x86/ldt: Further fix FPU emulation
[linux/fpc-iii.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
blob3ca0233b3ea23682c23126bc24357629e3a4eb9a
1 /* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
24 /**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
33 s32 err;
34 u32 reg;
35 u16 i;
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err)
55 return err;
57 /* Verify that DMA is no longer active */
58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 return FM10K_ERR_DMA_PENDING;
62 /* Inititate data path reset */
63 reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
64 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
66 /* Flush write and allow 100us for reset to complete */
67 fm10k_write_flush(hw);
68 udelay(FM10K_RESET_TIMEOUT);
70 /* Verify we made it out of reset */
71 reg = fm10k_read_reg(hw, FM10K_IP);
72 if (!(reg & FM10K_IP_NOTINRESET))
73 err = FM10K_ERR_RESET_FAILED;
75 return err;
78 /**
79 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
80 * @hw: pointer to hardware structure
82 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
83 **/
84 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
86 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
88 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
91 /**
92 * fm10k_init_hw_pf - PF hardware initialization
93 * @hw: pointer to hardware structure
95 **/
96 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
98 u32 dma_ctrl, txqctl;
99 u16 i;
101 /* Establish default VSI as valid */
102 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
103 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
104 FM10K_DGLORTMAP_ANY);
106 /* Invalidate all other GLORT entries */
107 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
108 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
110 /* reset ITR2(0) to point to itself */
111 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
113 /* reset VF ITR2(0) to point to 0 avoid PF registers */
114 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
116 /* loop through all PF ITR2 registers pointing them to the previous */
117 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
118 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
120 /* Enable interrupt moderator if not already enabled */
121 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
123 /* compute the default txqctl configuration */
124 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
125 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
127 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
128 /* configure rings for 256 Queue / 32 Descriptor cache mode */
129 fm10k_write_reg(hw, FM10K_TQDLOC(i),
130 (i * FM10K_TQDLOC_BASE_32_DESC) |
131 FM10K_TQDLOC_SIZE_32_DESC);
132 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
134 /* configure rings to provide TPH processing hints */
135 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
136 FM10K_TPH_TXCTRL_DESC_TPHEN |
137 FM10K_TPH_TXCTRL_DESC_RROEN |
138 FM10K_TPH_TXCTRL_DESC_WROEN |
139 FM10K_TPH_TXCTRL_DATA_RROEN);
140 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
141 FM10K_TPH_RXCTRL_DESC_TPHEN |
142 FM10K_TPH_RXCTRL_DESC_RROEN |
143 FM10K_TPH_RXCTRL_DATA_WROEN |
144 FM10K_TPH_RXCTRL_HDR_WROEN);
147 /* set max hold interval to align with 1.024 usec in all modes */
148 switch (hw->bus.speed) {
149 case fm10k_bus_speed_2500:
150 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
151 break;
152 case fm10k_bus_speed_5000:
153 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
154 break;
155 case fm10k_bus_speed_8000:
156 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
157 break;
158 default:
159 dma_ctrl = 0;
160 break;
163 /* Configure TSO flags */
164 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
165 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
167 /* Enable DMA engine
168 * Set Rx Descriptor size to 32
169 * Set Minimum MSS to 64
170 * Set Maximum number of Rx queues to 256 / 32 Descriptor
172 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
173 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
174 FM10K_DMA_CTRL_32_DESC;
176 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
178 /* record maximum queue count, we limit ourselves to 128 */
179 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
181 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
182 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
184 return 0;
188 * fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU
189 * @hw: pointer to hardware structure
191 * Looks at the PCIe bus info to confirm whether or not this slot can support
192 * the necessary bandwidth for this device.
