2 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
3 * Shaohua Li <shli@fb.com>
5 #include <linux/module.h>
7 #include <linux/moduleparam.h>
8 #include <linux/sched.h>
10 #include <linux/init.h>
13 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
14 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
15 #define SECTOR_MASK (PAGE_SECTORS - 1)
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr
);
24 static DECLARE_FAULT_ATTR(null_requeue_attr
);
27 static inline u64
mb_per_tick(int mbps
)
29 return (1 << 20) / TICKS_PER_SEC
* ((u64
) mbps
);
33 * Status flags for nullb_device.
35 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
36 * UP: Device is currently on and visible in userspace.
37 * THROTTLED: Device is being throttled.
38 * CACHE: Device is using a write-back cache.
40 enum nullb_device_flags
{
41 NULLB_DEV_FL_CONFIGURED
= 0,
43 NULLB_DEV_FL_THROTTLED
= 2,
44 NULLB_DEV_FL_CACHE
= 3,
47 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 * nullb_page is a page in memory for nullb devices.
51 * @page: The page holding the data.
52 * @bitmap: The bitmap represents which sector in the page has data.
53 * Each bit represents one block size. For example, sector 8
54 * will use the 7th bit
55 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
56 * page is being flushing to storage. FREE means the cache page is freed and
57 * should be skipped from flushing to storage. Please see
58 * null_make_cache_space
62 DECLARE_BITMAP(bitmap
, MAP_SZ
);
64 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
65 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 static LIST_HEAD(nullb_list
);
68 static struct mutex lock
;
69 static int null_major
;
70 static DEFINE_IDA(nullb_indexes
);
71 static struct blk_mq_tag_set tag_set
;
85 static int g_no_sched
;
86 module_param_named(no_sched
, g_no_sched
, int, 0444);
87 MODULE_PARM_DESC(no_sched
, "No io scheduler");
89 static int g_submit_queues
= 1;
90 module_param_named(submit_queues
, g_submit_queues
, int, 0444);
91 MODULE_PARM_DESC(submit_queues
, "Number of submission queues");
93 static int g_home_node
= NUMA_NO_NODE
;
94 module_param_named(home_node
, g_home_node
, int, 0444);
95 MODULE_PARM_DESC(home_node
, "Home node for the device");
97 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
98 static char g_timeout_str
[80];
99 module_param_string(timeout
, g_timeout_str
, sizeof(g_timeout_str
), 0444);
101 static char g_requeue_str
[80];
102 module_param_string(requeue
, g_requeue_str
, sizeof(g_requeue_str
), 0444);
105 static int g_queue_mode
= NULL_Q_MQ
;
107 static int null_param_store_val(const char *str
, int *val
, int min
, int max
)
111 ret
= kstrtoint(str
, 10, &new_val
);
115 if (new_val
< min
|| new_val
> max
)
122 static int null_set_queue_mode(const char *str
, const struct kernel_param
*kp
)
124 return null_param_store_val(str
, &g_queue_mode
, NULL_Q_BIO
, NULL_Q_MQ
);
127 static const struct kernel_param_ops null_queue_mode_param_ops
= {
128 .set
= null_set_queue_mode
,
129 .get
= param_get_int
,
132 device_param_cb(queue_mode
, &null_queue_mode_param_ops
, &g_queue_mode
, 0444);
133 MODULE_PARM_DESC(queue_mode
, "Block interface to use (0=bio,1=rq,2=multiqueue)");
135 static int g_gb
= 250;
136 module_param_named(gb
, g_gb
, int, 0444);
137 MODULE_PARM_DESC(gb
, "Size in GB");
139 static int g_bs
= 512;
140 module_param_named(bs
, g_bs
, int, 0444);
141 MODULE_PARM_DESC(bs
, "Block size (in bytes)");
143 static int nr_devices
= 1;
144 module_param(nr_devices
, int, 0444);
145 MODULE_PARM_DESC(nr_devices
, "Number of devices to register");
147 static bool g_blocking
;
148 module_param_named(blocking
, g_blocking
, bool, 0444);
149 MODULE_PARM_DESC(blocking
, "Register as a blocking blk-mq driver device");
151 static bool shared_tags
;
152 module_param(shared_tags
, bool, 0444);
153 MODULE_PARM_DESC(shared_tags
, "Share tag set between devices for blk-mq");
155 static int g_irqmode
= NULL_IRQ_SOFTIRQ
;
157 static int null_set_irqmode(const char *str
, const struct kernel_param
*kp
)
159 return null_param_store_val(str
, &g_irqmode
, NULL_IRQ_NONE
,
163 static const struct kernel_param_ops null_irqmode_param_ops
= {
164 .set
= null_set_irqmode
,
165 .get
= param_get_int
,
168 device_param_cb(irqmode
, &null_irqmode_param_ops
, &g_irqmode
, 0444);
169 MODULE_PARM_DESC(irqmode
, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
171 static unsigned long g_completion_nsec
= 10000;
172 module_param_named(completion_nsec
, g_completion_nsec
, ulong
, 0444);
173 MODULE_PARM_DESC(completion_nsec
, "Time in ns to complete a request in hardware. Default: 10,000ns");
175 static int g_hw_queue_depth
= 64;
176 module_param_named(hw_queue_depth
, g_hw_queue_depth
, int, 0444);
177 MODULE_PARM_DESC(hw_queue_depth
, "Queue depth for each hardware queue. Default: 64");
179 static bool g_use_per_node_hctx
;
180 module_param_named(use_per_node_hctx
, g_use_per_node_hctx
, bool, 0444);
181 MODULE_PARM_DESC(use_per_node_hctx
, "Use per-node allocation for hardware context queues. Default: false");
184 module_param_named(zoned
, g_zoned
, bool, S_IRUGO
);
185 MODULE_PARM_DESC(zoned
, "Make device as a host-managed zoned block device. Default: false");
187 static unsigned long g_zone_size
= 256;
188 module_param_named(zone_size
, g_zone_size
, ulong
, S_IRUGO
);
189 MODULE_PARM_DESC(zone_size
, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
191 static struct nullb_device
*null_alloc_dev(void);
192 static void null_free_dev(struct nullb_device
*dev
);
193 static void null_del_dev(struct nullb
*nullb
);
194 static int null_add_dev(struct nullb_device
*dev
);
195 static void null_free_device_storage(struct nullb_device
*dev
, bool is_cache
);
197 static inline struct nullb_device
