media: v4l2-compat-ioctl32.c: don't copy back the result for certain errors
[linux/fpc-iii.git] / drivers / iommu / exynos-iommu.c
blob79c45650f8de6b2a20b0d1a79ca9dff5a17dec4c
1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
58 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
59 * v5.0 introduced support for 36bit physical address space by shifting
60 * all page entry values by 4 bits.
61 * All SYSMMU controllers in the system support the address spaces of the same
62 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
63 * value (0 or 4).
65 static short PG_ENT_SHIFT = -1;
66 #define SYSMMU_PG_ENT_SHIFT 0
67 #define SYSMMU_V5_PG_ENT_SHIFT 4
69 static const sysmmu_pte_t *LV1_PROT;
70 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
71 ((0 << 15) | (0 << 10)), /* no access */
72 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
73 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
74 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
76 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
77 (0 << 4), /* no access */
78 (1 << 4), /* IOMMU_READ only */
79 (2 << 4), /* IOMMU_WRITE only */
80 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
83 static const sysmmu_pte_t *LV2_PROT;
84 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
85 ((0 << 9) | (0 << 4)), /* no access */
86 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
87 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
88 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
90 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
91 (0 << 2), /* no access */
92 (1 << 2), /* IOMMU_READ only */
93 (2 << 2), /* IOMMU_WRITE only */
94 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
97 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
99 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
100 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
101 #define section_offs(iova) (iova & (SECT_SIZE - 1))
102 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
103 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
104 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
105 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
107 #define NUM_LV1ENTRIES 4096
108 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
110 static u32 lv1ent_offset(sysmmu_iova_t iova)
112 return iova >> SECT_ORDER;
115 static u32 lv2ent_offset(sysmmu_iova_t iova)
117 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
120 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
121 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
123 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
124 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
126 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
127 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
128 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
129 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
131 #define CTRL_ENABLE 0x5
132 #define CTRL_BLOCK 0x7
133 #define CTRL_DISABLE 0x0
135 #define CFG_LRU 0x1
136 #define CFG_EAP (1 << 2)
137 #define CFG_QOS(n) ((n & 0xF) << 7)
138 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
139 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
140 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
142 /* common registers */
143 #define REG_MMU_CTRL 0x000
144 #define REG_MMU_CFG 0x004
145 #define REG_MMU_STATUS 0x008
146 #define REG_MMU_VERSION 0x034
148 #define MMU_MAJ_VER(val) ((val) >> 7)
149 #define MMU_MIN_VER(val) ((val) & 0x7F)
150 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154 /* v1.x - v3.x registers */
155 #define REG_MMU_FLUSH 0x00C
156 #define REG_MMU_FLUSH_ENTRY 0x010
157 #define REG_PT_BASE_ADDR 0x014
158 #define REG_INT_STATUS 0x018
159 #define REG_INT_CLEAR 0x01C
161 #define REG_PAGE_FAULT_ADDR 0x024
162 #define REG_AW_FAULT_ADDR 0x028
163 #define REG_AR_FAULT_ADDR 0x02C
164 #define REG_DEFAULT_SLAVE_ADDR 0x030
166 /* v5.x registers */
167 #define REG_V5_PT_BASE_PFN 0x00C
168 #define REG_V5_MMU_FLUSH_ALL 0x010
169 #define REG_V5_MMU_FLUSH_ENTRY 0x014
170 #define REG_V5_MMU_FLUSH_RANGE 0x018
171 #define REG_V5_MMU_FLUSH_START 0x020
172 #define REG_V5_MMU_FLUSH_END 0x024
173 #define REG_V5_INT_STATUS 0x060
174 #define REG_V5_INT_CLEAR 0x064
175 #define REG_V5_FAULT_AR_VA 0x070
176 #define REG_V5_FAULT_AW_VA 0x080
178 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
180 static struct device *dma_dev;
181 static struct kmem_cache *lv2table_kmem_cache;
182 static sysmmu_pte_t *zero_lv2_table;
183 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 return pgtable + lv1ent_offset(iova);
190 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 return (sysmmu_pte_t *)phys_to_virt(
193 lv2table_base(sent)) + lv2ent_offset(iova);
197 * IOMMU fault information register
199 struct sysmmu_fault_info {
200 unsigned int bit; /* bit number in STATUS register */
201 unsigned short addr_reg; /* register to read VA fault address */
202 const char *name; /* human readable fault name */
203 unsigned int type; /* fault type for report_iommu_fault */
206 static const struct sysmmu_fault_info sysmmu_faults[] = {
207 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
208 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
209 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
210 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
211 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
212 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
213 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
214 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
217 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
218 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
219 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
220 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
221 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
222 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
223 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
224 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
225 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
226 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
227 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
231 * This structure is attached to dev.archdata.iommu of the master device
232 * on device add, contains a list of SYSMMU controllers defined by device tree,
233 * which are bound to given master device. It is usually referenced by 'owner'
234 * pointer.