194 static bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw)
196 return (hw->bus.speed == hw->bus_caps.speed) &&
197 (hw->bus.width == hw->bus_caps.width);
201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202 * @hw: pointer to hardware structure
203 * @vid: VLAN ID to add to table
204 * @vsi: Index indicating VF ID or PF ID in table
205 * @set: Indicates if this is a set or clear operation
207 * This function adds or removes the corresponding VLAN ID from the VLAN
208 * filter table for the corresponding function. In addition to the
209 * standard set/clear that supports one bit a multi-bit write is
210 * supported to set 64 bits at a time.
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
214 u32 vlan_table, reg, mask, bit, len;
216 /* verify the VSI index is valid */
217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 return FM10K_ERR_PARAM;
220 /* VLAN multi-bit write:
221 * The multi-bit write has several parts to it.
222 * 3 2 1 0
223 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 * | RSVD0 | Length |C|RSVD0| VLAN ID |
226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 * VLAN ID: Vlan Starting value
229 * RSVD0: Reserved section, must be 0
230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 * Length: Number of times to repeat the bit being set
233 len = vid >> 16;
234 vid = (vid << 17) >> 17;
236 /* verify the reserved 0 fields are 0 */
237 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 return FM10K_ERR_PARAM;
240 /* Loop through the table updating all required VLANs */
241 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 len < FM10K_VLAN_TABLE_VID_MAX;
243 len -= 32 - bit, reg++, bit = 0) {
244 /* record the initial state of the register */
245 vlan_table = fm10k_read_reg(hw, reg);
247 /* truncate mask if we are at the start or end of the run */
248 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
250 /* make necessary modifications to the register */
251 mask &= set ? ~vlan_table : vlan_table;
252 if (mask)
253 fm10k_write_reg(hw, reg, vlan_table ^ mask);
256 return 0;
260 * fm10k_read_mac_addr_pf - Read device MAC address
261 * @hw: pointer to the HW structure
263 * Reads the device MAC address from the SM_AREA and stores the value.
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
267 u8 perm_addr[ETH_ALEN];
268 u32 serial_num;
269 int i;
271 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
273 /* last byte should be all 1's */
274 if ((~serial_num) << 24)
275 return FM10K_ERR_INVALID_MAC_ADDR;
277 perm_addr[0] = (u8)(serial_num >> 24);
278 perm_addr[1] = (u8)(serial_num >> 16);
279 perm_addr[2] = (u8)(serial_num >> 8);
281 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
283 /* first byte should be all 1's */
284 if ((~serial_num) >> 24)
285 return FM10K_ERR_INVALID_MAC_ADDR;
287 perm_addr[3] = (u8)(serial_num >> 16);
288 perm_addr[4] = (u8)(serial_num >> 8);
289 perm_addr[5] = (u8)(serial_num);
291 for (i = 0; i < ETH_ALEN; i++) {
292 hw->mac.perm_addr[i] = perm_addr[i];
293 hw->mac.addr[i] = perm_addr[i];
296 return 0;
300 * fm10k_glort_valid_pf - Validate that the provided glort is valid
301 * @hw: pointer to the HW structure
302 * @glort: base glort to be validated
304 * This function will return an error if the provided glort is invalid
306 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
308 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
310 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
314 * fm10k_update_xc_addr_pf - Update device addresses
315 * @hw: pointer to the HW structure
316 * @glort: base resource tag for this request
317 * @mac: MAC address to add/remove from table
318 * @vid: VLAN ID to add/remove from table
319 * @add: Indicates if this is an add or remove operation
320 * @flags: flags field to indicate add and secure
322 * This function generates a message to the Switch API requesting
323 * that the given logical port add/remove the given L2 MAC/VLAN address.
