vfs: Make __vfs_write() static
[linux/fpc-iii.git] / arch / x86 / kernel / alternative.c
blobebeac487a20c79614d3892e982191124b2216e9c
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <asm/text-patching.h>
15 #include <asm/alternative.h>
16 #include <asm/sections.h>
17 #include <asm/pgtable.h>
18 #include <asm/mce.h>
19 #include <asm/nmi.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
22 #include <asm/io.h>
23 #include <asm/fixmap.h>
25 int __read_mostly alternatives_patched;
27 EXPORT_SYMBOL_GPL(alternatives_patched);
29 #define MAX_PATCH_LEN (255-1)
31 static int __initdata_or_module debug_alternative;
33 static int __init debug_alt(char *str)
35 debug_alternative = 1;
36 return 1;
38 __setup("debug-alternative", debug_alt);
40 static int noreplace_smp;
42 static int __init setup_noreplace_smp(char *str)
44 noreplace_smp = 1;
45 return 1;
47 __setup("noreplace-smp", setup_noreplace_smp);
49 #define DPRINTK(fmt, args...) \
50 do { \
51 if (debug_alternative) \
52 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
53 } while (0)
55 #define DUMP_BYTES(buf, len, fmt, args...) \
56 do { \
57 if (unlikely(debug_alternative)) { \
58 int j; \
60 if (!(len)) \
61 break; \
63 printk(KERN_DEBUG fmt, ##args); \
64 for (j = 0; j < (len) - 1; j++) \
65 printk(KERN_CONT "%02hhx ", buf[j]); \
66 printk(KERN_CONT "%02hhx\n", buf[j]); \
67 } \
68 } while (0)
71 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
72 * that correspond to that nop. Getting from one nop to the next, we
73 * add to the array the offset that is equal to the sum of all sizes of
74 * nops preceding the one we are after.
76 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
77 * nice symmetry of sizes of the previous nops.
79 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
80 static const unsigned char intelnops[] =
82 GENERIC_NOP1,
83 GENERIC_NOP2,
84 GENERIC_NOP3,
85 GENERIC_NOP4,
86 GENERIC_NOP5,
87 GENERIC_NOP6,
88 GENERIC_NOP7,
89 GENERIC_NOP8,
90 GENERIC_NOP5_ATOMIC
92 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
94 NULL,
95 intelnops,
96 intelnops + 1,
97 intelnops + 1 + 2,
98 intelnops + 1 + 2 + 3,
99 intelnops + 1 + 2 + 3 + 4,
100 intelnops + 1 + 2 + 3 + 4 + 5,
101 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
102 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
103 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
105 #endif
107 #ifdef K8_NOP1
108 static const unsigned char k8nops[] =
110 K8_NOP1,
111 K8_NOP2,
112 K8_NOP3,
113 K8_NOP4,
114 K8_NOP5,
115 K8_NOP6,
116 K8_NOP7,
117 K8_NOP8,
118 K8_NOP5_ATOMIC
120 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
122 NULL,
123 k8nops,
124 k8nops + 1,
125 k8nops + 1 + 2,
126 k8nops + 1 + 2 + 3,
127 k8nops + 1 + 2 + 3 + 4,
128 k8nops + 1 + 2 + 3 + 4 + 5,
129 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
130 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
131 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
133 #endif
135 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
136 static const unsigned char k7nops[] =
138 K7_NOP1,
139 K7_NOP2,
140 K7_NOP3,
141 K7_NOP4,
142 K7_NOP5,
143 K7_NOP6,
144 K7_NOP7,
145 K7_NOP8,
146 K7_NOP5_ATOMIC
148 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
150 NULL,
151 k7nops,
152 k7nops + 1,
153 k7nops + 1 + 2,
154 k7nops + 1 + 2 + 3,
155 k7nops + 1 + 2 + 3 + 4,
156 k7nops + 1 + 2 + 3 + 4 + 5,
157 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
158 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
159 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
161 #endif
163 #ifdef P6_NOP1
164 static const unsigned char p6nops[] =
166 P6_NOP1,
167 P6_NOP2,
168 P6_NOP3,
169 P6_NOP4,
170 P6_NOP5,
171 P6_NOP6,
172 P6_NOP7,
173 P6_NOP8,
174 P6_NOP5_ATOMIC
176 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
178 NULL,
179 p6nops,
180 p6nops + 1,
181 p6nops + 1 + 2,
182 p6nops + 1 + 2 + 3,
183 p6nops + 1 + 2 + 3 + 4,
184 p6nops + 1 + 2 + 3 + 4 + 5,
185 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
186 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
187 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
189 #endif
191 /* Initialize these to a safe default */
192 #ifdef CONFIG_X86_64
193 const unsigned char * const *ideal_nops = p6_nops;
194 #else
195 const unsigned char * const *ideal_nops = intel_nops;
196 #endif
198 void __init arch_init_ideal_nops(void)
200 switch (boot_cpu_data.x86_vendor) {
201 case X86_VENDOR_INTEL:
203 * Due to a decoder implementation quirk, some
204 * specific Intel CPUs actually perform better with
205 * the "k8_nops" than with the SDM-recommended NOPs.