236 struct exynos_iommu_owner {
237 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
238 struct iommu_domain *domain; /* domain this device is attached */
239 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
243 * This structure exynos specific generalization of struct iommu_domain.
244 * It contains list of SYSMMU controllers from all master devices, which has
245 * been attached to this domain and page tables of IO address space defined by
246 * it. It is usually referenced by 'domain' pointer.
248 struct exynos_iommu_domain {
249 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
250 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
251 short *lv2entcnt; /* free lv2 entry counter for each section */
252 spinlock_t lock; /* lock for modyfying list of clients */
253 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
254 struct iommu_domain domain; /* generic domain data structure */
258 * This structure hold all data of a single SYSMMU controller, this includes
259 * hw resources like registers and clocks, pointers and list nodes to connect
260 * it to all other structures, internal state and parameters read from device
261 * tree. It is usually referenced by 'data' pointer.
263 struct sysmmu_drvdata {
264 struct device *sysmmu; /* SYSMMU controller device */
265 struct device *master; /* master device (owner) */
266 struct device_link *link; /* runtime PM link to master */
267 void __iomem *sfrbase; /* our registers */
268 struct clk *clk; /* SYSMMU's clock */
269 struct clk *aclk; /* SYSMMU's aclk clock */
270 struct clk *pclk; /* SYSMMU's pclk clock */
271 struct clk *clk_master; /* master's device clock */
272 spinlock_t lock; /* lock for modyfying state */
273 bool active; /* current status */
274 struct exynos_iommu_domain *domain; /* domain we belong to */
275 struct list_head domain_node; /* node for domain clients list */
276 struct list_head owner_node; /* node for owner controllers list */
277 phys_addr_t pgtable; /* assigned page table structure */
278 unsigned int version; /* our version */
280 struct iommu_device iommu; /* IOMMU core handle */
283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
285 return container_of(dom, struct exynos_iommu_domain, domain);
288 static void sysmmu_unblock(struct sysmmu_drvdata *data)
290 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
293 static bool sysmmu_block(struct sysmmu_drvdata *data)
295 int i = 120;
297 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
298 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
299 --i;
301 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
302 sysmmu_unblock(data);
303 return false;
306 return true;
309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
311 if (MMU_MAJ_VER(data->version) < 5)
312 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
313 else
314 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
318 sysmmu_iova_t iova, unsigned int num_inv)
320 unsigned int i;
322 if (MMU_MAJ_VER(data->version) < 5) {
323 for (i = 0; i < num_inv; i++) {
324 writel((iova & SPAGE_MASK) | 1,
325 data->sfrbase + REG_MMU_FLUSH_ENTRY);
326 iova += SPAGE_SIZE;
328 } else {
329 if (num_inv == 1) {
330 writel((iova & SPAGE_MASK) | 1,
331 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
332 } else {
333 writel((iova & SPAGE_MASK),
334 data->sfrbase + REG_V5_MMU_FLUSH_START);
335 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
336 data->sfrbase + REG_V5_MMU_FLUSH_END);
337 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
342 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
344 if (MMU_MAJ_VER(data->version) < 5)
345 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
346 else
347 writel(pgd >> PAGE_SHIFT,
348 data->sfrbase + REG_V5_PT_BASE_PFN);
350 __sysmmu_tlb_invalidate(data);
353 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
355 BUG_ON(clk_prepare_enable(data->clk_master));
356 BUG_ON(clk_prepare_enable(data->clk));
357 BUG_ON(clk_prepare_enable(data->pclk));
358 BUG_ON(clk_prepare_enable(data->aclk));
361 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
363 clk_disable_unprepare(data->aclk);
364 clk_disable_unprepare(data->pclk);
365 clk_disable_unprepare(data->clk);
366 clk_disable_unprepare(data->clk_master);
369 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
371 u32 ver;
373 __sysmmu_enable_clocks(data);
375 ver = readl(data->sfrbase + REG_MMU_VERSION);
377 /* controllers on some SoCs don't report proper version */
378 if (ver == 0x80000001u)
379 data->version = MAKE_MMU_VER(1, 0);
380 else
381 data->version = MMU_RAW_VER(ver);
383 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
