ALSA: usb-audio: Fix an out-of-bound read in create_composite_quirks
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
blobb55b8954dae5b0ab7c95de76caa0f62fffe08519
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 const struct tcp_sock *tp = tcp_sk(sk);
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16 tcp_advertise_mss(struct sock *sk)
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
136 return (__u16)mss;
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
170 tp->lsndtime = now;
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 icsk->icsk_ack.pingpong = 1;
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 u32 rcv_nxt)
183 struct tcp_sock *tp = tcp_sk(sk);
185 if (unlikely(rcv_nxt != tp->rcv_nxt))
186 return; /* Special ACK sent by DCTCP to reflect ECN */
187 tcp_dec_quickack_mode(sk, pkts);
188 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
192 u32 tcp_default_init_rwnd(u32 mss)
194 /* Initial receive window should be twice of TCP_INIT_CWND to
195 * enable proper sending of new unsent data during fast recovery
196 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
197 * limit when mss is larger than 1460.
199 u32 init_rwnd = TCP_INIT_CWND * 2;
201 if (mss > 1460)
202 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
203 return init_rwnd;
206 /* Determine a window scaling and initial window to offer.
207 * Based on the assumption that the given amount of space
208 * will be offered. Store the results in the tp structure.
209 * NOTE: for smooth operation initial space offering should
210 * be a multiple of mss if possible. We assume here that mss >= 1.
211 * This MUST be enforced by all callers.
213 void tcp_select_initial_window(int __space, __u32 mss,
214 __u32 *rcv_wnd, __u32 *window_clamp,
215 int wscale_ok, __u8 *rcv_wscale,
216 __u32 init_rcv_wnd)
218 unsigned int space = (__space < 0 ? 0 : __space);
220 /* If no clamp set the clamp to the max possible scaled window */
221 if (*window_clamp == 0)
222 (*window_clamp) = (65535 << 14);
223 space = min(*window_clamp, space);
225 /* Quantize space offering to a multiple of mss if possible. */
226 if (space > mss)
227 space = (space / mss) * mss;
229 /* NOTE: offering an initial window larger than 32767
230 * will break some buggy TCP stacks. If the admin tells us
231 * it is likely we could be speaking with such a buggy stack
232 * we will truncate our initial window offering to 32K-1
233 * unless the remote has sent us a window scaling option,
234 * which we interpret as a sign the remote TCP is not
235 * misinterpreting the window field as a signed quantity.
237 if (sysctl_tcp_workaround_signed_windows)
238 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
239 else
240 (*rcv_wnd) = space;
242 (*rcv_wscale) = 0;
243 if (wscale_ok) {
244 /* Set window scaling on max possible window
245 * See RFC1323 for an explanation of the limit to 14
247 space = max_t(u32, space, sysctl_tcp_rmem[2]);
248 space = max_t(u32, space, sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
265 EXPORT_SYMBOL(tcp_select_initial_window);
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
272 static u16 tcp_select_window(struct sock *sk)
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
286 * Relax Will Robinson.
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
317 return new_win;
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
323 const struct tcp_sock *tp = tcp_sk(sk);
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 if (!(tp->ecn_flags & TCP_ECN_OK))
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 else if (tcp_ca_needs_ecn(sk))
329 INET_ECN_xmit(sk);
332 /* Packet ECN state for a SYN. */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
335 struct tcp_sock *tp = tcp_sk(sk);
336 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
337 tcp_ca_needs_ecn(sk);
339 if (!use_ecn) {
340 const struct dst_entry *dst = __sk_dst_get(sk);
342 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
343 use_ecn = true;
346 tp->ecn_flags = 0;
348 if (use_ecn) {
349 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
350 tp->ecn_flags = TCP_ECN_OK;
351 if (tcp_ca_needs_ecn(sk))
352 INET_ECN_xmit(sk);
356 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
358 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
359 /* tp->ecn_flags are cleared at a later point in time when
360 * SYN ACK is ultimatively being received.
362 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
365 static void
366 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
368 if (inet_rsk(req)->ecn_ok)
369 th->ece = 1;
372 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
373 * be sent.
375 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
376 int tcp_header_len)
378 struct tcp_sock *tp = tcp_sk(sk);
380 if (tp->ecn_flags & TCP_ECN_OK) {
381 /* Not-retransmitted data segment: set ECT and inject CWR. */
382 if (skb->len != tcp_header_len &&
383 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
384 INET_ECN_xmit(sk);
385 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
386 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
387 tcp_hdr(skb)->cwr = 1;
388 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
390 } else if (!tcp_ca_needs_ecn(sk)) {
391 /* ACK or retransmitted segment: clear ECT|CE */
392 INET_ECN_dontxmit(sk);
394 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
395 tcp_hdr(skb)->ece = 1;
399 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
400 * auto increment end seqno.
402 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
404 skb->ip_summed = CHECKSUM_PARTIAL;
405 skb->csum = 0;
407 TCP_SKB_CB(skb)->tcp_flags = flags;
408 TCP_SKB_CB(skb)->sacked = 0;
410 tcp_skb_pcount_set(skb, 1);
412 TCP_SKB_CB(skb)->seq = seq;
413 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
414 seq++;
415 TCP_SKB_CB(skb)->end_seq = seq;
418 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
420 return tp->snd_una != tp->snd_up;
423 #define OPTION_SACK_ADVERTISE (1 << 0)
424 #define OPTION_TS (1 << 1)
425 #define OPTION_MD5 (1 << 2)
426 #define OPTION_WSCALE (1 << 3)
427 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
429 struct tcp_out_options {
430 u16 options; /* bit field of OPTION_* */
431 u16 mss; /* 0 to disable */
432 u8 ws; /* window scale, 0 to disable */
433 u8 num_sack_blocks; /* number of SACK blocks to include */
434 u8 hash_size; /* bytes in hash_location */
435 __u8 *hash_location; /* temporary pointer, overloaded */
436 __u32 tsval, tsecr; /* need to include OPTION_TS */
437 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
440 /* Write previously computed TCP options to the packet.
442 * Beware: Something in the Internet is very sensitive to the ordering of
443 * TCP options, we learned this through the hard way, so be careful here.
444 * Luckily we can at least blame others for their non-compliance but from
445 * inter-operability perspective it seems that we're somewhat stuck with
446 * the ordering which we have been using if we want to keep working with
447 * those broken things (not that it currently hurts anybody as there isn't
448 * particular reason why the ordering would need to be changed).
450 * At least SACK_PERM as the first option is known to lead to a disaster
451 * (but it may well be that other scenarios fail similarly).
453 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
454 struct tcp_out_options *opts)
456 u16 options = opts->options; /* mungable copy */
458 if (unlikely(OPTION_MD5 & options)) {
459 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
460 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
461 /* overload cookie hash location */
462 opts->hash_location = (__u8 *)ptr;
463 ptr += 4;
466 if (unlikely(opts->mss)) {
467 *ptr++ = htonl((TCPOPT_MSS << 24) |
468 (TCPOLEN_MSS << 16) |
469 opts->mss);
472 if (likely(OPTION_TS & options)) {
473 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
474 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
475 (TCPOLEN_SACK_PERM << 16) |
476 (TCPOPT_TIMESTAMP << 8) |
477 TCPOLEN_TIMESTAMP);
478 options &= ~OPTION_SACK_ADVERTISE;
479 } else {
480 *ptr++ = htonl((TCPOPT_NOP << 24) |
481 (TCPOPT_NOP << 16) |
482 (TCPOPT_TIMESTAMP << 8) |
483 TCPOLEN_TIMESTAMP);
485 *ptr++ = htonl(opts->tsval);
486 *ptr++ = htonl(opts->tsecr);
489 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
490 *ptr++ = htonl((TCPOPT_NOP << 24) |
491 (TCPOPT_NOP << 16) |
492 (TCPOPT_SACK_PERM << 8) |
493 TCPOLEN_SACK_PERM);
496 if (unlikely(OPTION_WSCALE & options)) {
497 *ptr++ = htonl((TCPOPT_NOP << 24) |
498 (TCPOPT_WINDOW << 16) |
499 (TCPOLEN_WINDOW << 8) |
500 opts->ws);
503 if (unlikely(opts->num_sack_blocks)) {
504 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
505 tp->duplicate_sack : tp->selective_acks;
506 int this_sack;
508 *ptr++ = htonl((TCPOPT_NOP << 24) |
509 (TCPOPT_NOP << 16) |
510 (TCPOPT_SACK << 8) |
511 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
512 TCPOLEN_SACK_PERBLOCK)));
514 for (this_sack = 0; this_sack < opts->num_sack_blocks;
515 ++this_sack) {
516 *ptr++ = htonl(sp[this_sack].start_seq);
517 *ptr++ = htonl(sp[this_sack].end_seq);
520 tp->rx_opt.dsack = 0;
523 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
524 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
525 u8 *p = (u8 *)ptr;
526 u32 len; /* Fast Open option length */
528 if (foc->exp) {
529 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
530 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
531 TCPOPT_FASTOPEN_MAGIC);
532 p += TCPOLEN_EXP_FASTOPEN_BASE;
533 } else {
534 len = TCPOLEN_FASTOPEN_BASE + foc->len;
535 *p++ = TCPOPT_FASTOPEN;
536 *p++ = len;
539 memcpy(p, foc->val, foc->len);
540 if ((len & 3) == 2) {
541 p[foc->len] = TCPOPT_NOP;
542 p[foc->len + 1] = TCPOPT_NOP;
544 ptr += (len + 3) >> 2;
548 /* Compute TCP options for SYN packets. This is not the final
549 * network wire format yet.
551 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
552 struct tcp_out_options *opts,
553 struct tcp_md5sig_key **md5)
555 struct tcp_sock *tp = tcp_sk(sk);
556 unsigned int remaining = MAX_TCP_OPTION_SPACE;
557 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
559 #ifdef CONFIG_TCP_MD5SIG
560 *md5 = tp->af_specific->md5_lookup(sk, sk);
561 if (*md5) {
562 opts->options |= OPTION_MD5;
563 remaining -= TCPOLEN_MD5SIG_ALIGNED;
565 #else
566 *md5 = NULL;
567 #endif
569 /* We always get an MSS option. The option bytes which will be seen in
570 * normal data packets should timestamps be used, must be in the MSS
571 * advertised. But we subtract them from tp->mss_cache so that
572 * calculations in tcp_sendmsg are simpler etc. So account for this
573 * fact here if necessary. If we don't do this correctly, as a
574 * receiver we won't recognize data packets as being full sized when we
575 * should, and thus we won't abide by the delayed ACK rules correctly.
576 * SACKs don't matter, we never delay an ACK when we have any of those
577 * going out. */
578 opts->mss = tcp_advertise_mss(sk);
579 remaining -= TCPOLEN_MSS_ALIGNED;
581 if (likely(sysctl_tcp_timestamps && !*md5)) {
582 opts->options |= OPTION_TS;
583 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
584 opts->tsecr = tp->rx_opt.ts_recent;
585 remaining -= TCPOLEN_TSTAMP_ALIGNED;
587 if (likely(sysctl_tcp_window_scaling)) {
588 opts->ws = tp->rx_opt.rcv_wscale;
589 opts->options |= OPTION_WSCALE;
590 remaining -= TCPOLEN_WSCALE_ALIGNED;
592 if (likely(sysctl_tcp_sack)) {
593 opts->options |= OPTION_SACK_ADVERTISE;
594 if (unlikely(!(OPTION_TS & opts->options)))
595 remaining -= TCPOLEN_SACKPERM_ALIGNED;
598 if (fastopen && fastopen->cookie.len >= 0) {
599 u32 need = fastopen->cookie.len;
601 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
602 TCPOLEN_FASTOPEN_BASE;
603 need = (need + 3) & ~3U; /* Align to 32 bits */
604 if (remaining >= need) {
605 opts->options |= OPTION_FAST_OPEN_COOKIE;
606 opts->fastopen_cookie = &fastopen->cookie;
607 remaining -= need;
608 tp->syn_fastopen = 1;
609 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
613 return MAX_TCP_OPTION_SPACE - remaining;
616 /* Set up TCP options for SYN-ACKs. */
617 static unsigned int tcp_synack_options(struct request_sock *req,
618 unsigned int mss, struct sk_buff *skb,
619 struct tcp_out_options *opts,
620 const struct tcp_md5sig_key *md5,
621 struct tcp_fastopen_cookie *foc)
623 struct inet_request_sock *ireq = inet_rsk(req);
624 unsigned int remaining = MAX_TCP_OPTION_SPACE;
626 #ifdef CONFIG_TCP_MD5SIG
627 if (md5) {
628 opts->options |= OPTION_MD5;
629 remaining -= TCPOLEN_MD5SIG_ALIGNED;
631 /* We can't fit any SACK blocks in a packet with MD5 + TS
632 * options. There was discussion about disabling SACK
633 * rather than TS in order to fit in better with old,
634 * buggy kernels, but that was deemed to be unnecessary.
