vfs: Make __vfs_write() static
[linux/fpc-iii.git] / arch / x86 / kernel / nmi.c
blob18bc9b51ac9b99ffaf51e85daf490b0ba108bcc9
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/sched/clock.h>
26 #if defined(CONFIG_EDAC)
27 #include <linux/edac.h>
28 #endif
30 #include <linux/atomic.h>
31 #include <asm/traps.h>
32 #include <asm/mach_traps.h>
33 #include <asm/nmi.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/cache.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
41 struct nmi_desc {
42 raw_spinlock_t lock;
43 struct list_head head;
46 static struct nmi_desc nmi_desc[NMI_MAX] =
49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
67 struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
76 static int ignore_nmis __read_mostly;
78 int unknown_nmi_panic;
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
85 static int __init setup_unknown_nmi_panic(char *str)
87 unknown_nmi_panic = 1;
88 return 1;
90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
92 #define nmi_to_desc(type) (&nmi_desc[type])
94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
96 static int __init nmi_warning_debugfs(void)
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir, &nmi_longest_ns);
100 return 0;
102 fs_initcall(nmi_warning_debugfs);
104 static void nmi_max_handler(struct irq_work *w)
106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
107 int remainder_ns, decimal_msecs;
108 u64 whole_msecs = READ_ONCE(a->max_duration);
110 remainder_ns = do_div(whole_msecs, (1000 * 1000));
111 decimal_msecs = remainder_ns / 1000;
113 printk_ratelimited(KERN_INFO
114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 a->handler, whole_msecs, decimal_msecs);
118 static int nmi_handle(unsigned int type, struct pt_regs *regs)
120 struct nmi_desc *desc = nmi_to_desc(type);
121 struct nmiaction *a;
122 int handled=0;
124 rcu_read_lock();
127 * NMIs are edge-triggered, which means if you have enough
128 * of them concurrently, you can lose some because only one
129 * can be latched at any given time. Walk the whole list
130 * to handle those situations.
132 list_for_each_entry_rcu(a, &desc->head, list) {
133 int thishandled;
134 u64 delta;
136 delta = sched_clock();
137 thishandled = a->handler(type, regs);
138 handled += thishandled;
139 delta = sched_clock() - delta;
140 trace_nmi_handler(a->handler, (int)delta, thishandled);
142 if (delta < nmi_longest_ns || delta < a->max_duration)
143 continue;
145 a->max_duration = delta;
146 irq_work_queue(&a->irq_work);
149 rcu_read_unlock();
151 /* return total number of NMI events handled */
152 return handled;
154 NOKPROBE_SYMBOL(nmi_handle);
156 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
158 struct nmi_desc *desc = nmi_to_desc(type);
159 unsigned long flags;
161 if (!action->handler)
162 return -EINVAL;
164 init_irq_work(&action->irq_work, nmi_max_handler);
166 raw_spin_lock_irqsave(&desc->lock, flags);
169 * Indicate if there are multiple registrations on the
170 * internal NMI handler call chains (SERR and IO_CHECK).
172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
176 * some handlers need to be executed first otherwise a fake
177 * event confuses some handlers (kdump uses this flag)
179 if (action->flags & NMI_FLAG_FIRST)
180 list_add_rcu(&action->list, &desc->head);
181 else
182 list_add_tail_rcu(&action->list, &desc->head);
184 raw_spin_unlock_irqrestore(&desc->lock, flags);
185 return 0;
187 EXPORT_SYMBOL(__register_nmi_handler);
189 void unregister_nmi_handler(unsigned int type, const char *name)
191 struct nmi_desc *desc = nmi_to_desc(type);
192 struct nmiaction *n;
193 unsigned long flags;
195 raw_spin_lock_irqsave(&desc->lock, flags);
197 list_for_each_entry_rcu(n, &desc->head, list) {
199 * the name passed in to describe the nmi handler
200 * is used as the lookup key
202 if (!strcmp(n->name, name)) {
203 WARN(in_nmi(),
204 "Trying to free NMI (%s) from NMI context!\n", n->name);
205 list_del_rcu(&n->list);
206 break;
210 raw_spin_unlock_irqrestore(&desc->lock, flags);
211 synchronize_rcu();
213 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215 static void
216 pci_serr_error(unsigned char reason, struct pt_regs *regs)
218 /* check to see if anyone registered against these types of errors */
219 if (nmi_handle(NMI_SERR, regs))
220 return;
222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 reason, smp_processor_id());
225 if (panic_on_unrecovered_nmi)
226 nmi_panic(regs, "NMI: Not continuing");
228 pr_emerg("Dazed and confused, but trying to continue\n");
230 /* Clear and disable the PCI SERR error line. */
231 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
232 outb(reason, NMI_REASON_PORT);
234 NOKPROBE_SYMBOL(pci_serr_error);
236 static void
237 io_check_error(unsigned char reason, struct pt_regs *regs)
239 unsigned long i;
241 /* check to see if anyone registered against these types of errors */
242 if (nmi_handle(NMI_IO_CHECK, regs))
243 return;
245 pr_emerg(
246 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
247 reason, smp_processor_id());
248 show_regs(regs);
250 if (panic_on_io_nmi) {
251 nmi_panic(regs, "NMI IOCK error: Not continuing");
254 * If we end up here, it means we have received an NMI while
255 * processing panic(). Simply return without delaying and
256 * re-enabling NMIs.