207 if (boot_cpu_data.x86 == 6 &&
208 boot_cpu_data.x86_model >= 0x0f &&
209 boot_cpu_data.x86_model != 0x1c &&
210 boot_cpu_data.x86_model != 0x26 &&
211 boot_cpu_data.x86_model != 0x27 &&
212 boot_cpu_data.x86_model < 0x30) {
213 ideal_nops = k8_nops;
214 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
215 ideal_nops = p6_nops;
216 } else {
217 #ifdef CONFIG_X86_64
218 ideal_nops = k8_nops;
219 #else
220 ideal_nops = intel_nops;
221 #endif
223 break;
225 case X86_VENDOR_HYGON:
226 ideal_nops = p6_nops;
227 return;
229 case X86_VENDOR_AMD:
230 if (boot_cpu_data.x86 > 0xf) {
231 ideal_nops = p6_nops;
232 return;
235 /* fall through */
237 default:
238 #ifdef CONFIG_X86_64
239 ideal_nops = k8_nops;
240 #else
241 if (boot_cpu_has(X86_FEATURE_K8))
242 ideal_nops = k8_nops;
243 else if (boot_cpu_has(X86_FEATURE_K7))
244 ideal_nops = k7_nops;
245 else
246 ideal_nops = intel_nops;
247 #endif
251 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
252 static void __init_or_module add_nops(void *insns, unsigned int len)
254 while (len > 0) {
255 unsigned int noplen = len;
256 if (noplen > ASM_NOP_MAX)
257 noplen = ASM_NOP_MAX;
258 memcpy(insns, ideal_nops[noplen], noplen);
259 insns += noplen;
260 len -= noplen;
264 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
265 extern s32 __smp_locks[], __smp_locks_end[];
266 void *text_poke_early(void *addr, const void *opcode, size_t len);
269 * Are we looking at a near JMP with a 1 or 4-byte displacement.
271 static inline bool is_jmp(const u8 opcode)
273 return opcode == 0xeb || opcode == 0xe9;
276 static void __init_or_module
277 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
279 u8 *next_rip, *tgt_rip;
280 s32 n_dspl, o_dspl;
281 int repl_len;
283 if (a->replacementlen != 5)
284 return;
286 o_dspl = *(s32 *)(insnbuf + 1);
288 /* next_rip of the replacement JMP */
289 next_rip = repl_insn + a->replacementlen;
290 /* target rip of the replacement JMP */
291 tgt_rip = next_rip + o_dspl;
292 n_dspl = tgt_rip - orig_insn;
294 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
296 if (tgt_rip - orig_insn >= 0) {
297 if (n_dspl - 2 <= 127)
298 goto two_byte_jmp;
299 else
300 goto five_byte_jmp;
301 /* negative offset */
302 } else {
303 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
304 goto two_byte_jmp;
305 else
306 goto five_byte_jmp;
309 two_byte_jmp:
310 n_dspl -= 2;
312 insnbuf[0] = 0xeb;
313 insnbuf[1] = (s8)n_dspl;
314 add_nops(insnbuf + 2, 3);
316 repl_len = 2;
317 goto done;
319 five_byte_jmp:
320 n_dspl -= 5;
322 insnbuf[0] = 0xe9;
323 *(s32 *)&insnbuf[1] = n_dspl;
325 repl_len = 5;
327 done:
329 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
330 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
334 * "noinline" to cause control flow change and thus invalidate I$ and
335 * cause refetch after modification.
337 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
339 unsigned long flags;
340 int i;
342 for (i = 0; i < a->padlen; i++) {
343 if (instr[i] != 0x90)
344 return;
347 local_irq_save(flags);
348 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
349 local_irq_restore(flags);
351 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
352 instr, a->instrlen - a->padlen, a->padlen);
356 * Replace instructions with better alternatives for this CPU type. This runs
357 * before SMP is initialized to avoid SMP problems with self modifying code.
358 * This implies that asymmetric systems where APs have less capabilities than
359 * the boot processor are not handled. Tough. Make sure you disable such
360 * features by hand.