636 ireq->tstamp_ok &= !ireq->sack_ok;
638 #endif
640 /* We always send an MSS option. */
641 opts->mss = mss;
642 remaining -= TCPOLEN_MSS_ALIGNED;
644 if (likely(ireq->wscale_ok)) {
645 opts->ws = ireq->rcv_wscale;
646 opts->options |= OPTION_WSCALE;
647 remaining -= TCPOLEN_WSCALE_ALIGNED;
649 if (likely(ireq->tstamp_ok)) {
650 opts->options |= OPTION_TS;
651 opts->tsval = tcp_skb_timestamp(skb);
652 opts->tsecr = req->ts_recent;
653 remaining -= TCPOLEN_TSTAMP_ALIGNED;
655 if (likely(ireq->sack_ok)) {
656 opts->options |= OPTION_SACK_ADVERTISE;
657 if (unlikely(!ireq->tstamp_ok))
658 remaining -= TCPOLEN_SACKPERM_ALIGNED;
660 if (foc != NULL && foc->len >= 0) {
661 u32 need = foc->len;
663 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
664 TCPOLEN_FASTOPEN_BASE;
665 need = (need + 3) & ~3U; /* Align to 32 bits */
666 if (remaining >= need) {
667 opts->options |= OPTION_FAST_OPEN_COOKIE;
668 opts->fastopen_cookie = foc;
669 remaining -= need;
673 return MAX_TCP_OPTION_SPACE - remaining;
676 /* Compute TCP options for ESTABLISHED sockets. This is not the
677 * final wire format yet.
679 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
680 struct tcp_out_options *opts,
681 struct tcp_md5sig_key **md5)
683 struct tcp_sock *tp = tcp_sk(sk);
684 unsigned int size = 0;
685 unsigned int eff_sacks;
687 opts->options = 0;
689 #ifdef CONFIG_TCP_MD5SIG
690 *md5 = tp->af_specific->md5_lookup(sk, sk);
691 if (unlikely(*md5)) {
692 opts->options |= OPTION_MD5;
693 size += TCPOLEN_MD5SIG_ALIGNED;
695 #else
696 *md5 = NULL;
697 #endif
699 if (likely(tp->rx_opt.tstamp_ok)) {
700 opts->options |= OPTION_TS;
701 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
702 opts->tsecr = tp->rx_opt.ts_recent;
703 size += TCPOLEN_TSTAMP_ALIGNED;
706 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
707 if (unlikely(eff_sacks)) {
708 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
709 opts->num_sack_blocks =
710 min_t(unsigned int, eff_sacks,
711 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
712 TCPOLEN_SACK_PERBLOCK);
713 size += TCPOLEN_SACK_BASE_ALIGNED +
714 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
717 return size;
721 /* TCP SMALL QUEUES (TSQ)
723 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
724 * to reduce RTT and bufferbloat.
725 * We do this using a special skb destructor (tcp_wfree).
727 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
728 * needs to be reallocated in a driver.
729 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
731 * Since transmit from skb destructor is forbidden, we use a tasklet
732 * to process all sockets that eventually need to send more skbs.
733 * We use one tasklet per cpu, with its own queue of sockets.
735 struct tsq_tasklet {
736 struct tasklet_struct tasklet;
737 struct list_head head; /* queue of tcp sockets */
739 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
741 static void tcp_tsq_handler(struct sock *sk)
743 if ((1 << sk->sk_state) &
744 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
745 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
746 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
747 0, GFP_ATOMIC);
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
755 static void tcp_tasklet_func(unsigned long data)
757 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
758 LIST_HEAD(list);
759 unsigned long flags;
760 struct list_head *q, *n;
761 struct tcp_sock *tp;
762 struct sock *sk;
764 local_irq_save(flags);
765 list_splice_init(&tsq->head, &list);
766 local_irq_restore(flags);
768 list_for_each_safe(q, n, &list) {
769 tp = list_entry(q, struct tcp_sock, tsq_node);
770 list_del(&tp->tsq_node);
772 sk = (struct sock *)tp;
773 bh_lock_sock(sk);
775 if (!sock_owned_by_user(sk)) {
776 tcp_tsq_handler(sk);
777 } else {
778 /* defer the work to tcp_release_cb() */
779 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
781 bh_unlock_sock(sk);
783 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
784 sk_free(sk);
788 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
789 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
790 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
791 (1UL << TCP_MTU_REDUCED_DEFERRED))
793 * tcp_release_cb - tcp release_sock() callback
794 * @sk: socket
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
799 void tcp_release_cb(struct sock *sk)
801 struct tcp_sock *tp = tcp_sk(sk);
802 unsigned long flags, nflags;
804 /* perform an atomic operation only if at least one flag is set */
805 do {
806 flags = tp->tsq_flags;
807 if (!(flags & TCP_DEFERRED_ALL))
808 return;
809 nflags = flags & ~TCP_DEFERRED_ALL;
810 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
812 if (flags & (1UL << TCP_TSQ_DEFERRED))
813 tcp_tsq_handler(sk);
815 /* Here begins the tricky part :
816 * We are called from release_sock() with :
817 * 1) BH disabled
818 * 2) sk_lock.slock spinlock held
819 * 3) socket owned by us (sk->sk_lock.owned == 1)
821 * But following code is meant to be called from BH handlers,
822 * so we should keep BH disabled, but early release socket ownership
824 sock_release_ownership(sk);
826 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
827 tcp_write_timer_handler(sk);
828 __sock_put(sk);
830 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
831 tcp_delack_timer_handler(sk);
832 __sock_put(sk);
834 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
835 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
836 __sock_put(sk);
839 EXPORT_SYMBOL(tcp_release_cb);
841 void __init tcp_tasklet_init(void)
843 int i;
845 for_each_possible_cpu(i) {
846 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
848 INIT_LIST_HEAD(&tsq->head);
849 tasklet_init(&tsq->tasklet,
850 tcp_tasklet_func,
851 (unsigned long)tsq);
856 * Write buffer destructor automatically called from kfree_skb.
857 * We can't xmit new skbs from this context, as we might already
858 * hold qdisc lock.
860 void tcp_wfree(struct sk_buff *skb)
862 struct sock *sk = skb->sk;
863 struct tcp_sock *tp = tcp_sk(sk);
864 int wmem;
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
873 * This gives :
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 goto out;
881 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
882 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
883 unsigned long flags;
884 struct tsq_tasklet *tsq;
886 /* queue this socket to tasklet queue */
887 local_irq_save(flags);
888 tsq = this_cpu_ptr(&tsq_tasklet);
889 list_add(&tp->tsq_node, &tsq->head);
890 tasklet_schedule(&tsq->tasklet);
891 local_irq_restore(flags);
892 return;
894 out:
895 sk_free(sk);
898 /* This routine actually transmits TCP packets queued in by
899 * tcp_do_sendmsg(). This is used by both the initial
900 * transmission and possible later retransmissions.
901 * All SKB's seen here are completely headerless. It is our
902 * job to build the TCP header, and pass the packet down to
903 * IP so it can do the same plus pass the packet off to the
904 * device.
906 * We are working here with either a clone of the original
907 * SKB, or a fresh unique copy made by the retransmit engine.
909 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
910 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
912 const struct inet_connection_sock *icsk = inet_csk(sk);
913 struct inet_sock *inet;
914 struct tcp_sock *tp;
915 struct tcp_skb_cb *tcb;
916 struct tcp_out_options opts;
917 unsigned int tcp_options_size, tcp_header_size;
918 struct tcp_md5sig_key *md5;
919 struct tcphdr *th;
920 int err;
922 BUG_ON(!skb || !tcp_skb_pcount(skb));
924 if (clone_it) {
925 skb_mstamp_get(&skb->skb_mstamp);
927 if (unlikely(skb_cloned(skb)))
928 skb = pskb_copy(skb, gfp_mask);
929 else
930 skb = skb_clone(skb, gfp_mask);
931 if (unlikely(!skb))
932 return -ENOBUFS;
935 inet = inet_sk(sk);
936 tp = tcp_sk(sk);
937 tcb = TCP_SKB_CB(skb);
938 memset(&opts, 0, sizeof(opts));
940 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
941 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
942 else
943 tcp_options_size = tcp_established_options(sk, skb, &opts,
944 &md5);
945 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
947 /* if no packet is in qdisc/device queue, then allow XPS to select
948 * another queue. We can be called from tcp_tsq_handler()
949 * which holds one reference to sk_wmem_alloc.
951 * TODO: Ideally, in-flight pure ACK packets should not matter here.
952 * One way to get this would be to set skb->truesize = 2 on them.
954 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
956 skb_push(skb, tcp_header_size);
957 skb_reset_transport_header(skb);
959 skb_orphan(skb);
960 skb->sk = sk;
961 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
962 skb_set_hash_from_sk(skb, sk);
963 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
965 /* Build TCP header and checksum it. */
966 th = tcp_hdr(skb);
967 th->source = inet->inet_sport;
968 th->dest = inet->inet_dport;
969 th->seq = htonl(tcb->seq);
970 th->ack_seq = htonl(rcv_nxt);
971 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
972 tcb->tcp_flags);
974 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
975 /* RFC1323: The window in SYN & SYN/ACK segments
976 * is never scaled.
978 th->window = htons(min(tp->rcv_wnd, 65535U));
979 } else {
980 th->window = htons(tcp_select_window(sk));
982 th->check = 0;
983 th->urg_ptr = 0;
985 /* The urg_mode check is necessary during a below snd_una win probe */
986 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
987 if (before(tp->snd_up, tcb->seq + 0x10000)) {
988 th->urg_ptr = htons(tp->snd_up - tcb->seq);
989 th->urg = 1;
990 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
991 th->urg_ptr = htons(0xFFFF);
992 th->urg = 1;
996 tcp_options_write((__be32 *)(th + 1), tp, &opts);
997 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
998 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
999 tcp_ecn_send(sk, skb, tcp_header_size);
1001 #ifdef CONFIG_TCP_MD5SIG
1002 /* Calculate the MD5 hash, as we have all we need now */
1003 if (md5) {
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 tp->af_specific->calc_md5_hash(opts.hash_location,
1006 md5, sk, skb);
1008 #endif
1010 icsk->icsk_af_ops->send_check(sk, skb);
1012 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1013 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1015 if (skb->len != tcp_header_size)
1016 tcp_event_data_sent(tp, sk);
1018 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1019 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1020 tcp_skb_pcount(skb));
1022 tp->segs_out += tcp_skb_pcount(skb);
1023 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1024 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1025 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1027 /* Our usage of tstamp should remain private */
1028 skb->tstamp.tv64 = 0;
1030 /* Cleanup our debris for IP stacks */
1031 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1032 sizeof(struct inet6_skb_parm)));
1034 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1036 if (likely(err <= 0))
1037 return err;
1039 tcp_enter_cwr(sk);
1041 return net_xmit_eval(err);
1044 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1045 gfp_t gfp_mask)
1047 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1048 tcp_sk(sk)->rcv_nxt);
1051 /* This routine just queues the buffer for sending.