*to_nullb_device(struct config_item
*item
)
199 return item
? container_of(item
, struct nullb_device
, item
) : NULL
;
202 static inline ssize_t
nullb_device_uint_attr_show(unsigned int val
, char *page
)
204 return snprintf(page
, PAGE_SIZE
, "%u\n", val
);
207 static inline ssize_t
nullb_device_ulong_attr_show(unsigned long val
,
210 return snprintf(page
, PAGE_SIZE
, "%lu\n", val
);
213 static inline ssize_t
nullb_device_bool_attr_show(bool val
, char *page
)
215 return snprintf(page
, PAGE_SIZE
, "%u\n", val
);
218 static ssize_t
nullb_device_uint_attr_store(unsigned int *val
,
219 const char *page
, size_t count
)
224 result
= kstrtouint(page
, 0, &tmp
);
232 static ssize_t
nullb_device_ulong_attr_store(unsigned long *val
,
233 const char *page
, size_t count
)
238 result
= kstrtoul(page
, 0, &tmp
);
246 static ssize_t
nullb_device_bool_attr_store(bool *val
, const char *page
,
252 result
= kstrtobool(page
, &tmp
);
260 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
261 #define NULLB_DEVICE_ATTR(NAME, TYPE) \
263 nullb_device_##NAME##_show(struct config_item *item, char *page) \
265 return nullb_device_##TYPE##_attr_show( \
266 to_nullb_device(item)->NAME, page); \
269 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
272 if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
274 return nullb_device_##TYPE##_attr_store( \
275 &to_nullb_device(item)->NAME, page, count); \
277 CONFIGFS_ATTR(nullb_device_, NAME);
279 NULLB_DEVICE_ATTR(size
, ulong
);
280 NULLB_DEVICE_ATTR(completion_nsec
, ulong
);
281 NULLB_DEVICE_ATTR(submit_queues
, uint
);
282 NULLB_DEVICE_ATTR(home_node
, uint
);
283 NULLB_DEVICE_ATTR(queue_mode
, uint
);
284 NULLB_DEVICE_ATTR(blocksize
, uint
);
285 NULLB_DEVICE_ATTR(irqmode
, uint
);
286 NULLB_DEVICE_ATTR(hw_queue_depth
, uint
);
287 NULLB_DEVICE_ATTR(index
, uint
);
288 NULLB_DEVICE_ATTR(blocking
, bool);
289 NULLB_DEVICE_ATTR(use_per_node_hctx
, bool);
290 NULLB_DEVICE_ATTR(memory_backed
, bool);
291 NULLB_DEVICE_ATTR(discard
, bool);
292 NULLB_DEVICE_ATTR(mbps
, uint
);
293 NULLB_DEVICE_ATTR(cache_size
, ulong
);
294 NULLB_DEVICE_ATTR(zoned
, bool);
295 NULLB_DEVICE_ATTR(zone_size
, ulong
);
297 static ssize_t
nullb_device_power_show(struct config_item
*item
, char *page
)
299 return nullb_device_bool_attr_show(to_nullb_device(item
)->power
, page
);
302 static ssize_t
nullb_device_power_store(struct config_item
*item
,
303 const char *page
, size_t count
)
305 struct nullb_device
*dev
= to_nullb_device(item
);
309 ret
= nullb_device_bool_attr_store(&newp
, page
, count
);
313 if (!dev
->power
&& newp
) {
314 if (test_and_set_bit(NULLB_DEV_FL_UP
, &dev
->flags
))
316 if (null_add_dev(dev
)) {
317 clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
);
321 set_bit(NULLB_DEV_FL_CONFIGURED
, &dev
->flags
);
323 } else if (dev
->power
&& !newp
) {
326 null_del_dev(dev
->nullb
);
328 clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
);
329 clear_bit(NULLB_DEV_FL_CONFIGURED
, &dev
->flags
);
335 CONFIGFS_ATTR(nullb_device_
, power
);
337 static ssize_t
nullb_device_badblocks_show(struct config_item
*item
, char *page
)
339 struct nullb_device
*t_dev
= to_nullb_device(item
);
341 return badblocks_show(&t_dev
->badblocks
, page
, 0);
344 static ssize_t
nullb_device_badblocks_store(struct config_item
*item
,
345 const char *page
, size_t count
)
347 struct nullb_device
*t_dev
= to_nullb_device(item
);
348 char *orig
, *buf
, *tmp
;
352 orig
= kstrndup(page
, count
, GFP_KERNEL
);
356 buf
= strstrip(orig
);
359 if (buf
[0] != '+' && buf
[0] != '-')
361 tmp
= strchr(&buf
[1], '-');
365 ret
= kstrtoull(buf
+ 1, 0, &start
);
368 ret
= kstrtoull(tmp
+ 1, 0, &end
);
374 /* enable badblocks */
375 cmpxchg(&t_dev
->badblocks
.shift
, -1, 0);
377 ret
= badblocks_set(&t_dev
->badblocks
, start
,
380 ret
= badblocks_clear(&t_dev
->badblocks
, start
,
388 CONFIGFS_ATTR(nullb_device_
, badblocks
);
390 static struct configfs_attribute
*nullb_device_attrs
[] = {
391 &nullb_device_attr_size
,
392 &nullb_device_attr_completion_nsec
,
393 &nullb_device_attr_submit_queues
,
394 &nullb_device_attr_home_node
,
395 &nullb_device_attr_queue_mode
,
396 &nullb_device_attr_blocksize
,
397 &nullb_device_attr_irqmode
,
398 &nullb_device_attr_hw_queue_depth
,
399 &nullb_device_attr_index
,
400 &nullb_device_attr_blocking
,
401 &nullb_device_attr_use_per_node_hctx
,
402 &nullb_device_attr_power
,
403 &nullb_device_attr_memory_backed
,
404 &nullb_device_attr_discard
,
405 &nullb_device_attr_mbps
,
406 &nullb_device_attr_cache_size
,
407 &nullb_device_attr_badblocks
,
408 &nullb_device_attr_zoned
,
409 &nullb_device_attr_zone_size
,
413 static void nullb_device_release(struct config_item
*item
)
415 struct nullb_device
*dev
= to_nullb_device(item
);
417 null_free_device_storage(dev
, false);
421 static struct configfs_item_operations nullb_device_ops
= {
422 .release
= nullb_device_release
,
425 static const struct config_item_type nullb_device_type
= {
426 .ct_item_ops
= &nullb_device_ops
,
427 .ct_attrs
= nullb_device_attrs
,
428 .ct_owner
= THIS_MODULE
,
432 config_item
*nullb_group_make_item(struct config_group
*group
, const char *name
)
434 struct nullb_device
*dev
;
436 dev
= null_alloc_dev();
438 return ERR_PTR(-ENOMEM
);
440 config_item_init_type_name(&dev
->item
, name
, &nullb_device_type
);
446 nullb_group_drop_item(struct config_group
*group
, struct config_item
*item
)
448 struct nullb_device
*dev
= to_nullb_device(item
);
450 if (test_and_clear_bit(NULLB_DEV_FL_UP
, &dev
->flags
)) {
453 null_del_dev(dev
->nullb
);
457 config_item_put(item
);
460 static ssize_t
memb_group_features_show(struct config_item
*item
, char *page
)
462 return snprintf(page
, PAGE_SIZE
, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