384 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
386 __sysmmu_disable_clocks(data);
389 static void show_fault_information(struct sysmmu_drvdata *data,
390 const struct sysmmu_fault_info *finfo,
391 sysmmu_iova_t fault_addr)
393 sysmmu_pte_t *ent;
395 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
396 dev_name(data->master), finfo->name, fault_addr);
397 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
398 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
399 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
400 if (lv1ent_page(ent)) {
401 ent = page_entry(ent, fault_addr);
402 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
406 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
408 /* SYSMMU is in blocked state when interrupt occurred. */
409 struct sysmmu_drvdata *data = dev_id;
410 const struct sysmmu_fault_info *finfo;
411 unsigned int i, n, itype;
412 sysmmu_iova_t fault_addr = -1;
413 unsigned short reg_status, reg_clear;
414 int ret = -ENOSYS;
416 WARN_ON(!data->active);
418 if (MMU_MAJ_VER(data->version) < 5) {
419 reg_status = REG_INT_STATUS;
420 reg_clear = REG_INT_CLEAR;
421 finfo = sysmmu_faults;
422 n = ARRAY_SIZE(sysmmu_faults);
423 } else {
424 reg_status = REG_V5_INT_STATUS;
425 reg_clear = REG_V5_INT_CLEAR;
426 finfo = sysmmu_v5_faults;
427 n = ARRAY_SIZE(sysmmu_v5_faults);
430 spin_lock(&data->lock);
432 clk_enable(data->clk_master);
434 itype = __ffs(readl(data->sfrbase + reg_status));
435 for (i = 0; i < n; i++, finfo++)
436 if (finfo->bit == itype)
437 break;
438 /* unknown/unsupported fault */
439 BUG_ON(i == n);
441 /* print debug message */
442 fault_addr = readl(data->sfrbase + finfo->addr_reg);
443 show_fault_information(data, finfo, fault_addr);
445 if (data->domain)
446 ret = report_iommu_fault(&data->domain->domain,
447 data->master, fault_addr, finfo->type);
448 /* fault is not recovered by fault handler */
449 BUG_ON(ret != 0);
451 writel(1 << itype, data->sfrbase + reg_clear);
453 sysmmu_unblock(data);
455 clk_disable(data->clk_master);
457 spin_unlock(&data->lock);
459 return IRQ_HANDLED;
462 static void __sysmmu_disable(struct sysmmu_drvdata *data)
464 unsigned long flags;
466 clk_enable(data->clk_master);
468 spin_lock_irqsave(&data->lock, flags);
469 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
470 writel(0, data->sfrbase + REG_MMU_CFG);
471 data->active = false;
472 spin_unlock_irqrestore(&data->lock, flags);
474 __sysmmu_disable_clocks(data);
477 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
479 unsigned int cfg;
481 if (data->version <= MAKE_MMU_VER(3, 1))
482 cfg = CFG_LRU | CFG_QOS(15);
483 else if (data->version <= MAKE_MMU_VER(3, 2))
484 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
485 else
486 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
488 cfg |= CFG_EAP; /* enable access protection bits check */
490 writel(cfg, data->sfrbase + REG_MMU_CFG);
493 static void __sysmmu_enable(struct sysmmu_drvdata *data)
495 unsigned long flags;
497 __sysmmu_enable_clocks(data);
499 spin_lock_irqsave(&data->lock, flags);
500 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
501 __sysmmu_init_config(data);
502 __sysmmu_set_ptbase(data, data->pgtable);
503 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
504 data->active = true;
505 spin_unlock_irqrestore(&data->lock, flags);
508 * SYSMMU driver keeps master's clock enabled only for the short
509 * time, while accessing the registers. For performing address
510 * translation during DMA transaction it relies on the client
511 * driver to enable it.
513 clk_disable(data->clk_master);
516 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
517 sysmmu_iova_t iova)
519 unsigned long flags;
521 spin_lock_irqsave(&data->lock, flags);
522 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
523 clk_enable(data->clk_master);
524 if (sysmmu_block(data)) {
525 if (data->version >= MAKE_MMU_VER(5, 0))
526 __sysmmu_tlb_invalidate(data);
527 else
528 __sysmmu_tlb_invalidate_entry(data, iova, 1);
529 sysmmu_unblock(data);
531 clk_disable(data->clk_master);
533 spin_unlock_irqrestore(&data->lock, flags);
536 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
537 sysmmu_iova_t iova, size_t size)
539 unsigned long flags;
541 spin_lock_irqsave(&data->lock, flags);
542 if (data->active) {
543 unsigned int num_inv = 1;
545 clk_enable(data->clk_master);
548 * L2TLB invalidation required
549 * 4KB page: 1 invalidation
550 * 64KB page: 16 invalidations
551 * 1MB page: 64 invalidations
552 * because it is set-associative TLB
553 * with 8-way and 64 sets.
554 * 1MB page can be cached in one of all sets.
555 * 64KB page can be one of 16 consecutive sets.
