2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly
= UINT_MAX
;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat
);
68 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
69 int push_one
, gfp_t gfp
);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
74 struct inet_connection_sock
*icsk
= inet_csk(sk
);
75 struct tcp_sock
*tp
= tcp_sk(sk
);
76 unsigned int prior_packets
= tp
->packets_out
;
78 tcp_advance_send_head(sk
, skb
);
79 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
81 tp
->packets_out
+= tcp_skb_pcount(skb
);
82 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
83 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
87 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
99 const struct tcp_sock
*tp
= tcp_sk(sk
);
101 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
104 return tcp_wnd_end(tp
);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16
tcp_advertise_mss(struct sock
*sk
)
123 struct tcp_sock
*tp
= tcp_sk(sk
);
124 const struct dst_entry
*dst
= __sk_dst_get(sk
);
125 int mss
= tp
->advmss
;
128 unsigned int metric
= dst_metric_advmss(dst
);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
142 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
144 struct tcp_sock
*tp
= tcp_sk(sk
);
145 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
146 u32 cwnd
= tp
->snd_cwnd
;
148 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
150 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
151 restart_cwnd
= min(restart_cwnd
, cwnd
);
153 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
155 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
156 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
157 tp
->snd_cwnd_used
= 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock
*tp
,
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 const u32 now
= tcp_time_stamp
;
167 if (tcp_packets_in_flight(tp
) == 0)
168 tcp_ca_event(sk
, CA_EVENT_TX_START
);
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
175 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
176 icsk
->icsk_ack
.pingpong
= 1;
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
,
183 struct tcp_sock
*tp
= tcp_sk(sk
);
185 if (unlikely(rcv_nxt
!= tp
->rcv_nxt
))
186 return; /* Special ACK sent by DCTCP to reflect ECN */
187 tcp_dec_quickack_mode(sk
, pkts
);
188 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
192 u32
tcp_default_init_rwnd(u32 mss
)
194 /* Initial receive window should be twice of TCP_INIT_CWND to
195 * enable proper sending of new unsent data during fast recovery
196 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
197 * limit when mss is larger than 1460.
199 u32 init_rwnd
= TCP_INIT_CWND
* 2;
202 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
206 /* Determine a window scaling and initial window to offer.
207 * Based on the assumption that the given amount of space
208 * will be offered. Store the results in the tp structure.
209 * NOTE: for smooth operation initial space offering should
210 * be a multiple of mss if possible. We assume here that mss >= 1.
211 * This MUST be enforced by all callers.
213 void tcp_select_initial_window(int __space
, __u32 mss
,
214 __u32
*rcv_wnd
, __u32
*window_clamp
,
215 int wscale_ok
, __u8
*rcv_wscale
,
218 unsigned int space
= (__space
< 0 ? 0 : __space
);
220 /* If no clamp set the clamp to the max possible scaled window */
221 if (*window_clamp
== 0)
222 (*window_clamp
) = (65535 << 14);
223 space
= min(*window_clamp
, space
);
225 /* Quantize space offering to a multiple of mss if possible. */
227 space
= (space
/ mss
) * mss
;
229 /* NOTE: offering an initial window larger than 32767
230 * will break some buggy TCP stacks. If the admin tells us
231 * it is likely we could be speaking with such a buggy stack
232 * we will truncate our initial window offering to 32K-1
233 * unless the remote has sent us a window scaling option,
234 * which we interpret as a sign the remote TCP is not
235 * misinterpreting the window field as a signed quantity.
237 if (sysctl_tcp_workaround_signed_windows
)
238 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
244 /* Set window scaling on max possible window
245 * See RFC1323 for an explanation of the limit to 14
247 space
= max_t(u32
, space
, sysctl_tcp_rmem
[2]);
248 space
= max_t(u32
, space
, sysctl_rmem_max
);
249 space
= min_t(u32
, space
, *window_clamp
);
250 while (space
> 65535 && (*rcv_wscale
) < 14) {
256 if (mss
> (1 << *rcv_wscale
)) {
257 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
258 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
259 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
265 EXPORT_SYMBOL(tcp_select_initial_window
);
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
272 static u16
tcp_select_window(struct sock
*sk
)
274 struct tcp_sock
*tp
= tcp_sk(sk
);
275 u32 old_win
= tp
->rcv_wnd
;
276 u32 cur_win
= tcp_receive_window(tp
);
277 u32 new_win
= __tcp_select_window(sk
);
279 /* Never shrink the offered window */
280 if (new_win
< cur_win
) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
286 * Relax Will Robinson.
289 NET_INC_STATS(sock_net(sk
),
290 LINUX_MIB_TCPWANTZEROWINDOWADV
);
291 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
293 tp
->rcv_wnd
= new_win
;
294 tp
->rcv_wup
= tp
->rcv_nxt
;
296 /* Make sure we do not exceed the maximum possible
299 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
300 new_win
= min(new_win
, MAX_TCP_WINDOW
);
302 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
304 /* RFC1323 scaling applied */
305 new_win
>>= tp
->rx_opt
.rcv_wscale
;
307 /* If we advertise zero window, disable fast path. */
311 NET_INC_STATS(sock_net(sk
),
312 LINUX_MIB_TCPTOZEROWINDOWADV
);
313 } else if (old_win
== 0) {
314 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
323 const struct tcp_sock
*tp
= tcp_sk(sk
);
325 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
326 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
327 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
328 else if (tcp_ca_needs_ecn(sk
))
332 /* Packet ECN state for a SYN. */
333 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
335 struct tcp_sock
*tp
= tcp_sk(sk
);
336 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
337 tcp_ca_needs_ecn(sk
);
340 const struct dst_entry
*dst
= __sk_dst_get(sk
);
342 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
349 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
350 tp
->ecn_flags
= TCP_ECN_OK
;
351 if (tcp_ca_needs_ecn(sk
))
356 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
358 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
359 /* tp->ecn_flags are cleared at a later point in time when
360 * SYN ACK is ultimatively being received.
362 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
366 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
368 if (inet_rsk(req
)->ecn_ok
)
372 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
375 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
378 struct tcp_sock
*tp
= tcp_sk(sk
);
380 if (tp
->ecn_flags
& TCP_ECN_OK
) {
381 /* Not-retransmitted data segment: set ECT and inject CWR. */
382 if (skb
->len
!= tcp_header_len
&&
383 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
385 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
386 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
387 tcp_hdr(skb
)->cwr
= 1;
388 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
390 } else if (!tcp_ca_needs_ecn(sk
)) {
391 /* ACK or retransmitted segment: clear ECT|CE */
392 INET_ECN_dontxmit(sk
);
394 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
395 tcp_hdr(skb
)->ece
= 1;
399 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
400 * auto increment end seqno.
402 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
404 skb
->ip_summed
= CHECKSUM_PARTIAL
;
407 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
408 TCP_SKB_CB(skb
)->sacked
= 0;
410 tcp_skb_pcount_set(skb
, 1);
412 TCP_SKB_CB(skb
)->seq
= seq
;
413 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
415 TCP_SKB_CB(skb
)->end_seq
= seq
;
418 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
420 return tp
->snd_una
!= tp
->snd_up
;
423 #define OPTION_SACK_ADVERTISE (1 << 0)
424 #define OPTION_TS (1 << 1)
425 #define OPTION_MD5 (1 << 2)
426 #define OPTION_WSCALE (1 << 3)
427 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
429 struct tcp_out_options
{
430 u16 options
; /* bit field of OPTION_* */
431 u16 mss
; /* 0 to disable */
432 u8 ws
; /* window scale, 0 to disable */
433 u8 num_sack_blocks
; /* number of SACK blocks to include */
434 u8 hash_size
; /* bytes in hash_location */
435 __u8
*hash_location
; /* temporary pointer, overloaded */
436 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
437 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
440 /* Write previously computed TCP options to the packet.
442 * Beware: Something in the Internet is very sensitive to the ordering of
443 * TCP options, we learned this through the hard way, so be careful here.
444 * Luckily we can at least blame others for their non-compliance but from
445 * inter-operability perspective it seems that we're somewhat stuck with
446 * the ordering which we have been using if we want to keep working with
447 * those broken things (not that it currently hurts anybody as there isn't
448 * particular reason why the ordering would need to be changed).
450 * At least SACK_PERM as the first option is known to lead to a disaster
451 * (but it may well be that other scenarios fail similarly).
453 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
454 struct tcp_out_options
*opts
)
456 u16 options
= opts
->options
; /* mungable copy */
458 if (unlikely(OPTION_MD5
& options
)) {
459 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
460 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
461 /* overload cookie hash location */
462 opts
->hash_location
= (__u8
*)ptr
;
466 if (unlikely(opts
->mss
)) {
467 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
468 (TCPOLEN_MSS
<< 16) |
472 if (likely(OPTION_TS
& options
)) {
473 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
474 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
475 (TCPOLEN_SACK_PERM
<< 16) |
476 (TCPOPT_TIMESTAMP
<< 8) |
478 options
&= ~OPTION_SACK_ADVERTISE
;
480 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
482 (TCPOPT_TIMESTAMP
<< 8) |
485 *ptr
++ = htonl(opts
->tsval
);
486 *ptr
++ = htonl(opts
->tsecr
);
489 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
490 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
492 (TCPOPT_SACK_PERM
<< 8) |
496 if (unlikely(OPTION_WSCALE
& options
)) {
497 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
498 (TCPOPT_WINDOW
<< 16) |
499 (TCPOLEN_WINDOW
<< 8) |
503 if (unlikely(opts
->num_sack_blocks
)) {
504 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
505 tp
->duplicate_sack
: tp
->selective_acks
;
508 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
511 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
512 TCPOLEN_SACK_PERBLOCK
)));
514 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
516 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
517 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
520 tp
->rx_opt
.dsack
= 0;
523 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
524 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
526 u32 len
; /* Fast Open option length */
529 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
530 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
531 TCPOPT_FASTOPEN_MAGIC
);
532 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
534 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
535 *p
++ = TCPOPT_FASTOPEN
;
539 memcpy(p
, foc
->val
, foc
->len
);
540 if ((len
& 3) == 2) {
541 p
[foc
->len
] = TCPOPT_NOP
;
542 p
[foc
->len
+ 1] = TCPOPT_NOP
;
544 ptr
+= (len
+ 3) >> 2;
548 /* Compute TCP options for SYN packets. This is not the final
549 * network wire format yet.
