lv
= sizeof(struct timeval
);
1138 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1142 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1143 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1148 lv
= sizeof(struct timeval
);
1149 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1153 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1154 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1159 v
.val
= sk
->sk_rcvlowat
;
1167 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1172 struct ucred peercred
;
1173 if (len
> sizeof(peercred
))
1174 len
= sizeof(peercred
);
1175 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1176 if (copy_to_user(optval
, &peercred
, len
))
1185 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1189 if (copy_to_user(optval
, address
, len
))
1194 /* Dubious BSD thing... Probably nobody even uses it, but
1195 * the UNIX standard wants it for whatever reason... -DaveM
1198 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1202 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1206 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1209 v
.val
= sk
->sk_mark
;
1213 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1216 case SO_WIFI_STATUS
:
1217 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1221 if (!sock
->ops
->set_peek_off
)
1224 v
.val
= sk
->sk_peek_off
;
1227 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1230 case SO_BINDTODEVICE
:
1231 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1234 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1240 case SO_LOCK_FILTER
:
1241 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1244 case SO_BPF_EXTENSIONS
:
1245 v
.val
= bpf_tell_extensions();
1248 case SO_SELECT_ERR_QUEUE
:
1249 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1252 #ifdef CONFIG_NET_RX_BUSY_POLL
1254 v
.val
= sk
->sk_ll_usec
;
1258 case SO_MAX_PACING_RATE
:
1259 v
.val
= sk
->sk_max_pacing_rate
;
1262 case SO_INCOMING_CPU
:
1263 v
.val
= sk
->sk_incoming_cpu
;
1267 /* We implement the SO_SNDLOWAT etc to not be settable
1270 return -ENOPROTOOPT
;
1275 if (copy_to_user(optval
, &v
, len
))
1278 if (put_user(len
, optlen
))
1284 * Initialize an sk_lock.
1286 * (We also register the sk_lock with the lock validator.)
1288 static inline void sock_lock_init(struct sock
*sk
)
1290 sock_lock_init_class_and_name(sk
,
1291 af_family_slock_key_strings
[sk
->sk_family
],
1292 af_family_slock_keys
+ sk
->sk_family
,
1293 af_family_key_strings
[sk
->sk_family
],
1294 af_family_keys
+ sk
->sk_family
);
1298 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1299 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1300 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1302 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1304 #ifdef CONFIG_SECURITY_NETWORK
1305 void *sptr
= nsk
->sk_security
;
1307 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1309 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1310 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 nsk
->sk_security
= sptr
;
1314 security_sk_clone(osk
, nsk
);
1318 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1320 unsigned long nulls1
, nulls2
;
1322 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1323 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1324 if (nulls1
> nulls2
)
1325 swap(nulls1
, nulls2
);
1328 memset((char *)sk
, 0, nulls1
);
1329 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1330 nulls2
- nulls1
- sizeof(void *));
1331 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1332 size
- nulls2
- sizeof(void *));
1334 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1336 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1340 struct kmem_cache
*slab
;
1344 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1347 if (priority
& __GFP_ZERO
) {
1349 prot
->clear_sk(sk
, prot
->obj_size
);
1351 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1354 sk
= kmalloc(prot
->obj_size
, priority
);
1357 kmemcheck_annotate_bitfield(sk
, flags
);
1359 if (security_sk_alloc(sk
, family
, priority
))
1362 if (!try_module_get(prot
->owner
))
1364 sk_tx_queue_clear(sk
);
1370 security_sk_free(sk
);
1373 kmem_cache_free(slab
, sk
);
1379 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1381 struct kmem_cache
*slab
;
1382 struct module
*owner
;
1384 owner
= prot
->owner
;
1387 security_sk_free(sk
);
1389 kmem_cache_free(slab
, sk
);
1395 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1396 void sock_update_netprioidx(struct sock
*sk
)
1401 sk
->sk_cgrp_prioidx
= task_netprioidx(current
);
1403 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1407 * sk_alloc - All socket objects are allocated here
1408 * @net: the applicable net namespace
1409 * @family: protocol family
1410 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1411 * @prot: struct proto associated with this new sock instance
1412 * @kern: is this to be a kernel socket?
1414 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1415 struct proto
*prot
, int kern
)
1419 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1421 sk
->sk_family
= family
;
1423 * See comment in struct sock definition to understand
1424 * why we need sk_prot_creator -acme
1426 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1428 sk
->sk_net_refcnt
= kern
? 0 : 1;
1429 if (likely(sk
->sk_net_refcnt
))
1431 sock_net_set(sk
, net
);
1432 atomic_set(&sk
->sk_wmem_alloc
, 1);
1434 sock_update_classid(sk
);
1435 sock_update_netprioidx(sk
);
1440 EXPORT_SYMBOL(sk_alloc
);
1442 void sk_destruct(struct sock
*sk
)
1444 struct sk_filter
*filter
;
1446 if (sk
->sk_destruct
)
1447 sk
->sk_destruct(sk
);
1449 filter
= rcu_dereference_check(sk
->sk_filter
,
1450 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1452 sk_filter_uncharge(sk
, filter
);
1453 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1456 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1458 if (atomic_read(&sk
->sk_omem_alloc
))
1459 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1460 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1462 if (sk
->sk_frag
.page
) {
1463 put_page(sk
->sk_frag
.page
);
1464 sk
->sk_frag
.page
= NULL
;
1467 if (sk
->sk_peer_cred
)
1468 put_cred(sk
->sk_peer_cred
);
1469 put_pid(sk
->sk_peer_pid
);
1470 if (likely(sk
->sk_net_refcnt
))
1471 put_net(sock_net(sk
));
1472 sk_prot_free(sk
->sk_prot_creator
, sk
);
1475 static void __sk_free(struct sock
*sk
)
1477 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1478 sock_diag_broadcast_destroy(sk
);
1483 void sk_free(struct sock
*sk
)
1486 * We subtract one from sk_wmem_alloc and can know if
1487 * some packets are still in some tx queue.