557 if (MMU_MAJ_VER(data->version) == 2)
558 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
560 if (sysmmu_block(data)) {
561 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
562 sysmmu_unblock(data);
564 clk_disable(data->clk_master);
566 spin_unlock_irqrestore(&data->lock, flags);
569 static const struct iommu_ops exynos_iommu_ops;
571 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
573 int irq, ret;
574 struct device *dev = &pdev->dev;
575 struct sysmmu_drvdata *data;
576 struct resource *res;
578 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
579 if (!data)
580 return -ENOMEM;
582 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
583 data->sfrbase = devm_ioremap_resource(dev, res);
584 if (IS_ERR(data->sfrbase))
585 return PTR_ERR(data->sfrbase);
587 irq = platform_get_irq(pdev, 0);
588 if (irq <= 0) {
589 dev_err(dev, "Unable to find IRQ resource\n");
590 return irq;
593 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
594 dev_name(dev), data);
595 if (ret) {
596 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
597 return ret;
600 data->clk = devm_clk_get(dev, "sysmmu");
601 if (PTR_ERR(data->clk) == -ENOENT)
602 data->clk = NULL;
603 else if (IS_ERR(data->clk))
604 return PTR_ERR(data->clk);
606 data->aclk = devm_clk_get(dev, "aclk");
607 if (PTR_ERR(data->aclk) == -ENOENT)
608 data->aclk = NULL;
609 else if (IS_ERR(data->aclk))
610 return PTR_ERR(data->aclk);
612 data->pclk = devm_clk_get(dev, "pclk");
613 if (PTR_ERR(data->pclk) == -ENOENT)
614 data->pclk = NULL;
615 else if (IS_ERR(data->pclk))
616 return PTR_ERR(data->pclk);
618 if (!data->clk && (!data->aclk || !data->pclk)) {
619 dev_err(dev, "Failed to get device clock(s)!\n");
620 return -ENOSYS;
623 data->clk_master = devm_clk_get(dev, "master");
624 if (PTR_ERR(data->clk_master) == -ENOENT)
625 data->clk_master = NULL;
626 else if (IS_ERR(data->clk_master))
627 return PTR_ERR(data->clk_master);
629 data->sysmmu = dev;
630 spin_lock_init(&data->lock);
632 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
633 dev_name(data->sysmmu));
634 if (ret)
635 return ret;
637 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
638 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
640 ret = iommu_device_register(&data->iommu);
641 if (ret)
642 return ret;
644 platform_set_drvdata(pdev, data);
646 __sysmmu_get_version(data);
647 if (PG_ENT_SHIFT < 0) {
648 if (MMU_MAJ_VER(data->version) < 5) {
649 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
650 LV1_PROT = SYSMMU_LV1_PROT;
651 LV2_PROT = SYSMMU_LV2_PROT;
652 } else {
653 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
654 LV1_PROT = SYSMMU_V5_LV1_PROT;
655 LV2_PROT = SYSMMU_V5_LV2_PROT;
660 * use the first registered sysmmu device for performing
661 * dma mapping operations on iommu page tables (cpu cache flush)
663 if (!dma_dev)
664 dma_dev = &pdev->dev;
666 pm_runtime_enable(dev);
668 return 0;
671 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
673 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
674 struct device *master = data->master;
676 if (master) {
677 struct exynos_iommu_owner *owner = master->archdata.iommu;
679 mutex_lock(&owner->rpm_lock);
680 if (data->domain) {
681 dev_dbg(data->sysmmu, "saving state\n");
682 __sysmmu_disable(data);
684 mutex_unlock(&owner->rpm_lock);
686 return 0;
689 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
691 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
692 struct device *master = data->master;
694 if (master) {
695 struct exynos_iommu_owner *owner = master->archdata.iommu;
697 mutex_lock(&owner->rpm_lock);
698 if (data->domain) {
699 dev_dbg(data->sysmmu, "restoring state\n");
700 __sysmmu_enable(data);
702 mutex_unlock(&owner->rpm_lock);
704 return 0;
707 static const struct dev_pm_ops sysmmu_pm_ops = {
708 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
709 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
710 pm_runtime_force_resume)
713 static const struct of_device_id sysmmu_of_match[] = {
714 { .compatible = "samsung,exynos-sysmmu", },
715 { },
718 static struct platform_driver exynos_sysmmu_driver __refdata = {
719 .probe = exynos_sysmmu_probe,
720 .driver = {
721 .name = "exynos-sysmmu",
722 .of_match_table = sysmmu_of_match,
723 .pm = &sysmmu_pm_ops,
724 .suppress_bind_attrs = true,
728 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
730 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
731 DMA_TO_DEVICE);
732 *ent = cpu_to_le32(val);
733 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
734 DMA_TO_DEVICE);
737 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
739 struct exynos_iommu_domain *domain;
740 dma_addr_t handle;
741 int i;
743 /* Check if correct PTE offsets are initialized */
744 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
746 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
747 if (!domain)
748 return NULL;
750 if (type == IOMMU_DOMAIN_DMA) {
751 if (iommu_get_dma_cookie(&domain->domain) != 0)
752 goto err_pgtable;
753 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
754 goto err_pgtable;
757 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
758 if (!domain->pgtable)
759 goto err_dma_cookie;
761 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
762 if (!domain->lv2entcnt)
763 goto err_counter;
765 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
