vfs: Make __vfs_write() static
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blob90ae0ca51083768df899edd88f6016be224c3316
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/proto.h>
46 #include "process.h"
49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
51 * so they are allowed to end up in the .data..cacheline_aligned
52 * section. Since TSS's are completely CPU-local, we want them
53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 .x86_tss = {
58 * .sp0 is only used when entering ring 0 from a lower
59 * privilege level. Since the init task never runs anything
60 * but ring 0 code, there is no need for a valid value here.
61 * Poison it.
63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
66 * .sp1 is cpu_current_top_of_stack. The init task never
67 * runs user code, but cpu_current_top_of_stack should still
68 * be well defined before the first context switch.
70 .sp1 = TOP_OF_INIT_STACK,
72 #ifdef CONFIG_X86_32
73 .ss0 = __KERNEL_DS,
74 .ss1 = __KERNEL_CS,
75 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
76 #endif
78 #ifdef CONFIG_X86_32
80 * Note that the .io_bitmap member must be extra-big. This is because
81 * the CPU will access an additional byte beyond the end of the IO
82 * permission bitmap. The extra byte must be all 1 bits, and must
83 * be within the limit.
85 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
94 * this gets called so that we can store lazy state into memory and copy the
95 * current task into the new thread.
97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
99 memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 dst->thread.vm86 = NULL;
102 #endif
104 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
108 * Free current thread data structures etc..
110 void exit_thread(struct task_struct *tsk)
112 struct thread_struct *t = &tsk->thread;
113 unsigned long *bp = t->io_bitmap_ptr;
114 struct fpu *fpu = &t->fpu;
116 if (bp) {
117 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
119 t->io_bitmap_ptr = NULL;
120 clear_thread_flag(TIF_IO_BITMAP);
122 * Careful, clear this in the TSS too:
124 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 t->io_bitmap_max = 0;
126 put_cpu();
127 kfree(bp);
130 free_vm86(t);
132 fpu__drop(fpu);
135 void flush_thread(void)
137 struct task_struct *tsk = current;
139 flush_ptrace_hw_breakpoint(tsk);
140 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
142 fpu__clear(&tsk->thread.fpu);
145 void disable_TSC(void)
147 preempt_disable();
148 if (!test_and_set_thread_flag(TIF_NOTSC))
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
153 cr4_set_bits(X86_CR4_TSD);
154 preempt_enable();
157 static void enable_TSC(void)
159 preempt_disable();
160 if (test_and_clear_thread_flag(TIF_NOTSC))
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
165 cr4_clear_bits(X86_CR4_TSD);
166 preempt_enable();
169 int get_tsc_mode(unsigned long adr)
171 unsigned int val;
173 if (test_thread_flag(TIF_NOTSC))
174 val = PR_TSC_SIGSEGV;
175 else
176 val = PR_TSC_ENABLE;
178 return put_user(val, (unsigned int __user *)adr);
181 int set_tsc_mode(unsigned int val)
183 if (val == PR_TSC_SIGSEGV)
184 disable_TSC();
185 else if (val == PR_TSC_ENABLE)
186 enable_TSC();
187 else
188 return -EINVAL;
190 return 0;
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
195 static void set_cpuid_faulting(bool on)
197 u64 msrval;
199 msrval = this_cpu_read(msr_misc_features_shadow);
200 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 this_cpu_write(msr_misc_features_shadow, msrval);
203 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
206 static void disable_cpuid(void)
208 preempt_disable();
209 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
214 set_cpuid_faulting(true);
216 preempt_enable();
219 static void enable_cpuid(void)
221 preempt_disable();
222 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
224 * Must flip the CPU state synchronously with
225 * TIF_NOCPUID in the current running context.
227 set_cpuid_faulting(false);
229 preempt_enable();
232 static int get_cpuid_mode(void)
234 return !test_thread_flag(TIF_NOCPUID);
237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
239 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
240 return -ENODEV;
242 if (cpuid_enabled)
243 enable_cpuid();
244 else
245 disable_cpuid();
247 return 0;
251 * Called immediately after a successful exec.
253 void arch_setup_new_exec(void)
255 /* If cpuid was previously disabled for this task, re-enable it. */
256 if (test_thread_flag(TIF_NOCPUID))
257 enable_cpuid();
260 static inline void switch_to_bitmap(struct thread_struct *prev,
261 struct thread_struct *next,
262 unsigned long tifp, unsigned long tifn)
264 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
266 if (tifn & _TIF_IO_BITMAP) {
268 * Copy the relevant range of the IO bitmap.