1488 * If not null, sock_wfree() will call __sk_free(sk) later
1490 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1493 EXPORT_SYMBOL(sk_free
);
1495 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1497 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1498 sock_update_memcg(newsk
);
1502 * sk_clone_lock - clone a socket, and lock its clone
1503 * @sk: the socket to clone
1504 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1506 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1508 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1511 bool is_charged
= true;
1513 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1514 if (newsk
!= NULL
) {
1515 struct sk_filter
*filter
;
1517 sock_copy(newsk
, sk
);
1519 newsk
->sk_prot_creator
= sk
->sk_prot
;
1522 if (likely(newsk
->sk_net_refcnt
))
1523 get_net(sock_net(newsk
));
1524 sk_node_init(&newsk
->sk_node
);
1525 sock_lock_init(newsk
);
1526 bh_lock_sock(newsk
);
1527 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1528 newsk
->sk_backlog
.len
= 0;
1530 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1532 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1534 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1535 atomic_set(&newsk
->sk_omem_alloc
, 0);
1536 skb_queue_head_init(&newsk
->sk_receive_queue
);
1537 skb_queue_head_init(&newsk
->sk_write_queue
);
1539 rwlock_init(&newsk
->sk_callback_lock
);
1540 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1541 af_callback_keys
+ newsk
->sk_family
,
1542 af_family_clock_key_strings
[newsk
->sk_family
]);
1544 newsk
->sk_dst_cache
= NULL
;
1545 newsk
->sk_wmem_queued
= 0;
1546 newsk
->sk_forward_alloc
= 0;
1547 newsk
->sk_send_head
= NULL
;
1548 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1550 sock_reset_flag(newsk
, SOCK_DONE
);
1551 skb_queue_head_init(&newsk
->sk_error_queue
);
1553 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1555 /* though it's an empty new sock, the charging may fail
1556 * if sysctl_optmem_max was changed between creation of
1557 * original socket and cloning
1559 is_charged
= sk_filter_charge(newsk
, filter
);
1561 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1562 /* We need to make sure that we don't uncharge the new
1563 * socket if we couldn't charge it in the first place
1564 * as otherwise we uncharge the parent's filter.
1567 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1568 /* It is still raw copy of parent, so invalidate
1569 * destructor and make plain sk_free() */
1570 newsk
->sk_destruct
= NULL
;
1571 bh_unlock_sock(newsk
);
1578 newsk
->sk_err_soft
= 0;
1579 newsk
->sk_priority
= 0;
1580 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1581 atomic64_set(&newsk
->sk_cookie
, 0);
1583 * Before updating sk_refcnt, we must commit prior changes to memory
1584 * (Documentation/RCU/rculist_nulls.txt for details)
1587 atomic_set(&newsk
->sk_refcnt
, 2);
1590 * Increment the counter in the same struct proto as the master
1591 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1592 * is the same as sk->sk_prot->socks, as this field was copied
1595 * This _changes_ the previous behaviour, where
1596 * tcp_create_openreq_child always was incrementing the
1597 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1598 * to be taken into account in all callers. -acme
1600 sk_refcnt_debug_inc(newsk
);
1601 sk_set_socket(newsk
, NULL
);
1602 newsk
->sk_wq
= NULL
;
1604 sk_update_clone(sk
, newsk
);
1606 if (newsk
->sk_prot
->sockets_allocated
)
1607 sk_sockets_allocated_inc(newsk
);
1609 if (sock_needs_netstamp(sk
) &&
1610 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1611 net_enable_timestamp();
1616 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1618 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1622 sk_dst_set(sk
, dst
);
1623 sk
->sk_route_caps
= dst
->dev
->features
;
1624 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1625 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1626 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1627 if (sk_can_gso(sk
)) {
1628 if (dst
->header_len
) {
1629 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1631 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1632 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1633 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1636 sk
->sk_gso_max_segs
= max_segs
;
1638 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1641 * Simple resource managers for sockets.
1646 * Write buffer destructor automatically called from kfree_skb.