766 for (i = 0; i < NUM_LV1ENTRIES; i++)
767 domain->pgtable[i] = ZERO_LV2LINK;
769 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
770 DMA_TO_DEVICE);
771 /* For mapping page table entries we rely on dma == phys */
772 BUG_ON(handle != virt_to_phys(domain->pgtable));
773 if (dma_mapping_error(dma_dev, handle))
774 goto err_lv2ent;
776 spin_lock_init(&domain->lock);
777 spin_lock_init(&domain->pgtablelock);
778 INIT_LIST_HEAD(&domain->clients);
780 domain->domain.geometry.aperture_start = 0;
781 domain->domain.geometry.aperture_end = ~0UL;
782 domain->domain.geometry.force_aperture = true;
784 return &domain->domain;
786 err_lv2ent:
787 free_pages((unsigned long)domain->lv2entcnt, 1);
788 err_counter:
789 free_pages((unsigned long)domain->pgtable, 2);
790 err_dma_cookie:
791 if (type == IOMMU_DOMAIN_DMA)
792 iommu_put_dma_cookie(&domain->domain);
793 err_pgtable:
794 kfree(domain);
795 return NULL;
798 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
800 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
801 struct sysmmu_drvdata *data, *next;
802 unsigned long flags;
803 int i;
805 WARN_ON(!list_empty(&domain->clients));
807 spin_lock_irqsave(&domain->lock, flags);
809 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
810 spin_lock(&data->lock);
811 __sysmmu_disable(data);
812 data->pgtable = 0;
813 data->domain = NULL;
814 list_del_init(&data->domain_node);
815 spin_unlock(&data->lock);
818 spin_unlock_irqrestore(&domain->lock, flags);
820 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
821 iommu_put_dma_cookie(iommu_domain);
823 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
824 DMA_TO_DEVICE);
826 for (i = 0; i < NUM_LV1ENTRIES; i++)
827 if (lv1ent_page(domain->pgtable + i)) {
828 phys_addr_t base = lv2table_base(domain->pgtable + i);
830 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
831 DMA_TO_DEVICE);
832 kmem_cache_free(lv2table_kmem_cache,
833 phys_to_virt(base));
836 free_pages((unsigned long)domain->pgtable, 2);
837 free_pages((unsigned long)domain->lv2entcnt, 1);
838 kfree(domain);
841 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
842 struct device *dev)
844 struct exynos_iommu_owner *owner = dev->archdata.iommu;
845 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
846 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
847 struct sysmmu_drvdata *data, *next;
848 unsigned long flags;
850 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
851 return;
853 mutex_lock(&owner->rpm_lock);
855 list_for_each_entry(data, &owner->controllers, owner_node) {
856 pm_runtime_get_noresume(data->sysmmu);
857 if (pm_runtime_active(data->sysmmu))
858 __sysmmu_disable(data);
859 pm_runtime_put(data->sysmmu);
862 spin_lock_irqsave(&domain->lock, flags);
863 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
864 spin_lock(&data->lock);
865 data->pgtable = 0;
866 data->domain = NULL;
867 list_del_init(&data->domain_node);
868 spin_unlock(&data->lock);
870 owner->domain = NULL;
871 spin_unlock_irqrestore(&domain->lock, flags);
873 mutex_unlock(&owner->rpm_lock);
875 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
876 &pagetable);
879 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
880 struct device *dev)
882 struct exynos_iommu_owner *owner = dev->archdata.iommu;
883 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
884 struct sysmmu_drvdata *data;
885 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
886 unsigned long flags;
888 if (!has_sysmmu(dev))
889 return -ENODEV;
891 if (owner->domain)
892 exynos_iommu_detach_device(owner->domain, dev);
894 mutex_lock(&owner->rpm_lock);
896 spin_lock_irqsave(&domain->lock, flags);
897 list_for_each_entry(data, &owner->controllers, owner_node) {
898 spin_lock(&data->lock);
899 data->pgtable = pagetable;
900 data->domain = domain;
901 list_add_tail(&data->domain_node, &domain->clients);
902 spin_unlock(&data->lock);
904 owner->domain = iommu_domain;
905 spin_unlock_irqrestore(&domain->lock, flags);
907 list_for_each_entry(data, &owner->controllers, owner_node) {
908 pm_runtime_get_noresume(data->sysmmu);
909 if (pm_runtime_active(data->sysmmu))
910 __sysmmu_enable(data);
911 pm_runtime_put(data->sysmmu);
914 mutex_unlock(&owner->rpm_lock);
916 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
917 &pagetable);
919 return 0;
922 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
923 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
925 if (lv1ent_section(sent)) {
926 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
927 return ERR_PTR(-EADDRINUSE);
930 if (lv1ent_fault(sent)) {
931 dma_addr_t handle;
932 sysmmu_pte_t *pent;
933 bool need_flush_flpd_cache = lv1ent_zero(sent);
935 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
936 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
937 if (!pent)
938 return ERR_PTR(-ENOMEM);
940 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
941 kmemleak_ignore(pent);
942 *pgcounter = NUM_LV2ENTRIES;
943 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
944 DMA_TO_DEVICE);
945 if (dma_mapping_error(dma_dev, handle)) {
946 kmem_cache_free(lv2table_kmem_cache, pent);
947 return ERR_PTR(-EADDRINUSE);
951 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
952 * FLPD cache may cache the address of zero_l2_table. This
953 * function replaces the zero_l2_table with new L2 page table
954 * to write valid mappings.