269 * Normally this is 128 bytes or less:
271 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
272 max(prev->io_bitmap_max, next->io_bitmap_max));
274 * Make sure that the TSS limit is correct for the CPU
275 * to notice the IO bitmap.
277 refresh_tss_limit();
278 } else if (tifp & _TIF_IO_BITMAP) {
280 * Clear any possible leftover bits:
282 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
286 #ifdef CONFIG_SMP
288 struct ssb_state {
289 struct ssb_state *shared_state;
290 raw_spinlock_t lock;
291 unsigned int disable_state;
292 unsigned long local_state;
295 #define LSTATE_SSB 0
297 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
299 void speculative_store_bypass_ht_init(void)
301 struct ssb_state *st = this_cpu_ptr(&ssb_state);
302 unsigned int this_cpu = smp_processor_id();
303 unsigned int cpu;
305 st->local_state = 0;
308 * Shared state setup happens once on the first bringup
309 * of the CPU. It's not destroyed on CPU hotunplug.
311 if (st->shared_state)
312 return;
314 raw_spin_lock_init(&st->lock);
317 * Go over HT siblings and check whether one of them has set up the
318 * shared state pointer already.
320 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
321 if (cpu == this_cpu)
322 continue;
324 if (!per_cpu(ssb_state, cpu).shared_state)
325 continue;
327 /* Link it to the state of the sibling: */
328 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
329 return;
333 * First HT sibling to come up on the core. Link shared state of
334 * the first HT sibling to itself. The siblings on the same core
335 * which come up later will see the shared state pointer and link
336 * themself to the state of this CPU.
338 st->shared_state = st;
342 * Logic is: First HT sibling enables SSBD for both siblings in the core
343 * and last sibling to disable it, disables it for the whole core. This how
344 * MSR_SPEC_CTRL works in "hardware":
346 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
348 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
350 struct ssb_state *st = this_cpu_ptr(&ssb_state);
351 u64 msr = x86_amd_ls_cfg_base;
353 if (!static_cpu_has(X86_FEATURE_ZEN)) {
354 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
355 wrmsrl(MSR_AMD64_LS_CFG, msr);
356 return;
359 if (tifn & _TIF_SSBD) {
361 * Since this can race with prctl(), block reentry on the
362 * same CPU.
364 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
365 return;
367 msr |= x86_amd_ls_cfg_ssbd_mask;
369 raw_spin_lock(&st->shared_state->lock);
370 /* First sibling enables SSBD: */
371 if (!st->shared_state->disable_state)
372 wrmsrl(MSR_AMD64_LS_CFG, msr);
373 st->shared_state->disable_state++;
374 raw_spin_unlock(&st->shared_state->lock);
375 } else {
376 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
377 return;
379 raw_spin_lock(&st->shared_state->lock);
380 st->shared_state->disable_state--;
381 if (!st->shared_state->disable_state)
382 wrmsrl(MSR_AMD64_LS_CFG, msr);
383 raw_spin_unlock(&st->shared_state->lock);
386 #else
387 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
389 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
391 wrmsrl(MSR_AMD64_LS_CFG, msr);
393 #endif
395 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
398 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
399 * so ssbd_tif_to_spec_ctrl() just works.
401 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
405 * Update the MSRs managing speculation control, during context switch.
407 * tifp: Previous task's thread flags
408 * tifn: Next task's thread flags
410 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
411 unsigned long tifn)
413 unsigned long tif_diff = tifp ^ tifn;
414 u64 msr = x86_spec_ctrl_base;
415 bool updmsr = false;
418 * If TIF_SSBD is different, select the proper mitigation
419 * method. Note that if SSBD mitigation is disabled or permanentely
420 * enabled this branch can't be taken because nothing can set
421 * TIF_SSBD.
423 if (tif_diff & _TIF_SSBD) {
424 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
425 amd_set_ssb_virt_state(tifn);
426 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
427 amd_set_core_ssb_state(tifn);
428 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
429 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
430 msr |= ssbd_tif_to_spec_ctrl(tifn);
431 updmsr = true;
436 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
437 * otherwise avoid the MSR write.