1648 void sock_wfree(struct sk_buff
*skb
)
1650 struct sock
*sk
= skb
->sk
;
1651 unsigned int len
= skb
->truesize
;
1653 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1655 * Keep a reference on sk_wmem_alloc, this will be released
1656 * after sk_write_space() call
1658 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1659 sk
->sk_write_space(sk
);
1663 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1664 * could not do because of in-flight packets
1666 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1669 EXPORT_SYMBOL(sock_wfree
);
1671 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1676 if (unlikely(!sk_fullsock(sk
))) {
1677 skb
->destructor
= sock_edemux
;
1682 skb
->destructor
= sock_wfree
;
1683 skb_set_hash_from_sk(skb
, sk
);
1685 * We used to take a refcount on sk, but following operation
1686 * is enough to guarantee sk_free() wont free this sock until
1687 * all in-flight packets are completed
1689 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1691 EXPORT_SYMBOL(skb_set_owner_w
);
1693 void skb_orphan_partial(struct sk_buff
*skb
)
1695 if (skb
->destructor
== sock_wfree
1697 || skb
->destructor
== tcp_wfree
1700 struct sock
*sk
= skb
->sk
;
1702 if (atomic_inc_not_zero(&sk
->sk_refcnt
)) {
1703 atomic_sub(skb
->truesize
, &sk
->sk_wmem_alloc
);
1704 skb
->destructor
= sock_efree
;
1710 EXPORT_SYMBOL(skb_orphan_partial
);
1713 * Read buffer destructor automatically called from kfree_skb.
1715 void sock_rfree(struct sk_buff
*skb
)
1717 struct sock
*sk
= skb
->sk
;
1718 unsigned int len
= skb
->truesize
;
1720 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1721 sk_mem_uncharge(sk
, len
);
1723 EXPORT_SYMBOL(sock_rfree
);
1726 * Buffer destructor for skbs that are not used directly in read or write
1727 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1729 void sock_efree(struct sk_buff
*skb
)
1733 EXPORT_SYMBOL(sock_efree
);
1735 kuid_t
sock_i_uid(struct sock
*sk
)
1739 read_lock_bh(&sk
->sk_callback_lock
);
1740 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1741 read_unlock_bh(&sk
->sk_callback_lock
);
1744 EXPORT_SYMBOL(sock_i_uid
);
1746 unsigned long sock_i_ino(struct sock
*sk
)
1750 read_lock_bh(&sk
->sk_callback_lock
);
1751 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1752 read_unlock_bh(&sk
->sk_callback_lock
);
1755 EXPORT_SYMBOL(sock_i_ino
);
1758 * Allocate a skb from the socket's send buffer.
1760 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1763 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1764 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1766 skb_set_owner_w(skb
, sk
);
1772 EXPORT_SYMBOL(sock_wmalloc
);
1775 * Allocate a memory block from the socket's option memory buffer.
1777 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1779 if ((unsigned int)size
<= sysctl_optmem_max
&&
1780 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1782 /* First do the add, to avoid the race if kmalloc
1785 atomic_add(size
, &sk
->sk_omem_alloc
);
1786 mem
= kmalloc(size
, priority
);
1789 atomic_sub(size
, &sk
->sk_omem_alloc
);
1793 EXPORT_SYMBOL(sock_kmalloc
);
1795 /* Free an option memory block. Note, we actually want the inline
1796 * here as this allows gcc to detect the nullify and fold away the
1797 * condition entirely.
1799 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
1802 if (WARN_ON_ONCE(!mem
))
1808 atomic_sub(size
, &sk
->sk_omem_alloc
);
1811 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1813 __sock_kfree_s(sk
, mem
, size
, false);
1815 EXPORT_SYMBOL(sock_kfree_s
);
1817 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
1819 __sock_kfree_s(sk
, mem
, size
, true);
1821 EXPORT_SYMBOL(sock_kzfree_s
);
1823 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1824 I think, these locks should be removed for datagram sockets.
1826 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1830 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1834 if (signal_pending(current
))
1836 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1837 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1838 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1840 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1844 timeo
= schedule_timeout(timeo
);
1846 finish_wait(sk_sleep(sk
), &wait
);
1852 * Generic send/receive buffer handlers
1855 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1856 unsigned long data_len
, int noblock
,
1857 int *errcode
, int max_page_order
)
1859 struct sk_buff
*skb
;
1863 timeo
= sock_sndtimeo(sk
, noblock
);
1865 err
= sock_error(sk
);
1870 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1873 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
1876 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1877 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1881 if (signal_pending(current
))
1883 timeo
= sock_wait_for_wmem(sk
, timeo
);
1885 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
1886 errcode
, sk
->sk_allocation
);
1888 skb_set_owner_w(skb
, sk
);
1892 err
= sock_intr_errno(timeo
);
1897 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1899 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1900 int noblock
, int *errcode
)
1902 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1904 EXPORT_SYMBOL(sock_alloc_send_skb
);
1906 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
1907 struct sockcm_cookie
*sockc
)
1909 struct cmsghdr
*cmsg
;
1911 for_each_cmsghdr(cmsg
, msg
) {
1912 if (!CMSG_OK(msg
, cmsg
))
1914 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
1916 switch (cmsg
->cmsg_type
) {
1918 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
1920 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
1922 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
1930 EXPORT_SYMBOL(sock_cmsg_send
);
1932 /* On 32bit arches, an skb frag is limited to 2^15 */
1933 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1936 * skb_page_frag_refill - check that a page_frag contains enough room
1937 * @sz: minimum size of the fragment we want to get
1938 * @pfrag: pointer to page_frag
1939 * @gfp: priority for memory allocation
1941 * Note: While this allocator tries to use high order pages, there is
1942 * no guarantee that allocations succeed. Therefore, @sz MUST be
1943 * less or equal than PAGE_SIZE.