465 CONFIGFS_ATTR_RO(memb_group_
, features
);
467 static struct configfs_attribute
*nullb_group_attrs
[] = {
468 &memb_group_attr_features
,
472 static struct configfs_group_operations nullb_group_ops
= {
473 .make_item
= nullb_group_make_item
,
474 .drop_item
= nullb_group_drop_item
,
477 static const struct config_item_type nullb_group_type
= {
478 .ct_group_ops
= &nullb_group_ops
,
479 .ct_attrs
= nullb_group_attrs
,
480 .ct_owner
= THIS_MODULE
,
483 static struct configfs_subsystem nullb_subsys
= {
486 .ci_namebuf
= "nullb",
487 .ci_type
= &nullb_group_type
,
492 static inline int null_cache_active(struct nullb
*nullb
)
494 return test_bit(NULLB_DEV_FL_CACHE
, &nullb
->dev
->flags
);
497 static struct nullb_device
*null_alloc_dev(void)
499 struct nullb_device
*dev
;
501 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
504 INIT_RADIX_TREE(&dev
->data
, GFP_ATOMIC
);
505 INIT_RADIX_TREE(&dev
->cache
, GFP_ATOMIC
);
506 if (badblocks_init(&dev
->badblocks
, 0)) {
511 dev
->size
= g_gb
* 1024;
512 dev
->completion_nsec
= g_completion_nsec
;
513 dev
->submit_queues
= g_submit_queues
;
514 dev
->home_node
= g_home_node
;
515 dev
->queue_mode
= g_queue_mode
;
516 dev
->blocksize
= g_bs
;
517 dev
->irqmode
= g_irqmode
;
518 dev
->hw_queue_depth
= g_hw_queue_depth
;
519 dev
->blocking
= g_blocking
;
520 dev
->use_per_node_hctx
= g_use_per_node_hctx
;
521 dev
->zoned
= g_zoned
;
522 dev
->zone_size
= g_zone_size
;
526 static void null_free_dev(struct nullb_device
*dev
)
532 badblocks_exit(&dev
->badblocks
);
536 static void put_tag(struct nullb_queue
*nq
, unsigned int tag
)
538 clear_bit_unlock(tag
, nq
->tag_map
);
540 if (waitqueue_active(&nq
->wait
))
544 static unsigned int get_tag(struct nullb_queue
*nq
)
549 tag
= find_first_zero_bit(nq
->tag_map
, nq
->queue_depth
);
550 if (tag
>= nq
->queue_depth
)
552 } while (test_and_set_bit_lock(tag
, nq
->tag_map
));
557 static void free_cmd(struct nullb_cmd
*cmd
)
559 put_tag(cmd
->nq
, cmd
->tag
);
562 static enum hrtimer_restart
null_cmd_timer_expired(struct hrtimer
*timer
);
564 static struct nullb_cmd
*__alloc_cmd(struct nullb_queue
*nq
)
566 struct nullb_cmd
*cmd
;
571 cmd
= &nq
->cmds
[tag
];
574 if (nq
->dev
->irqmode
== NULL_IRQ_TIMER
) {
575 hrtimer_init(&cmd
->timer
, CLOCK_MONOTONIC
,
577 cmd
->timer
.function
= null_cmd_timer_expired
;
585 static struct nullb_cmd
*alloc_cmd(struct nullb_queue
*nq
, int can_wait
)
587 struct nullb_cmd
*cmd
;
590 cmd
= __alloc_cmd(nq
);
591 if (cmd
|| !can_wait
)
595 prepare_to_wait(&nq
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
596 cmd
= __alloc_cmd(nq
);
603 finish_wait(&nq
->wait
, &wait
);
607 static void end_cmd(struct nullb_cmd
*cmd
)
609 struct request_queue
*q
= NULL
;
610 int queue_mode
= cmd
->nq
->dev
->queue_mode
;
615 switch (queue_mode
) {
617 blk_mq_end_request(cmd
->rq
, cmd
->error
);
620 INIT_LIST_HEAD(&cmd
->rq
->queuelist
);
621 blk_end_request_all(cmd
->rq
, cmd
->error
);
624 cmd
->bio
->bi_status
= cmd
->error
;
631 /* Restart queue if needed, as we are freeing a tag */
632 if (queue_mode
== NULL_Q_RQ
&& blk_queue_stopped(q
)) {
635 spin_lock_irqsave(q
->queue_lock
, flags
);
636 blk_start_queue_async(q
);
637 spin_unlock_irqrestore(q
->queue_lock
, flags
);
641 static enum hrtimer_restart
null_cmd_timer_expired(struct hrtimer
*timer
)
643 end_cmd(container_of(timer
, struct nullb_cmd
, timer
));
645 return HRTIMER_NORESTART
;
648 static void null_cmd_end_timer(struct nullb_cmd
*cmd
)
650 ktime_t kt
= cmd
->nq
->dev
->completion_nsec
;
652 hrtimer_start(&cmd
->timer
, kt
, HRTIMER_MODE_REL
);
655 static void null_softirq_done_fn(struct request
*rq
)
657 struct nullb
*nullb
= rq
->q
->queuedata
;
659 if (nullb
->dev
->queue_mode
== NULL_Q_MQ
)
660 end_cmd(blk_mq_rq_to_pdu(rq
));
662 end_cmd(rq
->special
);
665 static struct nullb_page
*null_alloc_page(gfp_t gfp_flags
)
667 struct nullb_page
*t_page
;
669 t_page
= kmalloc(sizeof(struct nullb_page
), gfp_flags
);
673 t_page
->page
= alloc_pages(gfp_flags
, 0);
677 memset(t_page
->bitmap
, 0, sizeof(t_page
->bitmap
));
685 static void null_free_page(struct nullb_page
*t_page
)
687 __set_bit(NULLB_PAGE_FREE
, t_page
->bitmap
);
688 if (test_bit(NULLB_PAGE_LOCK
, t_page
->bitmap
))
690 __free_page(t_page
->page
);
694 static bool null_page_empty(struct nullb_page
*page
)
696 int size
= MAP_SZ
- 2;
698 return find_first_bit(page
->bitmap
, size
) == size
;
701 static void null_free_sector(struct nullb
*nullb
, sector_t sector
,
704 unsigned int sector_bit
;
706 struct nullb_page
*t_page
, *ret
;
707 struct radix_tree_root
*root
;
709 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
710 idx
= sector
>> PAGE_SECTORS_SHIFT
;
711 sector_bit
= (sector
& SECTOR_MASK
);
713 t_page
= radix_tree_lookup(root
, idx
);
715 __clear_bit(sector_bit
, t_page
->bitmap
);
717 if (null_page_empty(t_page
)) {
718 ret
= radix_tree_delete_item(root
, idx
, t_page
);
719 WARN_ON(ret
!= t_page
);
722 nullb
->dev
->curr_cache
-= PAGE_SIZE
;
727 static struct nullb_page
*null_radix_tree_insert(struct nullb
*nullb
, u64 idx
,
728 struct nullb_page
*t_page
, bool is_cache
)
730 struct radix_tree_root
*root
;
732 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
734 if (radix_tree_insert(root
, idx
, t_page
)) {
735 null_free_page(t_page
);
736 t_page
= radix_tree_lookup(root
, idx
);
737 WARN_ON(!t_page
|| t_page
->page
->index
!= idx
);
739 nullb
->dev
->curr_cache
+= PAGE_SIZE
;
744 static void null_free_device_storage(struct nullb_device
*dev
, bool is_cache
)
746 unsigned long pos
= 0;
748 struct nullb_page
*ret
, *t_pages
[FREE_BATCH
];
749 struct radix_tree_root
*root
;
751 root
= is_cache
? &dev
->cache
: &dev
->data
;
756 nr_pages
= radix_tree_gang_lookup(root
,