551 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
552 struct tcp_out_options
*opts
,
553 struct tcp_md5sig_key
**md5
)
555 struct tcp_sock
*tp
= tcp_sk(sk
);
556 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
557 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
559 #ifdef CONFIG_TCP_MD5SIG
560 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
562 opts
->options
|= OPTION_MD5
;
563 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
569 /* We always get an MSS option. The option bytes which will be seen in
570 * normal data packets should timestamps be used, must be in the MSS
571 * advertised. But we subtract them from tp->mss_cache so that
572 * calculations in tcp_sendmsg are simpler etc. So account for this
573 * fact here if necessary. If we don't do this correctly, as a
574 * receiver we won't recognize data packets as being full sized when we
575 * should, and thus we won't abide by the delayed ACK rules correctly.
576 * SACKs don't matter, we never delay an ACK when we have any of those
578 opts
->mss
= tcp_advertise_mss(sk
);
579 remaining
-= TCPOLEN_MSS_ALIGNED
;
581 if (likely(sysctl_tcp_timestamps
&& !*md5
)) {
582 opts
->options
|= OPTION_TS
;
583 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
584 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
585 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
587 if (likely(sysctl_tcp_window_scaling
)) {
588 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
589 opts
->options
|= OPTION_WSCALE
;
590 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
592 if (likely(sysctl_tcp_sack
)) {
593 opts
->options
|= OPTION_SACK_ADVERTISE
;
594 if (unlikely(!(OPTION_TS
& opts
->options
)))
595 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
598 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
599 u32 need
= fastopen
->cookie
.len
;
601 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
602 TCPOLEN_FASTOPEN_BASE
;
603 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
604 if (remaining
>= need
) {
605 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
606 opts
->fastopen_cookie
= &fastopen
->cookie
;
608 tp
->syn_fastopen
= 1;
609 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
613 return MAX_TCP_OPTION_SPACE
- remaining
;
616 /* Set up TCP options for SYN-ACKs. */
617 static unsigned int tcp_synack_options(struct request_sock
*req
,
618 unsigned int mss
, struct sk_buff
*skb
,
619 struct tcp_out_options
*opts
,
620 const struct tcp_md5sig_key
*md5
,
621 struct tcp_fastopen_cookie
*foc
)
623 struct inet_request_sock
*ireq
= inet_rsk(req
);
624 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
626 #ifdef CONFIG_TCP_MD5SIG
628 opts
->options
|= OPTION_MD5
;
629 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
631 /* We can't fit any SACK blocks in a packet with MD5 + TS
632 * options. There was discussion about disabling SACK
633 * rather than TS in order to fit in better with old,
634 * buggy kernels, but that was deemed to be unnecessary.
636 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
640 /* We always send an MSS option. */
642 remaining
-= TCPOLEN_MSS_ALIGNED
;
644 if (likely(ireq
->wscale_ok
)) {
645 opts
->ws
= ireq
->rcv_wscale
;
646 opts
->options
|= OPTION_WSCALE
;
647 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
649 if (likely(ireq
->tstamp_ok
)) {
650 opts
->options
|= OPTION_TS
;
651 opts
->tsval
= tcp_skb_timestamp(skb
);
652 opts
->tsecr
= req
->ts_recent
;
653 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
655 if (likely(ireq
->sack_ok
)) {
656 opts
->options
|= OPTION_SACK_ADVERTISE
;
657 if (unlikely(!ireq
->tstamp_ok
))
658 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
660 if (foc
!= NULL
&& foc
->len
>= 0) {
663 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
664 TCPOLEN_FASTOPEN_BASE
;
665 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
666 if (remaining
>= need
) {
667 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
668 opts
->fastopen_cookie
= foc
;
673 return MAX_TCP_OPTION_SPACE
- remaining
;
676 /* Compute TCP options for ESTABLISHED sockets. This is not the
677 * final wire format yet.
679 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
680 struct tcp_out_options
*opts
,
681 struct tcp_md5sig_key
**md5
)
683 struct tcp_sock
*tp
= tcp_sk(sk
);
684 unsigned int size
= 0;
685 unsigned int eff_sacks
;
689 #ifdef CONFIG_TCP_MD5SIG
690 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
691 if (unlikely(*md5
)) {
692 opts
->options
|= OPTION_MD5
;
693 size
+= TCPOLEN_MD5SIG_ALIGNED
;
699 if (likely(tp
->rx_opt
.tstamp_ok
)) {
700 opts
->options
|= OPTION_TS
;
701 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
702 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
703 size
+= TCPOLEN_TSTAMP_ALIGNED
;
706 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
707 if (unlikely(eff_sacks
)) {
708 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
709 opts
->num_sack_blocks
=
710 min_t(unsigned int, eff_sacks
,
711 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
712 TCPOLEN_SACK_PERBLOCK
);
713 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
714 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
721 /* TCP SMALL QUEUES (TSQ)
723 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
724 * to reduce RTT and bufferbloat.
725 * We do this using a special skb destructor (tcp_wfree).
727 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
728 * needs to be reallocated in a driver.
729 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
731 * Since transmit from skb destructor is forbidden, we use a tasklet
732 * to process all sockets that eventually need to send more skbs.
733 * We use one tasklet per cpu, with its own queue of sockets.
736 struct tasklet_struct tasklet
;
737 struct list_head head
; /* queue of tcp sockets */
739 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
741 static void tcp_tsq_handler(struct sock
*sk
)
743 if ((1 << sk
->sk_state
) &
744 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
745 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
746 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
755 static void tcp_tasklet_func(unsigned long data
)
757 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
760 struct list_head
*q
, *n
;
764 local_irq_save(flags
);
765 list_splice_init(&tsq
->head
, &list
);
766 local_irq_restore(flags
);
768 list_for_each_safe(q
, n
, &list
) {
769 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
770 list_del(&tp
->tsq_node
);
772 sk
= (struct sock
*)tp
;
775 if (!sock_owned_by_user(sk
)) {
778 /* defer the work to tcp_release_cb() */
779 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
783 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
788 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
789 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
790 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
791 (1UL << TCP_MTU_REDUCED_DEFERRED))
793 * tcp_release_cb - tcp release_sock() callback
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
799 void tcp_release_cb(struct sock
*sk
)
801 struct tcp_sock
*tp
= tcp_sk(sk
);
802 unsigned long flags
, nflags
;
804 /* perform an atomic operation only if at least one flag is set */
806 flags
= tp
->tsq_flags
;
807 if (!(flags
& TCP_DEFERRED_ALL
))
809 nflags
= flags
& ~TCP_DEFERRED_ALL
;
810 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
812 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
815 /* Here begins the tricky part :
816 * We are called from release_sock() with :
818 * 2) sk_lock.slock spinlock held
819 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 * But following code is meant to be called from BH handlers,
822 * so we should keep BH disabled, but early release socket ownership
824 sock_release_ownership(sk
);
826 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
827 tcp_write_timer_handler(sk
);
830 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
831 tcp_delack_timer_handler(sk
);
834 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
835 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
839 EXPORT_SYMBOL(tcp_release_cb
);
841 void __init
tcp_tasklet_init(void)
845 for_each_possible_cpu(i
) {
846 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
848 INIT_LIST_HEAD(&tsq
->head
);
849 tasklet_init(&tsq
->tasklet
,
856 * Write buffer destructor automatically called from kfree_skb.
857 * We can't xmit new skbs from this context, as we might already
860 void tcp_wfree(struct sk_buff
*skb
)
862 struct sock
*sk
= skb
->sk
;
863 struct tcp_sock
*tp
= tcp_sk(sk
);
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
869 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
878 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
881 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
882 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
884 struct tsq_tasklet
*tsq
;
886 /* queue this socket to tasklet queue */
887 local_irq_save(flags
);
888 tsq
= this_cpu_ptr(&tsq_tasklet
);
889 list_add(&tp
->tsq_node
, &tsq
->head
);
890 tasklet_schedule(&tsq
->tasklet
);
891 local_irq_restore(flags
);
898 /* This routine actually transmits TCP packets queued in by
899 * tcp_do_sendmsg(). This is used by both the initial
900 * transmission and possible later retransmissions.
901 * All SKB's seen here are completely headerless. It is our
902 * job to build the TCP header, and pass the packet down to
903 * IP so it can do the same plus pass the packet off to the
906 * We are working here with either a clone of the original
907 * SKB, or a fresh unique copy made by the retransmit engine.
909 static int __tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
,
910 int clone_it
, gfp_t gfp_mask
, u32 rcv_nxt
)
912 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
913 struct inet_sock
*inet
;
915 struct tcp_skb_cb
*tcb
;
916 struct tcp_out_options opts
;
917 unsigned int tcp_options_size
, tcp_header_size
;
918 struct tcp_md5sig_key
*md5
;
922 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
925 skb_mstamp_get(&skb
->skb_mstamp
);
927 if (unlikely(skb_cloned(skb
)))
928 skb
= pskb_copy(skb
, gfp_mask
);
930 skb
= skb_clone(skb
, gfp_mask
);
937 tcb
= TCP_SKB_CB(skb
);
938 memset(&opts
, 0, sizeof(opts
));
940 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
941 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
943 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
945 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
947 /* if no packet is in qdisc/device queue, then allow XPS to select
948 * another queue. We can be called from tcp_tsq_handler()
949 * which holds one reference to sk_wmem_alloc.
951 * TODO: Ideally, in-flight pure ACK packets should not matter here.
952 * One way to get this would be to set skb->truesize = 2 on them.