258 return;
261 /* Re-enable the IOCK line, wait for a few seconds */
262 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
263 outb(reason, NMI_REASON_PORT);
265 i = 20000;
266 while (--i) {
267 touch_nmi_watchdog();
268 udelay(100);
271 reason &= ~NMI_REASON_CLEAR_IOCHK;
272 outb(reason, NMI_REASON_PORT);
274 NOKPROBE_SYMBOL(io_check_error);
276 static void
277 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279 int handled;
282 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 * Of course this makes having multiple 'unknown' handlers useless
284 * as only the first one is ever run (unless it can actually determine
285 * if it caused the NMI)
287 handled = nmi_handle(NMI_UNKNOWN, regs);
288 if (handled) {
289 __this_cpu_add(nmi_stats.unknown, handled);
290 return;
293 __this_cpu_add(nmi_stats.unknown, 1);
295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 reason, smp_processor_id());
298 pr_emerg("Do you have a strange power saving mode enabled?\n");
299 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 nmi_panic(regs, "NMI: Not continuing");
302 pr_emerg("Dazed and confused, but trying to continue\n");
304 NOKPROBE_SYMBOL(unknown_nmi_error);
306 static DEFINE_PER_CPU(bool, swallow_nmi);
307 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
309 static void default_do_nmi(struct pt_regs *regs)
311 unsigned char reason = 0;
312 int handled;
313 bool b2b = false;
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
328 if (regs->ip == __this_cpu_read(last_nmi_rip))
329 b2b = true;
330 else
331 __this_cpu_write(swallow_nmi, false);
333 __this_cpu_write(last_nmi_rip, regs->ip);
335 handled = nmi_handle(NMI_LOCAL, regs);
336 __this_cpu_add(nmi_stats.normal, handled);
337 if (handled) {
339 * There are cases when a NMI handler handles multiple
340 * events in the current NMI. One of these events may
341 * be queued for in the next NMI. Because the event is
342 * already handled, the next NMI will result in an unknown
343 * NMI. Instead lets flag this for a potential NMI to
344 * swallow.
346 if (handled > 1)
347 __this_cpu_write(swallow_nmi, true);
348 return;
352 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
354 * Another CPU may be processing panic routines while holding
355 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
356 * and if so, call its callback directly. If there is no CPU preparing
357 * crash dump, we simply loop here.
359 while (!raw_spin_trylock(&nmi_reason_lock)) {
360 run_crash_ipi_callback(regs);
361 cpu_relax();
364 reason = x86_platform.get_nmi_reason();
366 if (reason & NMI_REASON_MASK) {
367 if (reason & NMI_REASON_SERR)
368 pci_serr_error(reason, regs);
369 else if (reason & NMI_REASON_IOCHK)
370 io_check_error(reason, regs);
371 #ifdef CONFIG_X86_32
373 * Reassert NMI in case it became active
374 * meanwhile as it's edge-triggered:
376 reassert_nmi();
377 #endif
378 __this_cpu_add(nmi_stats.external, 1);
379 raw_spin_unlock(&nmi_reason_lock);
380 return;
382 raw_spin_unlock(&nmi_reason_lock);
385 * Only one NMI can be latched at a time. To handle
386 * this we may process multiple nmi handlers at once to
387 * cover the case where an NMI is dropped. The downside
388 * to this approach is we may process an NMI prematurely,
389 * while its real NMI is sitting latched. This will cause
390 * an unknown NMI on the next run of the NMI processing.
392 * We tried to flag that condition above, by setting the
393 * swallow_nmi flag when we process more than one event.
394 * This condition is also only present on the second half
395 * of a back-to-back NMI, so we flag that condition too.
397 * If both are true, we assume we already processed this
398 * NMI previously and we swallow it. Otherwise we reset
399 * the logic.
401 * There are scenarios where we may accidentally swallow
402 * a 'real' unknown NMI. For example, while processing
403 * a perf NMI another perf NMI comes in along with a
404 * 'real' unknown NMI. These two NMIs get combined into
405 * one (as descibed above). When the next NMI gets
406 * processed, it will be flagged by perf as handled, but
407 * noone will know that there was a 'real' unknown NMI sent
408 * also. As a result it gets swallowed. Or if the first
409 * perf NMI returns two events handled then the second
410 * NMI will get eaten by the logic below, again losing a
411 * 'real' unknown NMI. But this is the best we can do
412 * for now.