757 (void **)t_pages
, pos
, FREE_BATCH
);
759 for (i
= 0; i
< nr_pages
; i
++) {
760 pos
= t_pages
[i
]->page
->index
;
761 ret
= radix_tree_delete_item(root
, pos
, t_pages
[i
]);
762 WARN_ON(ret
!= t_pages
[i
]);
767 } while (nr_pages
== FREE_BATCH
);
773 static struct nullb_page
*__null_lookup_page(struct nullb
*nullb
,
774 sector_t sector
, bool for_write
, bool is_cache
)
776 unsigned int sector_bit
;
778 struct nullb_page
*t_page
;
779 struct radix_tree_root
*root
;
781 idx
= sector
>> PAGE_SECTORS_SHIFT
;
782 sector_bit
= (sector
& SECTOR_MASK
);
784 root
= is_cache
? &nullb
->dev
->cache
: &nullb
->dev
->data
;
785 t_page
= radix_tree_lookup(root
, idx
);
786 WARN_ON(t_page
&& t_page
->page
->index
!= idx
);
788 if (t_page
&& (for_write
|| test_bit(sector_bit
, t_page
->bitmap
)))
794 static struct nullb_page
*null_lookup_page(struct nullb
*nullb
,
795 sector_t sector
, bool for_write
, bool ignore_cache
)
797 struct nullb_page
*page
= NULL
;
800 page
= __null_lookup_page(nullb
, sector
, for_write
, true);
803 return __null_lookup_page(nullb
, sector
, for_write
, false);
806 static struct nullb_page
*null_insert_page(struct nullb
*nullb
,
807 sector_t sector
, bool ignore_cache
)
808 __releases(&nullb
->lock
)
809 __acquires(&nullb
->lock
)
812 struct nullb_page
*t_page
;
814 t_page
= null_lookup_page(nullb
, sector
, true, ignore_cache
);
818 spin_unlock_irq(&nullb
->lock
);
820 t_page
= null_alloc_page(GFP_NOIO
);
824 if (radix_tree_preload(GFP_NOIO
))
827 spin_lock_irq(&nullb
->lock
);
828 idx
= sector
>> PAGE_SECTORS_SHIFT
;
829 t_page
->page
->index
= idx
;
830 t_page
= null_radix_tree_insert(nullb
, idx
, t_page
, !ignore_cache
);
831 radix_tree_preload_end();
835 null_free_page(t_page
);
837 spin_lock_irq(&nullb
->lock
);
838 return null_lookup_page(nullb
, sector
, true, ignore_cache
);
841 static int null_flush_cache_page(struct nullb
*nullb
, struct nullb_page
*c_page
)
846 struct nullb_page
*t_page
, *ret
;
849 idx
= c_page
->page
->index
;
851 t_page
= null_insert_page(nullb
, idx
<< PAGE_SECTORS_SHIFT
, true);
853 __clear_bit(NULLB_PAGE_LOCK
, c_page
->bitmap
);
854 if (test_bit(NULLB_PAGE_FREE
, c_page
->bitmap
)) {
855 null_free_page(c_page
);
856 if (t_page
&& null_page_empty(t_page
)) {
857 ret
= radix_tree_delete_item(&nullb
->dev
->data
,
859 null_free_page(t_page
);
867 src
= kmap_atomic(c_page
->page
);
868 dst
= kmap_atomic(t_page
->page
);
870 for (i
= 0; i
< PAGE_SECTORS
;
871 i
+= (nullb
->dev
->blocksize
>> SECTOR_SHIFT
)) {
872 if (test_bit(i
, c_page
->bitmap
)) {
873 offset
= (i
<< SECTOR_SHIFT
);
874 memcpy(dst
+ offset
, src
+ offset
,
875 nullb
->dev
->blocksize
);
876 __set_bit(i
, t_page
->bitmap
);
883 ret
= radix_tree_delete_item(&nullb
->dev
->cache
, idx
, c_page
);
885 nullb
->dev
->curr_cache
-= PAGE_SIZE
;
890 static int null_make_cache_space(struct nullb
*nullb
, unsigned long n
)
892 int i
, err
, nr_pages
;
893 struct nullb_page
*c_pages
[FREE_BATCH
];
894 unsigned long flushed
= 0, one_round
;
897 if ((nullb
->dev
->cache_size
* 1024 * 1024) >
898 nullb
->dev
->curr_cache
+ n
|| nullb
->dev
->curr_cache
== 0)
901 nr_pages
= radix_tree_gang_lookup(&nullb
->dev
->cache
,
902 (void **)c_pages
, nullb
->cache_flush_pos
, FREE_BATCH
);
904 * nullb_flush_cache_page could unlock before using the c_pages. To
905 * avoid race, we don't allow page free
907 for (i
= 0; i
< nr_pages
; i
++) {
908 nullb
->cache_flush_pos
= c_pages
[i
]->page
->index
;
910 * We found the page which is being flushed to disk by other
913 if (test_bit(NULLB_PAGE_LOCK
, c_pages
[i
]->bitmap
))
916 __set_bit(NULLB_PAGE_LOCK
, c_pages
[i
]->bitmap
);
920 for (i
= 0; i
< nr_pages
; i
++) {
921 if (c_pages
[i
] == NULL
)
923 err
= null_flush_cache_page(nullb
, c_pages
[i
]);
928 flushed
+= one_round
<< PAGE_SHIFT
;
932 nullb
->cache_flush_pos
= 0;
933 if (one_round
== 0) {
934 /* give other threads a chance */
935 spin_unlock_irq(&nullb
->lock
);
936 spin_lock_irq(&nullb
->lock
);
943 static int copy_to_nullb(struct nullb
*nullb
, struct page
*source
,
944 unsigned int off
, sector_t sector
, size_t n
, bool is_fua
)
946 size_t temp
, count
= 0;
948 struct nullb_page
*t_page
;
952 temp
= min_t(size_t, nullb
->dev
->blocksize
, n
- count
);
954 if (null_cache_active(nullb
) && !is_fua
)
955 null_make_cache_space(nullb
, PAGE_SIZE
);
957 offset
= (sector
& SECTOR_MASK
) << SECTOR_SHIFT
;
958 t_page
= null_insert_page(nullb
, sector
,
959 !null_cache_active(nullb
) || is_fua
);
963 src
= kmap_atomic(source
);
964 dst
= kmap_atomic(t_page
->page
);
965 memcpy(dst
+ offset
, src
+ off
+ count
, temp
);
969 __set_bit(sector
& SECTOR_MASK
, t_page
->bitmap
);
972 null_free_sector(nullb
, sector
, true);
975 sector
+= temp
>> SECTOR_SHIFT
;
980 static int copy_from_nullb(struct nullb
*nullb
, struct page
*dest
,
981 unsigned int off
, sector_t sector
, size_t n
)
983 size_t temp
, count
= 0;
985 struct nullb_page
*t_page
;
989 temp
= min_t(size_t, nullb
->dev
->blocksize
, n
- count
);
991 offset
= (sector
& SECTOR_MASK
) << SECTOR_SHIFT
;
992 t_page
= null_lookup_page(nullb
, sector
, false,
993 !null_cache_active(nullb
));
995 dst
= kmap_atomic(dest
);
997 memset(dst
+ off
+ count
, 0, temp
);
1000 src
= kmap_atomic(t_page
->page
);
1001 memcpy(dst
+ off
+ count
, src
+ offset
, temp
);
1007 sector
+= temp
>> SECTOR_SHIFT
;
1012 static void null_handle_discard(struct nullb
*nullb
, sector_t sector
, size_t n
)
1016 spin_lock_irq(&nullb
->lock
);
1018 temp
= min_t(size_t, n
, nullb
->dev
->blocksize
);
1019 null_free_sector(nullb
, sector
, false);
1020 if (null_cache_active(nullb
))
1021 null_free_sector(nullb
, sector
, true);
1022 sector
+= temp
>> SECTOR_SHIFT
;
1025 spin_unlock_irq(&nullb
->lock
);
1028 static int null_handle_flush(struct nullb