1945 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
1948 if (atomic_read(&pfrag
->page
->_count
) == 1) {
1952 if (pfrag
->offset
+ sz
<= pfrag
->size
)
1954 put_page(pfrag
->page
);
1958 if (SKB_FRAG_PAGE_ORDER
) {
1959 /* Avoid direct reclaim but allow kswapd to wake */
1960 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
1961 __GFP_COMP
| __GFP_NOWARN
|
1963 SKB_FRAG_PAGE_ORDER
);
1964 if (likely(pfrag
->page
)) {
1965 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
1969 pfrag
->page
= alloc_page(gfp
);
1970 if (likely(pfrag
->page
)) {
1971 pfrag
->size
= PAGE_SIZE
;
1976 EXPORT_SYMBOL(skb_page_frag_refill
);
1978 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
1980 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
1983 sk_enter_memory_pressure(sk
);
1984 sk_stream_moderate_sndbuf(sk
);
1987 EXPORT_SYMBOL(sk_page_frag_refill
);
1989 static void __lock_sock(struct sock
*sk
)
1990 __releases(&sk
->sk_lock
.slock
)
1991 __acquires(&sk
->sk_lock
.slock
)
1996 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1997 TASK_UNINTERRUPTIBLE
);
1998 spin_unlock_bh(&sk
->sk_lock
.slock
);
2000 spin_lock_bh(&sk
->sk_lock
.slock
);
2001 if (!sock_owned_by_user(sk
))
2004 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2007 static void __release_sock(struct sock
*sk
)
2008 __releases(&sk
->sk_lock
.slock
)
2009 __acquires(&sk
->sk_lock
.slock
)
2011 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
2014 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2018 struct sk_buff
*next
= skb
->next
;
2021 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2023 sk_backlog_rcv(sk
, skb
);
2026 * We are in process context here with softirqs
2027 * disabled, use cond_resched_softirq() to preempt.
2028 * This is safe to do because we've taken the backlog
2031 cond_resched_softirq();
2034 } while (skb
!= NULL
);
2037 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
2040 * Doing the zeroing here guarantee we can not loop forever
2041 * while a wild producer attempts to flood us.
2043 sk
->sk_backlog
.len
= 0;
2047 * sk_wait_data - wait for data to arrive at sk_receive_queue
2048 * @sk: sock to wait on
2049 * @timeo: for how long
2050 * @skb: last skb seen on sk_receive_queue
2052 * Now socket state including sk->sk_err is changed only under lock,
2053 * hence we may omit checks after joining wait queue.
2054 * We check receive queue before schedule() only as optimization;
2055 * it is very likely that release_sock() added new data.
2057 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2062 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2063 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2064 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
);
2065 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2066 finish_wait(sk_sleep(sk
), &wait
);
2069 EXPORT_SYMBOL(sk_wait_data
);
2072 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2074 * @size: memory size to allocate
2075 * @kind: allocation type
2077 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2078 * rmem allocation. This function assumes that protocols which have
2079 * memory_pressure use sk_wmem_queued as write buffer accounting.
2081 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2083 struct proto
*prot
= sk
->sk_prot
;
2084 int amt
= sk_mem_pages(size
);
2086 int parent_status
= UNDER_LIMIT
;
2088 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2090 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
2093 if (parent_status
== UNDER_LIMIT
&&
2094 allocated
<= sk_prot_mem_limits(sk
, 0)) {
2095 sk_leave_memory_pressure(sk
);
2099 /* Under pressure. (we or our parents) */
2100 if ((parent_status
> SOFT_LIMIT
) ||
2101 allocated
> sk_prot_mem_limits(sk
, 1))
2102 sk_enter_memory_pressure(sk
);
2104 /* Over hard limit (we or our parents) */
2105 if ((parent_status
== OVER_LIMIT
) ||
2106 (allocated
> sk_prot_mem_limits(sk
, 2)))
2107 goto suppress_allocation
;
2109 /* guarantee minimum buffer size under pressure */
2110 if (kind
== SK_MEM_RECV
) {
2111 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2114 } else { /* SK_MEM_SEND */
2115 if (sk
->sk_type
== SOCK_STREAM
) {
2116 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2118 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
2119 prot
->sysctl_wmem
[0])
2123 if (sk_has_memory_pressure(sk
)) {
2126 if (!sk_under_memory_pressure(sk
))
2128 alloc
= sk_sockets_allocated_read_positive(sk
);
2129 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2130 sk_mem_pages(sk
->sk_wmem_queued
+
2131 atomic_read(&sk
->sk_rmem_alloc
) +
2132 sk
->sk_forward_alloc
))
2136 suppress_allocation
:
2138 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2139 sk_stream_moderate_sndbuf(sk
);
2141 /* Fail only if socket is _under_ its sndbuf.