439 if (IS_ENABLED(CONFIG_SMP) &&
440 static_branch_unlikely(&switch_to_cond_stibp)) {
441 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
442 msr |= stibp_tif_to_spec_ctrl(tifn);
445 if (updmsr)
446 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
449 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
451 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
452 if (task_spec_ssb_disable(tsk))
453 set_tsk_thread_flag(tsk, TIF_SSBD);
454 else
455 clear_tsk_thread_flag(tsk, TIF_SSBD);
457 if (task_spec_ib_disable(tsk))
458 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
459 else
460 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
462 /* Return the updated threadinfo flags*/
463 return task_thread_info(tsk)->flags;
466 void speculation_ctrl_update(unsigned long tif)
468 /* Forced update. Make sure all relevant TIF flags are different */
469 preempt_disable();
470 __speculation_ctrl_update(~tif, tif);
471 preempt_enable();
474 /* Called from seccomp/prctl update */
475 void speculation_ctrl_update_current(void)
477 preempt_disable();
478 speculation_ctrl_update(speculation_ctrl_update_tif(current));
479 preempt_enable();
482 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
484 struct thread_struct *prev, *next;
485 unsigned long tifp, tifn;
487 prev = &prev_p->thread;
488 next = &next_p->thread;
490 tifn = READ_ONCE(task_thread_info(next_p)->flags);
491 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
492 switch_to_bitmap(prev, next, tifp, tifn);
494 propagate_user_return_notify(prev_p, next_p);
496 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
497 arch_has_block_step()) {
498 unsigned long debugctl, msk;
500 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
501 debugctl &= ~DEBUGCTLMSR_BTF;
502 msk = tifn & _TIF_BLOCKSTEP;
503 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
504 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
507 if ((tifp ^ tifn) & _TIF_NOTSC)
508 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
510 if ((tifp ^ tifn) & _TIF_NOCPUID)
511 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
513 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
514 __speculation_ctrl_update(tifp, tifn);
515 } else {
516 speculation_ctrl_update_tif(prev_p);
517 tifn = speculation_ctrl_update_tif(next_p);
519 /* Enforce MSR update to ensure consistent state */
520 __speculation_ctrl_update(~tifn, tifn);
525 * Idle related variables and functions
527 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
528 EXPORT_SYMBOL(boot_option_idle_override);
530 static void (*x86_idle)(void);
532 #ifndef CONFIG_SMP
533 static inline void play_dead(void)
535 BUG();
537 #endif
539 void arch_cpu_idle_enter(void)
541 tsc_verify_tsc_adjust(false);
542 local_touch_nmi();
545 void arch_cpu_idle_dead(void)
547 play_dead();
551 * Called from the generic idle code.
553 void arch_cpu_idle(void)
555 x86_idle();
559 * We use this if we don't have any better idle routine..
561 void __cpuidle default_idle(void)
563 trace_cpu_idle_rcuidle(1, smp_processor_id());
564 safe_halt();
565 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
567 #ifdef CONFIG_APM_MODULE
568 EXPORT_SYMBOL(default_idle);
569 #endif
571 #ifdef CONFIG_XEN
572 bool xen_set_default_idle(void)
574 bool ret = !!x86_idle;
576 x86_idle = default_idle;
578 return ret;
580 #endif
582 void stop_this_cpu(void *dummy)
584 local_irq_disable();
586 * Remove this CPU:
588 set_cpu_online(smp_processor_id(), false);
589 disable_local_APIC();
590 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
593 * Use wbinvd on processors that support SME. This provides support
594 * for performing a successful kexec when going from SME inactive
595 * to SME active (or vice-versa). The cache must be cleared so that
596 * if there are entries with the same physical address, both with and
597 * without the encryption bit, they don't race each other when flushed
598 * and potentially end up with the wrong entry being committed to
599 * memory.
601 if (boot_cpu_has(X86_FEATURE_SME))
602 native_wbinvd();
603 for (;;) {
605 * Use native_halt() so that memory contents don't change
606 * (stack usage and variables) after possibly issuing the
607 * native_wbinvd() above.
609 native_halt();
614 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
615 * states (local apic timer and TSC stop).
617 static void amd_e400_idle(void)
620 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
621 * gets set after static_cpu_has() places have been converted via
622 * alternatives.
624 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
625 default_idle();
626 return;
629 tick_broadcast_enter();
631 default_idle();
634 * The switch back from broadcast mode needs to be called with
635 * interrupts disabled.
637 local_irq_disable();
638 tick_broadcast_exit();
639 local_irq_enable();
643 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
644 * We can't rely on cpuidle installing MWAIT, because it will not load
645 * on systems that support only C1 -- so the boot default must be MWAIT.
647 * Some AMD machines are the opposite, they depend on using HALT.
649 * So for default C1, which is used during boot until cpuidle loads,
650 * use MWAIT-C1 on Intel HW that has it, else use HALT.
652 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
654 if (c->x86_vendor != X86_VENDOR_INTEL)
655 return 0;
657 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
658 return 0;
660 return 1;
664 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
665 * with interrupts enabled and no flags, which is backwards compatible with the
666 * original MWAIT implementation.