954 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
956 skb_push(skb
, tcp_header_size
);
957 skb_reset_transport_header(skb
);
961 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? sock_wfree
: tcp_wfree
;
962 skb_set_hash_from_sk(skb
, sk
);
963 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
965 /* Build TCP header and checksum it. */
967 th
->source
= inet
->inet_sport
;
968 th
->dest
= inet
->inet_dport
;
969 th
->seq
= htonl(tcb
->seq
);
970 th
->ack_seq
= htonl(rcv_nxt
);
971 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
974 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
975 /* RFC1323: The window in SYN & SYN/ACK segments
978 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
980 th
->window
= htons(tcp_select_window(sk
));
985 /* The urg_mode check is necessary during a below snd_una win probe */
986 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
987 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
988 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
990 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
991 th
->urg_ptr
= htons(0xFFFF);
996 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
997 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
998 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
999 tcp_ecn_send(sk
, skb
, tcp_header_size
);
1001 #ifdef CONFIG_TCP_MD5SIG
1002 /* Calculate the MD5 hash, as we have all we need now */
1004 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1005 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1010 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1012 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1013 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
), rcv_nxt
);
1015 if (skb
->len
!= tcp_header_size
)
1016 tcp_event_data_sent(tp
, sk
);
1018 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1019 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1020 tcp_skb_pcount(skb
));
1022 tp
->segs_out
+= tcp_skb_pcount(skb
);
1023 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1024 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1025 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1027 /* Our usage of tstamp should remain private */
1028 skb
->tstamp
.tv64
= 0;
1030 /* Cleanup our debris for IP stacks */
1031 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1032 sizeof(struct inet6_skb_parm
)));
1034 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1036 if (likely(err
<= 0))
1041 return net_xmit_eval(err
);
1044 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1047 return __tcp_transmit_skb(sk
, skb
, clone_it
, gfp_mask
,
1048 tcp_sk(sk
)->rcv_nxt
);
1051 /* This routine just queues the buffer for sending.
1053 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1054 * otherwise socket can stall.
1056 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1058 struct tcp_sock
*tp
= tcp_sk(sk
);
1060 /* Advance write_seq and place onto the write_queue. */
1061 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1062 __skb_header_release(skb
);
1063 tcp_add_write_queue_tail(sk
, skb
);
1064 sk
->sk_wmem_queued
+= skb
->truesize
;
1065 sk_mem_charge(sk
, skb
->truesize
);
1068 /* Initialize TSO segments for a packet. */
1069 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1071 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1072 /* Avoid the costly divide in the normal
1075 tcp_skb_pcount_set(skb
, 1);
1076 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1078 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1079 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1083 /* When a modification to fackets out becomes necessary, we need to check
1084 * skb is counted to fackets_out or not.
1086 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1089 struct tcp_sock
*tp
= tcp_sk(sk
);
1091 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1094 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1095 tp
->fackets_out
-= decr
;
1098 /* Pcount in the middle of the write queue got changed, we need to do various
1099 * tweaks to fix counters
1101 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1103 struct tcp_sock
*tp
= tcp_sk(sk
);
1105 tp
->packets_out
-= decr
;
1107 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1108 tp
->sacked_out
-= decr
;
1109 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1110 tp
->retrans_out
-= decr
;
1111 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1112 tp
->lost_out
-= decr
;
1114 /* Reno case is special. Sigh... */
1115 if (tcp_is_reno(tp
) && decr
> 0)
1116 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1118 tcp_adjust_fackets_out(sk
, skb
, decr
);
1120 if (tp
->lost_skb_hint
&&
1121 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1122 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1123 tp
->lost_cnt_hint
-= decr
;
1125 tcp_verify_left_out(tp
);
1128 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1130 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1132 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1133 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1134 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1135 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1137 shinfo
->tx_flags
&= ~tsflags
;
1138 shinfo2
->tx_flags
|= tsflags
;
1139 swap(shinfo
->tskey
, shinfo2
->tskey
);
1143 /* Function to create two new TCP segments. Shrinks the given segment
1144 * to the specified size and appends a new segment with the rest of the
1145 * packet to the list. This won't be called frequently, I hope.
1146 * Remember, these are still headerless SKBs at this point.
1148 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1149 unsigned int mss_now
, gfp_t gfp
)
1151 struct tcp_sock
*tp
= tcp_sk(sk
);
1152 struct sk_buff
*buff
;
1153 int nsize
, old_factor
;
1157 if (WARN_ON(len
> skb
->len
))
1160 nsize
= skb_headlen(skb
) - len
;
1164 if (skb_unclone(skb
, gfp
))
1167 /* Get a new skb... force flag on. */
1168 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1170 return -ENOMEM
; /* We'll just try again later. */
1172 sk
->sk_wmem_queued
+= buff
->truesize
;
1173 sk_mem_charge(sk
, buff
->truesize
);
1174 nlen
= skb
->len
- len
- nsize
;
1175 buff
->truesize
+= nlen
;
1176 skb
->truesize
-= nlen
;
1178 /* Correct the sequence numbers. */
1179 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1180 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1181 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1183 /* PSH and FIN should only be set in the second packet. */
1184 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1185 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1186 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1187 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1189 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1190 /* Copy and checksum data tail into the new buffer. */
1191 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1192 skb_put(buff
, nsize
),
1197 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1199 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1200 skb_split(skb
, buff
, len
);
1203 buff
->ip_summed
= skb
->ip_summed
;
1205 buff
->tstamp
= skb
->tstamp
;
1206 tcp_fragment_tstamp(skb
, buff
);
1208 old_factor
= tcp_skb_pcount(skb
);
1210 /* Fix up tso_factor for both original and new SKB. */
1211 tcp_set_skb_tso_segs(skb
, mss_now
);
1212 tcp_set_skb_tso_segs(buff
, mss_now
);
1214 /* If this packet has been sent out already, we must
1215 * adjust the various packet counters.
1217 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1218 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1219 tcp_skb_pcount(buff
);
1222 tcp_adjust_pcount(sk
, skb
, diff
);
1225 /* Link BUFF into the send queue. */
1226 __skb_header_release(buff
);
1227 tcp_insert_write_queue_after(skb
, buff
, sk
);
1232 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1233 * eventually). The difference is that pulled data not copied, but
1234 * immediately discarded.
1236 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1238 struct skb_shared_info
*shinfo
;
1241 eat
= min_t(int, len
, skb_headlen(skb
));
1243 __skb_pull(skb
, eat
);
1250 shinfo
= skb_shinfo(skb
);
1251 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1252 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1255 skb_frag_unref(skb
, i
);
1258 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1260 shinfo
->frags
[k
].page_offset
+= eat
;
1261 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1267 shinfo
->nr_frags
= k
;
1269 skb_reset_tail_pointer(skb
);
1270 skb
->data_len
-= len
;
1271 skb
->len
= skb
->data_len
;
1275 /* Remove acked data from a packet in the transmit queue. */
1276 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1280 if (skb_unclone(skb
, GFP_ATOMIC
))
1283 delta_truesize
= __pskb_trim_head(skb
, len
);
1285 TCP_SKB_CB(skb
)->seq
+= len
;
1286 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1288 if (delta_truesize
) {
1289 skb
->truesize
-= delta_truesize
;
1290 sk
->sk_wmem_queued
-= delta_truesize
;
1291 sk_mem_uncharge(sk
, delta_truesize
);
1292 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1295 /* Any change of skb->len requires recalculation of tso factor. */
1296 if (tcp_skb_pcount(skb
) > 1)
1297 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1302 /* Calculate MSS not accounting any TCP options. */
1303 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1305 const struct tcp_sock
*tp
= tcp_sk(sk
);
1306 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1309 /* Calculate base mss without TCP options:
1310 It is MMS_S - sizeof(tcphdr) of rfc1122
1312 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1314 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1315 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1316 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1318 if (dst
&& dst_allfrag(dst
))
1319 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1322 /* Clamp it (mss_clamp does not include tcp options) */
1323 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1324 mss_now
= tp
->rx_opt
.mss_clamp
;
1326 /* Now subtract optional transport overhead */
1327 mss_now
-= icsk
->icsk_ext_hdr_len
;
1329 /* Then reserve room for full set of TCP options and 8 bytes of data */
1335 /* Calculate MSS. Not accounting for SACKs here. */
1336 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1338 /* Subtract TCP options size, not including SACKs */
1339 return __tcp_mtu_to_mss(sk
, pmtu
) -
1340 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1343 /* Inverse of above */
1344 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1346 const struct tcp_sock
*tp
= tcp_sk(sk
);
1347 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1351 tp
->tcp_header_len
+
1352 icsk
->icsk_ext_hdr_len
+
1353 icsk
->icsk_af_ops
->net_header_len
;
1355 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1356 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1357 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1359 if (dst
&& dst_allfrag(dst
))
1360 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1365 /* MTU probing init per socket */
1366 void tcp_mtup_init(struct sock
*sk
)
1368 struct tcp_sock
*tp
= tcp_sk(sk
);
1369 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1370 struct net
*net
= sock_net(sk
);
1372 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1373 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1374 icsk
->icsk_af_ops
->net_header_len
;
1375 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1376 icsk
->icsk_mtup
.probe_size
= 0;
1377 if (icsk
->icsk_mtup
.enabled
)
1378 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1380 EXPORT_SYMBOL(tcp_mtup_init
);
1382 /* This function synchronize snd mss to current pmtu/exthdr set.
1384 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1385 for TCP options, but includes only bare TCP header.
1387 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1388 It is minimum of user_mss and mss received with SYN.
1389 It also does not include TCP options.
1391 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1393 tp->mss_cache is current effective sending mss, including
1394 all tcp options except for SACKs. It is evaluated,
1395 taking into account current pmtu, but never exceeds
1396 tp->rx_opt.mss_clamp.
1398 NOTE1. rfc1122 clearly states that advertised MSS
1399 DOES NOT include either tcp or ip options.
1401 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1402 are READ ONLY outside this function. --ANK (980731)
1404 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1406 struct tcp_sock
*tp
= tcp_sk(sk
);
1407 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1410 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1411 icsk
->icsk_mtup
.search_high
= pmtu
;
1413 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1414 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1416 /* And store cached results */
1417 icsk
->icsk_pmtu_cookie
= pmtu
;
1418 if (icsk
->icsk_mtup
.enabled
)
1419 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1420 tp
->mss_cache
= mss_now
;
1424 EXPORT_SYMBOL(tcp_sync_mss
);
1426 /* Compute the current effective MSS, taking SACKs and IP options,
1427 * and even PMTU discovery events into account.
1429 unsigned int tcp_current_mss(struct sock
*sk
)
1431 const struct tcp_sock
*tp
= tcp_sk(sk
);
1432 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1434 unsigned int header_len
;
1435 struct tcp_out_options opts
;
1436 struct tcp_md5sig_key
*md5
;
1438 mss_now
= tp
->mss_cache
;
1441 u32 mtu
= dst_mtu(dst
);
1442 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1443 mss_now
= tcp_sync_mss(sk
, mtu
);
1446 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1447 sizeof(struct tcphdr
);
1448 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1449 * some common options. If this is an odd packet (because we have SACK
1450 * blocks etc) then our calculated header_len will be different, and
1451 * we have to adjust mss_now correspondingly */
1452 if (header_len
!= tp
->tcp_header_len
) {
1453 int delta
= (int) header_len
- tp
->tcp_header_len
;
1460 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1461 * As additional protections, we do not touch cwnd in retransmission phases,
1462 * and if application hit its sndbuf limit recently.