325 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326 const u8 *mac, u16 vid, bool add, u8 flags)
328 struct fm10k_mbx_info *mbx = &hw->mbx;
329 struct fm10k_mac_update mac_update;
330 u32 msg[5];
332 /* clear set bit from VLAN ID */
333 vid &= ~FM10K_VLAN_CLEAR;
335 /* if glort or vlan are not valid return error */
336 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337 return FM10K_ERR_PARAM;
339 /* record fields */
340 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341 ((u32)mac[3] << 16) |
342 ((u32)mac[4] << 8) |
343 ((u32)mac[5]));
344 mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) |
345 ((u32)mac[1]));
346 mac_update.vlan = cpu_to_le16(vid);
347 mac_update.glort = cpu_to_le16(glort);
348 mac_update.action = add ? 0 : 1;
349 mac_update.flags = flags;
351 /* populate mac_update fields */
352 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354 &mac_update, sizeof(mac_update));
356 /* load onto outgoing mailbox */
357 return mbx->ops.enqueue_tx(hw, mbx, msg);
361 * fm10k_update_uc_addr_pf - Update device unicast addresses
362 * @hw: pointer to the HW structure
363 * @glort: base resource tag for this request
364 * @mac: MAC address to add/remove from table
365 * @vid: VLAN ID to add/remove from table
366 * @add: Indicates if this is an add or remove operation
367 * @flags: flags field to indicate add and secure
369 * This function is used to add or remove unicast addresses for
370 * the PF.
372 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373 const u8 *mac, u16 vid, bool add, u8 flags)
375 /* verify MAC address is valid */
376 if (!is_valid_ether_addr(mac))
377 return FM10K_ERR_PARAM;
379 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
383 * fm10k_update_mc_addr_pf - Update device multicast addresses
384 * @hw: pointer to the HW structure
385 * @glort: base resource tag for this request
386 * @mac: MAC address to add/remove from table
387 * @vid: VLAN ID to add/remove from table
388 * @add: Indicates if this is an add or remove operation
390 * This function is used to add or remove multicast MAC addresses for
391 * the PF.
393 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394 const u8 *mac, u16 vid, bool add)
396 /* verify multicast address is valid */
397 if (!is_multicast_ether_addr(mac))
398 return FM10K_ERR_PARAM;
400 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
404 * fm10k_update_xcast_mode_pf - Request update of multicast mode
405 * @hw: pointer to hardware structure
406 * @glort: base resource tag for this request
407 * @mode: integer value indicating mode being requested
409 * This function will attempt to request a higher mode for the port
410 * so that it can enable either multicast, multicast promiscuous, or
411 * promiscuous mode of operation.
413 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
415 struct fm10k_mbx_info *mbx = &hw->mbx;
416 u32 msg[3], xcast_mode;
418 if (mode > FM10K_XCAST_MODE_NONE)
419 return FM10K_ERR_PARAM;
420 /* if glort is not valid return error */
421 if (!fm10k_glort_valid_pf(hw, glort))
422 return FM10K_ERR_PARAM;
424 /* write xcast mode as a single u32 value,
425 * lower 16 bits: glort
426 * upper 16 bits: mode
428 xcast_mode = ((u32)mode << 16) | glort;
430 /* generate message requesting to change xcast mode */
431 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
432 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434 /* load onto outgoing mailbox */
435 return mbx->ops.enqueue_tx(hw, mbx, msg);
439 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
440 * @hw: pointer to hardware structure
442 * This function walks through the MSI-X vector table to determine the
443 * number of active interrupts and based on that information updates the
444 * interrupt moderator linked list.
446 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448 u32 i;
450 /* Disable interrupt moderator */
451 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453 /* loop through PF from last to first looking enabled vectors */
454 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
455 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
456 break;
459 /* always reset VFITR2[0] to point to last enabled PF vector */
460 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462 /* reset ITR2[0] to point to last enabled PF vector */
463 if (!hw->iov.num_vfs)
464 fm10k_write_reg(hw, FM10K_ITR2(0), i);
466 /* Enable interrupt moderator */
467 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
471 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
472 * @hw: pointer to the HW structure
473 * @glort: base resource tag for this request
474 * @count: number of logical ports being updated
475 * @enable: boolean value indicating enable or disable
477 * This function is used to add/remove a logical port from the switch.