2142 * In this case we cannot block, so that we have to fail.
2144 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2148 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2150 /* Alas. Undo changes. */
2151 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2153 sk_memory_allocated_sub(sk
, amt
);
2157 EXPORT_SYMBOL(__sk_mem_schedule
);
2160 * __sk_mem_reclaim - reclaim memory_allocated
2162 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2164 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2166 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2167 sk_memory_allocated_sub(sk
, amount
);
2168 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2170 if (sk_under_memory_pressure(sk
) &&
2171 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2172 sk_leave_memory_pressure(sk
);
2174 EXPORT_SYMBOL(__sk_mem_reclaim
);
2178 * Set of default routines for initialising struct proto_ops when
2179 * the protocol does not support a particular function. In certain
2180 * cases where it makes no sense for a protocol to have a "do nothing"
2181 * function, some default processing is provided.
2184 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2188 EXPORT_SYMBOL(sock_no_bind
);
2190 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2195 EXPORT_SYMBOL(sock_no_connect
);
2197 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2201 EXPORT_SYMBOL(sock_no_socketpair
);
2203 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2207 EXPORT_SYMBOL(sock_no_accept
);
2209 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2214 EXPORT_SYMBOL(sock_no_getname
);
2216 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2220 EXPORT_SYMBOL(sock_no_poll
);
2222 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2226 EXPORT_SYMBOL(sock_no_ioctl
);
2228 int sock_no_listen(struct socket
*sock
, int backlog
)
2232 EXPORT_SYMBOL(sock_no_listen
);
2234 int sock_no_shutdown(struct socket
*sock
, int how
)
2238 EXPORT_SYMBOL(sock_no_shutdown
);
2240 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2241 char __user
*optval
, unsigned int optlen
)
2245 EXPORT_SYMBOL(sock_no_setsockopt
);
2247 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2248 char __user
*optval
, int __user
*optlen
)
2252 EXPORT_SYMBOL(sock_no_getsockopt
);
2254 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2258 EXPORT_SYMBOL(sock_no_sendmsg
);
2260 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2265 EXPORT_SYMBOL(sock_no_recvmsg
);
2267 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2269 /* Mirror missing mmap method error code */
2272 EXPORT_SYMBOL(sock_no_mmap
);
2274 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2277 struct msghdr msg
= {.msg_flags
= flags
};
2279 char *kaddr
= kmap(page
);
2280 iov
.iov_base
= kaddr
+ offset
;
2282 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2286 EXPORT_SYMBOL(sock_no_sendpage
);
2289 * Default Socket Callbacks
2292 static void sock_def_wakeup(struct sock
*sk
)
2294 struct socket_wq
*wq
;
2297 wq
= rcu_dereference(sk
->sk_wq
);
2298 if (wq_has_sleeper(wq
))
2299 wake_up_interruptible_all(&wq
->wait
);
2303 static void sock_def_error_report(struct sock
*sk
)
2305 struct socket_wq
*wq
;
2308 wq
= rcu_dereference(sk
->sk_wq
);
2309 if (wq_has_sleeper(wq
))
2310 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2311 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2315 static void sock_def_readable(struct sock
*sk
)
2317 struct socket_wq
*wq
;
2320 wq
= rcu_dereference(sk
->sk_wq
);
2321 if (wq_has_sleeper(wq
))
2322 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2323 POLLRDNORM
| POLLRDBAND
);
2324 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2328 static void sock_def_write_space(struct sock
*sk
)
2330 struct socket_wq
*wq
;
2334 /* Do not wake up a writer until he can make "significant"
2337 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2338 wq
= rcu_dereference(sk
->sk_wq
);
2339 if (wq_has_sleeper(wq
))
2340 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2341 POLLWRNORM
| POLLWRBAND
);
2343 /* Should agree with poll, otherwise some programs break */
2344 if (sock_writeable(sk
))
2345 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2351 static void sock_def_destruct(struct sock
*sk
)
2355 void sk_send_sigurg(struct sock
*sk
)
2357 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2358 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2359 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2361 EXPORT_SYMBOL(sk_send_sigurg
);
2363 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2364 unsigned long expires
)
2366 if (!mod_timer(timer
, expires
))
2369 EXPORT_SYMBOL(sk_reset_timer
);
2371 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2373 if (del_timer(timer
))
2376 EXPORT_SYMBOL(sk_stop_timer
);
2378 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2380 skb_queue_head_init(&sk
->sk_receive_queue
);
2381 skb_queue_head_init(&sk
->sk_write_queue
);
2382 skb_queue_head_init(&sk
->sk_error_queue
);
2384 sk
->sk_send_head
= NULL
;
2386 init_timer(&sk
->sk_timer
);
2388 sk
->sk_allocation
= GFP_KERNEL
;