1464 static void tcp_cwnd_application_limited(struct sock
*sk
)
1466 struct tcp_sock
*tp
= tcp_sk(sk
);
1468 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1469 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1470 /* Limited by application or receiver window. */
1471 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1472 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1473 if (win_used
< tp
->snd_cwnd
) {
1474 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1475 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1477 tp
->snd_cwnd_used
= 0;
1479 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1482 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1484 struct tcp_sock
*tp
= tcp_sk(sk
);
1486 /* Track the maximum number of outstanding packets in each
1487 * window, and remember whether we were cwnd-limited then.
1489 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1490 tp
->packets_out
> tp
->max_packets_out
) {
1491 tp
->max_packets_out
= tp
->packets_out
;
1492 tp
->max_packets_seq
= tp
->snd_nxt
;
1493 tp
->is_cwnd_limited
= is_cwnd_limited
;
1496 if (tcp_is_cwnd_limited(sk
)) {
1497 /* Network is feed fully. */
1498 tp
->snd_cwnd_used
= 0;
1499 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1501 /* Network starves. */
1502 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1503 tp
->snd_cwnd_used
= tp
->packets_out
;
1505 if (sysctl_tcp_slow_start_after_idle
&&
1506 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1507 tcp_cwnd_application_limited(sk
);
1511 /* Minshall's variant of the Nagle send check. */
1512 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1514 return after(tp
->snd_sml
, tp
->snd_una
) &&
1515 !after(tp
->snd_sml
, tp
->snd_nxt
);
1518 /* Update snd_sml if this skb is under mss
1519 * Note that a TSO packet might end with a sub-mss segment
1520 * The test is really :
1521 * if ((skb->len % mss) != 0)
1522 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1523 * But we can avoid doing the divide again given we already have
1524 * skb_pcount = skb->len / mss_now
1526 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1527 const struct sk_buff
*skb
)
1529 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1530 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1533 /* Return false, if packet can be sent now without violation Nagle's rules:
1534 * 1. It is full sized. (provided by caller in %partial bool)
1535 * 2. Or it contains FIN. (already checked by caller)
1536 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1537 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1538 * With Minshall's modification: all sent small packets are ACKed.
1540 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1544 ((nonagle
& TCP_NAGLE_CORK
) ||
1545 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1548 /* Return how many segs we'd like on a TSO packet,
1549 * to send one TSO packet per ms
1551 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1555 bytes
= min(sk
->sk_pacing_rate
>> 10,
1556 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1558 /* Goal is to send at least one packet per ms,
1559 * not one big TSO packet every 100 ms.
1560 * This preserves ACK clocking and is consistent
1561 * with tcp_tso_should_defer() heuristic.
1563 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1565 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1568 /* Returns the portion of skb which can be sent right away */
1569 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1570 const struct sk_buff
*skb
,
1571 unsigned int mss_now
,
1572 unsigned int max_segs
,
1575 const struct tcp_sock
*tp
= tcp_sk(sk
);
1576 u32 partial
, needed
, window
, max_len
;
1578 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1579 max_len
= mss_now
* max_segs
;
1581 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1584 needed
= min(skb
->len
, window
);
1586 if (max_len
<= needed
)
1589 partial
= needed
% mss_now
;
1590 /* If last segment is not a full MSS, check if Nagle rules allow us
1591 * to include this last segment in this skb.
1592 * Otherwise, we'll split the skb at last MSS boundary
1594 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1595 return needed
- partial
;
1600 /* Can at least one segment of SKB be sent right now, according to the
1601 * congestion window rules? If so, return how many segments are allowed.
1603 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1604 const struct sk_buff
*skb
)
1606 u32 in_flight
, cwnd
, halfcwnd
;
1608 /* Don't be strict about the congestion window for the final FIN. */
1609 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1610 tcp_skb_pcount(skb
) == 1)
1613 in_flight
= tcp_packets_in_flight(tp
);
1614 cwnd
= tp
->snd_cwnd
;
1615 if (in_flight
>= cwnd
)
1618 /* For better scheduling, ensure we have at least
1619 * 2 GSO packets in flight.
1621 halfcwnd
= max(cwnd
>> 1, 1U);
1622 return min(halfcwnd
, cwnd
- in_flight
);
1625 /* Initialize TSO state of a skb.
1626 * This must be invoked the first time we consider transmitting
1627 * SKB onto the wire.
1629 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1631 int tso_segs
= tcp_skb_pcount(skb
);
1633 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1634 tcp_set_skb_tso_segs(skb
, mss_now
);
1635 tso_segs
= tcp_skb_pcount(skb
);
1641 /* Return true if the Nagle test allows this packet to be
1644 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1645 unsigned int cur_mss
, int nonagle
)
1647 /* Nagle rule does not apply to frames, which sit in the middle of the
1648 * write_queue (they have no chances to get new data).
1650 * This is implemented in the callers, where they modify the 'nonagle'
1651 * argument based upon the location of SKB in the send queue.
1653 if (nonagle
& TCP_NAGLE_PUSH
)
1656 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1657 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1660 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1666 /* Does at least the first segment of SKB fit into the send window? */
1667 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1668 const struct sk_buff
*skb
,
1669 unsigned int cur_mss
)
1671 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1673 if (skb
->len
> cur_mss
)
1674 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1676 return !after(end_seq
, tcp_wnd_end(tp
));
1679 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1680 * should be put on the wire right now. If so, it returns the number of
1681 * packets allowed by the congestion window.
1683 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1684 unsigned int cur_mss
, int nonagle
)
1686 const struct tcp_sock
*tp
= tcp_sk(sk
);
1687 unsigned int cwnd_quota
;
1689 tcp_init_tso_segs(skb
, cur_mss
);
1691 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1694 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1695 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1701 /* Test if sending is allowed right now. */
1702 bool tcp_may_send_now(struct sock
*sk
)
1704 const struct tcp_sock
*tp
= tcp_sk(sk
);
1705 struct sk_buff
*skb
= tcp_send_head(sk
);
1708 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1709 (tcp_skb_is_last(sk
, skb
) ?
1710 tp
->nonagle
: TCP_NAGLE_PUSH
));
1713 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1714 * which is put after SKB on the list. It is very much like
1715 * tcp_fragment() except that it may make several kinds of assumptions
1716 * in order to speed up the splitting operation. In particular, we
1717 * know that all the data is in scatter-gather pages, and that the
1718 * packet has never been sent out before (and thus is not cloned).
1720 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1721 unsigned int mss_now
, gfp_t gfp
)
1723 struct sk_buff
*buff
;
1724 int nlen
= skb
->len
- len
;
1727 /* All of a TSO frame must be composed of paged data. */
1728 if (skb
->len
!= skb
->data_len
)
1729 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1731 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1732 if (unlikely(!buff
))
1735 sk
->sk_wmem_queued
+= buff
->truesize
;
1736 sk_mem_charge(sk
, buff
->truesize
);
1737 buff
->truesize
+= nlen
;
1738 skb
->truesize
-= nlen
;
1740 /* Correct the sequence numbers. */
1741 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1742 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1743 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1745 /* PSH and FIN should only be set in the second packet. */
1746 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1747 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1748 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1750 /* This packet was never sent out yet, so no SACK bits. */
1751 TCP_SKB_CB(buff
)->sacked
= 0;
1753 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1754 skb_split(skb
, buff
, len
);
1755 tcp_fragment_tstamp(skb
, buff
);
1757 /* Fix up tso_factor for both original and new SKB. */
1758 tcp_set_skb_tso_segs(skb
, mss_now
);
1759 tcp_set_skb_tso_segs(buff
, mss_now
);
1761 /* Link BUFF into the send queue. */
1762 __skb_header_release(buff
);
1763 tcp_insert_write_queue_after(skb
, buff
, sk
);
1768 /* Try to defer sending, if possible, in order to minimize the amount
1769 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1771 * This algorithm is from John Heffner.
1773 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1774 bool *is_cwnd_limited
, u32 max_segs
)
1776 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1777 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1778 struct tcp_sock
*tp
= tcp_sk(sk
);
1779 struct skb_mstamp now
;
1780 struct sk_buff
*head
;
1783 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1786 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1789 /* Avoid bursty behavior by allowing defer
1790 * only if the last write was recent.
1792 if ((s32
)(tcp_time_stamp
- tp
->lsndtime
) > 0)
1795 in_flight
= tcp_packets_in_flight(tp
);
1797 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1799 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1801 /* From in_flight test above, we know that cwnd > in_flight. */
1802 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1804 limit
= min(send_win
, cong_win
);
1806 /* If a full-sized TSO skb can be sent, do it. */
1807 if (limit
>= max_segs
* tp
->mss_cache
)
1810 /* Middle in queue won't get any more data, full sendable already? */
1811 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1814 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1816 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1818 /* If at least some fraction of a window is available,
1821 chunk
/= win_divisor
;
1825 /* Different approach, try not to defer past a single
1826 * ACK. Receiver should ACK every other full sized
1827 * frame, so if we have space for more than 3 frames
1830 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1834 head
= tcp_write_queue_head(sk
);
1835 skb_mstamp_get(&now
);
1836 age
= skb_mstamp_us_delta(&now
, &head
->skb_mstamp
);
1837 /* If next ACK is likely to come too late (half srtt), do not defer */
1838 if (age
< (tp
->srtt_us
>> 4))
1841 /* Ok, it looks like it is advisable to defer. */
1843 if (cong_win
< send_win
&& cong_win
<= skb
->len
)
1844 *is_cwnd_limited
= true;
1852 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1854 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1855 struct tcp_sock
*tp
= tcp_sk(sk
);
1856 struct net
*net
= sock_net(sk
);
1860 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1861 delta
= tcp_time_stamp
- icsk
->icsk_mtup
.probe_timestamp
;
1862 if (unlikely(delta
>= interval
* HZ
)) {
1863 int mss
= tcp_current_mss(sk
);
1865 /* Update current search range */
1866 icsk
->icsk_mtup
.probe_size
= 0;
1867 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1868 sizeof(struct tcphdr
) +
1869 icsk
->icsk_af_ops
->net_header_len
;
1870 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
1872 /* Update probe time stamp */
1873 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1877 /* Create a new MTU probe if we are ready.