414 if (b2b && __this_cpu_read(swallow_nmi))
415 __this_cpu_add(nmi_stats.swallow, 1);
416 else
417 unknown_nmi_error(reason, regs);
419 NOKPROBE_SYMBOL(default_do_nmi);
422 * NMIs can page fault or hit breakpoints which will cause it to lose
423 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
427 * if the outer NMI came from kernel mode, but we can still nest if the
428 * outer NMI came from user mode.
430 * To handle these nested NMIs, we have three states:
432 * 1) not running
433 * 2) executing
434 * 3) latched
436 * When no NMI is in progress, it is in the "not running" state.
437 * When an NMI comes in, it goes into the "executing" state.
438 * Normally, if another NMI is triggered, it does not interrupt
439 * the running NMI and the HW will simply latch it so that when
440 * the first NMI finishes, it will restart the second NMI.
441 * (Note, the latch is binary, thus multiple NMIs triggering,
442 * when one is running, are ignored. Only one NMI is restarted.)
444 * If an NMI executes an iret, another NMI can preempt it. We do not
445 * want to allow this new NMI to run, but we want to execute it when the
446 * first one finishes. We set the state to "latched", and the exit of
447 * the first NMI will perform a dec_return, if the result is zero
448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
449 * dec_return would have set the state to NMI_EXECUTING (what we want it
450 * to be when we are running). In this case, we simply jump back to
451 * rerun the NMI handler again, and restart the 'latched' NMI.
453 * No trap (breakpoint or page fault) should be hit before nmi_restart,
454 * thus there is no race between the first check of state for NOT_RUNNING
455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
456 * at this point.
458 * In case the NMI takes a page fault, we need to save off the CR2
459 * because the NMI could have preempted another page fault and corrupt
460 * the CR2 that is about to be read. As nested NMIs must be restarted
461 * and they can not take breakpoints or page faults, the update of the
462 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
463 * Otherwise, there would be a race of another nested NMI coming in
464 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
466 enum nmi_states {
467 NMI_NOT_RUNNING = 0,
468 NMI_EXECUTING,
469 NMI_LATCHED,
471 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
472 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
474 #ifdef CONFIG_X86_64
476 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
477 * some care, the inner breakpoint will clobber the outer breakpoint's
478 * stack.
480 * If a breakpoint is being processed, and the debug stack is being
481 * used, if an NMI comes in and also hits a breakpoint, the stack
482 * pointer will be set to the same fixed address as the breakpoint that
483 * was interrupted, causing that stack to be corrupted. To handle this
484 * case, check if the stack that was interrupted is the debug stack, and
485 * if so, change the IDT so that new breakpoints will use the current
486 * stack and not switch to the fixed address. On return of the NMI,
487 * switch back to the original IDT.
489 static DEFINE_PER_CPU(int, update_debug_stack);
490 #endif
492 dotraplinkage notrace void
493 do_nmi(struct pt_regs *regs, long error_code)
495 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
496 this_cpu_write(nmi_state, NMI_LATCHED);
497 return;
499 this_cpu_write(nmi_state, NMI_EXECUTING);
500 this_cpu_write(nmi_cr2, read_cr2());
501 nmi_restart:
503 #ifdef CONFIG_X86_64
505 * If we interrupted a breakpoint, it is possible that
506 * the nmi handler will have breakpoints too. We need to
507 * change the IDT such that breakpoints that happen here
508 * continue to use the NMI stack.
510 if (unlikely(is_debug_stack(regs->sp))) {
511 debug_stack_set_zero();
512 this_cpu_write(update_debug_stack, 1);
514 #endif
516 nmi_enter();
518 inc_irq_stat(__nmi_count);
520 if (!ignore_nmis)
521 default_do_nmi(regs);
523 nmi_exit();
525 #ifdef CONFIG_X86_64
526 if (unlikely(this_cpu_read(update_debug_stack))) {
527 debug_stack_reset();
528 this_cpu_write(update_debug_stack, 0);
530 #endif
532 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
533 write_cr2(this_cpu_read(nmi_cr2));
534 if (this_cpu_dec_return(nmi_state))
535 goto nmi_restart;
537 NOKPROBE_SYMBOL(do_nmi);
539 void stop_nmi(void)
541 ignore_nmis++;
544 void restart_nmi(void)
546 ignore_nmis--;
549 /* reset the back-to-back NMI logic */
550 void local_touch_nmi(void)
552 __this_cpu_write(last_nmi_rip, 0);
554 EXPORT_SYMBOL_GPL(local_touch_nmi);