479 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
480 u16 count, bool enable)
482 struct fm10k_mbx_info *mbx = &hw->mbx;
483 u32 msg[3], lport_msg;
485 /* do nothing if we are being asked to create or destroy 0 ports */
486 if (!count)
487 return 0;
489 /* if glort is not valid return error */
490 if (!fm10k_glort_valid_pf(hw, glort))
491 return FM10K_ERR_PARAM;
493 /* construct the lport message from the 2 pieces of data we have */
494 lport_msg = ((u32)count << 16) | glort;
496 /* generate lport create/delete message */
497 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
498 FM10K_PF_MSG_ID_LPORT_DELETE);
499 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
501 /* load onto outgoing mailbox */
502 return mbx->ops.enqueue_tx(hw, mbx, msg);
506 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
507 * @hw: pointer to hardware structure
508 * @dglort: pointer to dglort configuration structure
510 * Reads the configuration structure contained in dglort_cfg and uses
511 * that information to then populate a DGLORTMAP/DEC entry and the queues
512 * to which it has been assigned.
514 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
515 struct fm10k_dglort_cfg *dglort)
517 u16 glort, queue_count, vsi_count, pc_count;
518 u16 vsi, queue, pc, q_idx;
519 u32 txqctl, dglortdec, dglortmap;
521 /* verify the dglort pointer */
522 if (!dglort)
523 return FM10K_ERR_PARAM;
525 /* verify the dglort values */
526 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
527 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
528 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
529 return FM10K_ERR_PARAM;
531 /* determine count of VSIs and queues */
532 queue_count = 1 << (dglort->rss_l + dglort->pc_l);
533 vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
534 glort = dglort->glort;
535 q_idx = dglort->queue_b;
537 /* configure SGLORT for queues */
538 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
539 for (queue = 0; queue < queue_count; queue++, q_idx++) {
540 if (q_idx >= FM10K_MAX_QUEUES)
541 break;
543 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
544 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
548 /* determine count of PCs and queues */
549 queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
550 pc_count = 1 << dglort->pc_l;
552 /* configure PC for Tx queues */
553 for (pc = 0; pc < pc_count; pc++) {
554 q_idx = pc + dglort->queue_b;
555 for (queue = 0; queue < queue_count; queue++) {
556 if (q_idx >= FM10K_MAX_QUEUES)
557 break;
559 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
560 txqctl &= ~FM10K_TXQCTL_PC_MASK;
561 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
562 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
564 q_idx += pc_count;
568 /* configure DGLORTDEC */
569 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
570 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
571 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
572 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
573 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
574 ((u32)(dglort->queue_l));
575 if (dglort->inner_rss)
576 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
578 /* configure DGLORTMAP */
579 dglortmap = (dglort->idx == fm10k_dglort_default) ?
