1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
5 #include <linux/types.h>
6 #include <linux/atomic.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
12 #define VP_INVAL U32_MAX
14 struct ms_hyperv_info
{
23 extern struct ms_hyperv_info ms_hyperv
;
26 typedef int (*hyperv_fill_flush_list_func
)(
27 struct hv_guest_mapping_flush_list
*flush
,
31 * Generate the guest ID.
34 static inline __u64
generate_guest_id(__u64 d_info1
, __u64 kernel_version
,
39 guest_id
= (((__u64
)HV_LINUX_VENDOR_ID
) << 48);
40 guest_id
|= (d_info1
<< 48);
41 guest_id
|= (kernel_version
<< 16);
48 /* Free the message slot and signal end-of-message if required */
49 static inline void vmbus_signal_eom(struct hv_message
*msg
, u32 old_msg_type
)
52 * On crash we're reading some other CPU's message page and we need
53 * to be careful: this other CPU may already had cleared the header
54 * and the host may already had delivered some other message there.
55 * In case we blindly write msg->header.message_type we're going
56 * to lose it. We can still lose a message of the same type but
57 * we count on the fact that there can only be one
58 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
61 if (cmpxchg(&msg
->header
.message_type
, old_msg_type
,
62 HVMSG_NONE
) != old_msg_type
)
66 * Make sure the write to MessageType (ie set to
67 * HVMSG_NONE) happens before we read the
68 * MessagePending and EOMing. Otherwise, the EOMing
69 * will not deliver any more messages since there is
74 if (msg
->header
.message_flags
.msg_pending
) {
76 * This will cause message queue rescan to
77 * possibly deliver another msg from the
80 wrmsrl(HV_X64_MSR_EOM
, 0);
84 #define hv_init_timer(timer, tick) \
85 wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick)
86 #define hv_init_timer_config(timer, val) \
87 wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val)
89 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
90 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
92 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
93 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
95 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
96 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
98 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
100 #define hv_get_synint_state(int_num, val) \
101 rdmsrl(HV_X64_MSR_SINT0 + int_num, val)
102 #define hv_set_synint_state(int_num, val) \
103 wrmsrl(HV_X64_MSR_SINT0 + int_num, val)
105 #define hv_get_crash_ctl(val) \
106 rdmsrl(HV_X64_MSR_CRASH_CTL, val)
108 void hyperv_callback_vector(void);
109 void hyperv_reenlightenment_vector(void);
110 #ifdef CONFIG_TRACING
111 #define trace_hyperv_callback_vector hyperv_callback_vector
113 void hyperv_vector_handler(struct pt_regs
*regs
);
114 void hv_setup_vmbus_irq(void (*handler
)(void));
115 void hv_remove_vmbus_irq(void);
117 void hv_setup_kexec_handler(void (*handler
)(void));
118 void hv_remove_kexec_handler(void);
119 void hv_setup_crash_handler(void (*handler
)(struct pt_regs
*regs
));
120 void hv_remove_crash_handler(void);
123 * Routines for stimer0 Direct Mode handling.
124 * On x86/x64, there are no percpu actions to take.
126 void hv_stimer0_vector_handler(struct pt_regs
*regs
);
127 void hv_stimer0_callback_vector(void);
128 int hv_setup_stimer0_irq(int *irq
, int *vector
, void (*handler
)(void));
129 void hv_remove_stimer0_irq(int irq
);
131 static inline void hv_enable_stimer0_percpu_irq(int irq
) {}
132 static inline void hv_disable_stimer0_percpu_irq(int irq
) {}
135 #if IS_ENABLED(CONFIG_HYPERV)
136 extern struct clocksource
*hyperv_cs
;
137 extern void *hv_hypercall_pg
;
138 extern void __percpu
**hyperv_pcpu_input_arg
;
140 static inline u64
hv_do_hypercall(u64 control
, void *input
, void *output
)
142 u64 input_address
= input
? virt_to_phys(input
) : 0;
143 u64 output_address
= output
? virt_to_phys(output
) : 0;
147 if (!hv_hypercall_pg
)
150 __asm__
__volatile__("mov %4, %%r8\n"
152 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
153 "+c" (control
), "+d" (input_address
)
154 : "r" (output_address
),
155 THUNK_TARGET(hv_hypercall_pg
)
156 : "cc", "memory", "r8", "r9", "r10", "r11");
158 u32 input_address_hi