1053 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1054 * otherwise socket can stall.
1056 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1058 struct tcp_sock *tp = tcp_sk(sk);
1060 /* Advance write_seq and place onto the write_queue. */
1061 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1062 __skb_header_release(skb);
1063 tcp_add_write_queue_tail(sk, skb);
1064 sk->sk_wmem_queued += skb->truesize;
1065 sk_mem_charge(sk, skb->truesize);
1068 /* Initialize TSO segments for a packet. */
1069 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1071 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1072 /* Avoid the costly divide in the normal
1073 * non-TSO case.
1075 tcp_skb_pcount_set(skb, 1);
1076 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1077 } else {
1078 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1079 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1083 /* When a modification to fackets out becomes necessary, we need to check
1084 * skb is counted to fackets_out or not.
1086 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1087 int decr)
1089 struct tcp_sock *tp = tcp_sk(sk);
1091 if (!tp->sacked_out || tcp_is_reno(tp))
1092 return;
1094 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1095 tp->fackets_out -= decr;
1098 /* Pcount in the middle of the write queue got changed, we need to do various
1099 * tweaks to fix counters
1101 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1103 struct tcp_sock *tp = tcp_sk(sk);
1105 tp->packets_out -= decr;
1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1108 tp->sacked_out -= decr;
1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1110 tp->retrans_out -= decr;
1111 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1112 tp->lost_out -= decr;
1114 /* Reno case is special. Sigh... */
1115 if (tcp_is_reno(tp) && decr > 0)
1116 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1118 tcp_adjust_fackets_out(sk, skb, decr);
1120 if (tp->lost_skb_hint &&
1121 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1122 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1123 tp->lost_cnt_hint -= decr;
1125 tcp_verify_left_out(tp);
1128 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1130 struct skb_shared_info *shinfo = skb_shinfo(skb);
1132 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1133 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1134 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1135 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1137 shinfo->tx_flags &= ~tsflags;
1138 shinfo2->tx_flags |= tsflags;
1139 swap(shinfo->tskey, shinfo2->tskey);
1143 /* Function to create two new TCP segments. Shrinks the given segment
1144 * to the specified size and appends a new segment with the rest of the
1145 * packet to the list. This won't be called frequently, I hope.
1146 * Remember, these are still headerless SKBs at this point.
1148 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1149 unsigned int mss_now, gfp_t gfp)
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *buff;
1153 int nsize, old_factor;
1154 int nlen;
1155 u8 flags;
1157 if (WARN_ON(len > skb->len))
1158 return -EINVAL;
1160 nsize = skb_headlen(skb) - len;
1161 if (nsize < 0)
1162 nsize = 0;
1164 if (skb_unclone(skb, gfp))
1165 return -ENOMEM;
1167 /* Get a new skb... force flag on. */
1168 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1169 if (!buff)
1170 return -ENOMEM; /* We'll just try again later. */
1172 sk->sk_wmem_queued += buff->truesize;
1173 sk_mem_charge(sk, buff->truesize);
1174 nlen = skb->len - len - nsize;
1175 buff->truesize += nlen;
1176 skb->truesize -= nlen;
1178 /* Correct the sequence numbers. */
1179 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1180 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1181 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1183 /* PSH and FIN should only be set in the second packet. */
1184 flags = TCP_SKB_CB(skb)->tcp_flags;
1185 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1186 TCP_SKB_CB(buff)->tcp_flags = flags;
1187 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1189 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1190 /* Copy and checksum data tail into the new buffer. */
1191 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1192 skb_put(buff, nsize),
1193 nsize, 0);
1195 skb_trim(skb, len);
1197 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1198 } else {
1199 skb->ip_summed = CHECKSUM_PARTIAL;
1200 skb_split(skb, buff, len);
1203 buff->ip_summed = skb->ip_summed;
1205 buff->tstamp = skb->tstamp;
1206 tcp_fragment_tstamp(skb, buff);
1208 old_factor = tcp_skb_pcount(skb);
1210 /* Fix up tso_factor for both original and new SKB. */
1211 tcp_set_skb_tso_segs(skb, mss_now);
1212 tcp_set_skb_tso_segs(buff, mss_now);
1214 /* If this packet has been sent out already, we must
1215 * adjust the various packet counters.
1217 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1218 int diff = old_factor - tcp_skb_pcount(skb) -
1219 tcp_skb_pcount(buff);
1221 if (diff)
1222 tcp_adjust_pcount(sk, skb, diff);
1225 /* Link BUFF into the send queue. */
1226 __skb_header_release(buff);
1227 tcp_insert_write_queue_after(skb, buff, sk);
1229 return 0;
1232 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1233 * eventually). The difference is that pulled data not copied, but
1234 * immediately discarded.
1236 static int __pskb_trim_head(struct sk_buff *skb, int len)
1238 struct skb_shared_info *shinfo;
1239 int i, k, eat;
1241 eat = min_t(int, len, skb_headlen(skb));
1242 if (eat) {
1243 __skb_pull(skb, eat);
1244 len -= eat;
1245 if (!len)
1246 return 0;
1248 eat = len;
1249 k = 0;
1250 shinfo = skb_shinfo(skb);
1251 for (i = 0; i < shinfo->nr_frags; i++) {
1252 int size = skb_frag_size(&shinfo->frags[i]);
1254 if (size <= eat) {
1255 skb_frag_unref(skb, i);
1256 eat -= size;
1257 } else {
1258 shinfo->frags[k] = shinfo->frags[i];
1259 if (eat) {
1260 shinfo->frags[k].page_offset += eat;
1261 skb_frag_size_sub(&shinfo->frags[k], eat);
1262 eat = 0;
1264 k++;
1267 shinfo->nr_frags = k;
1269 skb_reset_tail_pointer(skb);
1270 skb->data_len -= len;
1271 skb->len = skb->data_len;
1272 return len;
1275 /* Remove acked data from a packet in the transmit queue. */
1276 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1278 u32 delta_truesize;
1280 if (skb_unclone(skb, GFP_ATOMIC))
1281 return -ENOMEM;
1283 delta_truesize = __pskb_trim_head(skb, len);
1285 TCP_SKB_CB(skb)->seq += len;
1286 skb->ip_summed = CHECKSUM_PARTIAL;
1288 if (delta_truesize) {
1289 skb->truesize -= delta_truesize;
1290 sk->sk_wmem_queued -= delta_truesize;
1291 sk_mem_uncharge(sk, delta_truesize);
1292 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1295 /* Any change of skb->len requires recalculation of tso factor. */
1296 if (tcp_skb_pcount(skb) > 1)
1297 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1299 return 0;
1302 /* Calculate MSS not accounting any TCP options. */
1303 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1305 const struct tcp_sock *tp = tcp_sk(sk);
1306 const struct inet_connection_sock *icsk = inet_csk(sk);
1307 int mss_now;
1309 /* Calculate base mss without TCP options:
1310 It is MMS_S - sizeof(tcphdr) of rfc1122
1312 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1314 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1315 if (icsk->icsk_af_ops->net_frag_header_len) {
1316 const struct dst_entry *dst = __sk_dst_get(sk);
1318 if (dst && dst_allfrag(dst))
1319 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1322 /* Clamp it (mss_clamp does not include tcp options) */
1323 if (mss_now > tp->rx_opt.mss_clamp)
1324 mss_now = tp->rx_opt.mss_clamp;
1326 /* Now subtract optional transport overhead */
1327 mss_now -= icsk->icsk_ext_hdr_len;
1329 /* Then reserve room for full set of TCP options and 8 bytes of data */
1330 if (mss_now < 48)
1331 mss_now = 48;
1332 return mss_now;
1335 /* Calculate MSS. Not accounting for SACKs here. */
1336 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1338 /* Subtract TCP options size, not including SACKs */
1339 return __tcp_mtu_to_mss(sk, pmtu) -
1340 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1343 /* Inverse of above */
1344 int tcp_mss_to_mtu(struct sock *sk, int mss)
1346 const struct tcp_sock *tp = tcp_sk(sk);
1347 const struct inet_connection_sock *icsk = inet_csk(sk);
1348 int mtu;
1350 mtu = mss +
1351 tp->tcp_header_len +
1352 icsk->icsk_ext_hdr_len +
1353 icsk->icsk_af_ops->net_header_len;
1355 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1356 if (icsk->icsk_af_ops->net_frag_header_len) {
1357 const struct dst_entry *dst = __sk_dst_get(sk);
1359 if (dst && dst_allfrag(dst))
1360 mtu += icsk->icsk_af_ops->net_frag_header_len;
1362 return mtu;
1365 /* MTU probing init per socket */
1366 void tcp_mtup_init(struct sock *sk)
1368 struct tcp_sock *tp = tcp_sk(sk);
1369 struct inet_connection_sock *icsk = inet_csk(sk);
1370 struct net *net = sock_net(sk);
1372 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1373 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1374 icsk->icsk_af_ops->net_header_len;
1375 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1376 icsk->icsk_mtup.probe_size = 0;
1377 if (icsk->icsk_mtup.enabled)
1378 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1380 EXPORT_SYMBOL(tcp_mtup_init);
1382 /* This function synchronize snd mss to current pmtu/exthdr set.
1384 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1385 for TCP options, but includes only bare TCP header.
1387 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1388 It is minimum of user_mss and mss received with SYN.
1389 It also does not include TCP options.
1391 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1393 tp->mss_cache is current effective sending mss, including
1394 all tcp options except for SACKs. It is evaluated,
1395 taking into account current pmtu, but never exceeds
1396 tp->rx_opt.mss_clamp.
1398 NOTE1. rfc1122 clearly states that advertised MSS
1399 DOES NOT include either tcp or ip options.
1401 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1402 are READ ONLY outside this function. --ANK (980731)
1404 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1406 struct tcp_sock *tp = tcp_sk(sk);
1407 struct inet_connection_sock *icsk = inet_csk(sk);
1408 int mss_now;
1410 if (icsk->icsk_mtup.search_high > pmtu)
1411 icsk->icsk_mtup.search_high = pmtu;
1413 mss_now = tcp_mtu_to_mss(sk, pmtu);
1414 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1416 /* And store cached results */
1417 icsk->icsk_pmtu_cookie = pmtu;
1418 if (icsk->icsk_mtup.enabled)
1419 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1420 tp->mss_cache = mss_now;
1422 return mss_now;
1424 EXPORT_SYMBOL(tcp_sync_mss);
1426 /* Compute the current effective MSS, taking SACKs and IP options,
1427 * and even PMTU discovery events into account.
1429 unsigned int tcp_current_mss(struct sock *sk)
1431 const struct tcp_sock *tp = tcp_sk(sk);
1432 const struct dst_entry *dst = __sk_dst_get(sk);
1433 u32 mss_now;
1434 unsigned int header_len;
1435 struct tcp_out_options opts;
1436 struct tcp_md5sig_key *md5;
1438 mss_now = tp->mss_cache;
1440 if (dst) {
1441 u32 mtu = dst_mtu(dst);
1442 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1443 mss_now = tcp_sync_mss(sk, mtu);
1446 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1447 sizeof(struct tcphdr);
1448 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1449 * some common options. If this is an odd packet (because we have SACK
1450 * blocks etc) then our calculated header_len will be different, and
1451 * we have to adjust mss_now correspondingly */
1452 if (header_len != tp->tcp_header_len) {
1453 int delta = (int) header_len - tp->tcp_header_len;
1454 mss_now -= delta;
1457 return mss_now;
1460 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1461 * As additional protections, we do not touch cwnd in retransmission phases,
1462 * and if application hit its sndbuf limit recently.