2389 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2390 sk
->sk_sndbuf
= sysctl_wmem_default
;
2391 sk
->sk_state
= TCP_CLOSE
;
2392 sk_set_socket(sk
, sock
);
2394 sock_set_flag(sk
, SOCK_ZAPPED
);
2397 sk
->sk_type
= sock
->type
;
2398 sk
->sk_wq
= sock
->wq
;
2403 rwlock_init(&sk
->sk_callback_lock
);
2404 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2405 af_callback_keys
+ sk
->sk_family
,
2406 af_family_clock_key_strings
[sk
->sk_family
]);
2408 sk
->sk_state_change
= sock_def_wakeup
;
2409 sk
->sk_data_ready
= sock_def_readable
;
2410 sk
->sk_write_space
= sock_def_write_space
;
2411 sk
->sk_error_report
= sock_def_error_report
;
2412 sk
->sk_destruct
= sock_def_destruct
;
2414 sk
->sk_frag
.page
= NULL
;
2415 sk
->sk_frag
.offset
= 0;
2416 sk
->sk_peek_off
= -1;
2418 sk
->sk_peer_pid
= NULL
;
2419 sk
->sk_peer_cred
= NULL
;
2420 sk
->sk_write_pending
= 0;
2421 sk
->sk_rcvlowat
= 1;
2422 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2423 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2425 sk
->sk_stamp
= ktime_set(-1L, 0);
2426 #if BITS_PER_LONG==32
2427 seqlock_init(&sk
->sk_stamp_seq
);
2430 #ifdef CONFIG_NET_RX_BUSY_POLL
2432 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2435 sk
->sk_max_pacing_rate
= ~0U;
2436 sk
->sk_pacing_rate
= ~0U;
2437 sk
->sk_incoming_cpu
= -1;
2439 * Before updating sk_refcnt, we must commit prior changes to memory
2440 * (Documentation/RCU/rculist_nulls.txt for details)
2443 atomic_set(&sk
->sk_refcnt
, 1);
2444 atomic_set(&sk
->sk_drops
, 0);
2446 EXPORT_SYMBOL(sock_init_data
);
2448 void lock_sock_nested(struct sock
*sk
, int subclass
)
2451 spin_lock_bh(&sk
->sk_lock
.slock
);
2452 if (sk
->sk_lock
.owned
)
2454 sk
->sk_lock
.owned
= 1;
2455 spin_unlock(&sk
->sk_lock
.slock
);
2457 * The sk_lock has mutex_lock() semantics here:
2459 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2462 EXPORT_SYMBOL(lock_sock_nested
);
2464 void release_sock(struct sock
*sk
)
2467 * The sk_lock has mutex_unlock() semantics:
2469 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2471 spin_lock_bh(&sk
->sk_lock
.slock
);
2472 if (sk
->sk_backlog
.tail
)
2475 /* Warning : release_cb() might need to release sk ownership,
2476 * ie call sock_release_ownership(sk) before us.
2478 if (sk
->sk_prot
->release_cb
)
2479 sk
->sk_prot
->release_cb(sk
);
2481 sock_release_ownership(sk
);
2482 if (waitqueue_active(&sk
->sk_lock
.wq
))
2483 wake_up(&sk
->sk_lock
.wq
);
2484 spin_unlock_bh(&sk
->sk_lock
.slock
);
2486 EXPORT_SYMBOL(release_sock
);
2489 * lock_sock_fast - fast version of lock_sock
2492 * This version should be used for very small section, where process wont block
2493 * return false if fast path is taken
2494 * sk_lock.slock locked, owned = 0, BH disabled
2495 * return true if slow path is taken
2496 * sk_lock.slock unlocked, owned = 1, BH enabled
2498 bool lock_sock_fast(struct sock
*sk
)
2501 spin_lock_bh(&sk
->sk_lock
.slock
);
2503 if (!sk
->sk_lock
.owned
)
2505 * Note : We must disable BH
2510 sk
->sk_lock
.owned
= 1;
2511 spin_unlock(&sk
->sk_lock
.slock
);
2513 * The sk_lock has mutex_lock() semantics here:
2515 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2519 EXPORT_SYMBOL(lock_sock_fast
);
2521 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2524 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2525 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2526 tv
= ktime_to_timeval(sk
->sk_stamp
);
2527 if (tv
.tv_sec
== -1)
2529 if (tv
.tv_sec
== 0) {
2530 sk
->sk_stamp
= ktime_get_real();
2531 tv
= ktime_to_timeval(sk
->sk_stamp
);
2533 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2535 EXPORT_SYMBOL(sock_get_timestamp
);
2537 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2540 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2541 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2542 ts
= ktime_to_timespec(sk
->sk_stamp
);
2543 if (ts
.tv_sec
== -1)
2545 if (ts
.tv_sec
== 0) {
2546 sk
->sk_stamp
= ktime_get_real();
2547 ts
= ktime_to_timespec(sk
->sk_stamp
);
2549 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2551 EXPORT_SYMBOL(sock_get_timestampns
);
2553 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2555 if (!sock_flag(sk
, flag
)) {
2556 unsigned long previous_flags
= sk
->sk_flags
;
2558 sock_set_flag(sk
, flag
);
2560 * we just set one of the two flags which require net
2561 * time stamping, but time stamping might have been on
2562 * already because of the other one
2564 if (sock_needs_netstamp(sk
) &&
2565 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2566 net_enable_timestamp();
2570 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2571 int level
, int type
)
2573 struct sock_exterr_skb
*serr
;
2574 struct sk_buff
*skb
;
2578 skb
= sock_dequeue_err_skb(sk
);
2584 msg
->msg_flags
|= MSG_TRUNC
;
2587 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2591 sock_recv_timestamp(msg
, sk
, skb
);
2593 serr
= SKB_EXT_ERR(skb
);
2594 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2596 msg
->msg_flags
|= MSG_ERRQUEUE
;
2604 EXPORT_SYMBOL(sock_recv_errqueue
);
2607 * Get a socket option on an socket.