= upper_32_bits(input_address
);
159 u32 input_address_lo
= lower_32_bits(input_address
);
160 u32 output_address_hi
= upper_32_bits(output_address
);
161 u32 output_address_lo
= lower_32_bits(output_address
);
163 if (!hv_hypercall_pg
)
166 __asm__
__volatile__(CALL_NOSPEC
168 "+c" (input_address_lo
), ASM_CALL_CONSTRAINT
170 "b" (input_address_hi
),
171 "D"(output_address_hi
), "S"(output_address_lo
),
172 THUNK_TARGET(hv_hypercall_pg
)
178 /* Fast hypercall with 8 bytes of input and no output */
179 static inline u64
hv_do_fast_hypercall8(u16 code
, u64 input1
)
181 u64 hv_status
, control
= (u64
)code
| HV_HYPERCALL_FAST_BIT
;
185 __asm__
__volatile__(CALL_NOSPEC
186 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
187 "+c" (control
), "+d" (input1
)
188 : THUNK_TARGET(hv_hypercall_pg
)
189 : "cc", "r8", "r9", "r10", "r11");
193 u32 input1_hi
= upper_32_bits(input1
);
194 u32 input1_lo
= lower_32_bits(input1
);
196 __asm__
__volatile__ (CALL_NOSPEC
202 THUNK_TARGET(hv_hypercall_pg
)
203 : "cc", "edi", "esi");
209 /* Fast hypercall with 16 bytes of input */
210 static inline u64
hv_do_fast_hypercall16(u16 code
, u64 input1
, u64 input2
)
212 u64 hv_status
, control
= (u64
)code
| HV_HYPERCALL_FAST_BIT
;
216 __asm__
__volatile__("mov %4, %%r8\n"
218 : "=a" (hv_status
), ASM_CALL_CONSTRAINT
,
219 "+c" (control
), "+d" (input1
)
221 THUNK_TARGET(hv_hypercall_pg
)
222 : "cc", "r8", "r9", "r10", "r11");
226 u32 input1_hi
= upper_32_bits(input1
);
227 u32 input1_lo
= lower_32_bits(input1
);
228 u32 input2_hi
= upper_32_bits(input2
);
229 u32 input2_lo
= lower_32_bits(input2
);
231 __asm__
__volatile__ (CALL_NOSPEC
233 "+c"(input1_lo
), ASM_CALL_CONSTRAINT
234 : "A" (control
), "b" (input1_hi
),
235 "D"(input2_hi
), "S"(input2_lo
),
236 THUNK_TARGET(hv_hypercall_pg
)
244 * Rep hypercalls. Callers of this functions are supposed to ensure that
245 * rep_count and varhead_size comply with Hyper-V hypercall definition.
247 static inline u64
hv_do_rep_hypercall(u16 code
, u16 rep_count
, u16 varhead_size
,
248 void *input
, void *output
)
254 control
|= (u64
)varhead_size
<< HV_HYPERCALL_VARHEAD_OFFSET
;
255 control
|= (u64
)rep_count
<< HV_HYPERCALL_REP_COMP_OFFSET
;
258 status
= hv_do_hypercall(control
, input
, output
);
259 if ((status
& HV_HYPERCALL_RESULT_MASK
) != HV_STATUS_SUCCESS
)
262 /* Bits 32-43 of status have 'Reps completed' data. */
263 rep_comp
= (status
& HV_HYPERCALL_REP_COMP_MASK
) >>
264 HV_HYPERCALL_REP_COMP_OFFSET
;
266 control
&= ~HV_HYPERCALL_REP_START_MASK
;
267 control
|= (u64
)rep_comp
<< HV_HYPERCALL_REP_START_OFFSET
;
269 touch_nmi_watchdog();
270 } while (rep_comp
< rep_count
);
276 * Hypervisor's notion of virtual processor ID is different from
277 * Linux' notion of CPU ID. This information can only be retrieved
278 * in the context of the calling CPU. Setup a map for easy access
279 * to this information.
281 extern u32
*hv_vp_index
;
282 extern u32 hv_max_vp_index
;
283 extern struct hv_vp_assist_page
**hv_vp_assist_page
;
285 static inline struct hv_vp_assist_page
*hv_get_vp_assist_page(unsigned int cpu
)
287 if (!hv_vp_assist_page
)
290 return hv_vp_assist_page
[cpu
];
294 * hv_cpu_number_to_vp_number() - Map CPU to VP.
295 * @cpu_number: CPU number in Linux terms
297 * This function returns the mapping between the Linux processor
298 * number and the hypervisor's virtual processor number, useful
299 * in making hypercalls and such that talk about specific
302 * Return: Virtual processor number in Hyper-V terms
304 static inline int hv_cpu_number_to_vp_number(int cpu_number
)
306 return hv_vp_index
[cpu_number
];
309 static inline int cpumask_to_vpset(struct hv_vpset
*vpset
,
310 const struct cpumask
*cpus
)
312 int cpu
, vcpu
, vcpu_bank
, vcpu_offset
, nr_bank
= 1;
314 /* valid_bank_mask can represent up to 64 banks */
315 if (hv_max_vp_index
/ 64 >= 64)
319 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
320 * structs are not cleared between calls, we risk flushing unneeded
323 for (vcpu_bank
= 0; vcpu_bank
<= hv_max_vp_index
/ 64; vcpu_bank
++)
324 vpset
->bank_contents
[vcpu_bank
] = 0;
327 * Some banks may end up being empty but this is acceptable.