1464 static void tcp_cwnd_application_limited(struct sock *sk)
1466 struct tcp_sock *tp = tcp_sk(sk);
1468 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1469 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1470 /* Limited by application or receiver window. */
1471 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1472 u32 win_used = max(tp->snd_cwnd_used, init_win);
1473 if (win_used < tp->snd_cwnd) {
1474 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1475 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1477 tp->snd_cwnd_used = 0;
1479 tp->snd_cwnd_stamp = tcp_time_stamp;
1482 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1484 struct tcp_sock *tp = tcp_sk(sk);
1486 /* Track the maximum number of outstanding packets in each
1487 * window, and remember whether we were cwnd-limited then.
1489 if (!before(tp->snd_una, tp->max_packets_seq) ||
1490 tp->packets_out > tp->max_packets_out) {
1491 tp->max_packets_out = tp->packets_out;
1492 tp->max_packets_seq = tp->snd_nxt;
1493 tp->is_cwnd_limited = is_cwnd_limited;
1496 if (tcp_is_cwnd_limited(sk)) {
1497 /* Network is feed fully. */
1498 tp->snd_cwnd_used = 0;
1499 tp->snd_cwnd_stamp = tcp_time_stamp;
1500 } else {
1501 /* Network starves. */
1502 if (tp->packets_out > tp->snd_cwnd_used)
1503 tp->snd_cwnd_used = tp->packets_out;
1505 if (sysctl_tcp_slow_start_after_idle &&
1506 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1507 tcp_cwnd_application_limited(sk);
1511 /* Minshall's variant of the Nagle send check. */
1512 static bool tcp_minshall_check(const struct tcp_sock *tp)
1514 return after(tp->snd_sml, tp->snd_una) &&
1515 !after(tp->snd_sml, tp->snd_nxt);
1518 /* Update snd_sml if this skb is under mss
1519 * Note that a TSO packet might end with a sub-mss segment
1520 * The test is really :
1521 * if ((skb->len % mss) != 0)
1522 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1523 * But we can avoid doing the divide again given we already have
1524 * skb_pcount = skb->len / mss_now
1526 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1527 const struct sk_buff *skb)
1529 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1530 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1533 /* Return false, if packet can be sent now without violation Nagle's rules:
1534 * 1. It is full sized. (provided by caller in %partial bool)
1535 * 2. Or it contains FIN. (already checked by caller)
1536 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1537 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1538 * With Minshall's modification: all sent small packets are ACKed.
1540 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1541 int nonagle)
1543 return partial &&
1544 ((nonagle & TCP_NAGLE_CORK) ||
1545 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1548 /* Return how many segs we'd like on a TSO packet,
1549 * to send one TSO packet per ms
1551 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1553 u32 bytes, segs;
1555 bytes = min(sk->sk_pacing_rate >> 10,
1556 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1558 /* Goal is to send at least one packet per ms,
1559 * not one big TSO packet every 100 ms.
1560 * This preserves ACK clocking and is consistent
1561 * with tcp_tso_should_defer() heuristic.
1563 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1565 return min_t(u32, segs, sk->sk_gso_max_segs);
1568 /* Returns the portion of skb which can be sent right away */
1569 static unsigned int tcp_mss_split_point(const struct sock *sk,
1570 const struct sk_buff *skb,
1571 unsigned int mss_now,
1572 unsigned int max_segs,
1573 int nonagle)
1575 const struct tcp_sock *tp = tcp_sk(sk);
1576 u32 partial, needed, window, max_len;
1578 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1579 max_len = mss_now * max_segs;
1581 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1582 return max_len;
1584 needed = min(skb->len, window);
1586 if (max_len <= needed)
1587 return max_len;
1589 partial = needed % mss_now;
1590 /* If last segment is not a full MSS, check if Nagle rules allow us
1591 * to include this last segment in this skb.
1592 * Otherwise, we'll split the skb at last MSS boundary
1594 if (tcp_nagle_check(partial != 0, tp, nonagle))
1595 return needed - partial;
1597 return needed;
1600 /* Can at least one segment of SKB be sent right now, according to the
1601 * congestion window rules? If so, return how many segments are allowed.
1603 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1604 const struct sk_buff *skb)
1606 u32 in_flight, cwnd, halfcwnd;
1608 /* Don't be strict about the congestion window for the final FIN. */
1609 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1610 tcp_skb_pcount(skb) == 1)
1611 return 1;
1613 in_flight = tcp_packets_in_flight(tp);
1614 cwnd = tp->snd_cwnd;
1615 if (in_flight >= cwnd)
1616 return 0;
1618 /* For better scheduling, ensure we have at least
1619 * 2 GSO packets in flight.
1621 halfcwnd = max(cwnd >> 1, 1U);
1622 return min(halfcwnd, cwnd - in_flight);
1625 /* Initialize TSO state of a skb.
1626 * This must be invoked the first time we consider transmitting
1627 * SKB onto the wire.
1629 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1631 int tso_segs = tcp_skb_pcount(skb);
1633 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1634 tcp_set_skb_tso_segs(skb, mss_now);
1635 tso_segs = tcp_skb_pcount(skb);
1637 return tso_segs;
1641 /* Return true if the Nagle test allows this packet to be
1642 * sent now.
1644 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1645 unsigned int cur_mss, int nonagle)
1647 /* Nagle rule does not apply to frames, which sit in the middle of the
1648 * write_queue (they have no chances to get new data).
1650 * This is implemented in the callers, where they modify the 'nonagle'
1651 * argument based upon the location of SKB in the send queue.
1653 if (nonagle & TCP_NAGLE_PUSH)
1654 return true;
1656 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1657 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1658 return true;
1660 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1661 return true;
1663 return false;
1666 /* Does at least the first segment of SKB fit into the send window? */
1667 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1668 const struct sk_buff *skb,
1669 unsigned int cur_mss)
1671 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1673 if (skb->len > cur_mss)
1674 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1676 return !after(end_seq, tcp_wnd_end(tp));
1679 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1680 * should be put on the wire right now. If so, it returns the number of
1681 * packets allowed by the congestion window.
1683 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1684 unsigned int cur_mss, int nonagle)
1686 const struct tcp_sock *tp = tcp_sk(sk);
1687 unsigned int cwnd_quota;
1689 tcp_init_tso_segs(skb, cur_mss);
1691 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1692 return 0;
1694 cwnd_quota = tcp_cwnd_test(tp, skb);
1695 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1696 cwnd_quota = 0;
1698 return cwnd_quota;
1701 /* Test if sending is allowed right now. */
1702 bool tcp_may_send_now(struct sock *sk)
1704 const struct tcp_sock *tp = tcp_sk(sk);
1705 struct sk_buff *skb = tcp_send_head(sk);
1707 return skb &&
1708 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1709 (tcp_skb_is_last(sk, skb) ?
1710 tp->nonagle : TCP_NAGLE_PUSH));
1713 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1714 * which is put after SKB on the list. It is very much like
1715 * tcp_fragment() except that it may make several kinds of assumptions
1716 * in order to speed up the splitting operation. In particular, we
1717 * know that all the data is in scatter-gather pages, and that the
1718 * packet has never been sent out before (and thus is not cloned).
1720 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1721 unsigned int mss_now, gfp_t gfp)
1723 struct sk_buff *buff;
1724 int nlen = skb->len - len;
1725 u8 flags;
1727 /* All of a TSO frame must be composed of paged data. */
1728 if (skb->len != skb->data_len)
1729 return tcp_fragment(sk, skb, len, mss_now, gfp);
1731 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1732 if (unlikely(!buff))
1733 return -ENOMEM;
1735 sk->sk_wmem_queued += buff->truesize;
1736 sk_mem_charge(sk, buff->truesize);
1737 buff->truesize += nlen;
1738 skb->truesize -= nlen;
1740 /* Correct the sequence numbers. */
1741 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1742 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1743 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1745 /* PSH and FIN should only be set in the second packet. */
1746 flags = TCP_SKB_CB(skb)->tcp_flags;
1747 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1748 TCP_SKB_CB(buff)->tcp_flags = flags;
1750 /* This packet was never sent out yet, so no SACK bits. */
1751 TCP_SKB_CB(buff)->sacked = 0;
1753 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1754 skb_split(skb, buff, len);
1755 tcp_fragment_tstamp(skb, buff);
1757 /* Fix up tso_factor for both original and new SKB. */
1758 tcp_set_skb_tso_segs(skb, mss_now);
1759 tcp_set_skb_tso_segs(buff, mss_now);
1761 /* Link BUFF into the send queue. */
1762 __skb_header_release(buff);
1763 tcp_insert_write_queue_after(skb, buff, sk);
1765 return 0;
1768 /* Try to defer sending, if possible, in order to minimize the amount
1769 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1771 * This algorithm is from John Heffner.
1773 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1774 bool *is_cwnd_limited, u32 max_segs)
1776 const struct inet_connection_sock *icsk = inet_csk(sk);
1777 u32 age, send_win, cong_win, limit, in_flight;
1778 struct tcp_sock *tp = tcp_sk(sk);
1779 struct skb_mstamp now;
1780 struct sk_buff *head;
1781 int win_divisor;
1783 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1784 goto send_now;
1786 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1787 goto send_now;
1789 /* Avoid bursty behavior by allowing defer
1790 * only if the last write was recent.
1792 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1793 goto send_now;
1795 in_flight = tcp_packets_in_flight(tp);
1797 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1799 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1801 /* From in_flight test above, we know that cwnd > in_flight. */
1802 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1804 limit = min(send_win, cong_win);
1806 /* If a full-sized TSO skb can be sent, do it. */
1807 if (limit >= max_segs * tp->mss_cache)
1808 goto send_now;
1810 /* Middle in queue won't get any more data, full sendable already? */
1811 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1812 goto send_now;
1814 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1815 if (win_divisor) {
1816 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1818 /* If at least some fraction of a window is available,
1819 * just use it.
1821 chunk /= win_divisor;
1822 if (limit >= chunk)
1823 goto send_now;
1824 } else {
1825 /* Different approach, try not to defer past a single
1826 * ACK. Receiver should ACK every other full sized
1827 * frame, so if we have space for more than 3 frames
1828 * then send now.
1830 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1831 goto send_now;
1834 head = tcp_write_queue_head(sk);
1835 skb_mstamp_get(&now);
1836 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1837 /* If next ACK is likely to come too late (half srtt), do not defer */
1838 if (age < (tp->srtt_us >> 4))
1839 goto send_now;
1841 /* Ok, it looks like it is advisable to defer. */
1843 if (cong_win < send_win && cong_win <= skb->len)
1844 *is_cwnd_limited = true;
1846 return true;
1848 send_now:
1849 return false;
1852 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1854 struct inet_connection_sock *icsk = inet_csk(sk);
1855 struct tcp_sock *tp = tcp_sk(sk);
1856 struct net *net = sock_net(sk);
1857 u32 interval;
1858 s32 delta;
1860 interval = net->ipv4.sysctl_tcp_probe_interval;
1861 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1862 if (unlikely(delta >= interval * HZ)) {
1863 int mss = tcp_current_mss(sk);
1865 /* Update current search range */
1866 icsk->icsk_mtup.probe_size = 0;
1867 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1868 sizeof(struct tcphdr) +
1869 icsk->icsk_af_ops->net_header_len;
1870 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1872 /* Update probe time stamp */
1873 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1877 /* Create a new MTU probe if we are ready.
1878 * MTU probe is regularly attempting to increase the path MTU by
1879 * deliberately sending larger packets. This discovers routing
1880 * changes resulting in larger path MTUs.