580 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
581 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
582 dglortmap |= dglort->glort;
584 /* write values to hardware */
585 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
586 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
588 return 0;
591 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
593 u16 num_pools = hw->iov.num_pools;
595 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
596 8 : FM10K_MAX_QUEUES_POOL;
599 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
601 u16 num_vfs = hw->iov.num_vfs;
602 u16 vf_q_idx = FM10K_MAX_QUEUES;
604 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
606 return vf_q_idx;
609 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
611 u16 num_pools = hw->iov.num_pools;
613 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
614 FM10K_MAX_VECTORS_POOL;
617 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
619 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
621 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
623 return vf_v_idx;
627 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
628 * @hw: pointer to the HW structure
629 * @num_vfs: number of VFs to be allocated
630 * @num_pools: number of virtualization pools to be allocated
632 * Allocates queues and traffic classes to virtualization entities to prepare
633 * the PF for SR-IOV and VMDq
635 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
636 u16 num_pools)
638 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
639 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
640 int i, j;
642 /* hardware only supports up to 64 pools */
643 if (num_pools > 64)
644 return FM10K_ERR_PARAM;
646 /* the number of VFs cannot exceed the number of pools */
647 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
648 return FM10K_ERR_PARAM;
650 /* record number of virtualization entities */
651 hw->iov.num_vfs = num_vfs;
652 hw->iov.num_pools = num_pools;
654 /* determine qmap offsets and counts */
655 qmap_stride = (num_vfs > 8) ? 32 : 256;
656 qpp = fm10k_queues_per_pool(hw);
657 vpp = fm10k_vectors_per_pool(hw);
659 /* calculate starting index for queues */
660 vf_q_idx = fm10k_vf_queue_index(hw, 0);
661 qmap_idx = 0;
663 /* establish TCs with -1 credits and no quanta to prevent transmit */
664 for (i = 0; i < num_vfs; i++) {
665 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
666 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
667 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
668 FM10K_TC_CREDIT_CREDIT_MASK);
671 /* zero out all mbmem registers */
672 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
673 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
675 /* clear event notification of VF FLR */
676 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
677 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
679 /* loop through unallocated rings assigning them back to PF */
680 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
681 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
682 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
683 FM10K_TXQCTL_UNLIMITED_BW | vid);
684 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
687 /* PF should have already updated VFITR2[0] */
689 /* update all ITR registers to flow to VFITR2[0] */
690 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
691 if (!(i & (vpp - 1)))
692 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
693 else
694 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
697 /* update PF ITR2[0] to reference the last vector */
698 fm10k_write_reg(hw, FM10K_ITR2(0),
699 fm10k_vf_vector_index(hw, num_vfs - 1));
701 /* loop through rings populating rings and TCs */
702 for (i = 0; i < num_vfs; i++) {
703 /* record index for VF queue 0 for use in end of loop */
704 vf_q_idx0 = vf_q_idx;
706 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
707 /* assign VF and locked TC to queues */
708 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
709 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
710 (i << FM10K_TXQCTL_TC_SHIFT) | i |
711 FM10K_TXQCTL_VF | vid);
712 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
713 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
714 FM10K_RXDCTL_DROP_ON_EMPTY);
715 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
716 FM10K_RXQCTL_VF |
717 (i << FM10K_RXQCTL_VF_SHIFT));
719 /* map queue pair to VF */
720 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
721 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
724 /* repeat the first ring for all of the remaining VF rings */
725 for (; j < qmap_stride; j++, qmap_idx++) {
726 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
727 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
731 /* loop through remaining indexes assigning all to queue 0 */
732 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
733 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
734 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
735 qmap_idx++;
738 return 0;
742 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
743 * @hw: pointer to the HW structure
744 * @vf_idx: index of VF receiving GLORT
745 * @rate: Rate indicated in Mb/s
747 * Configured the TC for a given VF to allow only up to a given number
748 * of Mb/s of outgoing Tx throughput.
750 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
752 /* configure defaults */
753 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
754 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
756 /* verify vf is in range */
757 if (vf_idx >= hw->iov.num_vfs)
758 return FM10K_ERR_PARAM;
760 /* set interval to align with 4.096 usec in all modes */
761 switch (hw->bus.speed) {
762 case fm10k_bus_speed_2500:
763 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
764 break;
765 case fm10k_bus_speed_5000:
766 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
767 break;
768 default:
769 break;
772 if (rate) {
773 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
774 return FM10K_ERR_PARAM;
776 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
777 * The rate is provided in Mbits per second
778 * To tralslate from rate to quanta we need to multiply the
779 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
780 * dealing with floating point we can round the values up
781 * to the nearest whole number ratio which gives us 128 / 125.