668 static __cpuidle void mwait_idle(void)
670 if (!current_set_polling_and_test()) {
671 trace_cpu_idle_rcuidle(1, smp_processor_id());
672 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
673 mb(); /* quirk */
674 clflush((void *)&current_thread_info()->flags);
675 mb(); /* quirk */
678 __monitor((void *)&current_thread_info()->flags, 0, 0);
679 if (!need_resched())
680 __sti_mwait(0, 0);
681 else
682 local_irq_enable();
683 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
684 } else {
685 local_irq_enable();
687 __current_clr_polling();
690 void select_idle_routine(const struct cpuinfo_x86 *c)
692 #ifdef CONFIG_SMP
693 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
694 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
695 #endif
696 if (x86_idle || boot_option_idle_override == IDLE_POLL)
697 return;
699 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
700 pr_info("using AMD E400 aware idle routine\n");
701 x86_idle = amd_e400_idle;
702 } else if (prefer_mwait_c1_over_halt(c)) {
703 pr_info("using mwait in idle threads\n");
704 x86_idle = mwait_idle;
705 } else
706 x86_idle = default_idle;
709 void amd_e400_c1e_apic_setup(void)
711 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
712 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
713 local_irq_disable();
714 tick_broadcast_force();
715 local_irq_enable();
719 void __init arch_post_acpi_subsys_init(void)
721 u32 lo, hi;
723 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
724 return;
727 * AMD E400 detection needs to happen after ACPI has been enabled. If
728 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
729 * MSR_K8_INT_PENDING_MSG.
731 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
732 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
733 return;
735 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
737 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
738 mark_tsc_unstable("TSC halt in AMD C1E");
739 pr_info("System has AMD C1E enabled\n");
742 static int __init idle_setup(char *str)
744 if (!str)
745 return -EINVAL;
747 if (!strcmp(str, "poll")) {
748 pr_info("using polling idle threads\n");
749 boot_option_idle_override = IDLE_POLL;
750 cpu_idle_poll_ctrl(true);
751 } else if (!strcmp(str, "halt")) {
753 * When the boot option of idle=halt is added, halt is
754 * forced to be used for CPU idle. In such case CPU C2/C3
755 * won't be used again.
756 * To continue to load the CPU idle driver, don't touch
757 * the boot_option_idle_override.
759 x86_idle = default_idle;
760 boot_option_idle_override = IDLE_HALT;
761 } else if (!strcmp(str, "nomwait")) {
763 * If the boot option of "idle=nomwait" is added,
764 * it means that mwait will be disabled for CPU C2/C3
765 * states. In such case it won't touch the variable
766 * of boot_option_idle_override.
768 boot_option_idle_override = IDLE_NOMWAIT;
769 } else
770 return -1;
772 return 0;
774 early_param("idle", idle_setup);
776 unsigned long arch_align_stack(unsigned long sp)
778 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
779 sp -= get_random_int() % 8192;
780 return sp & ~0xf;
783 unsigned long arch_randomize_brk(struct mm_struct *mm)
785 return randomize_page(mm->brk, 0x02000000);
789 * Called from fs/proc with a reference on @p to find the function
790 * which called into schedule(). This needs to be done carefully
791 * because the task might wake up and we might look at a stack
792 * changing under us.
794 unsigned long get_wchan(struct task_struct *p)
796 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
797 int count = 0;
799 if (p == current || p->state == TASK_RUNNING)
800 return 0;
802 if (!try_get_task_stack(p))
803 return 0;
805 start = (unsigned long)task_stack_page(p);
806 if (!start)
807 goto out;
810 * Layout of the stack page:
812 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
813 * PADDING
814 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
815 * stack
816 * ----------- bottom = start
818 * The tasks stack pointer points at the location where the
819 * framepointer is stored. The data on the stack is:
820 * ... IP FP ... IP FP
822 * We need to read FP and IP, so we need to adjust the upper
823 * bound by another unsigned long.
825 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
826 top -= 2 * sizeof(unsigned long);
827 bottom = start;
829 sp = READ_ONCE(p->thread.sp);
830 if (sp < bottom || sp > top)
831 goto out;
833 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
834 do {
835 if (fp < bottom || fp > top)
836 goto out;
837 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
838 if (!in_sched_functions(ip)) {
839 ret = ip;
840 goto out;
842 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
843 } while (count++ < 16 && p->state != TASK_RUNNING);
845 out:
846 put_task_stack(p);
847 return ret;
850 long do_arch_prctl_common(struct task_struct *task, int option,
851 unsigned long cpuid_enabled)
853 switch (option) {
854 case ARCH_GET_CPUID:
855 return get_cpuid_mode();
856 case ARCH_SET_CPUID:
857 return set_cpuid_mode(task, cpuid_enabled);
860 return -EINVAL;