1882 * Returns 0 if we should wait to probe (no cwnd available),
1883 * 1 if a probe was sent,
1884 * -1 otherwise
1886 static int tcp_mtu_probe(struct sock *sk)
1888 struct tcp_sock *tp = tcp_sk(sk);
1889 struct inet_connection_sock *icsk = inet_csk(sk);
1890 struct sk_buff *skb, *nskb, *next;
1891 struct net *net = sock_net(sk);
1892 int len;
1893 int probe_size;
1894 int size_needed;
1895 int copy;
1896 int mss_now;
1897 int interval;
1899 /* Not currently probing/verifying,
1900 * not in recovery,
1901 * have enough cwnd, and
1902 * not SACKing (the variable headers throw things off) */
1903 if (!icsk->icsk_mtup.enabled ||
1904 icsk->icsk_mtup.probe_size ||
1905 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1906 tp->snd_cwnd < 11 ||
1907 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1908 return -1;
1910 /* Use binary search for probe_size between tcp_mss_base,
1911 * and current mss_clamp. if (search_high - search_low)
1912 * smaller than a threshold, backoff from probing.
1914 mss_now = tcp_current_mss(sk);
1915 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1916 icsk->icsk_mtup.search_low) >> 1);
1917 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1918 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1919 /* When misfortune happens, we are reprobing actively,
1920 * and then reprobe timer has expired. We stick with current
1921 * probing process by not resetting search range to its orignal.
1923 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1924 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1925 /* Check whether enough time has elaplased for
1926 * another round of probing.
1928 tcp_mtu_check_reprobe(sk);
1929 return -1;
1932 /* Have enough data in the send queue to probe? */
1933 if (tp->write_seq - tp->snd_nxt < size_needed)
1934 return -1;
1936 if (tp->snd_wnd < size_needed)
1937 return -1;
1938 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1939 return 0;
1941 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1942 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1943 if (!tcp_packets_in_flight(tp))
1944 return -1;
1945 else
1946 return 0;
1949 /* We're allowed to probe. Build it now. */
1950 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1951 if (!nskb)
1952 return -1;
1953 sk->sk_wmem_queued += nskb->truesize;
1954 sk_mem_charge(sk, nskb->truesize);
1956 skb = tcp_send_head(sk);
1958 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1959 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1960 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1961 TCP_SKB_CB(nskb)->sacked = 0;
1962 nskb->csum = 0;
1963 nskb->ip_summed = skb->ip_summed;
1965 tcp_insert_write_queue_before(nskb, skb, sk);
1966 tcp_highest_sack_replace(sk, skb, nskb);
1968 len = 0;
1969 tcp_for_write_queue_from_safe(skb, next, sk) {
1970 copy = min_t(int, skb->len, probe_size - len);
1971 if (nskb->ip_summed) {
1972 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1973 } else {
1974 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1975 skb_put(nskb, copy),
1976 copy, 0);
1977 nskb->csum = csum_block_add(nskb->csum, csum, len);
1980 if (skb->len <= copy) {
1981 /* We've eaten all the data from this skb.
1982 * Throw it away. */
1983 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1984 tcp_unlink_write_queue(skb, sk);
1985 sk_wmem_free_skb(sk, skb);
1986 } else {
1987 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1988 ~(TCPHDR_FIN|TCPHDR_PSH);
1989 if (!skb_shinfo(skb)->nr_frags) {
1990 skb_pull(skb, copy);
1991 if (skb->ip_summed != CHECKSUM_PARTIAL)
1992 skb->csum = csum_partial(skb->data,
1993 skb->len, 0);
1994 } else {
1995 __pskb_trim_head(skb, copy);
1996 tcp_set_skb_tso_segs(skb, mss_now);
1998 TCP_SKB_CB(skb)->seq += copy;
2001 len += copy;
2003 if (len >= probe_size)
2004 break;
2006 tcp_init_tso_segs(nskb, nskb->len);
2008 /* We're ready to send. If this fails, the probe will
2009 * be resegmented into mss-sized pieces by tcp_write_xmit().
2011 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2012 /* Decrement cwnd here because we are sending
2013 * effectively two packets. */
2014 tp->snd_cwnd--;
2015 tcp_event_new_data_sent(sk, nskb);
2017 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2018 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2019 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2021 return 1;
2024 return -1;
2027 /* This routine writes packets to the network. It advances the
2028 * send_head. This happens as incoming acks open up the remote
2029 * window for us.
2031 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2032 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2033 * account rare use of URG, this is not a big flaw.
2035 * Send at most one packet when push_one > 0. Temporarily ignore
2036 * cwnd limit to force at most one packet out when push_one == 2.
2038 * Returns true, if no segments are in flight and we have queued segments,
2039 * but cannot send anything now because of SWS or another problem.
2041 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2042 int push_one, gfp_t gfp)
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 struct sk_buff *skb;
2046 unsigned int tso_segs, sent_pkts;
2047 int cwnd_quota;
2048 int result;
2049 bool is_cwnd_limited = false;
2050 u32 max_segs;
2052 sent_pkts = 0;
2054 if (!push_one) {
2055 /* Do MTU probing. */
2056 result = tcp_mtu_probe(sk);
2057 if (!result) {
2058 return false;
2059 } else if (result > 0) {
2060 sent_pkts = 1;
2064 max_segs = tcp_tso_autosize(sk, mss_now);
2065 while ((skb = tcp_send_head(sk))) {
2066 unsigned int limit;
2068 tso_segs = tcp_init_tso_segs(skb, mss_now);
2069 BUG_ON(!tso_segs);
2071 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2072 /* "skb_mstamp" is used as a start point for the retransmit timer */
2073 skb_mstamp_get(&skb->skb_mstamp);
2074 goto repair; /* Skip network transmission */
2077 cwnd_quota = tcp_cwnd_test(tp, skb);
2078 if (!cwnd_quota) {
2079 if (push_one == 2)
2080 /* Force out a loss probe pkt. */
2081 cwnd_quota = 1;
2082 else
2083 break;
2086 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2087 break;
2089 if (tso_segs == 1) {
2090 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2091 (tcp_skb_is_last(sk, skb) ?
2092 nonagle : TCP_NAGLE_PUSH))))
2093 break;
2094 } else {
2095 if (!push_one &&
2096 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2097 max_segs))
2098 break;
2101 limit = mss_now;
2102 if (tso_segs > 1 && !tcp_urg_mode(tp))
2103 limit = tcp_mss_split_point(sk, skb, mss_now,
2104 min_t(unsigned int,
2105 cwnd_quota,
2106 max_segs),
2107 nonagle);
2109 if (skb->len > limit &&
2110 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2111 break;
2113 /* TCP Small Queues :
2114 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2115 * This allows for :
2116 * - better RTT estimation and ACK scheduling
2117 * - faster recovery
2118 * - high rates
2119 * Alas, some drivers / subsystems require a fair amount
2120 * of queued bytes to ensure line rate.
2121 * One example is wifi aggregation (802.11 AMPDU)
2123 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2124 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2126 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2127 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2128 /* It is possible TX completion already happened
2129 * before we set TSQ_THROTTLED, so we must
2130 * test again the condition.
2132 smp_mb__after_atomic();
2133 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2134 break;
2137 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2138 break;
2140 repair:
2141 /* Advance the send_head. This one is sent out.
2142 * This call will increment packets_out.
2144 tcp_event_new_data_sent(sk, skb);
2146 tcp_minshall_update(tp, mss_now, skb);
2147 sent_pkts += tcp_skb_pcount(skb);
2149 if (push_one)
2150 break;
2153 if (likely(sent_pkts)) {
2154 if (tcp_in_cwnd_reduction(sk))
2155 tp->prr_out += sent_pkts;
2157 /* Send one loss probe per tail loss episode. */
2158 if (push_one != 2)
2159 tcp_schedule_loss_probe(sk);
2160 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2161 tcp_cwnd_validate(sk, is_cwnd_limited);
2162 return false;
2164 return !tp->packets_out && tcp_send_head(sk);
2167 bool tcp_schedule_loss_probe(struct sock *sk)
2169 struct inet_connection_sock *icsk = inet_csk(sk);
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 u32 timeout, tlp_time_stamp, rto_time_stamp;
2172 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2174 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2175 return false;
2176 /* No consecutive loss probes. */
2177 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2178 tcp_rearm_rto(sk);
2179 return false;
2181 /* Don't do any loss probe on a Fast Open connection before 3WHS
2182 * finishes.
2184 if (tp->fastopen_rsk)
2185 return false;
2187 /* TLP is only scheduled when next timer event is RTO. */
2188 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2189 return false;
2191 /* Schedule a loss probe in 2*RTT for SACK capable connections
2192 * in Open state, that are either limited by cwnd or application.
2194 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2195 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2196 return false;
2198 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2199 tcp_send_head(sk))
2200 return false;
2202 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2203 * for delayed ack when there's one outstanding packet. If no RTT
2204 * sample is available then probe after TCP_TIMEOUT_INIT.
2206 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2207 if (tp->packets_out == 1)
2208 timeout = max_t(u32, timeout,
2209 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2210 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2212 /* If RTO is shorter, just schedule TLP in its place. */
2213 tlp_time_stamp = tcp_time_stamp + timeout;
2214 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2215 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2216 s32 delta = rto_time_stamp - tcp_time_stamp;
2217 if (delta > 0)
2218 timeout = delta;
2221 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2222 TCP_RTO_MAX);
2223 return true;
2226 /* Thanks to skb fast clones, we can detect if a prior transmit of
2227 * a packet is still in a qdisc or driver queue.
2228 * In this case, there is very little point doing a retransmit !
2229 * Note: This is called from BH context only.
2231 static bool skb_still_in_host_queue(const struct sock *sk,
2232 const struct sk_buff *skb)
2234 if (unlikely(skb_fclone_busy(sk, skb))) {
2235 NET_INC_STATS_BH(sock_net(sk),
2236 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2237 return true;
2239 return false;
2242 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2243 * retransmit the last segment.
2245 void tcp_send_loss_probe(struct sock *sk)
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb;
2249 int pcount;
2250 int mss = tcp_current_mss(sk);
2252 skb = tcp_send_head(sk);
2253 if (skb) {
2254 if (tcp_snd_wnd_test(tp, skb, mss)) {
2255 pcount = tp->packets_out;
2256 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2257 if (tp->packets_out > pcount)
2258 goto probe_sent;
2259 goto rearm_timer;
2261 skb = tcp_write_queue_prev(sk, skb);
2262 } else {
2263 skb = tcp_write_queue_tail(sk);
2266 if (unlikely(!skb)) {
2267 WARN_ONCE(tp->packets_out,
2268 "invalid inflight: %u state %u cwnd %u mss %d\n",
2269 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2270 inet_csk(sk)->icsk_pending = 0;
2271 return;
2274 /* At most one outstanding TLP retransmission. */
2275 if (tp->tlp_high_seq)
2276 goto rearm_timer;
2278 if (skb_still_in_host_queue(sk, skb))
2279 goto rearm_timer;
2281 pcount = tcp_skb_pcount(skb);
2282 if (WARN_ON(!pcount))
2283 goto rearm_timer;
2285 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2286 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2287 GFP_ATOMIC)))
2288 goto rearm_timer;
2289 skb = tcp_write_queue_next(sk, skb);
2292 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2293 goto rearm_timer;
2295 if (__tcp_retransmit_skb(sk, skb))
2296 goto rearm_timer;
2298 /* Record snd_nxt for loss detection. */
2299 tp->tlp_high_seq = tp->snd_nxt;
2301 probe_sent:
2302 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2303 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2304 inet_csk(sk)->icsk_pending = 0;
2305 rearm_timer:
2306 tcp_rearm_rto(sk);
2309 /* Push out any pending frames which were held back due to
2310 * TCP_CORK or attempt at coalescing tiny packets.
2311 * The socket must be locked by the caller.
2313 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2314 int nonagle)
2316 /* If we are closed, the bytes will have to remain here.
2317 * In time closedown will finish, we empty the write queue and
2318 * all will be happy.