1878 * MTU probe is regularly attempting to increase the path MTU by
1879 * deliberately sending larger packets. This discovers routing
1880 * changes resulting in larger path MTUs.
1882 * Returns 0 if we should wait to probe (no cwnd available),
1883 * 1 if a probe was sent,
1886 static int tcp_mtu_probe(struct sock
*sk
)
1888 struct tcp_sock
*tp
= tcp_sk(sk
);
1889 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1890 struct sk_buff
*skb
, *nskb
, *next
;
1891 struct net
*net
= sock_net(sk
);
1899 /* Not currently probing/verifying,
1901 * have enough cwnd, and
1902 * not SACKing (the variable headers throw things off) */
1903 if (!icsk
->icsk_mtup
.enabled
||
1904 icsk
->icsk_mtup
.probe_size
||
1905 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1906 tp
->snd_cwnd
< 11 ||
1907 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1910 /* Use binary search for probe_size between tcp_mss_base,
1911 * and current mss_clamp. if (search_high - search_low)
1912 * smaller than a threshold, backoff from probing.
1914 mss_now
= tcp_current_mss(sk
);
1915 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
1916 icsk
->icsk_mtup
.search_low
) >> 1);
1917 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1918 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
1919 /* When misfortune happens, we are reprobing actively,
1920 * and then reprobe timer has expired. We stick with current
1921 * probing process by not resetting search range to its orignal.
1923 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
1924 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
1925 /* Check whether enough time has elaplased for
1926 * another round of probing.
1928 tcp_mtu_check_reprobe(sk
);
1932 /* Have enough data in the send queue to probe? */
1933 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1936 if (tp
->snd_wnd
< size_needed
)
1938 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1941 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1942 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1943 if (!tcp_packets_in_flight(tp
))
1949 /* We're allowed to probe. Build it now. */
1950 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
1953 sk
->sk_wmem_queued
+= nskb
->truesize
;
1954 sk_mem_charge(sk
, nskb
->truesize
);
1956 skb
= tcp_send_head(sk
);
1958 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1959 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1960 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1961 TCP_SKB_CB(nskb
)->sacked
= 0;
1963 nskb
->ip_summed
= skb
->ip_summed
;
1965 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1966 tcp_highest_sack_replace(sk
, skb
, nskb
);
1969 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1970 copy
= min_t(int, skb
->len
, probe_size
- len
);
1971 if (nskb
->ip_summed
) {
1972 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1974 __wsum csum
= skb_copy_and_csum_bits(skb
, 0,
1975 skb_put(nskb
, copy
),
1977 nskb
->csum
= csum_block_add(nskb
->csum
, csum
, len
);
1980 if (skb
->len
<= copy
) {
1981 /* We've eaten all the data from this skb.
1983 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1984 tcp_unlink_write_queue(skb
, sk
);
1985 sk_wmem_free_skb(sk
, skb
);
1987 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1988 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1989 if (!skb_shinfo(skb
)->nr_frags
) {
1990 skb_pull(skb
, copy
);
1991 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1992 skb
->csum
= csum_partial(skb
->data
,
1995 __pskb_trim_head(skb
, copy
);
1996 tcp_set_skb_tso_segs(skb
, mss_now
);
1998 TCP_SKB_CB(skb
)->seq
+= copy
;
2003 if (len
>= probe_size
)
2006 tcp_init_tso_segs(nskb
, nskb
->len
);
2008 /* We're ready to send. If this fails, the probe will
2009 * be resegmented into mss-sized pieces by tcp_write_xmit().
2011 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2012 /* Decrement cwnd here because we are sending
2013 * effectively two packets. */
2015 tcp_event_new_data_sent(sk
, nskb
);
2017 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2018 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2019 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2027 /* This routine writes packets to the network. It advances the
2028 * send_head. This happens as incoming acks open up the remote
2031 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2032 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2033 * account rare use of URG, this is not a big flaw.
2035 * Send at most one packet when push_one > 0. Temporarily ignore
2036 * cwnd limit to force at most one packet out when push_one == 2.
2038 * Returns true, if no segments are in flight and we have queued segments,
2039 * but cannot send anything now because of SWS or another problem.
2041 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2042 int push_one
, gfp_t gfp
)
2044 struct tcp_sock
*tp
= tcp_sk(sk
);
2045 struct sk_buff
*skb
;
2046 unsigned int tso_segs
, sent_pkts
;
2049 bool is_cwnd_limited
= false;
2055 /* Do MTU probing. */
2056 result
= tcp_mtu_probe(sk
);
2059 } else if (result
> 0) {
2064 max_segs
= tcp_tso_autosize(sk
, mss_now
);
2065 while ((skb
= tcp_send_head(sk
))) {
2068 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2071 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2072 /* "skb_mstamp" is used as a start point for the retransmit timer */
2073 skb_mstamp_get(&skb
->skb_mstamp
);
2074 goto repair
; /* Skip network transmission */
2077 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2080 /* Force out a loss probe pkt. */
2086 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2089 if (tso_segs
== 1) {
2090 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2091 (tcp_skb_is_last(sk
, skb
) ?
2092 nonagle
: TCP_NAGLE_PUSH
))))
2096 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2102 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2103 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2109 if (skb
->len
> limit
&&
2110 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2113 /* TCP Small Queues :
2114 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2116 * - better RTT estimation and ACK scheduling
2119 * Alas, some drivers / subsystems require a fair amount
2120 * of queued bytes to ensure line rate.
2121 * One example is wifi aggregation (802.11 AMPDU)
2123 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2124 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2126 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2127 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2128 /* It is possible TX completion already happened
2129 * before we set TSQ_THROTTLED, so we must
2130 * test again the condition.
2132 smp_mb__after_atomic();
2133 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2137 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2141 /* Advance the send_head. This one is sent out.
2142 * This call will increment packets_out.
2144 tcp_event_new_data_sent(sk
, skb
);
2146 tcp_minshall_update(tp
, mss_now
, skb
);
2147 sent_pkts
+= tcp_skb_pcount(skb
);
2153 if (likely(sent_pkts
)) {
2154 if (tcp_in_cwnd_reduction(sk
))
2155 tp
->prr_out
+= sent_pkts
;
2157 /* Send one loss probe per tail loss episode. */
2159 tcp_schedule_loss_probe(sk
);
2160 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2161 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2164 return !tp
->packets_out
&& tcp_send_head(sk
);
2167 bool tcp_schedule_loss_probe(struct sock
*sk
)
2169 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2170 struct tcp_sock
*tp
= tcp_sk(sk
);
2171 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2172 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2174 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2176 /* No consecutive loss probes. */
2177 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2181 /* Don't do any loss probe on a Fast Open connection before 3WHS
2184 if (tp
->fastopen_rsk
)
2187 /* TLP is only scheduled when next timer event is RTO. */
2188 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2191 /* Schedule a loss probe in 2*RTT for SACK capable connections
2192 * in Open state, that are either limited by cwnd or application.
2194 if (sysctl_tcp_early_retrans
< 3 || !tp
->packets_out
||
2195 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2198 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2202 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2203 * for delayed ack when there's one outstanding packet. If no RTT
2204 * sample is available then probe after TCP_TIMEOUT_INIT.
2206 timeout
= rtt
<< 1 ? : TCP_TIMEOUT_INIT
;
2207 if (tp
->packets_out
== 1)
2208 timeout
= max_t(u32
, timeout
,
2209 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2210 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2212 /* If RTO is shorter, just schedule TLP in its place. */
2213 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2214 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2215 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2216 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2221 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2226 /* Thanks to skb fast clones, we can detect if a prior transmit of
2227 * a packet is still in a qdisc or driver queue.
2228 * In this case, there is very little point doing a retransmit !
2229 * Note: This is called from BH context only.
2231 static bool skb_still_in_host_queue(const struct sock
*sk
,
2232 const struct sk_buff
*skb
)
2234 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2235 NET_INC_STATS_BH(sock_net(sk
),
2236 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2242 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2243 * retransmit the last segment.
2245 void tcp_send_loss_probe(struct sock
*sk
)
2247 struct tcp_sock
*tp
= tcp_sk(sk
);
2248 struct sk_buff
*skb
;
2250 int mss
= tcp_current_mss(sk
);
2252 skb
= tcp_send_head(sk
);
2254 if (tcp_snd_wnd_test(tp
, skb
, mss
)) {
2255 pcount
= tp
->packets_out
;
2256 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2257 if (tp
->packets_out
> pcount
)
2261 skb
= tcp_write_queue_prev(sk
, skb
);
2263 skb
= tcp_write_queue_tail(sk
);
2266 if (unlikely(!skb
)) {
2267 WARN_ONCE(tp
->packets_out
,
2268 "invalid inflight: %u state %u cwnd %u mss %d\n",
2269 tp
->packets_out
, sk
->sk_state
, tp
->snd_cwnd
, mss
);
2270 inet_csk(sk
)->icsk_pending
= 0;
2274 /* At most one outstanding TLP retransmission. */
2275 if (tp
->tlp_high_seq
)
2278 if (skb_still_in_host_queue(sk
, skb
))
2281 pcount
= tcp_skb_pcount(skb
);
2282 if (WARN_ON(!pcount
))
2285 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2286 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2289 skb
= tcp_write_queue_next(sk
, skb
);
2292 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2295 if (__tcp_retransmit_skb(sk
, skb
))
2298 /* Record snd_nxt for loss detection. */
2299 tp
->tlp_high_seq
= tp
->snd_nxt
;
2302 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2303 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2304 inet_csk(sk
)->icsk_pending
= 0;
2309 /* Push out any pending frames which were held back due to
2310 * TCP_CORK or attempt at coalescing tiny packets.
2311 * The socket must be locked by the caller.
2313 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2316 /* If we are closed, the bytes will have to remain here.
2317 * In time closedown will finish, we empty the write queue and
2318 * all will be happy.