955 * Accessing the valid area may cause page fault since FLPD
956 * cache may still cache zero_l2_table for the valid area
957 * instead of new L2 page table that has the mapping
958 * information of the valid area.
959 * Thus any replacement of zero_l2_table with other valid L2
960 * page table must involve FLPD cache invalidation for System
961 * MMU v3.3.
962 * FLPD cache invalidation is performed with TLB invalidation
963 * by VPN without blocking. It is safe to invalidate TLB without
964 * blocking because the target address of TLB invalidation is
965 * not currently mapped.
967 if (need_flush_flpd_cache) {
968 struct sysmmu_drvdata *data;
970 spin_lock(&domain->lock);
971 list_for_each_entry(data, &domain->clients, domain_node)
972 sysmmu_tlb_invalidate_flpdcache(data, iova);
973 spin_unlock(&domain->lock);
977 return page_entry(sent, iova);
980 static int lv1set_section(struct exynos_iommu_domain *domain,
981 sysmmu_pte_t *sent, sysmmu_iova_t iova,
982 phys_addr_t paddr, int prot, short *pgcnt)
984 if (lv1ent_section(sent)) {
985 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
986 iova);
987 return -EADDRINUSE;
990 if (lv1ent_page(sent)) {
991 if (*pgcnt != NUM_LV2ENTRIES) {
992 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
993 iova);
994 return -EADDRINUSE;
997 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
998 *pgcnt = 0;
1001 update_pte(sent, mk_lv1ent_sect(paddr, prot));
1003 spin_lock(&domain->lock);
1004 if (lv1ent_page_zero(sent)) {
1005 struct sysmmu_drvdata *data;
1007 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1008 * entry by speculative prefetch of SLPD which has no mapping.
1010 list_for_each_entry(data, &domain->clients, domain_node)
1011 sysmmu_tlb_invalidate_flpdcache(data, iova);
1013 spin_unlock(&domain->lock);
1015 return 0;
1018 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1019 int prot, short *pgcnt)
1021 if (size == SPAGE_SIZE) {
1022 if (WARN_ON(!lv2ent_fault(pent)))
1023 return -EADDRINUSE;
1025 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1026 *pgcnt -= 1;
1027 } else { /* size == LPAGE_SIZE */
1028 int i;
1029 dma_addr_t pent_base = virt_to_phys(pent);
1031 dma_sync_single_for_cpu(dma_dev, pent_base,
1032 sizeof(*pent) * SPAGES_PER_LPAGE,
1033 DMA_TO_DEVICE);
1034 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1035 if (WARN_ON(!lv2ent_fault(pent))) {
1036 if (i > 0)
1037 memset(pent - i, 0, sizeof(*pent) * i);
1038 return -EADDRINUSE;
1041 *pent = mk_lv2ent_lpage(paddr, prot);
1043 dma_sync_single_for_device(dma_dev, pent_base,
1044 sizeof(*pent) * SPAGES_PER_LPAGE,
1045 DMA_TO_DEVICE);
1046 *pgcnt -= SPAGES_PER_LPAGE;
1049 return 0;
1053 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1055 * System MMU v3.x has advanced logic to improve address translation
1056 * performance with caching more page table entries by a page table walk.
1057 * However, the logic has a bug that while caching faulty page table entries,
1058 * System MMU reports page fault if the cached fault entry is hit even though
1059 * the fault entry is updated to a valid entry after the entry is cached.