2320 if (unlikely(sk->sk_state == TCP_CLOSE))
2321 return;
2323 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2324 sk_gfp_atomic(sk, GFP_ATOMIC)))
2325 tcp_check_probe_timer(sk);
2328 /* Send _single_ skb sitting at the send head. This function requires
2329 * true push pending frames to setup probe timer etc.
2331 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2333 struct sk_buff *skb = tcp_send_head(sk);
2335 BUG_ON(!skb || skb->len < mss_now);
2337 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2340 /* This function returns the amount that we can raise the
2341 * usable window based on the following constraints
2343 * 1. The window can never be shrunk once it is offered (RFC 793)
2344 * 2. We limit memory per socket
2346 * RFC 1122:
2347 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2348 * RECV.NEXT + RCV.WIN fixed until:
2349 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2351 * i.e. don't raise the right edge of the window until you can raise
2352 * it at least MSS bytes.
2354 * Unfortunately, the recommended algorithm breaks header prediction,
2355 * since header prediction assumes th->window stays fixed.
2357 * Strictly speaking, keeping th->window fixed violates the receiver
2358 * side SWS prevention criteria. The problem is that under this rule
2359 * a stream of single byte packets will cause the right side of the
2360 * window to always advance by a single byte.
2362 * Of course, if the sender implements sender side SWS prevention
2363 * then this will not be a problem.
2365 * BSD seems to make the following compromise:
2367 * If the free space is less than the 1/4 of the maximum
2368 * space available and the free space is less than 1/2 mss,
2369 * then set the window to 0.
2370 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2371 * Otherwise, just prevent the window from shrinking
2372 * and from being larger than the largest representable value.
2374 * This prevents incremental opening of the window in the regime
2375 * where TCP is limited by the speed of the reader side taking
2376 * data out of the TCP receive queue. It does nothing about
2377 * those cases where the window is constrained on the sender side
2378 * because the pipeline is full.
2380 * BSD also seems to "accidentally" limit itself to windows that are a
2381 * multiple of MSS, at least until the free space gets quite small.
2382 * This would appear to be a side effect of the mbuf implementation.
2383 * Combining these two algorithms results in the observed behavior
2384 * of having a fixed window size at almost all times.
2386 * Below we obtain similar behavior by forcing the offered window to
2387 * a multiple of the mss when it is feasible to do so.
2389 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2390 * Regular options like TIMESTAMP are taken into account.
2392 u32 __tcp_select_window(struct sock *sk)
2394 struct inet_connection_sock *icsk = inet_csk(sk);
2395 struct tcp_sock *tp = tcp_sk(sk);
2396 /* MSS for the peer's data. Previous versions used mss_clamp
2397 * here. I don't know if the value based on our guesses
2398 * of peer's MSS is better for the performance. It's more correct
2399 * but may be worse for the performance because of rcv_mss
2400 * fluctuations. --SAW 1998/11/1
2402 int mss = icsk->icsk_ack.rcv_mss;
2403 int free_space = tcp_space(sk);
2404 int allowed_space = tcp_full_space(sk);
2405 int full_space = min_t(int, tp->window_clamp, allowed_space);
2406 int window;
2408 if (unlikely(mss > full_space)) {
2409 mss = full_space;
2410 if (mss <= 0)
2411 return 0;
2413 if (free_space < (full_space >> 1)) {
2414 icsk->icsk_ack.quick = 0;
2416 if (tcp_under_memory_pressure(sk))
2417 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2418 4U * tp->advmss);
2420 /* free_space might become our new window, make sure we don't
2421 * increase it due to wscale.
2423 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2425 /* if free space is less than mss estimate, or is below 1/16th
2426 * of the maximum allowed, try to move to zero-window, else
2427 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2428 * new incoming data is dropped due to memory limits.
2429 * With large window, mss test triggers way too late in order
2430 * to announce zero window in time before rmem limit kicks in.
2432 if (free_space < (allowed_space >> 4) || free_space < mss)
2433 return 0;
2436 if (free_space > tp->rcv_ssthresh)
2437 free_space = tp->rcv_ssthresh;
2439 /* Don't do rounding if we are using window scaling, since the
2440 * scaled window will not line up with the MSS boundary anyway.
2442 window = tp->rcv_wnd;
2443 if (tp->rx_opt.rcv_wscale) {
2444 window = free_space;
2446 /* Advertise enough space so that it won't get scaled away.
2447 * Import case: prevent zero window announcement if
2448 * 1<<rcv_wscale > mss.
2450 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2451 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2452 << tp->rx_opt.rcv_wscale);
2453 } else {
2454 /* Get the largest window that is a nice multiple of mss.
2455 * Window clamp already applied above.
2456 * If our current window offering is within 1 mss of the
2457 * free space we just keep it. This prevents the divide
2458 * and multiply from happening most of the time.
2459 * We also don't do any window rounding when the free space
2460 * is too small.
2462 if (window <= free_space - mss || window > free_space)
2463 window = (free_space / mss) * mss;
2464 else if (mss == full_space &&
2465 free_space > window + (full_space >> 1))
2466 window = free_space;
2469 return window;
2472 /* Collapses two adjacent SKB's during retransmission. */
2473 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2475 struct tcp_sock *tp = tcp_sk(sk);
2476 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2477 int skb_size, next_skb_size;
2479 skb_size = skb->len;
2480 next_skb_size = next_skb->len;
2482 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2484 tcp_highest_sack_replace(sk, next_skb, skb);
2486 tcp_unlink_write_queue(next_skb, sk);
2488 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2489 next_skb_size);
2491 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2492 skb->ip_summed = CHECKSUM_PARTIAL;
2494 if (skb->ip_summed != CHECKSUM_PARTIAL)
2495 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2497 /* Update sequence range on original skb. */
2498 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2500 /* Merge over control information. This moves PSH/FIN etc. over */
2501 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2503 /* All done, get rid of second SKB and account for it so
2504 * packet counting does not break.
2506 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2508 /* changed transmit queue under us so clear hints */
2509 tcp_clear_retrans_hints_partial(tp);
2510 if (next_skb == tp->retransmit_skb_hint)
2511 tp->retransmit_skb_hint = skb;
2513 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2515 sk_wmem_free_skb(sk, next_skb);
2518 /* Check if coalescing SKBs is legal. */
2519 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2521 if (tcp_skb_pcount(skb) > 1)
2522 return false;
2523 /* TODO: SACK collapsing could be used to remove this condition */
2524 if (skb_shinfo(skb)->nr_frags != 0)
2525 return false;
2526 if (skb_cloned(skb))
2527 return false;
2528 if (skb == tcp_send_head(sk))
2529 return false;
2530 /* Some heurestics for collapsing over SACK'd could be invented */
2531 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2532 return false;
2534 return true;
2537 /* Collapse packets in the retransmit queue to make to create
2538 * less packets on the wire. This is only done on retransmission.
2540 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2541 int space)
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 struct sk_buff *skb = to, *tmp;
2545 bool first = true;
2547 if (!sysctl_tcp_retrans_collapse)
2548 return;
2549 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2550 return;
2552 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2553 if (!tcp_can_collapse(sk, skb))
2554 break;
2556 space -= skb->len;
2558 if (first) {
2559 first = false;
2560 continue;
2563 if (space < 0)
2564 break;
2565 /* Punt if not enough space exists in the first SKB for
2566 * the data in the second
2568 if (skb->len > skb_availroom(to))
2569 break;
2571 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2572 break;
2574 tcp_collapse_retrans(sk, to);
2578 /* This retransmits one SKB. Policy decisions and retransmit queue
2579 * state updates are done by the caller. Returns non-zero if an
2580 * error occurred which prevented the send.
2582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2584 struct tcp_sock *tp = tcp_sk(sk);
2585 struct inet_connection_sock *icsk = inet_csk(sk);
2586 unsigned int cur_mss;
2587 int err;
2589 /* Inconslusive MTU probe */
2590 if (icsk->icsk_mtup.probe_size) {
2591 icsk->icsk_mtup.probe_size = 0;
2594 /* Do not sent more than we queued. 1/4 is reserved for possible
2595 * copying overhead: fragmentation, tunneling, mangling etc.
2597 if (atomic_read(&sk->sk_wmem_alloc) >
2598 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2599 sk->sk_sndbuf))
2600 return -EAGAIN;
2602 if (skb_still_in_host_queue(sk, skb))
2603 return -EBUSY;
2605 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2606 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2607 WARN_ON_ONCE(1);
2608 return -EINVAL;
2610 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2611 return -ENOMEM;
2614 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2615 return -EHOSTUNREACH; /* Routing failure or similar. */
2617 cur_mss = tcp_current_mss(sk);
2619 /* If receiver has shrunk his window, and skb is out of
2620 * new window, do not retransmit it. The exception is the
2621 * case, when window is shrunk to zero. In this case
2622 * our retransmit serves as a zero window probe.
2624 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2625 TCP_SKB_CB(skb)->seq != tp->snd_una)
2626 return -EAGAIN;
2628 if (skb->len > cur_mss) {
2629 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2630 return -ENOMEM; /* We'll try again later. */
2631 } else {
2632 int oldpcount = tcp_skb_pcount(skb);
2634 if (unlikely(oldpcount > 1)) {
2635 if (skb_unclone(skb, GFP_ATOMIC))
2636 return -ENOMEM;
2637 tcp_init_tso_segs(skb, cur_mss);
2638 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2642 /* RFC3168, section 6.1.1.1. ECN fallback */
2643 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2644 tcp_ecn_clear_syn(sk, skb);
2646 tcp_retrans_try_collapse(sk, skb, cur_mss);
2648 /* Make a copy, if the first transmission SKB clone we made
2649 * is still in somebody's hands, else make a clone.
2652 /* make sure skb->data is aligned on arches that require it
2653 * and check if ack-trimming & collapsing extended the headroom
2654 * beyond what csum_start can cover.
2656 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2657 skb_headroom(skb) >= 0xFFFF)) {
2658 struct sk_buff *nskb;
2660 skb_mstamp_get(&skb->skb_mstamp);
2661 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2662 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2663 -ENOBUFS;
2664 } else {
2665 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2668 if (likely(!err)) {
2669 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2670 /* Update global TCP statistics. */
2671 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2674 tp->total_retrans++;
2676 return err;
2679 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 int err = __tcp_retransmit_skb(sk, skb);
2684 if (err == 0) {
2685 #if FASTRETRANS_DEBUG > 0
2686 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2687 net_dbg_ratelimited("retrans_out leaked\n");
2689 #endif
2690 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2691 tp->retrans_out += tcp_skb_pcount(skb);
2693 /* Save stamp of the first retransmit. */
2694 if (!tp->retrans_stamp)
2695 tp->retrans_stamp = tcp_skb_timestamp(skb);
2697 } else if (err != -EBUSY) {
2698 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2701 if (tp->undo_retrans < 0)
2702 tp->undo_retrans = 0;
2703 tp->undo_retrans += tcp_skb_pcount(skb);
2704 return err;
2707 /* Check if we forward retransmits are possible in the current
2708 * window/congestion state.
2710 static bool tcp_can_forward_retransmit(struct sock *sk)
2712 const struct inet_connection_sock *icsk = inet_csk(sk);
2713 const struct tcp_sock *tp = tcp_sk(sk);
2715 /* Forward retransmissions are possible only during Recovery. */
2716 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2717 return false;
2719 /* No forward retransmissions in Reno are possible. */
2720 if (tcp_is_reno(tp))
2721 return false;
2723 /* Yeah, we have to make difficult choice between forward transmission
2724 * and retransmission... Both ways have their merits...
2726 * For now we do not retransmit anything, while we have some new
2727 * segments to send. In the other cases, follow rule 3 for
2728 * NextSeg() specified in RFC3517.
2731 if (tcp_may_send_now(sk))
2732 return false;
2734 return true;
2737 /* This gets called after a retransmit timeout, and the initially
2738 * retransmitted data is acknowledged. It tries to continue
2739 * resending the rest of the retransmit queue, until either
2740 * we've sent it all or the congestion window limit is reached.