*nullb
)
1032 if (!null_cache_active(nullb
))
1035 spin_lock_irq(&nullb
->lock
);
1037 err
= null_make_cache_space(nullb
,
1038 nullb
->dev
->cache_size
* 1024 * 1024);
1039 if (err
|| nullb
->dev
->curr_cache
== 0)
1043 WARN_ON(!radix_tree_empty(&nullb
->dev
->cache
));
1044 spin_unlock_irq(&nullb
->lock
);
1048 static int null_transfer(struct nullb
*nullb
, struct page
*page
,
1049 unsigned int len
, unsigned int off
, bool is_write
, sector_t sector
,
1055 err
= copy_from_nullb(nullb
, page
, off
, sector
, len
);
1056 flush_dcache_page(page
);
1058 flush_dcache_page(page
);
1059 err
= copy_to_nullb(nullb
, page
, off
, sector
, len
, is_fua
);
1065 static int null_handle_rq(struct nullb_cmd
*cmd
)
1067 struct request
*rq
= cmd
->rq
;
1068 struct nullb
*nullb
= cmd
->nq
->dev
->nullb
;
1072 struct req_iterator iter
;
1073 struct bio_vec bvec
;
1075 sector
= blk_rq_pos(rq
);
1077 if (req_op(rq
) == REQ_OP_DISCARD
) {
1078 null_handle_discard(nullb
, sector
, blk_rq_bytes(rq
));
1082 spin_lock_irq(&nullb
->lock
);
1083 rq_for_each_segment(bvec
, rq
, iter
) {
1085 err
= null_transfer(nullb
, bvec
.bv_page
, len
, bvec
.bv_offset
,
1086 op_is_write(req_op(rq
)), sector
,
1087 req_op(rq
) & REQ_FUA
);
1089 spin_unlock_irq(&nullb
->lock
);
1092 sector
+= len
>> SECTOR_SHIFT
;
1094 spin_unlock_irq(&nullb
->lock
);
1099 static int null_handle_bio(struct nullb_cmd
*cmd
)
1101 struct bio
*bio
= cmd
->bio
;
1102 struct nullb
*nullb
= cmd
->nq
->dev
->nullb
;
1106 struct bio_vec bvec
;
1107 struct bvec_iter iter
;
1109 sector
= bio
->bi_iter
.bi_sector
;
1111 if (bio_op(bio
) == REQ_OP_DISCARD
) {
1112 null_handle_discard(nullb
, sector
,
1113 bio_sectors(bio
) << SECTOR_SHIFT
);
1117 spin_lock_irq(&nullb
->lock
);
1118 bio_for_each_segment(bvec
, bio
, iter
) {
1120 err
= null_transfer(nullb
, bvec
.bv_page
, len
, bvec
.bv_offset
,
1121 op_is_write(bio_op(bio
)), sector
,
1122 bio_op(bio
) & REQ_FUA
);
1124 spin_unlock_irq(&nullb
->lock
);
1127 sector
+= len
>> SECTOR_SHIFT
;
1129 spin_unlock_irq(&nullb
->lock
);
1133 static void null_stop_queue(struct nullb
*nullb
)
1135 struct request_queue
*q
= nullb
->q
;
1137 if (nullb
->dev
->queue_mode
== NULL_Q_MQ
)
1138 blk_mq_stop_hw_queues(q
);
1140 spin_lock_irq(q
->queue_lock
);
1142 spin_unlock_irq(q
->queue_lock
);
1146 static void null_restart_queue_async(struct nullb
*nullb
)
1148 struct request_queue
*q
= nullb
->q
;
1149 unsigned long flags
;
1151 if (nullb
->dev
->queue_mode
== NULL_Q_MQ
)
1152 blk_mq_start_stopped_hw_queues(q
, true);
1154 spin_lock_irqsave(q
->queue_lock
, flags
);
1155 blk_start_queue_async(q
);
1156 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1160 static bool cmd_report_zone(struct nullb
*nullb
, struct nullb_cmd
*cmd
)
1162 struct nullb_device
*dev
= cmd
->nq
->dev
;
1164 if (dev
->queue_mode
== NULL_Q_BIO
) {
1165 if (bio_op(cmd
->bio
) == REQ_OP_ZONE_REPORT
) {
1166 cmd
->error
= null_zone_report(nullb
, cmd
->bio
);
1170 if (req_op(cmd
->rq
) == REQ_OP_ZONE_REPORT
) {
1171 cmd
->error
= null_zone_report(nullb
, cmd
->rq
->bio
);
1179 static blk_status_t
null_handle_cmd(struct nullb_cmd
*cmd
)
1181 struct nullb_device
*dev
= cmd
->nq
->dev
;
1182 struct nullb
*nullb
= dev
->nullb
;
1185 if (cmd_report_zone(nullb
, cmd
))
1188 if (test_bit(NULLB_DEV_FL_THROTTLED
, &dev
->flags
)) {
1189 struct request
*rq
= cmd
->rq
;
1191 if (!hrtimer_active(&nullb
->bw_timer
))
1192 hrtimer_restart(&nullb
->bw_timer
);
1194 if (atomic_long_sub_return(blk_rq_bytes(rq
),
1195 &nullb
->cur_bytes
) < 0) {
1196 null_stop_queue(nullb
);
1197 /* race with timer */
1198 if (atomic_long_read(&nullb
->cur_bytes
) > 0)
1199 null_restart_queue_async(nullb
);
1200 if (dev
->queue_mode
== NULL_Q_RQ
) {
1201 struct request_queue
*q
= nullb
->q
;
1203 spin_lock_irq(q
->queue_lock
);
1204 rq
->rq_flags
|= RQF_DONTPREP
;
1205 blk_requeue_request(q
, rq
);
1206 spin_unlock_irq(q
->queue_lock
);
1209 /* requeue request */
1210 return BLK_STS_DEV_RESOURCE
;
1214 if (nullb
->dev
->badblocks
.shift
!= -1) {
1216 sector_t sector
, size
, first_bad
;
1217 bool is_flush
= true;
1219 if (dev
->queue_mode
== NULL_Q_BIO
&&
1220 bio_op(cmd
->bio
) != REQ_OP_FLUSH
) {
1222 sector
= cmd
->bio
->bi_iter
.bi_sector
;
1223 size
= bio_sectors(cmd
->bio
);
1225 if (dev
->queue_mode
!= NULL_Q_BIO
&&
1226 req_op(cmd
->rq
) != REQ_OP_FLUSH
) {
1228 sector
= blk_rq_pos(cmd
->rq
);
1229 size
= blk_rq_sectors(cmd
->rq
);
1231 if (!is_flush
&& badblocks_check(&nullb
->dev
->badblocks
, sector
,
1232 size
, &first_bad
, &bad_sectors
)) {
1233 cmd
->error
= BLK_STS_IOERR
;
1238 if (dev
->memory_backed
) {
1239 if (dev
->queue_mode
== NULL_Q_BIO
) {
1240 if (bio_op(cmd
->bio
) == REQ_OP_FLUSH
)
1241 err
= null_handle_flush(nullb
);
1243 err
= null_handle_bio(cmd
);
1245 if (req_op(cmd
->rq
) == REQ_OP_FLUSH
)
1246 err
= null_handle_flush(nullb
);
1248 err
= null_handle_rq(cmd
);
1251 cmd
->error
= errno_to_blk_status(err
);
1253 if (!cmd
->error
&& dev
->zoned
) {
1255 unsigned int nr_sectors
;
1258 if (dev
->queue_mode
== NULL_Q_BIO
) {
1259 op
= bio_op(cmd
->bio
);
1260 sector
= cmd
->bio
->bi_iter
.bi_sector
;
1261 nr_sectors
= cmd
->bio
->bi_iter
.bi_size
>> 9;
1263 op
= req_op(cmd
->rq
);
1264 sector
= blk_rq_pos(cmd
->rq
);
1265 nr_sectors
= blk_rq_sectors(cmd
->rq
);
1268 if (op
== REQ_OP_WRITE
)
1269 null_zone_write(cmd
, sector
, nr_sectors
);
1270 else if (op
== REQ_OP_ZONE_RESET
)
1271 null_zone_reset(cmd
, sector
);
1274 /* Complete IO by inline, softirq or timer */
1275 switch (dev
->irqmode
) {
1276 case NULL_IRQ_SOFTIRQ
:
1277 switch (dev
->queue_mode
) {
1279 blk_mq_complete_request(cmd
->rq
);
1282 blk_complete_request(cmd
->rq
);
1286 * XXX: no proper submitting cpu information available.