1060 * To prevent caching faulty page table entries which may be updated to valid
1061 * entries later, the virtual memory manager should care about the workaround
1062 * for the problem. The following describes the workaround.
1064 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1065 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1067 * Precisely, any start address of I/O virtual region must be aligned with
1068 * the following sizes for System MMU v3.1 and v3.2.
1069 * System MMU v3.1: 128KiB
1070 * System MMU v3.2: 256KiB
1072 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1073 * more workarounds.
1074 * - Any two consecutive I/O virtual regions must have a hole of size larger
1075 * than or equal to 128KiB.
1076 * - Start address of an I/O virtual region must be aligned by 128KiB.
1078 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1079 unsigned long l_iova, phys_addr_t paddr, size_t size,
1080 int prot)
1082 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1083 sysmmu_pte_t *entry;
1084 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1085 unsigned long flags;
1086 int ret = -ENOMEM;
1088 BUG_ON(domain->pgtable == NULL);
1089 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1091 spin_lock_irqsave(&domain->pgtablelock, flags);
1093 entry = section_entry(domain->pgtable, iova);
1095 if (size == SECT_SIZE) {
1096 ret = lv1set_section(domain, entry, iova, paddr, prot,
1097 &domain->lv2entcnt[lv1ent_offset(iova)]);
1098 } else {
1099 sysmmu_pte_t *pent;
1101 pent = alloc_lv2entry(domain, entry, iova,
1102 &domain->lv2entcnt[lv1ent_offset(iova)]);
1104 if (IS_ERR(pent))
1105 ret = PTR_ERR(pent);
1106 else
1107 ret = lv2set_page(pent, paddr, size, prot,
1108 &domain->lv2entcnt[lv1ent_offset(iova)]);
1111 if (ret)
1112 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1113 __func__, ret, size, iova);
1115 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1117 return ret;
1120 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1121 sysmmu_iova_t iova, size_t size)
1123 struct sysmmu_drvdata *data;
1124 unsigned long flags;
1126 spin_lock_irqsave(&domain->lock, flags);
1128 list_for_each_entry(data, &domain->clients, domain_node)
1129 sysmmu_tlb_invalidate_entry(data, iova, size);
1131 spin_unlock_irqrestore(&domain->lock, flags);
1134 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1135 unsigned long l_iova, size_t size)
1137 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1138 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1139 sysmmu_pte_t *ent;
1140 size_t err_pgsize;
1141 unsigned long flags;
1143 BUG_ON(domain->pgtable == NULL);
1145 spin_lock_irqsave(&domain->pgtablelock, flags);
1147 ent = section_entry(domain->pgtable, iova);
1149 if (lv1ent_section(ent)) {
1150 if (WARN_ON(size < SECT_SIZE)) {
1151 err_pgsize = SECT_SIZE;
1152 goto err;
1155 /* workaround for h/w bug in System MMU v3.3 */
1156 update_pte(ent, ZERO_LV2LINK);
1157 size = SECT_SIZE;
1158 goto done;
1161 if (unlikely(lv1ent_fault(ent))) {
1162 if (size > SECT_SIZE)
1163 size = SECT_SIZE;
1164 goto done;
1167 /* lv1ent_page(sent) == true here */
1169 ent = page_entry(ent, iova);
1171 if (unlikely(lv2ent_fault(ent))) {
1172 size = SPAGE_SIZE;
1173 goto done;
1176 if (lv2ent_small(ent)) {
1177 update_pte(ent, 0);
1178 size = SPAGE_SIZE;
1179 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1180 goto done;
1183 /* lv1ent_large(ent) == true here */
1184 if (WARN_ON(size < LPAGE_SIZE)) {
1185 err_pgsize = LPAGE_SIZE;
1186 goto err;
1189 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1190 sizeof(*ent) * SPAGES_PER_LPAGE,
1191 DMA_TO_DEVICE);
1192 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1193 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1194 sizeof(*ent) * SPAGES_PER_LPAGE,
1195 DMA_TO_DEVICE);
1196 size = LPAGE_SIZE;
1197 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1198 done:
1199 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1201 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1203 return size;
1204 err:
1205 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1207 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1208 __func__, size, iova, err_pgsize);
1210 return 0;
1213 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1214 dma_addr_t iova)
1216 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1217 sysmmu_pte_t *entry;
1218 unsigned long flags;
1219 phys_addr_t phys = 0;
1221 spin_lock_irqsave(&domain->pgtablelock, flags);
1223 entry = section_entry(domain->pgtable, iova);
1225 if (lv1ent_section(entry)) {
1226 phys = section_phys(entry) + section_offs(iova);
1227 } else if (lv1ent_page(entry)) {
1228 entry = page_entry(entry, iova);
1230 if (lv2ent_large(entry))
1231 phys = lpage_phys(entry) + lpage_offs(iova);
1232 else if (lv2ent_small(entry))
1233 phys = spage_phys(entry) + spage_offs(iova);
1236 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1238 return phys;
1241 static struct iommu_group *get_device_iommu_group(struct device *dev)
1243 struct iommu_group *group;
1245 group = iommu_group_get(dev);
1246 if (!group)
1247 group = iommu_group_alloc();
1249 return group;
1252 static int exynos_iommu_add_device(struct device *dev)
1254 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1255 struct sysmmu_drvdata *data;
1256 struct iommu_group *group;
1258 if (!has_sysmmu(dev))
1259 return -ENODEV;
1261 group = iommu_group_get_for_dev(dev);
1263 if (IS_ERR(group))
1264 return PTR_ERR(group);
1266 list_for_each_entry(data, &owner->controllers, owner_node) {
1268 * SYSMMU will be runtime activated via device link
1269 * (dependency) to its master device, so there are no
1270 * direct calls to pm_runtime_get/put in this driver.