2320 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2323 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2324 sk_gfp_atomic(sk
, GFP_ATOMIC
)))
2325 tcp_check_probe_timer(sk
);
2328 /* Send _single_ skb sitting at the send head. This function requires
2329 * true push pending frames to setup probe timer etc.
2331 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2333 struct sk_buff
*skb
= tcp_send_head(sk
);
2335 BUG_ON(!skb
|| skb
->len
< mss_now
);
2337 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2340 /* This function returns the amount that we can raise the
2341 * usable window based on the following constraints
2343 * 1. The window can never be shrunk once it is offered (RFC 793)
2344 * 2. We limit memory per socket
2347 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2348 * RECV.NEXT + RCV.WIN fixed until:
2349 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2351 * i.e. don't raise the right edge of the window until you can raise
2352 * it at least MSS bytes.
2354 * Unfortunately, the recommended algorithm breaks header prediction,
2355 * since header prediction assumes th->window stays fixed.
2357 * Strictly speaking, keeping th->window fixed violates the receiver
2358 * side SWS prevention criteria. The problem is that under this rule
2359 * a stream of single byte packets will cause the right side of the
2360 * window to always advance by a single byte.
2362 * Of course, if the sender implements sender side SWS prevention
2363 * then this will not be a problem.
2365 * BSD seems to make the following compromise:
2367 * If the free space is less than the 1/4 of the maximum
2368 * space available and the free space is less than 1/2 mss,
2369 * then set the window to 0.
2370 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2371 * Otherwise, just prevent the window from shrinking
2372 * and from being larger than the largest representable value.
2374 * This prevents incremental opening of the window in the regime
2375 * where TCP is limited by the speed of the reader side taking
2376 * data out of the TCP receive queue. It does nothing about
2377 * those cases where the window is constrained on the sender side
2378 * because the pipeline is full.
2380 * BSD also seems to "accidentally" limit itself to windows that are a
2381 * multiple of MSS, at least until the free space gets quite small.
2382 * This would appear to be a side effect of the mbuf implementation.
2383 * Combining these two algorithms results in the observed behavior
2384 * of having a fixed window size at almost all times.
2386 * Below we obtain similar behavior by forcing the offered window to
2387 * a multiple of the mss when it is feasible to do so.
2389 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2390 * Regular options like TIMESTAMP are taken into account.
2392 u32
__tcp_select_window(struct sock
*sk
)
2394 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2395 struct tcp_sock
*tp
= tcp_sk(sk
);
2396 /* MSS for the peer's data. Previous versions used mss_clamp
2397 * here. I don't know if the value based on our guesses
2398 * of peer's MSS is better for the performance. It's more correct
2399 * but may be worse for the performance because of rcv_mss
2400 * fluctuations. --SAW 1998/11/1
2402 int mss
= icsk
->icsk_ack
.rcv_mss
;
2403 int free_space
= tcp_space(sk
);
2404 int allowed_space
= tcp_full_space(sk
);
2405 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2408 if (unlikely(mss
> full_space
)) {
2413 if (free_space
< (full_space
>> 1)) {
2414 icsk
->icsk_ack
.quick
= 0;
2416 if (tcp_under_memory_pressure(sk
))
2417 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2420 /* free_space might become our new window, make sure we don't
2421 * increase it due to wscale.
2423 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2425 /* if free space is less than mss estimate, or is below 1/16th
2426 * of the maximum allowed, try to move to zero-window, else
2427 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2428 * new incoming data is dropped due to memory limits.
2429 * With large window, mss test triggers way too late in order
2430 * to announce zero window in time before rmem limit kicks in.
2432 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2436 if (free_space
> tp
->rcv_ssthresh
)
2437 free_space
= tp
->rcv_ssthresh
;
2439 /* Don't do rounding if we are using window scaling, since the
2440 * scaled window will not line up with the MSS boundary anyway.
2442 window
= tp
->rcv_wnd
;
2443 if (tp
->rx_opt
.rcv_wscale
) {
2444 window
= free_space
;
2446 /* Advertise enough space so that it won't get scaled away.
2447 * Import case: prevent zero window announcement if
2448 * 1<<rcv_wscale > mss.
2450 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2451 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2452 << tp
->rx_opt
.rcv_wscale
);
2454 /* Get the largest window that is a nice multiple of mss.
2455 * Window clamp already applied above.
2456 * If our current window offering is within 1 mss of the
2457 * free space we just keep it. This prevents the divide
2458 * and multiply from happening most of the time.
2459 * We also don't do any window rounding when the free space
2462 if (window
<= free_space
- mss
|| window
> free_space
)
2463 window
= (free_space
/ mss
) * mss
;
2464 else if (mss
== full_space
&&
2465 free_space
> window
+ (full_space
>> 1))
2466 window
= free_space
;
2472 /* Collapses two adjacent SKB's during retransmission. */
2473 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2475 struct tcp_sock
*tp
= tcp_sk(sk
);
2476 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2477 int skb_size
, next_skb_size
;
2479 skb_size
= skb
->len
;
2480 next_skb_size
= next_skb
->len
;
2482 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2484 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2486 tcp_unlink_write_queue(next_skb
, sk
);
2488 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2491 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2492 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2494 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2495 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2497 /* Update sequence range on original skb. */
2498 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2500 /* Merge over control information. This moves PSH/FIN etc. over */
2501 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2503 /* All done, get rid of second SKB and account for it so
2504 * packet counting does not break.
2506 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2508 /* changed transmit queue under us so clear hints */
2509 tcp_clear_retrans_hints_partial(tp
);
2510 if (next_skb
== tp
->retransmit_skb_hint
)
2511 tp
->retransmit_skb_hint
= skb
;
2513 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2515 sk_wmem_free_skb(sk
, next_skb
);
2518 /* Check if coalescing SKBs is legal. */
2519 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2521 if (tcp_skb_pcount(skb
) > 1)
2523 /* TODO: SACK collapsing could be used to remove this condition */
2524 if (skb_shinfo(skb
)->nr_frags
!= 0)
2526 if (skb_cloned(skb
))
2528 if (skb
== tcp_send_head(sk
))
2530 /* Some heurestics for collapsing over SACK'd could be invented */
2531 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2537 /* Collapse packets in the retransmit queue to make to create
2538 * less packets on the wire. This is only done on retransmission.
2540 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2543 struct tcp_sock
*tp
= tcp_sk(sk
);
2544 struct sk_buff
*skb
= to
, *tmp
;
2547 if (!sysctl_tcp_retrans_collapse
)
2549 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2552 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2553 if (!tcp_can_collapse(sk
, skb
))
2565 /* Punt if not enough space exists in the first SKB for
2566 * the data in the second
2568 if (skb
->len
> skb_availroom(to
))
2571 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2574 tcp_collapse_retrans(sk
, to
);
2578 /* This retransmits one SKB. Policy decisions and retransmit queue
2579 * state updates are done by the caller. Returns non-zero if an
2580 * error occurred which prevented the send.
2582 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2584 struct tcp_sock
*tp
= tcp_sk(sk
);
2585 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2586 unsigned int cur_mss
;
2589 /* Inconslusive MTU probe */
2590 if (icsk
->icsk_mtup
.probe_size
) {
2591 icsk
->icsk_mtup
.probe_size
= 0;
2594 /* Do not sent more than we queued. 1/4 is reserved for possible
2595 * copying overhead: fragmentation, tunneling, mangling etc.
2597 if (atomic_read(&sk
->sk_wmem_alloc
) >
2598 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2602 if (skb_still_in_host_queue(sk
, skb
))
2605 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2606 if (unlikely(before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))) {
2610 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2614 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2615 return -EHOSTUNREACH
; /* Routing failure or similar. */
2617 cur_mss
= tcp_current_mss(sk
);
2619 /* If receiver has shrunk his window, and skb is out of
2620 * new window, do not retransmit it. The exception is the
2621 * case, when window is shrunk to zero. In this case
2622 * our retransmit serves as a zero window probe.
2624 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2625 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2628 if (skb
->len
> cur_mss
) {
2629 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2630 return -ENOMEM
; /* We'll try again later. */
2632 int oldpcount
= tcp_skb_pcount(skb
);
2634 if (unlikely(oldpcount
> 1)) {
2635 if (skb_unclone(skb
, GFP_ATOMIC
))
2637 tcp_init_tso_segs(skb
, cur_mss
);
2638 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2642 /* RFC3168, section 6.1.1.1. ECN fallback */
2643 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2644 tcp_ecn_clear_syn(sk
, skb
);
2646 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2648 /* Make a copy, if the first transmission SKB clone we made
2649 * is still in somebody's hands, else make a clone.
2652 /* make sure skb->data is aligned on arches that require it
2653 * and check if ack-trimming & collapsing extended the headroom
2654 * beyond what csum_start can cover.
2656 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2657 skb_headroom(skb
) >= 0xFFFF)) {
2658 struct sk_buff
*nskb
;
2660 skb_mstamp_get(&skb
->skb_mstamp
);
2661 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2662 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2665 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2669 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2670 /* Update global TCP statistics. */
2671 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2672 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2673 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2674 tp
->total_retrans
++;
2679 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2681 struct tcp_sock
*tp
= tcp_sk(sk
);
2682 int err
= __tcp_retransmit_skb(sk
, skb
);
2685 #if FASTRETRANS_DEBUG > 0
2686 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2687 net_dbg_ratelimited("retrans_out leaked\n");
2690 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2691 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2693 /* Save stamp of the first retransmit. */
2694 if (!tp
->retrans_stamp
)
2695 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2697 } else if (err
!= -EBUSY
) {
2698 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2701 if (tp
->undo_retrans
< 0)
2702 tp
->undo_retrans
= 0;
2703 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2707 /* Check if we forward retransmits are possible in the current
2708 * window/congestion state.
2710 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2712 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2713 const struct tcp_sock
*tp
= tcp_sk(sk
);
2715 /* Forward retransmissions are possible only during Recovery. */
2716 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2719 /* No forward retransmissions in Reno are possible. */
2720 if (tcp_is_reno(tp
))
2723 /* Yeah, we have to make difficult choice between forward transmission
2724 * and retransmission... Both ways have their merits...
2726 * For now we do not retransmit anything, while we have some new
2727 * segments to send. In the other cases, follow rule 3 for
2728 * NextSeg() specified in RFC3517.