1295 case NULL_IRQ_TIMER
:
1296 null_cmd_end_timer(cmd
);
1302 static enum hrtimer_restart
nullb_bwtimer_fn(struct hrtimer
*timer
)
1304 struct nullb
*nullb
= container_of(timer
, struct nullb
, bw_timer
);
1305 ktime_t timer_interval
= ktime_set(0, TIMER_INTERVAL
);
1306 unsigned int mbps
= nullb
->dev
->mbps
;
1308 if (atomic_long_read(&nullb
->cur_bytes
) == mb_per_tick(mbps
))
1309 return HRTIMER_NORESTART
;
1311 atomic_long_set(&nullb
->cur_bytes
, mb_per_tick(mbps
));
1312 null_restart_queue_async(nullb
);
1314 hrtimer_forward_now(&nullb
->bw_timer
, timer_interval
);
1316 return HRTIMER_RESTART
;
1319 static void nullb_setup_bwtimer(struct nullb
*nullb
)
1321 ktime_t timer_interval
= ktime_set(0, TIMER_INTERVAL
);
1323 hrtimer_init(&nullb
->bw_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1324 nullb
->bw_timer
.function
= nullb_bwtimer_fn
;
1325 atomic_long_set(&nullb
->cur_bytes
, mb_per_tick(nullb
->dev
->mbps
));
1326 hrtimer_start(&nullb
->bw_timer
, timer_interval
, HRTIMER_MODE_REL
);
1329 static struct nullb_queue
*nullb_to_queue(struct nullb
*nullb
)
1333 if (nullb
->nr_queues
!= 1)
1334 index
= raw_smp_processor_id() / ((nr_cpu_ids
+ nullb
->nr_queues
- 1) / nullb
->nr_queues
);
1336 return &nullb
->queues
[index
];
1339 static blk_qc_t
null_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1341 struct nullb
*nullb
= q
->queuedata
;
1342 struct nullb_queue
*nq
= nullb_to_queue(nullb
);
1343 struct nullb_cmd
*cmd
;
1345 cmd
= alloc_cmd(nq
, 1);
1348 null_handle_cmd(cmd
);
1349 return BLK_QC_T_NONE
;
1352 static enum blk_eh_timer_return
null_rq_timed_out_fn(struct request
*rq
)
1354 pr_info("null: rq %p timed out\n", rq
);
1355 __blk_complete_request(rq
);
1359 static int null_rq_prep_fn(struct request_queue
*q
, struct request
*req
)
1361 struct nullb
*nullb
= q
->queuedata
;
1362 struct nullb_queue
*nq
= nullb_to_queue(nullb
);
1363 struct nullb_cmd
*cmd
;
1365 cmd
= alloc_cmd(nq
, 0);
1373 return BLKPREP_DEFER
;
1376 static bool should_timeout_request(struct request
*rq
)
1378 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1379 if (g_timeout_str
[0])
1380 return should_fail(&null_timeout_attr
, 1);
1385 static bool should_requeue_request(struct request
*rq
)
1387 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1388 if (g_requeue_str
[0])
1389 return should_fail(&null_requeue_attr
, 1);
1394 static void null_request_fn(struct request_queue
*q
)
1398 while ((rq
= blk_fetch_request(q
)) != NULL
) {
1399 struct nullb_cmd
*cmd
= rq
->special
;
1401 /* just ignore the request */
1402 if (should_timeout_request(rq
))
1404 if (should_requeue_request(rq
)) {
1405 blk_requeue_request(q
, rq
);
1409 spin_unlock_irq(q
->queue_lock
);
1410 null_handle_cmd(cmd
);
1411 spin_lock_irq(q
->queue_lock
);
1415 static enum blk_eh_timer_return
null_timeout_rq(struct request
*rq
, bool res
)
1417 pr_info("null: rq %p timed out\n", rq
);
1418 blk_mq_complete_request(rq
);
1422 static blk_status_t
null_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1423 const struct blk_mq_queue_data
*bd
)
1425 struct nullb_cmd
*cmd
= blk_mq_rq_to_pdu(bd
->rq
);
1426 struct nullb_queue
*nq
= hctx
->driver_data
;
1428 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1430 if (nq
->dev
->irqmode
== NULL_IRQ_TIMER
) {
1431 hrtimer_init(&cmd
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1432 cmd
->timer
.function
= null_cmd_timer_expired
;
1437 blk_mq_start_request(bd
->rq
);
1439 if (should_requeue_request(bd
->rq
)) {
1441 * Alternate between hitting the core BUSY path, and the
1442 * driver driven requeue path
1444 nq
->requeue_selection
++;
1445 if (nq
->requeue_selection
& 1)
1446 return BLK_STS_RESOURCE
;
1448 blk_mq_requeue_request(bd
->rq
, true);
1452 if (should_timeout_request(bd
->rq
))
1455 return null_handle_cmd(cmd
);
1458 static const struct blk_mq_ops null_mq_ops
= {
1459 .queue_rq
= null_queue_rq
,
1460 .complete
= null_softirq_done_fn
,
1461 .timeout
= null_timeout_rq
,
1464 static void cleanup_queue(struct nullb_queue
*nq
)
1470 static void cleanup_queues(struct nullb
*nullb
)
1474 for (i
= 0; i
< nullb
->nr_queues
; i
++)
1475 cleanup_queue(&nullb
->queues
[i
]);
1477 kfree(nullb
->queues
);
1480 static void null_del_dev(struct nullb
*nullb
)
1482 struct nullb_device
*dev
= nullb
->dev
;
1484 ida_simple_remove(&nullb_indexes
, nullb
->index
);
1486 list_del_init(&nullb
->list
);
1488 del_gendisk(nullb
->disk
);
1490 if (test_bit(NULLB_DEV_FL_THROTTLED
, &nullb
->dev
->flags
)) {
1491 hrtimer_cancel(&nullb
->bw_timer
);
1492 atomic_long_set(&nullb
->cur_bytes
, LONG_MAX
);
1493 null_restart_queue_async(nullb
);
1496 blk_cleanup_queue(nullb
->q
);
1497 if (dev
->queue_mode
== NULL_Q_MQ
&&
1498 nullb
->tag_set
== &nullb
->__tag_set
)
1499 blk_mq_free_tag_set(nullb
->tag_set
);
1500 put_disk(nullb
->disk
);
1501 cleanup_queues(nullb
);
1502 if (null_cache_active(nullb