362 * Marked "noinline" to cause control flow change and thus insn cache
363 * to refetch changed I$ lines.
365 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
366 struct alt_instr *end)
368 struct alt_instr *a;
369 u8 *instr, *replacement;
370 u8 insnbuf[MAX_PATCH_LEN];
372 DPRINTK("alt table %px, -> %px", start, end);
374 * The scan order should be from start to end. A later scanned
375 * alternative code can overwrite previously scanned alternative code.
376 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
377 * patch code.
379 * So be careful if you want to change the scan order to any other
380 * order.
382 for (a = start; a < end; a++) {
383 int insnbuf_sz = 0;
385 instr = (u8 *)&a->instr_offset + a->instr_offset;
386 replacement = (u8 *)&a->repl_offset + a->repl_offset;
387 BUG_ON(a->instrlen > sizeof(insnbuf));
388 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
389 if (!boot_cpu_has(a->cpuid)) {
390 if (a->padlen > 1)
391 optimize_nops(a, instr);
393 continue;
396 DPRINTK("feat: %d*32+%d, old: (%px len: %d), repl: (%px, len: %d), pad: %d",
397 a->cpuid >> 5,
398 a->cpuid & 0x1f,
399 instr, a->instrlen,
400 replacement, a->replacementlen, a->padlen);
402 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
403 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
405 memcpy(insnbuf, replacement, a->replacementlen);
406 insnbuf_sz = a->replacementlen;
409 * 0xe8 is a relative jump; fix the offset.
411 * Instruction length is checked before the opcode to avoid
412 * accessing uninitialized bytes for zero-length replacements.
414 if (a->replacementlen == 5 && *insnbuf == 0xe8) {
415 *(s32 *)(insnbuf + 1) += replacement - instr;
416 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
417 *(s32 *)(insnbuf + 1),
418 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
421 if (a->replacementlen && is_jmp(replacement[0]))
422 recompute_jump(a, instr, replacement, insnbuf);
424 if (a->instrlen > a->replacementlen) {
425 add_nops(insnbuf + a->replacementlen,
426 a->instrlen - a->replacementlen);
427 insnbuf_sz += a->instrlen - a->replacementlen;
429 DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
431 text_poke_early(instr, insnbuf, insnbuf_sz);
435 #ifdef CONFIG_SMP
436 static void alternatives_smp_lock(const s32 *start, const s32 *end,
437 u8 *text, u8 *text_end)
439 const s32 *poff;
441 for (poff = start; poff < end; poff++) {
442 u8 *ptr = (u8 *)poff + *poff;
444 if (!*poff || ptr < text || ptr >= text_end)
445 continue;
446 /* turn DS segment override prefix into lock prefix */
447 if (*ptr == 0x3e)
448 text_poke(ptr, ((unsigned char []){0xf0}), 1);
452 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
453 u8 *text, u8 *text_end)
455 const s32 *poff;
457 for (poff = start; poff < end; poff++) {
458 u8 *ptr = (u8 *)poff + *poff;
460 if (!*poff || ptr < text || ptr >= text_end)
461 continue;
462 /* turn lock prefix into DS segment override prefix */
463 if (*ptr == 0xf0)
464 text_poke(ptr, ((unsigned char []){0x3E}), 1);
468 struct smp_alt_module {
469 /* what is this ??? */
470 struct module *mod;
471 char *name;
473 /* ptrs to lock prefixes */
474 const s32 *locks;
475 const s32 *locks_end;
477 /* .text segment, needed to avoid patching init code ;) */
478 u8 *text;
479 u8 *text_end;
481 struct list_head next;
483 static LIST_HEAD(smp_alt_modules);
484 static bool uniproc_patched = false; /* protected by text_mutex */
486 void __init_or_module alternatives_smp_module_add(struct module *mod,
487 char *name,
488 void *locks, void *locks_end,
489 void *text, void *text_end)
491 struct smp_alt_module *smp;
493 mutex_lock(&text_mutex);
494 if (!uniproc_patched)
495 goto unlock;
497 if (num_possible_cpus() == 1)
498 /* Don't bother remembering, we'll never have to undo it. */
499 goto smp_unlock;
501 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
502 if (NULL == smp)
503 /* we'll run the (safe but slow) SMP code then ... */
504 goto unlock;
506 smp->mod = mod;
507 smp->name = name;
508 smp->locks = locks;
509 smp->locks_end = locks_end;
510 smp->text = text;
511 smp->text_end = text_end;
512 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
513 smp->locks, smp->locks_end,
514 smp->text, smp->text_end, smp->name);
516 list_add_tail(&smp->next, &smp_alt_modules);
517 smp_unlock:
518 alternatives_smp_unlock(locks, locks_end, text, text_end);
519 unlock:
520 mutex_unlock(&text_mutex);
523 void __init_or_module alternatives_smp_module_del(struct module *mod)
525 struct smp_alt_module *item;
527 mutex_lock(&text_mutex);
528 list_for_each_entry(item, &smp_alt_modules, next) {
529 if (mod != item->mod)
530 continue;
531 list_del(&item->next);
532 kfree(item);
533 break;
535 mutex_unlock(&text_mutex);
538 void alternatives_enable_smp(void)
540 struct smp_alt_module *mod;
542 /* Why bother if there are no other CPUs? */
543 BUG_ON(num_possible_cpus() == 1);
545 mutex_lock(&text_mutex);
547 if (uniproc_patched) {
548 pr_info("switching to SMP code\n");
549 BUG_ON(num_online_cpus() != 1);
550 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
551 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
552 list_for_each_entry(mod, &smp_alt_modules, next)
553 alternatives_smp_lock(mod->locks, mod->locks_end,
554 mod->text, mod->text_end);
555 uniproc_patched = false;
557 mutex_unlock(&text_mutex);
561 * Return 1 if the address range is reserved for SMP-alternatives.