783 tc_rate = (rate * 128) / 125;
785 /* try to keep the rate limiting accurate by increasing
786 * the number of credits and interval for rates less than 4Gb/s
788 if (rate < 4000)
789 interval <<= 1;
790 else
791 tc_rate >>= 1;
794 /* update rate limiter with new values */
795 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
796 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
797 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 return 0;
803 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
804 * @hw: pointer to the HW structure
805 * @vf_idx: index of VF receiving GLORT
807 * Update the interrupt moderator linked list to include any MSI-X
808 * interrupts which the VF has enabled in the MSI-X vector table.
810 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
812 u16 vf_v_idx, vf_v_limit, i;
814 /* verify vf is in range */
815 if (vf_idx >= hw->iov.num_vfs)
816 return FM10K_ERR_PARAM;
818 /* determine vector offset and count */
819 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
820 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
822 /* search for first vector that is not masked */
823 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
824 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
825 break;
828 /* reset linked list so it now includes our active vectors */
829 if (vf_idx == (hw->iov.num_vfs - 1))
830 fm10k_write_reg(hw, FM10K_ITR2(0), i);
831 else
832 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
834 return 0;
838 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
839 * @hw: pointer to the HW structure
840 * @vf_info: pointer to VF information structure
842 * Assign a MAC address and default VLAN to a VF and notify it of the update
844 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
845 struct fm10k_vf_info *vf_info)
847 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
848 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
849 s32 err = 0;
850 u16 vf_idx, vf_vid;
852 /* verify vf is in range */
853 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
854 return FM10K_ERR_PARAM;
856 /* determine qmap offsets and counts */
857 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
858 queues_per_pool = fm10k_queues_per_pool(hw);
860 /* calculate starting index for queues */
861 vf_idx = vf_info->vf_idx;
862 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
863 qmap_idx = qmap_stride * vf_idx;
865 /* MAP Tx queue back to 0 temporarily, and disable it */
866 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
867 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
869 /* determine correct default VLAN ID */
870 if (vf_info->pf_vid)
871 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
872 else
873 vf_vid = vf_info->sw_vid;
875 /* generate MAC_ADDR request */
876 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
877 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
878 vf_info->mac, vf_vid);
880 /* load onto outgoing mailbox, ignore any errors on enqueue */
881 if (vf_info->mbx.ops.enqueue_tx)
882 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
884 /* verify ring has disabled before modifying base address registers */
885 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
886 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
887 /* limit ourselves to a 1ms timeout */
888 if (timeout == 10) {
889 err = FM10K_ERR_DMA_PENDING;
890 goto err_out;
893 usleep_range(100, 200);
894 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
897 /* Update base address registers to contain MAC address */
898 if (is_valid_ether_addr(vf_info->mac)) {
899 tdbal = (((u32)vf_info->mac[3]) << 24) |
900 (((u32)vf_info->mac[4]) << 16) |
901 (((u32)vf_info->mac[5]) << 8);
903 tdbah = (((u32)0xFF) << 24) |
904 (((u32)vf_info->mac[0]) << 16) |
905 (((u32)vf_info->mac[1]) << 8) |
906 ((u32)vf_info->mac[2]);
909 /* Record the base address into queue 0 */
910 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
911 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
913 err_out:
914 /* configure Queue control register */
915 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
916 FM10K_TXQCTL_VID_MASK;
917 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
918 FM10K_TXQCTL_VF | vf_idx;
920 /* assign VID */
921 for (i = 0; i < queues_per_pool; i++)
922 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
924 /* restore the queue back to VF ownership */
925 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
926 return err;
930 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
931 * @hw: pointer to the HW structure
932 * @vf_info: pointer to VF information structure
934 * Reassign the interrupts and queues to a VF following an FLR
936 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
937 struct fm10k_vf_info *vf_info)
939 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
940 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
941 u16 vf_v_idx, vf_v_limit, vf_vid;
942 u8 vf_idx = vf_info->vf_idx;
943 int i;
945 /* verify vf is in range */
946 if (vf_idx >= hw->iov.num_vfs)
947 return FM10K_ERR_PARAM;
949 /* clear event notification of VF FLR */
950 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