2741 * If doing SACK, the first ACK which comes back for a timeout
2742 * based retransmit packet might feed us FACK information again.
2743 * If so, we use it to avoid unnecessarily retransmissions.
2745 void tcp_xmit_retransmit_queue(struct sock *sk)
2747 const struct inet_connection_sock *icsk = inet_csk(sk);
2748 struct tcp_sock *tp = tcp_sk(sk);
2749 struct sk_buff *skb;
2750 struct sk_buff *hole = NULL;
2751 u32 last_lost;
2752 int mib_idx;
2753 int fwd_rexmitting = 0;
2755 if (!tp->packets_out)
2756 return;
2758 if (!tp->lost_out)
2759 tp->retransmit_high = tp->snd_una;
2761 if (tp->retransmit_skb_hint) {
2762 skb = tp->retransmit_skb_hint;
2763 last_lost = TCP_SKB_CB(skb)->end_seq;
2764 if (after(last_lost, tp->retransmit_high))
2765 last_lost = tp->retransmit_high;
2766 } else {
2767 skb = tcp_write_queue_head(sk);
2768 last_lost = tp->snd_una;
2771 tcp_for_write_queue_from(skb, sk) {
2772 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2774 if (skb == tcp_send_head(sk))
2775 break;
2776 /* we could do better than to assign each time */
2777 if (!hole)
2778 tp->retransmit_skb_hint = skb;
2780 /* Assume this retransmit will generate
2781 * only one packet for congestion window
2782 * calculation purposes. This works because
2783 * tcp_retransmit_skb() will chop up the
2784 * packet to be MSS sized and all the
2785 * packet counting works out.
2787 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2788 return;
2790 if (fwd_rexmitting) {
2791 begin_fwd:
2792 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2793 break;
2794 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2796 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2797 tp->retransmit_high = last_lost;
2798 if (!tcp_can_forward_retransmit(sk))
2799 break;
2800 /* Backtrack if necessary to non-L'ed skb */
2801 if (hole) {
2802 skb = hole;
2803 hole = NULL;
2805 fwd_rexmitting = 1;
2806 goto begin_fwd;
2808 } else if (!(sacked & TCPCB_LOST)) {
2809 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2810 hole = skb;
2811 continue;
2813 } else {
2814 last_lost = TCP_SKB_CB(skb)->end_seq;
2815 if (icsk->icsk_ca_state != TCP_CA_Loss)
2816 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2817 else
2818 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2821 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2822 continue;
2824 if (tcp_retransmit_skb(sk, skb))
2825 return;
2827 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2829 if (tcp_in_cwnd_reduction(sk))
2830 tp->prr_out += tcp_skb_pcount(skb);
2832 if (skb == tcp_write_queue_head(sk))
2833 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2834 inet_csk(sk)->icsk_rto,
2835 TCP_RTO_MAX);
2839 /* We allow to exceed memory limits for FIN packets to expedite
2840 * connection tear down and (memory) recovery.
2841 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2842 * or even be forced to close flow without any FIN.
2843 * In general, we want to allow one skb per socket to avoid hangs
2844 * with edge trigger epoll()
2846 void sk_forced_mem_schedule(struct sock *sk, int size)
2848 int amt, status;
2850 if (size <= sk->sk_forward_alloc)
2851 return;
2852 amt = sk_mem_pages(size);
2853 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2854 sk_memory_allocated_add(sk, amt, &status);
2857 /* Send a FIN. The caller locks the socket for us.
2858 * We should try to send a FIN packet really hard, but eventually give up.
2860 void tcp_send_fin(struct sock *sk)
2862 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2863 struct tcp_sock *tp = tcp_sk(sk);
2865 /* Optimization, tack on the FIN if we have one skb in write queue and
2866 * this skb was not yet sent, or we are under memory pressure.
2867 * Note: in the latter case, FIN packet will be sent after a timeout,
2868 * as TCP stack thinks it has already been transmitted.
2870 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2871 coalesce:
2872 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2873 TCP_SKB_CB(tskb)->end_seq++;
2874 tp->write_seq++;
2875 if (!tcp_send_head(sk)) {
2876 /* This means tskb was already sent.
2877 * Pretend we included the FIN on previous transmit.
2878 * We need to set tp->snd_nxt to the value it would have
2879 * if FIN had been sent. This is because retransmit path
2880 * does not change tp->snd_nxt.
2882 tp->snd_nxt++;
2883 return;
2885 } else {
2886 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2887 if (unlikely(!skb)) {
2888 if (tskb)
2889 goto coalesce;
2890 return;
2892 skb_reserve(skb, MAX_TCP_HEADER);
2893 sk_forced_mem_schedule(sk, skb->truesize);
2894 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2895 tcp_init_nondata_skb(skb, tp->write_seq,
2896 TCPHDR_ACK | TCPHDR_FIN);
2897 tcp_queue_skb(sk, skb);
2899 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2902 /* We get here when a process closes a file descriptor (either due to
2903 * an explicit close() or as a byproduct of exit()'ing) and there
2904 * was unread data in the receive queue. This behavior is recommended
2905 * by RFC 2525, section 2.17. -DaveM
2907 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2909 struct sk_buff *skb;
2911 /* NOTE: No TCP options attached and we never retransmit this. */
2912 skb = alloc_skb(MAX_TCP_HEADER, priority);
2913 if (!skb) {
2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2915 return;
2918 /* Reserve space for headers and prepare control bits. */
2919 skb_reserve(skb, MAX_TCP_HEADER);
2920 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2921 TCPHDR_ACK | TCPHDR_RST);
2922 skb_mstamp_get(&skb->skb_mstamp);
2923 /* Send it off. */
2924 if (tcp_transmit_skb(sk, skb, 0, priority))
2925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2927 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2930 /* Send a crossed SYN-ACK during socket establishment.
2931 * WARNING: This routine must only be called when we have already sent
2932 * a SYN packet that crossed the incoming SYN that caused this routine
2933 * to get called. If this assumption fails then the initial rcv_wnd
2934 * and rcv_wscale values will not be correct.
2936 int tcp_send_synack(struct sock *sk)
2938 struct sk_buff *skb;
2940 skb = tcp_write_queue_head(sk);
2941 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2942 pr_debug("%s: wrong queue state\n", __func__);
2943 return -EFAULT;
2945 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2946 if (skb_cloned(skb)) {
2947 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2948 if (!nskb)
2949 return -ENOMEM;
2950 tcp_unlink_write_queue(skb, sk);
2951 __skb_header_release(nskb);
2952 __tcp_add_write_queue_head(sk, nskb);
2953 sk_wmem_free_skb(sk, skb);
2954 sk->sk_wmem_queued += nskb->truesize;
2955 sk_mem_charge(sk, nskb->truesize);
2956 skb = nskb;
2959 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2960 tcp_ecn_send_synack(sk, skb);
2962 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2966 * tcp_make_synack - Prepare a SYN-ACK.
2967 * sk: listener socket
2968 * dst: dst entry attached to the SYNACK
2969 * req: request_sock pointer
2971 * Allocate one skb and build a SYNACK packet.
2972 * @dst is consumed : Caller should not use it again.
2974 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2975 struct request_sock *req,
2976 struct tcp_fastopen_cookie *foc,
2977 bool attach_req)
2979 struct inet_request_sock *ireq = inet_rsk(req);
2980 const struct tcp_sock *tp = tcp_sk(sk);
2981 struct tcp_md5sig_key *md5 = NULL;
2982 struct tcp_out_options opts;
2983 struct sk_buff *skb;
2984 int tcp_header_size;
2985 struct tcphdr *th;
2986 u16 user_mss;
2987 int mss;
2989 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2990 if (unlikely(!skb)) {
2991 dst_release(dst);
2992 return NULL;
2994 /* Reserve space for headers. */
2995 skb_reserve(skb, MAX_TCP_HEADER);
2997 if (attach_req) {
2998 skb_set_owner_w(skb, req_to_sk(req));
2999 } else {
3000 /* sk is a const pointer, because we want to express multiple
3001 * cpu might call us concurrently.
3002 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3004 skb_set_owner_w(skb, (struct sock *)sk);
3006 skb_dst_set(skb, dst);
3008 mss = dst_metric_advmss(dst);
3009 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3010 if (user_mss && user_mss < mss)
3011 mss = user_mss;
3013 memset(&opts, 0, sizeof(opts));
3014 #ifdef CONFIG_SYN_COOKIES
3015 if (unlikely(req->cookie_ts))
3016 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3017 else
3018 #endif
3019 skb_mstamp_get(&skb->skb_mstamp);
3021 #ifdef CONFIG_TCP_MD5SIG
3022 rcu_read_lock();
3023 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3024 #endif
3025 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3026 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3027 sizeof(*th);
3029 skb_push(skb, tcp_header_size);
3030 skb_reset_transport_header(skb);
3032 th = tcp_hdr(skb);
3033 memset(th, 0, sizeof(struct tcphdr));
3034 th->syn = 1;
3035 th->ack = 1;
3036 tcp_ecn_make_synack(req, th);
3037 th->source = htons(ireq->ir_num);
3038 th->dest = ireq->ir_rmt_port;
3039 skb->ip_summed = CHECKSUM_PARTIAL;
3040 th->seq = htonl(tcp_rsk(req)->snt_isn);
3041 /* XXX data is queued and acked as is. No buffer/window check */
3042 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3044 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3045 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3046 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3047 th->doff = (tcp_header_size >> 2);
3048 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3050 #ifdef CONFIG_TCP_MD5SIG
3051 /* Okay, we have all we need - do the md5 hash if needed */
3052 if (md5)
3053 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3054 md5, req_to_sk(req), skb);
3055 rcu_read_unlock();
3056 #endif
3058 /* Do not fool tcpdump (if any), clean our debris */
3059 skb->tstamp.tv64 = 0;
3060 return skb;
3062 EXPORT_SYMBOL(tcp_make_synack);
3064 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3066 struct inet_connection_sock *icsk = inet_csk(sk);
3067 const struct tcp_congestion_ops *ca;
3068 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3070 if (ca_key == TCP_CA_UNSPEC)
3071 return;
3073 rcu_read_lock();
3074 ca = tcp_ca_find_key(ca_key);
3075 if (likely(ca && try_module_get(ca->owner))) {
3076 module_put(icsk->icsk_ca_ops->owner);
3077 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3078 icsk->icsk_ca_ops = ca;
3080 rcu_read_unlock();
3083 /* Do all connect socket setups that can be done AF independent. */
3084 static void tcp_connect_init(struct sock *sk)
3086 const struct dst_entry *dst = __sk_dst_get(sk);
3087 struct tcp_sock *tp = tcp_sk(sk);
3088 __u8 rcv_wscale;
3090 /* We'll fix this up when we get a response from the other end.