2731 if (tcp_may_send_now(sk
))
2737 /* This gets called after a retransmit timeout, and the initially
2738 * retransmitted data is acknowledged. It tries to continue
2739 * resending the rest of the retransmit queue, until either
2740 * we've sent it all or the congestion window limit is reached.
2741 * If doing SACK, the first ACK which comes back for a timeout
2742 * based retransmit packet might feed us FACK information again.
2743 * If so, we use it to avoid unnecessarily retransmissions.
2745 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2747 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2748 struct tcp_sock
*tp
= tcp_sk(sk
);
2749 struct sk_buff
*skb
;
2750 struct sk_buff
*hole
= NULL
;
2753 int fwd_rexmitting
= 0;
2755 if (!tp
->packets_out
)
2759 tp
->retransmit_high
= tp
->snd_una
;
2761 if (tp
->retransmit_skb_hint
) {
2762 skb
= tp
->retransmit_skb_hint
;
2763 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2764 if (after(last_lost
, tp
->retransmit_high
))
2765 last_lost
= tp
->retransmit_high
;
2767 skb
= tcp_write_queue_head(sk
);
2768 last_lost
= tp
->snd_una
;
2771 tcp_for_write_queue_from(skb
, sk
) {
2772 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2774 if (skb
== tcp_send_head(sk
))
2776 /* we could do better than to assign each time */
2778 tp
->retransmit_skb_hint
= skb
;
2780 /* Assume this retransmit will generate
2781 * only one packet for congestion window
2782 * calculation purposes. This works because
2783 * tcp_retransmit_skb() will chop up the
2784 * packet to be MSS sized and all the
2785 * packet counting works out.
2787 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2790 if (fwd_rexmitting
) {
2792 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2794 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2796 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2797 tp
->retransmit_high
= last_lost
;
2798 if (!tcp_can_forward_retransmit(sk
))
2800 /* Backtrack if necessary to non-L'ed skb */
2808 } else if (!(sacked
& TCPCB_LOST
)) {
2809 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2814 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2815 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2816 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2818 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2821 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2824 if (tcp_retransmit_skb(sk
, skb
))
2827 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2829 if (tcp_in_cwnd_reduction(sk
))
2830 tp
->prr_out
+= tcp_skb_pcount(skb
);
2832 if (skb
== tcp_write_queue_head(sk
))
2833 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2834 inet_csk(sk
)->icsk_rto
,
2839 /* We allow to exceed memory limits for FIN packets to expedite
2840 * connection tear down and (memory) recovery.
2841 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2842 * or even be forced to close flow without any FIN.
2843 * In general, we want to allow one skb per socket to avoid hangs
2844 * with edge trigger epoll()
2846 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
2850 if (size
<= sk
->sk_forward_alloc
)
2852 amt
= sk_mem_pages(size
);
2853 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2854 sk_memory_allocated_add(sk
, amt
, &status
);
2857 /* Send a FIN. The caller locks the socket for us.
2858 * We should try to send a FIN packet really hard, but eventually give up.
2860 void tcp_send_fin(struct sock
*sk
)
2862 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
2863 struct tcp_sock
*tp
= tcp_sk(sk
);
2865 /* Optimization, tack on the FIN if we have one skb in write queue and
2866 * this skb was not yet sent, or we are under memory pressure.
2867 * Note: in the latter case, FIN packet will be sent after a timeout,
2868 * as TCP stack thinks it has already been transmitted.
2870 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
2872 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
2873 TCP_SKB_CB(tskb
)->end_seq
++;
2875 if (!tcp_send_head(sk
)) {
2876 /* This means tskb was already sent.
2877 * Pretend we included the FIN on previous transmit.
2878 * We need to set tp->snd_nxt to the value it would have
2879 * if FIN had been sent. This is because retransmit path
2880 * does not change tp->snd_nxt.
2886 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
2887 if (unlikely(!skb
)) {
2892 skb_reserve(skb
, MAX_TCP_HEADER
);
2893 sk_forced_mem_schedule(sk
, skb
->truesize
);
2894 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2895 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2896 TCPHDR_ACK
| TCPHDR_FIN
);
2897 tcp_queue_skb(sk
, skb
);
2899 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
2902 /* We get here when a process closes a file descriptor (either due to
2903 * an explicit close() or as a byproduct of exit()'ing) and there
2904 * was unread data in the receive queue. This behavior is recommended
2905 * by RFC 2525, section 2.17. -DaveM
2907 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2909 struct sk_buff
*skb
;
2911 /* NOTE: No TCP options attached and we never retransmit this. */
2912 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2914 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2918 /* Reserve space for headers and prepare control bits. */
2919 skb_reserve(skb
, MAX_TCP_HEADER
);
2920 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2921 TCPHDR_ACK
| TCPHDR_RST
);
2922 skb_mstamp_get(&skb
->skb_mstamp
);
2924 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2925 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2927 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2930 /* Send a crossed SYN-ACK during socket establishment.
2931 * WARNING: This routine must only be called when we have already sent
2932 * a SYN packet that crossed the incoming SYN that caused this routine
2933 * to get called. If this assumption fails then the initial rcv_wnd
2934 * and rcv_wscale values will not be correct.
2936 int tcp_send_synack(struct sock
*sk
)
2938 struct sk_buff
*skb
;
2940 skb
= tcp_write_queue_head(sk
);
2941 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2942 pr_debug("%s: wrong queue state\n", __func__
);
2945 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2946 if (skb_cloned(skb
)) {
2947 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2950 tcp_unlink_write_queue(skb
, sk
);
2951 __skb_header_release(nskb
);
2952 __tcp_add_write_queue_head(sk
, nskb
);
2953 sk_wmem_free_skb(sk
, skb
);
2954 sk
->sk_wmem_queued
+= nskb
->truesize
;
2955 sk_mem_charge(sk
, nskb
->truesize
);
2959 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2960 tcp_ecn_send_synack(sk
, skb
);
2962 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2966 * tcp_make_synack - Prepare a SYN-ACK.
2967 * sk: listener socket
2968 * dst: dst entry attached to the SYNACK
2969 * req: request_sock pointer
2971 * Allocate one skb and build a SYNACK packet.
2972 * @dst is consumed : Caller should not use it again.
2974 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
2975 struct request_sock
*req
,
2976 struct tcp_fastopen_cookie
*foc
,
2979 struct inet_request_sock
*ireq
= inet_rsk(req
);
2980 const struct tcp_sock
*tp
= tcp_sk(sk
);
2981 struct tcp_md5sig_key
*md5
= NULL
;
2982 struct tcp_out_options opts
;
2983 struct sk_buff
*skb
;
2984 int tcp_header_size
;
2989 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2990 if (unlikely(!skb
)) {
2994 /* Reserve space for headers. */
2995 skb_reserve(skb
, MAX_TCP_HEADER
);
2998 skb_set_owner_w(skb
, req_to_sk(req
));
3000 /* sk is a const pointer, because we want to express multiple
3001 * cpu might call us concurrently.
3002 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3004 skb_set_owner_w(skb
, (struct sock
*)sk
);
3006 skb_dst_set(skb
, dst
);
3008 mss
= dst_metric_advmss(dst
);
3009 user_mss
= READ_ONCE(tp
->rx_opt
.user_mss
);
3010 if (user_mss
&& user_mss
< mss
)
3013 memset(&opts
, 0, sizeof(opts
));
3014 #ifdef CONFIG_SYN_COOKIES
3015 if (unlikely(req
->cookie_ts
))
3016 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
3019 skb_mstamp_get(&skb
->skb_mstamp
);
3021 #ifdef CONFIG_TCP_MD5SIG
3023 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3025 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3026 tcp_header_size
= tcp_synack_options(req
, mss
, skb
, &opts
, md5
, foc
) +
3029 skb_push(skb
, tcp_header_size
);
3030 skb_reset_transport_header(skb
);
3033 memset(th
, 0, sizeof(struct tcphdr
));
3036 tcp_ecn_make_synack(req
, th
);
3037 th
->source
= htons(ireq
->ir_num
);
3038 th
->dest
= ireq
->ir_rmt_port
;
3039 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3040 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3041 /* XXX data is queued and acked as is. No buffer/window check */
3042 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3044 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3045 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3046 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3047 th
->doff
= (tcp_header_size
>> 2);
3048 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
3050 #ifdef CONFIG_TCP_MD5SIG
3051 /* Okay, we have all we need - do the md5 hash if needed */
3053 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3054 md5
, req_to_sk(req
), skb
);
3058 /* Do not fool tcpdump (if any), clean our debris */
3059 skb
->tstamp
.tv64
= 0;
3062 EXPORT_SYMBOL(tcp_make_synack
);
3064 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3066 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3067 const struct tcp_congestion_ops
*ca
;
3068 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3070 if (ca_key
== TCP_CA_UNSPEC
)
3074 ca
= tcp_ca_find_key(ca_key
);
3075 if (likely(ca
&& try_module_get(ca
->owner
))) {
3076 module_put(icsk
->icsk_ca_ops
->owner
);
3077 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3078 icsk
->icsk_ca_ops
= ca
;
3083 /* Do all connect socket setups that can be done AF independent. */
3084 static void tcp_connect_init(struct sock
*sk
)
3086 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3087 struct tcp_sock
*tp
= tcp_sk(sk
);
3090 /* We'll fix this up when we get a response from the other end.