))
1503 null_free_device_storage(nullb
->dev
, true);
1508 static void null_config_discard(struct nullb
*nullb
)
1510 if (nullb
->dev
->discard
== false)
1512 nullb
->q
->limits
.discard_granularity
= nullb
->dev
->blocksize
;
1513 nullb
->q
->limits
.discard_alignment
= nullb
->dev
->blocksize
;
1514 blk_queue_max_discard_sectors(nullb
->q
, UINT_MAX
>> 9);
1515 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, nullb
->q
);
1518 static int null_open(struct block_device
*bdev
, fmode_t mode
)
1523 static void null_release(struct gendisk
*disk
, fmode_t mode
)
1527 static const struct block_device_operations null_fops
= {
1528 .owner
= THIS_MODULE
,
1530 .release
= null_release
,
1533 static void null_init_queue(struct nullb
*nullb
, struct nullb_queue
*nq
)
1538 init_waitqueue_head(&nq
->wait
);
1539 nq
->queue_depth
= nullb
->queue_depth
;
1540 nq
->dev
= nullb
->dev
;
1543 static void null_init_queues(struct nullb
*nullb
)
1545 struct request_queue
*q
= nullb
->q
;
1546 struct blk_mq_hw_ctx
*hctx
;
1547 struct nullb_queue
*nq
;
1550 queue_for_each_hw_ctx(q
, hctx
, i
) {
1551 if (!hctx
->nr_ctx
|| !hctx
->tags
)
1553 nq
= &nullb
->queues
[i
];
1554 hctx
->driver_data
= nq
;
1555 null_init_queue(nullb
, nq
);
1560 static int setup_commands(struct nullb_queue
*nq
)
1562 struct nullb_cmd
*cmd
;
1565 nq
->cmds
= kcalloc(nq
->queue_depth
, sizeof(*cmd
), GFP_KERNEL
);
1569 tag_size
= ALIGN(nq
->queue_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1570 nq
->tag_map
= kcalloc(tag_size
, sizeof(unsigned long), GFP_KERNEL
);
1576 for (i
= 0; i
< nq
->queue_depth
; i
++) {
1578 INIT_LIST_HEAD(&cmd
->list
);
1579 cmd
->ll_list
.next
= NULL
;
1586 static int setup_queues(struct nullb
*nullb
)
1588 nullb
->queues
= kcalloc(nullb
->dev
->submit_queues
,
1589 sizeof(struct nullb_queue
),
1594 nullb
->nr_queues
= 0;
1595 nullb
->queue_depth
= nullb
->dev
->hw_queue_depth
;
1600 static int init_driver_queues(struct nullb
*nullb
)
1602 struct nullb_queue
*nq
;
1605 for (i
= 0; i
< nullb
->dev
->submit_queues
; i
++) {
1606 nq
= &nullb
->queues
[i
];
1608 null_init_queue(nullb
, nq
);
1610 ret
= setup_commands(nq
);
1618 static int null_gendisk_register(struct nullb
*nullb
)
1620 struct gendisk
*disk
;
1623 disk
= nullb
->disk
= alloc_disk_node(1, nullb
->dev
->home_node
);
1626 size
= (sector_t
)nullb
->dev
->size
* 1024 * 1024ULL;
1627 set_capacity(disk
, size
>> 9);
1629 disk
->flags
|= GENHD_FL_EXT_DEVT
| GENHD_FL_SUPPRESS_PARTITION_INFO
;
1630 disk
->major
= null_major
;
1631 disk
->first_minor
= nullb
->index
;
1632 disk
->fops
= &null_fops
;
1633 disk
->private_data
= nullb
;
1634 disk
->queue
= nullb
->q
;
1635 strncpy(disk
->disk_name
, nullb
->disk_name
, DISK_NAME_LEN
);
1641 static int null_init_tag_set(struct nullb
*nullb
, struct blk_mq_tag_set
*set
)
1643 set
->ops
= &null_mq_ops
;
1644 set
->nr_hw_queues
= nullb
? nullb
->dev
->submit_queues
:
1646 set
->queue_depth
= nullb
? nullb
->dev
->hw_queue_depth
:
1648 set
->numa_node
= nullb
? nullb
->dev
->home_node
: g_home_node
;
1649 set
->cmd_size
= sizeof(struct nullb_cmd
);
1650 set
->flags
= BLK_MQ_F_SHOULD_MERGE
;
1652 set
->flags
|= BLK_MQ_F_NO_SCHED
;
1653 set
->driver_data
= NULL
;
1655 if ((nullb
&& nullb
->dev
->blocking
) || g_blocking
)
1656 set
->flags
|= BLK_MQ_F_BLOCKING
;
1658 return blk_mq_alloc_tag_set(set
);
1661 static void null_validate_conf(struct nullb_device
*dev
)
1663 dev
->blocksize
= round_down(dev
->blocksize
, 512);
1664 dev
->blocksize
= clamp_t(unsigned int, dev
->blocksize
, 512, 4096);
1666 if (dev
->queue_mode
== NULL_Q_MQ
&& dev
->use_per_node_hctx
) {
1667 if (dev
->submit_queues
!= nr_online_nodes
)
1668 dev
->submit_queues
= nr_online_nodes
;
1669 } else if (dev
->submit_queues
> nr_cpu_ids
)
1670 dev
->submit_queues
= nr_cpu_ids
;
1671 else if (dev
->submit_queues
== 0)
1672 dev
->submit_queues
= 1;
1674 dev
->queue_mode
= min_t(unsigned int, dev
->queue_mode
, NULL_Q_MQ
);
1675 dev
->irqmode
= min_t(unsigned int, dev
->irqmode
, NULL_IRQ_TIMER
);
1677 /* Do memory allocation, so set blocking */
1678 if (dev
->memory_backed
)
1679 dev
->blocking
= true;
1680 else /* cache is meaningless */
1681 dev
->cache_size
= 0;
1682 dev
->cache_size
= min_t(unsigned long, ULONG_MAX
/ 1024 / 1024,
1684 dev
->mbps
= min_t(unsigned int, 1024 * 40, dev
->mbps
);
1685 /* can not stop a queue */
1686 if (dev
->queue_mode
== NULL_Q_BIO
)
1690 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1691 static bool __null_setup_fault(struct fault_attr
*attr
, char *str
)
1696 if (!setup_fault_attr(attr
, str
))
1704 static bool null_setup_fault(void)
1706 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1707 if (!__null_setup_fault(&null_timeout_attr
, g_timeout_str
))
1709 if (!__null_setup_fault(&null_requeue_attr
, g_requeue_str
))
1715 static int null_add_dev(struct nullb_device
*dev
)
1717 struct nullb