952 /* force timeout and then disconnect the mailbox */
953 vf_info->mbx.timeout = 0;
954 if (vf_info->mbx.ops.disconnect)
955 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
957 /* determine vector offset and count */
958 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
959 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
961 /* determine qmap offsets and counts */
962 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
963 queues_per_pool = fm10k_queues_per_pool(hw);
964 qmap_idx = qmap_stride * vf_idx;
966 /* make all the queues inaccessible to the VF */
967 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
968 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
969 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
972 /* calculate starting index for queues */
973 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
975 /* determine correct default VLAN ID */
976 if (vf_info->pf_vid)
977 vf_vid = vf_info->pf_vid;
978 else
979 vf_vid = vf_info->sw_vid;
981 /* configure Queue control register */
982 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
983 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
984 FM10K_TXQCTL_VF | vf_idx;
985 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
987 /* stop further DMA and reset queue ownership back to VF */
988 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
989 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
990 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
991 fm10k_write_reg(hw, FM10K_RXDCTL(i),
992 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
993 FM10K_RXDCTL_DROP_ON_EMPTY);
994 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
997 /* reset TC with -1 credits and no quanta to prevent transmit */
998 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
999 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1000 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1001 FM10K_TC_CREDIT_CREDIT_MASK);
1003 /* update our first entry in the table based on previous VF */
1004 if (!vf_idx)
1005 hw->mac.ops.update_int_moderator(hw);
1006 else
1007 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1009 /* reset linked list so it now includes our active vectors */
1010 if (vf_idx == (hw->iov.num_vfs - 1))
1011 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1012 else
1013 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1015 /* link remaining vectors so that next points to previous */
1016 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1017 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1019 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1020 for (i = FM10K_VFMBMEM_LEN; i--;)
1021 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1022 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1023 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1024 for (i = FM10K_RETA_SIZE; i--;)
1025 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1026 for (i = FM10K_RSSRK_SIZE; i--;)
1027 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1028 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1030 /* Update base address registers to contain MAC address */
1031 if (is_valid_ether_addr(vf_info->mac)) {
1032 tdbal = (((u32)vf_info->mac[3]) << 24) |
1033 (((u32)vf_info->mac[4]) << 16) |
1034 (((u32)vf_info->mac[5]) << 8);
1035 tdbah = (((u32)0xFF) << 24) |
1036 (((u32)vf_info->mac[0]) << 16) |
1037 (((u32)vf_info->mac[1]) << 8) |
1038 ((u32)vf_info->mac[2]);
1041 /* map queue pairs back to VF from last to first */
1042 for (i = queues_per_pool; i--;) {
1043 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1044 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1045 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1046 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1049 /* repeat the first ring for all the remaining VF rings */
1050 for (i = queues_per_pool; i < qmap_stride; i++) {
1051 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1052 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1055 return 0;
1059 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1060 * @hw: pointer to hardware structure
1061 * @vf_info: pointer to VF information structure
1062 * @lport_idx: Logical port offset from the hardware glort
1063 * @flags: Set of capability flags to extend port beyond basic functionality
1065 * This function allows enabling a VF port by assigning it a GLORT and
1066 * setting the flags so that it can enable an Rx mode.
1068 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1069 struct fm10k_vf_info *vf_info,
1070 u16 lport_idx, u8 flags)
1072 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1074 /* if glort is not valid return error */
1075 if (!fm10k_glort_valid_pf(hw, glort))
1076 return FM10K_ERR_PARAM;
1078 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1079 vf_info->glort = glort;
1081 return 0;
1085 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1086 * @hw: pointer to hardware structure
1087 * @vf_info: pointer to VF information structure
1089 * This function disables a VF port by stripping it of a GLORT and
1090 * setting the flags so that it cannot enable any Rx mode.