1272 data->link = device_link_add(dev, data->sysmmu,
1273 DL_FLAG_PM_RUNTIME);
1275 iommu_group_put(group);
1277 return 0;
1280 static void exynos_iommu_remove_device(struct device *dev)
1282 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1283 struct sysmmu_drvdata *data;
1285 if (!has_sysmmu(dev))
1286 return;
1288 if (owner->domain) {
1289 struct iommu_group *group = iommu_group_get(dev);
1291 if (group) {
1292 WARN_ON(owner->domain !=
1293 iommu_group_default_domain(group));
1294 exynos_iommu_detach_device(owner->domain, dev);
1295 iommu_group_put(group);
1298 iommu_group_remove_device(dev);
1300 list_for_each_entry(data, &owner->controllers, owner_node)
1301 device_link_del(data->link);
1304 static int exynos_iommu_of_xlate(struct device *dev,
1305 struct of_phandle_args *spec)
1307 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1308 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1309 struct sysmmu_drvdata *data, *entry;
1311 if (!sysmmu)
1312 return -ENODEV;
1314 data = platform_get_drvdata(sysmmu);
1315 if (!data)
1316 return -ENODEV;
1318 if (!owner) {
1319 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1320 if (!owner)
1321 return -ENOMEM;
1323 INIT_LIST_HEAD(&owner->controllers);
1324 mutex_init(&owner->rpm_lock);
1325 dev->archdata.iommu = owner;
1328 list_for_each_entry(entry, &owner->controllers, owner_node)
1329 if (entry == data)
1330 return 0;
1332 list_add_tail(&data->owner_node, &owner->controllers);
1333 data->master = dev;
1335 return 0;
1338 static const struct iommu_ops exynos_iommu_ops = {
1339 .domain_alloc = exynos_iommu_domain_alloc,
1340 .domain_free = exynos_iommu_domain_free,
1341 .attach_dev = exynos_iommu_attach_device,
1342 .detach_dev = exynos_iommu_detach_device,
1343 .map = exynos_iommu_map,
1344 .unmap = exynos_iommu_unmap,
1345 .map_sg = default_iommu_map_sg,
1346 .iova_to_phys = exynos_iommu_iova_to_phys,
1347 .device_group = get_device_iommu_group,
1348 .add_device = exynos_iommu_add_device,
1349 .remove_device = exynos_iommu_remove_device,
1350 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1351 .of_xlate = exynos_iommu_of_xlate,
1354 static int __init exynos_iommu_init(void)
1356 int ret;
1358 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1359 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1360 if (!lv2table_kmem_cache) {
1361 pr_err("%s: Failed to create kmem cache\n", __func__);
1362 return -ENOMEM;
1365 ret = platform_driver_register(&exynos_sysmmu_driver);
1366 if (ret) {
1367 pr_err("%s: Failed to register driver\n", __func__);
1368 goto err_reg_driver;
1371 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1372 if (zero_lv2_table == NULL) {
1373 pr_err("%s: Failed to allocate zero level2 page table\n",
1374 __func__);
1375 ret = -ENOMEM;
1376 goto err_zero_lv2;
1379 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1380 if (ret) {
1381 pr_err("%s: Failed to register exynos-iommu driver.\n",
1382 __func__);
1383 goto err_set_iommu;
1386 return 0;
1387 err_set_iommu:
1388 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1389 err_zero_lv2:
1390 platform_driver_unregister(&exynos_sysmmu_driver);
1391 err_reg_driver:
1392 kmem_cache_destroy(lv2table_kmem_cache);
1393 return ret;
1395 core_initcall(exynos_iommu_init);
1397 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", NULL);