2609 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2610 * asynchronous errors should be reported by getsockopt. We assume
2611 * this means if you specify SO_ERROR (otherwise whats the point of it).
2613 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2614 char __user
*optval
, int __user
*optlen
)
2616 struct sock
*sk
= sock
->sk
;
2618 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2620 EXPORT_SYMBOL(sock_common_getsockopt
);
2622 #ifdef CONFIG_COMPAT
2623 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2624 char __user
*optval
, int __user
*optlen
)
2626 struct sock
*sk
= sock
->sk
;
2628 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2629 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2631 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2633 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2636 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2639 struct sock
*sk
= sock
->sk
;
2643 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2644 flags
& ~MSG_DONTWAIT
, &addr_len
);
2646 msg
->msg_namelen
= addr_len
;
2649 EXPORT_SYMBOL(sock_common_recvmsg
);
2652 * Set socket options on an inet socket.
2654 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2655 char __user
*optval
, unsigned int optlen
)
2657 struct sock
*sk
= sock
->sk
;
2659 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2661 EXPORT_SYMBOL(sock_common_setsockopt
);
2663 #ifdef CONFIG_COMPAT
2664 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2665 char __user
*optval
, unsigned int optlen
)
2667 struct sock
*sk
= sock
->sk
;
2669 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2670 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2672 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2674 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2677 void sk_common_release(struct sock
*sk
)
2679 if (sk
->sk_prot
->destroy
)
2680 sk
->sk_prot
->destroy(sk
);
2683 * Observation: when sock_common_release is called, processes have
2684 * no access to socket. But net still has.
2685 * Step one, detach it from networking:
2687 * A. Remove from hash tables.
2690 sk
->sk_prot
->unhash(sk
);
2693 * In this point socket cannot receive new packets, but it is possible
2694 * that some packets are in flight because some CPU runs receiver and
2695 * did hash table lookup before we unhashed socket. They will achieve
2696 * receive queue and will be purged by socket destructor.
2698 * Also we still have packets pending on receive queue and probably,
2699 * our own packets waiting in device queues. sock_destroy will drain
2700 * receive queue, but transmitted packets will delay socket destruction
2701 * until the last reference will be released.
2706 xfrm_sk_free_policy(sk
);
2708 sk_refcnt_debug_release(sk
);
2712 EXPORT_SYMBOL(sk_common_release
);
2714 #ifdef CONFIG_PROC_FS
2715 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2717 int val
[PROTO_INUSE_NR
];
2720 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2722 #ifdef CONFIG_NET_NS
2723 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2725 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2727 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2729 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2731 int cpu
, idx
= prot
->inuse_idx
;
2734 for_each_possible_cpu(cpu
)
2735 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2737 return res
>= 0 ? res
: 0;
2739 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2741 static int __net_init
sock_inuse_init_net(struct net
*net
)
2743 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2744 return net
->core
.inuse
? 0 : -ENOMEM
;
2747 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2749 free_percpu(net
->core
.inuse
);
2752 static struct pernet_operations net_inuse_ops
= {
2753 .init
= sock_inuse_init_net
,
2754 .exit
= sock_inuse_exit_net
,
2757 static __init
int net_inuse_init(void)
2759 if (register_pernet_subsys(&net_inuse_ops
))
2760 panic("Cannot initialize net inuse counters");
2765 core_initcall(net_inuse_init
);
2767 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2769 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2771 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2773 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2775 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2777 int cpu
, idx
= prot
->inuse_idx
;
2780 for_each_possible_cpu(cpu
)
2781 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2783 return res
>= 0 ? res
: 0;
2785 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2788 static void assign_proto_idx(struct proto
*prot
)
2790 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2792 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2793 pr_err("PROTO_INUSE_NR exhausted\n");
2797 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2800 static void release_proto_idx(struct proto
*prot
)
2802 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2803 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2806 static inline void assign_proto_idx(struct proto
*prot
)
2810 static inline void release_proto_idx(struct proto
*prot
)
2815 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
2819 kfree(rsk_prot
->slab_name
);
2820 rsk_prot
->slab_name
= NULL
;
2821 kmem_cache_destroy(rsk_prot
->slab
);
2822 rsk_prot
->slab
= NULL
;
2825 static int req_prot_init(const struct proto
*prot
)
2827 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