562 * Must hold text_mutex.
564 int alternatives_text_reserved(void *start, void *end)
566 struct smp_alt_module *mod;
567 const s32 *poff;
568 u8 *text_start = start;
569 u8 *text_end = end;
571 lockdep_assert_held(&text_mutex);
573 list_for_each_entry(mod, &smp_alt_modules, next) {
574 if (mod->text > text_end || mod->text_end < text_start)
575 continue;
576 for (poff = mod->locks; poff < mod->locks_end; poff++) {
577 const u8 *ptr = (const u8 *)poff + *poff;
579 if (text_start <= ptr && text_end > ptr)
580 return 1;
584 return 0;
586 #endif /* CONFIG_SMP */
588 #ifdef CONFIG_PARAVIRT
589 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
590 struct paravirt_patch_site *end)
592 struct paravirt_patch_site *p;
593 char insnbuf[MAX_PATCH_LEN];
595 for (p = start; p < end; p++) {
596 unsigned int used;
598 BUG_ON(p->len > MAX_PATCH_LEN);
599 /* prep the buffer with the original instructions */
600 memcpy(insnbuf, p->instr, p->len);
601 used = pv_ops.init.patch(p->instrtype, insnbuf,
602 (unsigned long)p->instr, p->len);
604 BUG_ON(used > p->len);
606 /* Pad the rest with nops */
607 add_nops(insnbuf + used, p->len - used);
608 text_poke_early(p->instr, insnbuf, p->len);
611 extern struct paravirt_patch_site __start_parainstructions[],
612 __stop_parainstructions[];
613 #endif /* CONFIG_PARAVIRT */
615 void __init alternative_instructions(void)
617 /* The patching is not fully atomic, so try to avoid local interruptions
618 that might execute the to be patched code.
619 Other CPUs are not running. */
620 stop_nmi();
623 * Don't stop machine check exceptions while patching.
624 * MCEs only happen when something got corrupted and in this
625 * case we must do something about the corruption.
626 * Ignoring it is worse than a unlikely patching race.
627 * Also machine checks tend to be broadcast and if one CPU
628 * goes into machine check the others follow quickly, so we don't
629 * expect a machine check to cause undue problems during to code
630 * patching.
633 apply_alternatives(__alt_instructions, __alt_instructions_end);
635 #ifdef CONFIG_SMP
636 /* Patch to UP if other cpus not imminent. */
637 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
638 uniproc_patched = true;
639 alternatives_smp_module_add(NULL, "core kernel",
640 __smp_locks, __smp_locks_end,
641 _text, _etext);
644 if (!uniproc_patched || num_possible_cpus() == 1)
645 free_init_pages("SMP alternatives",
646 (unsigned long)__smp_locks,
647 (unsigned long)__smp_locks_end);
648 #endif
650 apply_paravirt(__parainstructions, __parainstructions_end);
652 restart_nmi();
653 alternatives_patched = 1;
657 * text_poke_early - Update instructions on a live kernel at boot time
658 * @addr: address to modify
659 * @opcode: source of the copy
660 * @len: length to copy
662 * When you use this code to patch more than one byte of an instruction
663 * you need to make sure that other CPUs cannot execute this code in parallel.
664 * Also no thread must be currently preempted in the middle of these
665 * instructions. And on the local CPU you need to be protected again NMI or MCE
666 * handlers seeing an inconsistent instruction while you patch.