3091 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3093 tp->tcp_header_len = sizeof(struct tcphdr) +
3094 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3096 #ifdef CONFIG_TCP_MD5SIG
3097 if (tp->af_specific->md5_lookup(sk, sk))
3098 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3099 #endif
3101 /* If user gave his TCP_MAXSEG, record it to clamp */
3102 if (tp->rx_opt.user_mss)
3103 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3104 tp->max_window = 0;
3105 tcp_mtup_init(sk);
3106 tcp_sync_mss(sk, dst_mtu(dst));
3108 tcp_ca_dst_init(sk, dst);
3110 if (!tp->window_clamp)
3111 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3112 tp->advmss = dst_metric_advmss(dst);
3113 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3114 tp->advmss = tp->rx_opt.user_mss;
3116 tcp_initialize_rcv_mss(sk);
3118 /* limit the window selection if the user enforce a smaller rx buffer */
3119 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3120 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3121 tp->window_clamp = tcp_full_space(sk);
3123 tcp_select_initial_window(tcp_full_space(sk),
3124 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3125 &tp->rcv_wnd,
3126 &tp->window_clamp,
3127 sysctl_tcp_window_scaling,
3128 &rcv_wscale,
3129 dst_metric(dst, RTAX_INITRWND));
3131 tp->rx_opt.rcv_wscale = rcv_wscale;
3132 tp->rcv_ssthresh = tp->rcv_wnd;
3134 sk->sk_err = 0;
3135 sock_reset_flag(sk, SOCK_DONE);
3136 tp->snd_wnd = 0;
3137 tcp_init_wl(tp, 0);
3138 tcp_write_queue_purge(sk);
3139 tp->snd_una = tp->write_seq;
3140 tp->snd_sml = tp->write_seq;
3141 tp->snd_up = tp->write_seq;
3142 tp->snd_nxt = tp->write_seq;
3144 if (likely(!tp->repair))
3145 tp->rcv_nxt = 0;
3146 else
3147 tp->rcv_tstamp = tcp_time_stamp;
3148 tp->rcv_wup = tp->rcv_nxt;
3149 tp->copied_seq = tp->rcv_nxt;
3151 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3152 inet_csk(sk)->icsk_retransmits = 0;
3153 tcp_clear_retrans(tp);
3156 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3158 struct tcp_sock *tp = tcp_sk(sk);
3159 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3161 tcb->end_seq += skb->len;
3162 __skb_header_release(skb);
3163 __tcp_add_write_queue_tail(sk, skb);
3164 sk->sk_wmem_queued += skb->truesize;
3165 sk_mem_charge(sk, skb->truesize);
3166 tp->write_seq = tcb->end_seq;
3167 tp->packets_out += tcp_skb_pcount(skb);
3170 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3171 * queue a data-only packet after the regular SYN, such that regular SYNs
3172 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3173 * only the SYN sequence, the data are retransmitted in the first ACK.
3174 * If cookie is not cached or other error occurs, falls back to send a
3175 * regular SYN with Fast Open cookie request option.
3177 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3179 struct tcp_sock *tp = tcp_sk(sk);
3180 struct tcp_fastopen_request *fo = tp->fastopen_req;
3181 int syn_loss = 0, space, err = 0;
3182 unsigned long last_syn_loss = 0;
3183 struct sk_buff *syn_data;
3185 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3186 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3187 &syn_loss, &last_syn_loss);
3188 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3189 if (syn_loss > 1 &&
3190 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3191 fo->cookie.len = -1;
3192 goto fallback;
3195 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3196 fo->cookie.len = -1;
3197 else if (fo->cookie.len <= 0)
3198 goto fallback;
3200 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3201 * user-MSS. Reserve maximum option space for middleboxes that add
3202 * private TCP options. The cost is reduced data space in SYN :(
3204 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3205 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3206 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3207 MAX_TCP_OPTION_SPACE;
3209 space = min_t(size_t, space, fo->size);
3211 /* limit to order-0 allocations */
3212 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3214 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3215 if (!syn_data)
3216 goto fallback;
3217 syn_data->ip_summed = CHECKSUM_PARTIAL;
3218 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3219 if (space) {
3220 int copied = copy_from_iter(skb_put(syn_data, space), space,
3221 &fo->data->msg_iter);
3222 if (unlikely(!copied)) {
3223 kfree_skb(syn_data);
3224 goto fallback;
3226 if (copied != space) {
3227 skb_trim(syn_data, copied);
3228 space = copied;
3231 /* No more data pending in inet_wait_for_connect() */
3232 if (space == fo->size)
3233 fo->data = NULL;
3234 fo->copied = space;
3236 tcp_connect_queue_skb(sk, syn_data);
3238 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3240 syn->skb_mstamp = syn_data->skb_mstamp;
3242 /* Now full SYN+DATA was cloned and sent (or not),
3243 * remove the SYN from the original skb (syn_data)
3244 * we keep in write queue in case of a retransmit, as we
3245 * also have the SYN packet (with no data) in the same queue.
3247 TCP_SKB_CB(syn_data)->seq++;
3248 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3249 if (!err) {
3250 tp->syn_data = (fo->copied > 0);
3251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3252 goto done;
3255 fallback:
3256 /* Send a regular SYN with Fast Open cookie request option */
3257 if (fo->cookie.len > 0)
3258 fo->cookie.len = 0;
3259 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3260 if (err)
3261 tp->syn_fastopen = 0;
3262 done:
3263 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3264 return err;
3267 /* Build a SYN and send it off. */
3268 int tcp_connect(struct sock *sk)
3270 struct tcp_sock *tp = tcp_sk(sk);
3271 struct sk_buff *buff;
3272 int err;
3274 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3275 return -EHOSTUNREACH; /* Routing failure or similar. */
3277 tcp_connect_init(sk);
3279 if (unlikely(tp->repair)) {
3280 tcp_finish_connect(sk, NULL);
3281 return 0;
3284 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3285 if (unlikely(!buff))
3286 return -ENOBUFS;
3288 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3289 tp->retrans_stamp = tcp_time_stamp;
3290 tcp_connect_queue_skb(sk, buff);
3291 tcp_ecn_send_syn(sk, buff);
3293 /* Send off SYN; include data in Fast Open. */
3294 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3295 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3296 if (err == -ECONNREFUSED)
3297 return err;
3299 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3300 * in order to make this packet get counted in tcpOutSegs.
3302 tp->snd_nxt = tp->write_seq;
3303 tp->pushed_seq = tp->write_seq;
3304 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3306 /* Timer for repeating the SYN until an answer. */
3307 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3308 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3309 return 0;
3311 EXPORT_SYMBOL(tcp_connect);
3313 /* Send out a delayed ack, the caller does the policy checking
3314 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3315 * for details.
3317 void tcp_send_delayed_ack(struct sock *sk)
3319 struct inet_connection_sock *icsk = inet_csk(sk);
3320 int ato = icsk->icsk_ack.ato;
3321 unsigned long timeout;
3323 if (ato > TCP_DELACK_MIN) {
3324 const struct tcp_sock *tp = tcp_sk(sk);
3325 int max_ato = HZ / 2;
3327 if (icsk->icsk_ack.pingpong ||
3328 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3329 max_ato = TCP_DELACK_MAX;
3331 /* Slow path, intersegment interval is "high". */
3333 /* If some rtt estimate is known, use it to bound delayed ack.
3334 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3335 * directly.
3337 if (tp->srtt_us) {
3338 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3339 TCP_DELACK_MIN);
3341 if (rtt < max_ato)
3342 max_ato = rtt;
3345 ato = min(ato, max_ato);
3348 /* Stay within the limit we were given */
3349 timeout = jiffies + ato;
3351 /* Use new timeout only if there wasn't a older one earlier. */
3352 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3353 /* If delack timer was blocked or is about to expire,
3354 * send ACK now.
3356 if (icsk->icsk_ack.blocked ||
3357 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3358 tcp_send_ack(sk);
3359 return;
3362 if (!time_before(timeout, icsk->icsk_ack.timeout))
3363 timeout = icsk->icsk_ack.timeout;
3365 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3366 icsk->icsk_ack.timeout = timeout;
3367 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3370 /* This routine sends an ack and also updates the window. */
3371 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3373 struct sk_buff *buff;
3375 /* If we have been reset, we may not send again. */
3376 if (sk->sk_state == TCP_CLOSE)
3377 return;
3379 /* We are not putting this on the write queue, so
3380 * tcp_transmit_skb() will set the ownership to this
3381 * sock.
3383 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3384 if (!buff) {
3385 inet_csk_schedule_ack(sk);
3386 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3387 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3388 TCP_DELACK_MAX, TCP_RTO_MAX);
3389 return;
3392 /* Reserve space for headers and prepare control bits. */
3393 skb_reserve(buff, MAX_TCP_HEADER);
3394 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3396 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3397 * too much.
3398 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3399 * We also avoid tcp_wfree() overhead (cache line miss accessing
3400 * tp->tsq_flags) by using regular sock_wfree()
3402 skb_set_tcp_pure_ack(buff);
3404 /* Send it off, this clears delayed acks for us. */
3405 skb_mstamp_get(&buff->skb_mstamp);
3406 __tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC), rcv_nxt);
3408 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3410 void tcp_send_ack(struct sock *sk)
3412 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3415 /* This routine sends a packet with an out of date sequence
3416 * number. It assumes the other end will try to ack it.
3418 * Question: what should we make while urgent mode?
3419 * 4.4BSD forces sending single byte of data. We cannot send
3420 * out of window data, because we have SND.NXT==SND.MAX...
3422 * Current solution: to send TWO zero-length segments in urgent mode:
3423 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3424 * out-of-date with SND.UNA-1 to probe window.
3426 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3428 struct tcp_sock *tp = tcp_sk(sk);
3429 struct sk_buff *skb;
3431 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3432 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3433 if (!skb)
3434 return -1;
3436 /* Reserve space for headers and set control bits. */
3437 skb_reserve(skb, MAX_TCP_HEADER);
3438 /* Use a previous sequence. This should cause the other
3439 * end to send an ack. Don't queue or clone SKB, just
3440 * send it.
3442 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3443 skb_mstamp_get(&skb->skb_mstamp);
3444 NET_INC_STATS(sock_net(sk), mib);
3445 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3448 void tcp_send_window_probe(struct sock *sk)
3450 if (sk->sk_state == TCP_ESTABLISHED) {
3451 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3452 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3456 /* Initiate keepalive or window probe from timer. */
3457 int tcp_write_wakeup(struct sock *sk, int mib)
3459 struct tcp_sock *tp = tcp_sk(sk);
3460 struct sk_buff *skb;
3462 if (sk->sk_state == TCP_CLOSE)
3463 return -1;
3465 skb = tcp_send_head(sk);
3466 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3467 int err;
3468 unsigned int mss = tcp_current_mss(sk);
3469 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3471 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3472 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3474 /* We are probing the opening of a window
3475 * but the window size is != 0
3476 * must have been a result SWS avoidance ( sender )
3478 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3479 skb->len > mss) {
3480 seg_size = min(seg_size, mss);
3481 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3482 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3483 return -1;
3484 } else if (!tcp_skb_pcount(skb))
3485 tcp_set_skb_tso_segs(skb, mss);
3487 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3488 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3489 if (!err)
3490 tcp_event_new_data_sent(sk, skb);
3491 return err;
3492 } else {
3493 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3494 tcp_xmit_probe_skb(sk, 1, mib);
3495 return tcp_xmit_probe_skb(sk, 0, mib);
3499 /* A window probe timeout has occurred. If window is not closed send
3500 * a partial packet else a zero probe.
3502 void tcp_send_probe0(struct sock *sk)
3504 struct inet_connection_sock *icsk = inet_csk(sk);
3505 struct tcp_sock *tp = tcp_sk(sk);
3506 unsigned long probe_max;
3507 int err;
3509 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3511 if (tp->packets_out || !tcp_send_head(sk)) {
3512 /* Cancel probe timer, if it is not required. */
3513 icsk->icsk_probes_out = 0;
3514 icsk->icsk_backoff = 0;
3515 return;
3518 if (err <= 0) {
3519 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3520 icsk->icsk_backoff++;
3521 icsk->icsk_probes_out++;
3522 probe_max = TCP_RTO_MAX;
3523 } else {
3524 /* If packet was not sent due to local congestion,
3525 * do not backoff and do not remember icsk_probes_out.
3526 * Let local senders to fight for local resources.
3528 * Use accumulated backoff yet.
3530 if (!icsk->icsk_probes_out)
3531 icsk->icsk_probes_out = 1;
3532 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3534 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3535 tcp_probe0_when(sk, probe_max),
3536 TCP_RTO_MAX);
3539 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3541 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3542 struct flowi fl;
3543 int res;
3545 tcp_rsk(req)->txhash = net_tx_rndhash();
3546 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3547 if (!res) {
3548 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3549 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3551 return res;
3553 EXPORT_SYMBOL(tcp_rtx_synack);