329 for_each_cpu(cpu
, cpus
) {
330 vcpu
= hv_cpu_number_to_vp_number(cpu
);
331 if (vcpu
== VP_INVAL
)
333 vcpu_bank
= vcpu
/ 64;
334 vcpu_offset
= vcpu
% 64;
335 __set_bit(vcpu_offset
, (unsigned long *)
336 &vpset
->bank_contents
[vcpu_bank
]);
337 if (vcpu_bank
>= nr_bank
)
338 nr_bank
= vcpu_bank
+ 1;
340 vpset
->valid_bank_mask
= GENMASK_ULL(nr_bank
- 1, 0);
344 void __init
hyperv_init(void);
345 void hyperv_setup_mmu_ops(void);
346 void hyperv_report_panic(struct pt_regs
*regs
, long err
);
347 void hyperv_report_panic_msg(phys_addr_t pa
, size_t size
);
348 bool hv_is_hyperv_initialized(void);
349 void hyperv_cleanup(void);
351 void hyperv_reenlightenment_intr(struct pt_regs
*regs
);
352 void set_hv_tscchange_cb(void (*cb
)(void));
353 void clear_hv_tscchange_cb(void);
354 void hyperv_stop_tsc_emulation(void);
355 int hyperv_flush_guest_mapping(u64 as
);
356 int hyperv_flush_guest_mapping_range(u64 as
,
357 hyperv_fill_flush_list_func fill_func
, void *data
);
358 int hyperv_fill_flush_guest_mapping_list(
359 struct hv_guest_mapping_flush_list
*flush
,
360 u64 start_gfn
, u64 end_gfn
);
363 void hv_apic_init(void);
364 void __init
hv_init_spinlocks(void);
365 bool hv_vcpu_is_preempted(int vcpu
);
367 static inline void hv_apic_init(void) {}
370 #else /* CONFIG_HYPERV */
371 static inline void hyperv_init(void) {}
372 static inline bool hv_is_hyperv_initialized(void) { return false; }
373 static inline void hyperv_cleanup(void) {}
374 static inline void hyperv_setup_mmu_ops(void) {}
375 static inline void set_hv_tscchange_cb(void (*cb
)(void)) {}
376 static inline void clear_hv_tscchange_cb(void) {}
377 static inline void hyperv_stop_tsc_emulation(void) {};
378 static inline struct hv_vp_assist_page
*hv_get_vp_assist_page(unsigned int cpu
)
382 static inline int hyperv_flush_guest_mapping(u64 as
) { return -1; }
383 static inline int hyperv_flush_guest_mapping_range(u64 as
,
384 hyperv_fill_flush_list_func fill_func
, void *data
)
388 #endif /* CONFIG_HYPERV */
390 #ifdef CONFIG_HYPERV_TSCPAGE
391 struct ms_hyperv_tsc_page
*hv_get_tsc_page(void);
392 static inline u64
hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page
*tsc_pg
,
399 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
400 * Top-Level Functional Specification ver. 3.0 and above. To get the
401 * reference time we must do the following:
402 * - READ ReferenceTscSequence
403 * A special '0' value indicates the time source is unreliable and we
404 * need to use something else. The currently published specification
405 * versions (up to 4.0b) contain a mistake and wrongly claim '-1'
406 * instead of '0' as the special value, see commit c35b82ef0294.
408 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
409 * - READ ReferenceTscSequence again. In case its value has changed
410 * since our first reading we need to discard ReferenceTime and repeat
411 * the whole sequence as the hypervisor was updating the page in
415 sequence
= READ_ONCE(tsc_pg
->tsc_sequence
);
419 * Make sure we read sequence before we read other values from
424 scale
= READ_ONCE(tsc_pg
->tsc_scale
);
425 offset
= READ_ONCE(tsc_pg
->tsc_offset
);
426 *cur_tsc
= rdtsc_ordered();
429 * Make sure we read sequence after we read all other values
434 } while (READ_ONCE(tsc_pg
->tsc_sequence
) != sequence
);
436 return mul_u64_u64_shr(*cur_tsc
, scale
, 64) + offset
;
439 static inline u64
hv_read_tsc_page(const struct ms_hyperv_tsc_page
*tsc_pg
)
443 return hv_read_tsc_page_tsc(tsc_pg
, &cur_tsc
);
447 static inline struct ms_hyperv_tsc_page
*hv_get_tsc_page(void)
452 static inline u64
hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page
*tsc_pg
,