*nullb
;
1720 null_validate_conf(dev
);
1722 nullb
= kzalloc_node(sizeof(*nullb
), GFP_KERNEL
, dev
->home_node
);
1730 spin_lock_init(&nullb
->lock
);
1732 rv
= setup_queues(nullb
);
1734 goto out_free_nullb
;
1736 if (dev
->queue_mode
== NULL_Q_MQ
) {
1738 nullb
->tag_set
= &tag_set
;
1741 nullb
->tag_set
= &nullb
->__tag_set
;
1742 rv
= null_init_tag_set(nullb
, nullb
->tag_set
);
1746 goto out_cleanup_queues
;
1748 if (!null_setup_fault())
1749 goto out_cleanup_queues
;
1751 nullb
->tag_set
->timeout
= 5 * HZ
;
1752 nullb
->q
= blk_mq_init_queue(nullb
->tag_set
);
1753 if (IS_ERR(nullb
->q
)) {
1755 goto out_cleanup_tags
;
1757 null_init_queues(nullb
);
1758 } else if (dev
->queue_mode
== NULL_Q_BIO
) {
1759 nullb
->q
= blk_alloc_queue_node(GFP_KERNEL
, dev
->home_node
,
1763 goto out_cleanup_queues
;
1765 blk_queue_make_request(nullb
->q
, null_queue_bio
);
1766 rv
= init_driver_queues(nullb
);
1768 goto out_cleanup_blk_queue
;
1770 nullb
->q
= blk_init_queue_node(null_request_fn
, &nullb
->lock
,
1774 goto out_cleanup_queues
;
1777 if (!null_setup_fault())
1778 goto out_cleanup_blk_queue
;
1780 blk_queue_prep_rq(nullb
->q
, null_rq_prep_fn
);
1781 blk_queue_softirq_done(nullb
->q
, null_softirq_done_fn
);
1782 blk_queue_rq_timed_out(nullb
->q
, null_rq_timed_out_fn
);
1783 nullb
->q
->rq_timeout
= 5 * HZ
;
1784 rv
= init_driver_queues(nullb
);
1786 goto out_cleanup_blk_queue
;
1790 set_bit(NULLB_DEV_FL_THROTTLED
, &dev
->flags
);
1791 nullb_setup_bwtimer(nullb
);
1794 if (dev
->cache_size
> 0) {
1795 set_bit(NULLB_DEV_FL_CACHE
, &nullb
->dev
->flags
);
1796 blk_queue_write_cache(nullb
->q
, true, true);
1797 blk_queue_flush_queueable(nullb
->q
, true);
1801 rv
= null_zone_init(dev
);
1803 goto out_cleanup_blk_queue
;
1805 blk_queue_chunk_sectors(nullb
->q
, dev
->zone_size_sects
);
1806 nullb
->q
->limits
.zoned
= BLK_ZONED_HM
;
1809 nullb
->q
->queuedata
= nullb
;
1810 blk_queue_flag_set(QUEUE_FLAG_NONROT
, nullb
->q
);
1811 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, nullb
->q
);
1814 nullb
->index
= ida_simple_get(&nullb_indexes
, 0, 0, GFP_KERNEL
);
1815 dev
->index
= nullb
->index
;
1816 mutex_unlock(&lock
);
1818 blk_queue_logical_block_size(nullb
->q
, dev
->blocksize
);
1819 blk_queue_physical_block_size(nullb
->q
, dev
->blocksize
);
1821 null_config_discard(nullb
);
1823 sprintf(nullb
->disk_name
, "nullb%d", nullb
->index
);
1825 rv
= null_gendisk_register(nullb
);
1827 goto out_cleanup_zone
;
1830 list_add_tail(&nullb
->list
, &nullb_list
);
1831 mutex_unlock(&lock
);
1836 null_zone_exit(dev
);
1837 out_cleanup_blk_queue
:
1838 blk_cleanup_queue(nullb
->q
);
1840 if (dev
->queue_mode
== NULL_Q_MQ
&& nullb
->tag_set
== &nullb
->__tag_set
)
1841 blk_mq_free_tag_set(nullb
->tag_set
);
1843 cleanup_queues(nullb
);
1850 static int __init
null_init(void)
1854 struct nullb
*nullb
;
1855 struct nullb_device
*dev
;
1857 if (g_bs
> PAGE_SIZE
) {
1858 pr_warn("null_blk: invalid block size\n");
1859 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE
);
1863 if (!is_power_of_2(g_zone_size
)) {
1864 pr_err("null_blk: zone_size must be power-of-two\n");
1868 if (g_queue_mode
== NULL_Q_MQ
&& g_use_per_node_hctx
) {
1869 if (g_submit_queues
!= nr_online_nodes
) {
1870 pr_warn("null_blk: submit_queues param is set to %u.\n",
1872 g_submit_queues
= nr_online_nodes
;
1874 } else if (g_submit_queues
> nr_cpu_ids
)
1875 g_submit_queues
= nr_cpu_ids
;
1876 else if (g_submit_queues
<= 0)
1877 g_submit_queues
= 1;
1879 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
) {
1880 ret
= null_init_tag_set(NULL
, &tag_set
);
1885 config_group_init(&nullb_subsys
.su_group
);
1886 mutex_init(&nullb_subsys
.su_mutex
);
1888 ret
= configfs_register_subsystem(&nullb_subsys
);
1894 null_major
= register_blkdev(0, "nullb");
1895 if (null_major
< 0) {
1900 for (i
= 0; i
< nr_devices
; i
++) {
1901 dev
= null_alloc_dev();
1906 ret
= null_add_dev(dev
);
1913 pr_info("null: module loaded\n");
1917 while (!list_empty(&nullb_list
)) {
1918 nullb
= list_entry(nullb_list
.next
, struct nullb
, list
);
1920 null_del_dev(nullb
);
1923 unregister_blkdev(null_major
, "nullb");
1925 configfs_unregister_subsystem(&nullb_subsys
);
1927 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
)
1928 blk_mq_free_tag_set(&tag_set
);
1932 static void __exit
null_exit(void)
1934 struct nullb
*nullb
;
1936 configfs_unregister_subsystem(&nullb_subsys
);
1938 unregister_blkdev(null_major
, "nullb");
1941 while (!list_empty(&nullb_list
)) {
1942 struct nullb_device
*dev
;
1944 nullb
= list_entry(nullb_list
.next
, struct nullb
, list
);
1946 null_del_dev(nullb
);
1949 mutex_unlock(&lock
);
1951 if (g_queue_mode
== NULL_Q_MQ
&& shared_tags
)
1952 blk_mq_free_tag_set(&tag_set
);
1955 module_init(null_init
);
1956 module_exit(null_exit
);
1958 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1959 MODULE_LICENSE("GPL");