668 void *__init_or_module text_poke_early(void *addr, const void *opcode,
669 size_t len)
671 unsigned long flags;
672 local_irq_save(flags);
673 memcpy(addr, opcode, len);
674 local_irq_restore(flags);
675 sync_core();
676 /* Could also do a CLFLUSH here to speed up CPU recovery; but
677 that causes hangs on some VIA CPUs. */
678 return addr;
682 * text_poke - Update instructions on a live kernel
683 * @addr: address to modify
684 * @opcode: source of the copy
685 * @len: length to copy
687 * Only atomic text poke/set should be allowed when not doing early patching.
688 * It means the size must be writable atomically and the address must be aligned
689 * in a way that permits an atomic write. It also makes sure we fit on a single
690 * page.
692 void *text_poke(void *addr, const void *opcode, size_t len)
694 unsigned long flags;
695 char *vaddr;
696 struct page *pages[2];
697 int i;
700 * While boot memory allocator is runnig we cannot use struct
701 * pages as they are not yet initialized.
703 BUG_ON(!after_bootmem);
705 lockdep_assert_held(&text_mutex);
707 if (!core_kernel_text((unsigned long)addr)) {
708 pages[0] = vmalloc_to_page(addr);
709 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
710 } else {
711 pages[0] = virt_to_page(addr);
712 WARN_ON(!PageReserved(pages[0]));
713 pages[1] = virt_to_page(addr + PAGE_SIZE);
715 BUG_ON(!pages[0]);
716 local_irq_save(flags);
717 set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
718 if (pages[1])
719 set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
720 vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
721 memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
722 clear_fixmap(FIX_TEXT_POKE0);
723 if (pages[1])
724 clear_fixmap(FIX_TEXT_POKE1);
725 local_flush_tlb();
726 sync_core();
727 /* Could also do a CLFLUSH here to speed up CPU recovery; but
728 that causes hangs on some VIA CPUs. */
729 for (i = 0; i < len; i++)
730 BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
731 local_irq_restore(flags);
732 return addr;
735 static void do_sync_core(void *info)
737 sync_core();
740 static bool bp_patching_in_progress;
741 static void *bp_int3_handler, *bp_int3_addr;
743 int poke_int3_handler(struct pt_regs *regs)
746 * Having observed our INT3 instruction, we now must observe
747 * bp_patching_in_progress.
749 * in_progress = TRUE INT3
750 * WMB RMB
751 * write INT3 if (in_progress)
753 * Idem for bp_int3_handler.
755 smp_rmb();
757 if (likely(!bp_patching_in_progress))
758 return 0;
760 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
761 return 0;
763 /* set up the specified breakpoint handler */
764 regs->ip = (unsigned long) bp_int3_handler;
766 return 1;
771 * text_poke_bp() -- update instructions on live kernel on SMP
772 * @addr: address to patch
773 * @opcode: opcode of new instruction
774 * @len: length to copy
775 * @handler: address to jump to when the temporary breakpoint is hit
777 * Modify multi-byte instruction by using int3 breakpoint on SMP.
778 * We completely avoid stop_machine() here, and achieve the
779 * synchronization using int3 breakpoint.
781 * The way it is done:
782 * - add a int3 trap to the address that will be patched
783 * - sync cores
784 * - update all but the first byte of the patched range
785 * - sync cores
786 * - replace the first byte (int3) by the first byte of
787 * replacing opcode
788 * - sync cores
790 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
792 unsigned char int3 = 0xcc;
794 bp_int3_handler = handler;
795 bp_int3_addr = (u8 *)addr + sizeof(int3);
796 bp_patching_in_progress = true;
798 lockdep_assert_held(&text_mutex);
801 * Corresponding read barrier in int3 notifier for making sure the
802 * in_progress and handler are correctly ordered wrt. patching.
804 smp_wmb();
806 text_poke(addr, &int3, sizeof(int3));
808 on_each_cpu(do_sync_core, NULL, 1);
810 if (len - sizeof(int3) > 0) {
811 /* patch all but the first byte */
812 text_poke((char *)addr + sizeof(int3),
813 (const char *) opcode + sizeof(int3),
814 len - sizeof(int3));
816 * According to Intel, this core syncing is very likely
817 * not necessary and we'd be safe even without it. But
818 * better safe than sorry (plus there's not only Intel).
820 on_each_cpu(do_sync_core, NULL, 1);
823 /* patch the first byte */
824 text_poke(addr, opcode, sizeof(int3));
826 on_each_cpu(do_sync_core, NULL, 1);
828 * sync_core() implies an smp_mb() and orders this store against
829 * the writing of the new instruction.
831 bp_patching_in_progress = false;
833 return addr;