3091 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3093 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
3094 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
3096 #ifdef CONFIG_TCP_MD5SIG
3097 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3098 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3101 /* If user gave his TCP_MAXSEG, record it to clamp */
3102 if (tp
->rx_opt
.user_mss
)
3103 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3106 tcp_sync_mss(sk
, dst_mtu(dst
));
3108 tcp_ca_dst_init(sk
, dst
);
3110 if (!tp
->window_clamp
)
3111 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3112 tp
->advmss
= dst_metric_advmss(dst
);
3113 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
3114 tp
->advmss
= tp
->rx_opt
.user_mss
;
3116 tcp_initialize_rcv_mss(sk
);
3118 /* limit the window selection if the user enforce a smaller rx buffer */
3119 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3120 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3121 tp
->window_clamp
= tcp_full_space(sk
);
3123 tcp_select_initial_window(tcp_full_space(sk
),
3124 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3127 sysctl_tcp_window_scaling
,
3129 dst_metric(dst
, RTAX_INITRWND
));
3131 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3132 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3135 sock_reset_flag(sk
, SOCK_DONE
);
3138 tcp_write_queue_purge(sk
);
3139 tp
->snd_una
= tp
->write_seq
;
3140 tp
->snd_sml
= tp
->write_seq
;
3141 tp
->snd_up
= tp
->write_seq
;
3142 tp
->snd_nxt
= tp
->write_seq
;
3144 if (likely(!tp
->repair
))
3147 tp
->rcv_tstamp
= tcp_time_stamp
;
3148 tp
->rcv_wup
= tp
->rcv_nxt
;
3149 tp
->copied_seq
= tp
->rcv_nxt
;
3151 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3152 inet_csk(sk
)->icsk_retransmits
= 0;
3153 tcp_clear_retrans(tp
);
3156 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3158 struct tcp_sock
*tp
= tcp_sk(sk
);
3159 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3161 tcb
->end_seq
+= skb
->len
;
3162 __skb_header_release(skb
);
3163 __tcp_add_write_queue_tail(sk
, skb
);
3164 sk
->sk_wmem_queued
+= skb
->truesize
;
3165 sk_mem_charge(sk
, skb
->truesize
);
3166 tp
->write_seq
= tcb
->end_seq
;
3167 tp
->packets_out
+= tcp_skb_pcount(skb
);
3170 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3171 * queue a data-only packet after the regular SYN, such that regular SYNs
3172 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3173 * only the SYN sequence, the data are retransmitted in the first ACK.
3174 * If cookie is not cached or other error occurs, falls back to send a
3175 * regular SYN with Fast Open cookie request option.
3177 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3179 struct tcp_sock
*tp
= tcp_sk(sk
);
3180 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3181 int syn_loss
= 0, space
, err
= 0;
3182 unsigned long last_syn_loss
= 0;
3183 struct sk_buff
*syn_data
;
3185 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3186 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3187 &syn_loss
, &last_syn_loss
);
3188 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3190 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3191 fo
->cookie
.len
= -1;
3195 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3196 fo
->cookie
.len
= -1;
3197 else if (fo
->cookie
.len
<= 0)
3200 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3201 * user-MSS. Reserve maximum option space for middleboxes that add
3202 * private TCP options. The cost is reduced data space in SYN :(
3204 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3205 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3206 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3207 MAX_TCP_OPTION_SPACE
;
3209 space
= min_t(size_t, space
, fo
->size
);
3211 /* limit to order-0 allocations */
3212 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3214 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3217 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3218 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3220 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3221 &fo
->data
->msg_iter
);
3222 if (unlikely(!copied
)) {
3223 kfree_skb(syn_data
);
3226 if (copied
!= space
) {
3227 skb_trim(syn_data
, copied
);
3231 /* No more data pending in inet_wait_for_connect() */
3232 if (space
== fo
->size
)
3236 tcp_connect_queue_skb(sk
, syn_data
);
3238 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3240 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3242 /* Now full SYN+DATA was cloned and sent (or not),
3243 * remove the SYN from the original skb (syn_data)
3244 * we keep in write queue in case of a retransmit, as we
3245 * also have the SYN packet (with no data) in the same queue.
3247 TCP_SKB_CB(syn_data
)->seq
++;
3248 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3250 tp
->syn_data
= (fo
->copied
> 0);
3251 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3256 /* Send a regular SYN with Fast Open cookie request option */
3257 if (fo
->cookie
.len
> 0)
3259 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3261 tp
->syn_fastopen
= 0;
3263 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3267 /* Build a SYN and send it off. */
3268 int tcp_connect(struct sock
*sk
)
3270 struct tcp_sock
*tp
= tcp_sk(sk
);
3271 struct sk_buff
*buff
;
3274 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3275 return -EHOSTUNREACH
; /* Routing failure or similar. */
3277 tcp_connect_init(sk
);
3279 if (unlikely(tp
->repair
)) {
3280 tcp_finish_connect(sk
, NULL
);
3284 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3285 if (unlikely(!buff
))
3288 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3289 tp
->retrans_stamp
= tcp_time_stamp
;
3290 tcp_connect_queue_skb(sk
, buff
);
3291 tcp_ecn_send_syn(sk
, buff
);
3293 /* Send off SYN; include data in Fast Open. */
3294 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3295 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3296 if (err
== -ECONNREFUSED
)
3299 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3300 * in order to make this packet get counted in tcpOutSegs.
3302 tp
->snd_nxt
= tp
->write_seq
;
3303 tp
->pushed_seq
= tp
->write_seq
;
3304 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3306 /* Timer for repeating the SYN until an answer. */
3307 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3308 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3311 EXPORT_SYMBOL(tcp_connect
);
3313 /* Send out a delayed ack, the caller does the policy checking
3314 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3317 void tcp_send_delayed_ack(struct sock
*sk
)
3319 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3320 int ato
= icsk
->icsk_ack
.ato
;
3321 unsigned long timeout
;
3323 if (ato
> TCP_DELACK_MIN
) {
3324 const struct tcp_sock
*tp
= tcp_sk(sk
);
3325 int max_ato
= HZ
/ 2;
3327 if (icsk
->icsk_ack
.pingpong
||
3328 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3329 max_ato
= TCP_DELACK_MAX
;
3331 /* Slow path, intersegment interval is "high". */
3333 /* If some rtt estimate is known, use it to bound delayed ack.
3334 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3338 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3345 ato
= min(ato
, max_ato
);
3348 /* Stay within the limit we were given */
3349 timeout
= jiffies
+ ato
;
3351 /* Use new timeout only if there wasn't a older one earlier. */
3352 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3353 /* If delack timer was blocked or is about to expire,
3356 if (icsk
->icsk_ack
.blocked
||
3357 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3362 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3363 timeout
= icsk
->icsk_ack
.timeout
;
3365 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3366 icsk
->icsk_ack
.timeout
= timeout
;
3367 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3370 /* This routine sends an ack and also updates the window. */
3371 void __tcp_send_ack(struct sock
*sk
, u32 rcv_nxt
)
3373 struct sk_buff
*buff
;
3375 /* If we have been reset, we may not send again. */
3376 if (sk
->sk_state
== TCP_CLOSE
)
3379 /* We are not putting this on the write queue, so
3380 * tcp_transmit_skb() will set the ownership to this
3383 buff
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3385 inet_csk_schedule_ack(sk
);
3386 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3387 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3388 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3392 /* Reserve space for headers and prepare control bits. */
3393 skb_reserve(buff
, MAX_TCP_HEADER
);
3394 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3396 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3398 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3399 * We also avoid tcp_wfree() overhead (cache line miss accessing
3400 * tp->tsq_flags) by using regular sock_wfree()
3402 skb_set_tcp_pure_ack(buff
);
3404 /* Send it off, this clears delayed acks for us. */
3405 skb_mstamp_get(&buff
->skb_mstamp
);
3406 __tcp_transmit_skb(sk
, buff
, 0, sk_gfp_atomic(sk
, GFP_ATOMIC
), rcv_nxt
);
3408 EXPORT_SYMBOL_GPL(__tcp_send_ack
);
3410 void tcp_send_ack(struct sock
*sk
)
3412 __tcp_send_ack(sk
, tcp_sk(sk
)->rcv_nxt
);
3415 /* This routine sends a packet with an out of date sequence
3416 * number. It assumes the other end will try to ack it.
3418 * Question: what should we make while urgent mode?
3419 * 4.4BSD forces sending single byte of data. We cannot send
3420 * out of window data, because we have SND.NXT==SND.MAX...
3422 * Current solution: to send TWO zero-length segments in urgent mode:
3423 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3424 * out-of-date with SND.UNA-1 to probe window.
3426 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3428 struct tcp_sock
*tp
= tcp_sk(sk
);
3429 struct sk_buff
*skb
;
3431 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3432 skb
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3436 /* Reserve space for headers and set control bits. */
3437 skb_reserve(skb
, MAX_TCP_HEADER
);
3438 /* Use a previous sequence. This should cause the other
3439 * end to send an ack. Don't queue or clone SKB, just
3442 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3443 skb_mstamp_get(&skb
->skb_mstamp
);
3444 NET_INC_STATS(sock_net(sk
), mib
);
3445 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
3448 void tcp_send_window_probe(struct sock
*sk
)
3450 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3451 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3452 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3456 /* Initiate keepalive or window probe from timer. */
3457 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3459 struct tcp_sock
*tp
= tcp_sk(sk
);
3460 struct sk_buff
*skb
;
3462 if (sk
->sk_state
== TCP_CLOSE
)
3465 skb
= tcp_send_head(sk
);
3466 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3468 unsigned int mss
= tcp_current_mss(sk
);
3469 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3471 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3472 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3474 /* We are probing the opening of a window
3475 * but the window size is != 0
3476 * must have been a result SWS avoidance ( sender )
3478 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3480 seg_size
= min(seg_size
, mss
);
3481 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3482 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3484 } else if (!tcp_skb_pcount(skb
))
3485 tcp_set_skb_tso_segs(skb
, mss
);
3487 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3488 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3490 tcp_event_new_data_sent(sk
, skb
);
3493 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3494 tcp_xmit_probe_skb(sk
, 1, mib
);
3495 return tcp_xmit_probe_skb(sk
, 0, mib
);
3499 /* A window probe timeout has occurred. If window is not closed send
3500 * a partial packet else a zero probe.
3502 void tcp_send_probe0(struct sock
*sk
)
3504 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3505 struct tcp_sock
*tp
= tcp_sk(sk
);
3506 unsigned long probe_max
;
3509 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3511 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3512 /* Cancel probe timer, if it is not required. */
3513 icsk
->icsk_probes_out
= 0;
3514 icsk
->icsk_backoff
= 0;
3519 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
3520 icsk
->icsk_backoff
++;
3521 icsk
->icsk_probes_out
++;
3522 probe_max
= TCP_RTO_MAX
;
3524 /* If packet was not sent due to local congestion,
3525 * do not backoff and do not remember icsk_probes_out.
3526 * Let local senders to fight for local resources.
3528 * Use accumulated backoff yet.
3530 if (!icsk
->icsk_probes_out
)
3531 icsk
->icsk_probes_out
= 1;
3532 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3534 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3535 tcp_probe0_when(sk
, probe_max
),
3539 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3541 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3545 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3546 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, true);
3548 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3549 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3553 EXPORT_SYMBOL(tcp_rtx_synack
);