2832 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
2834 if (!rsk_prot
->slab_name
)
2837 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
2838 rsk_prot
->obj_size
, 0,
2839 prot
->slab_flags
, NULL
);
2841 if (!rsk_prot
->slab
) {
2842 pr_crit("%s: Can't create request sock SLAB cache!\n",
2849 int proto_register(struct proto
*prot
, int alloc_slab
)
2852 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2853 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2856 if (prot
->slab
== NULL
) {
2857 pr_crit("%s: Can't create sock SLAB cache!\n",
2862 if (req_prot_init(prot
))
2863 goto out_free_request_sock_slab
;
2865 if (prot
->twsk_prot
!= NULL
) {
2866 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2868 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2869 goto out_free_request_sock_slab
;
2871 prot
->twsk_prot
->twsk_slab
=
2872 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2873 prot
->twsk_prot
->twsk_obj_size
,
2877 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2878 goto out_free_timewait_sock_slab_name
;
2882 mutex_lock(&proto_list_mutex
);
2883 list_add(&prot
->node
, &proto_list
);
2884 assign_proto_idx(prot
);
2885 mutex_unlock(&proto_list_mutex
);
2888 out_free_timewait_sock_slab_name
:
2889 kfree(prot
->twsk_prot
->twsk_slab_name
);
2890 out_free_request_sock_slab
:
2891 req_prot_cleanup(prot
->rsk_prot
);
2893 kmem_cache_destroy(prot
->slab
);
2898 EXPORT_SYMBOL(proto_register
);
2900 void proto_unregister(struct proto
*prot
)
2902 mutex_lock(&proto_list_mutex
);
2903 release_proto_idx(prot
);
2904 list_del(&prot
->node
);
2905 mutex_unlock(&proto_list_mutex
);
2907 kmem_cache_destroy(prot
->slab
);
2910 req_prot_cleanup(prot
->rsk_prot
);
2912 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2913 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2914 kfree(prot
->twsk_prot
->twsk_slab_name
);
2915 prot
->twsk_prot
->twsk_slab
= NULL
;
2918 EXPORT_SYMBOL(proto_unregister
);
2920 #ifdef CONFIG_PROC_FS
2921 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2922 __acquires(proto_list_mutex
)
2924 mutex_lock(&proto_list_mutex
);
2925 return seq_list_start_head(&proto_list
, *pos
);
2928 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2930 return seq_list_next(v
, &proto_list
, pos
);
2933 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2934 __releases(proto_list_mutex
)
2936 mutex_unlock(&proto_list_mutex
);
2939 static char proto_method_implemented(const void *method
)
2941 return method
== NULL
? 'n' : 'y';
2943 static long sock_prot_memory_allocated(struct proto
*proto
)
2945 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2948 static char *sock_prot_memory_pressure(struct proto
*proto
)
2950 return proto
->memory_pressure
!= NULL
?
2951 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2954 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2957 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2958 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2961 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2962 sock_prot_memory_allocated(proto
),
2963 sock_prot_memory_pressure(proto
),
2965 proto
->slab
== NULL
? "no" : "yes",
2966 module_name(proto
->owner
),
2967 proto_method_implemented(proto
->close
),
2968 proto_method_implemented(proto
->connect
),
2969 proto_method_implemented(proto
->disconnect
),
2970 proto_method_implemented(proto
->accept
),
2971 proto_method_implemented(proto
->ioctl
),
2972 proto_method_implemented(proto
->init
),
2973 proto_method_implemented(proto
->destroy
),
2974 proto_method_implemented(proto
->shutdown
),
2975 proto_method_implemented(proto
->setsockopt
),
2976 proto_method_implemented(proto
->getsockopt
),
2977 proto_method_implemented(proto
->sendmsg
),
2978 proto_method_implemented(proto
->recvmsg
),
2979 proto_method_implemented(proto
->sendpage
),
2980 proto_method_implemented(proto
->bind
),
2981 proto_method_implemented(proto
->backlog_rcv
),
2982 proto_method_implemented(proto
->hash
),
2983 proto_method_implemented(proto
->unhash
),
2984 proto_method_implemented(proto
->get_port
),
2985 proto_method_implemented(proto
->enter_memory_pressure
));
2988 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2990 if (v
== &proto_list
)
2991 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3000 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3002 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3006 static const struct seq_operations proto_seq_ops
= {
3007 .start
= proto_seq_start
,
3008 .next
= proto_seq_next
,
3009 .stop
= proto_seq_stop
,
3010 .show
= proto_seq_show
,
3013 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
3015 return seq_open_net(inode
, file
, &proto_seq_ops
,
3016 sizeof(struct seq_net_private
));
3019 static const struct file_operations proto_seq_fops
= {
3020 .owner
= THIS_MODULE
,
3021 .open
= proto_seq_open
,
3023 .llseek
= seq_lseek
,
3024 .release
= seq_release_net
,
3027 static __net_init
int proto_init_net(struct net
*net
)
3029 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
3035 static __net_exit
void proto_exit_net(struct net
*net
)
3037 remove_proc_entry("protocols", net
->proc_net
);
3041 static __net_initdata
struct pernet_operations proto_net_ops
= {
3042 .init
= proto_init_net
,
3043 .exit
= proto_exit_net
,
3046 static int __init
proto_init(void)
3048 return register_pernet_subsys(&proto_net_ops
);
3051 subsys_initcall(proto_init
);
3053 #endif /* PROC_FS */