1092 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1093 struct fm10k_vf_info *vf_info)
1095 u32 msg[1];
1097 /* need to disable the port if it is already enabled */
1098 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1099 /* notify switch that this port has been disabled */
1100 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1102 /* generate port state response to notify VF it is not ready */
1103 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1104 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1107 /* clear flags and glort if it exists */
1108 vf_info->vf_flags = 0;
1109 vf_info->glort = 0;
1113 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1114 * @hw: pointer to hardware structure
1115 * @q: stats for all queues of a VF
1116 * @vf_idx: index of VF
1118 * This function collects queue stats for VFs.
1120 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1121 struct fm10k_hw_stats_q *q,
1122 u16 vf_idx)
1124 u32 idx, qpp;
1126 /* get stats for all of the queues */
1127 qpp = fm10k_queues_per_pool(hw);
1128 idx = fm10k_vf_queue_index(hw, vf_idx);
1129 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1132 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1133 struct fm10k_vf_info *vf_info,
1134 u64 timestamp)
1136 u32 msg[4];
1138 /* generate port state response to notify VF it is not ready */
1139 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1140 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1142 return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1146 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1147 * @hw: Pointer to hardware structure
1148 * @results: Pointer array to message, results[0] is pointer to message
1149 * @mbx: Pointer to mailbox information structure
1151 * This function is a default handler for MSI-X requests from the VF. The
1152 * assumption is that in this case it is acceptable to just directly
1153 * hand off the message from the VF to the underlying shared code.
1155 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1156 struct fm10k_mbx_info *mbx)
1158 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1159 u8 vf_idx = vf_info->vf_idx;
1161 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1165 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1166 * @hw: Pointer to hardware structure
1167 * @results: Pointer array to message, results[0] is pointer to message
1168 * @mbx: Pointer to mailbox information structure
1170 * This function is a default handler for MAC/VLAN requests from the VF.
1171 * The assumption is that in this case it is acceptable to just directly
1172 * hand off the message from the VF to the underlying shared code.
1174 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1175 struct fm10k_mbx_info *mbx)
1177 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1178 int err = 0;
1179 u8 mac[ETH_ALEN];
1180 u32 *result;
1181 u16 vlan;
1182 u32 vid;
1184 /* we shouldn't be updating rules on a disabled interface */
1185 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1186 err = FM10K_ERR_PARAM;
1188 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1189 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1191 /* record VLAN id requested */
1192 err = fm10k_tlv_attr_get_u32(result, &vid);
1193 if (err)
1194 return err;
1196 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1197 if (!vid || (vid == FM10K_VLAN_CLEAR)) {
1198 if (vf_info->pf_vid)
1199 vid |= vf_info->pf_vid;
1200 else
1201 vid |= vf_info->sw_vid;
1202 } else if (vid != vf_info->pf_vid) {
1203 return FM10K_ERR_PARAM;
1206 /* update VSI info for VF in regards to VLAN table */
1207 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi,
1208 !(vid & FM10K_VLAN_CLEAR));
1211 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1212 result = results[FM10K_MAC_VLAN_MSG_MAC];
1214 /* record unicast MAC address requested */
1215 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1216 if (err)
1217 return err;
1219 /* block attempts to set MAC for a locked device */
1220 if (is_valid_ether_addr(vf_info->mac) &&
1221 memcmp(mac, vf_info->mac, ETH_ALEN))
1222 return FM10K_ERR_PARAM;
1224 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1225 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1226 if (vf_info->pf_vid)
1227 vlan |= vf_info->pf_vid;
1228 else
1229 vlan |= vf_info->sw_vid;
1230 } else if (vf_info->pf_vid) {
1231 return FM10K_ERR_PARAM;
1234 /* notify switch of request for new unicast address */
1235 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan,
1236 !(vlan & FM10K_VLAN_CLEAR), 0);
1239 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1240 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1242 /* record multicast MAC address requested */
1243 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1244 if (err)
1245 return err;
1247 /* verify that the VF is allowed to request multicast */
1248 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1249 return FM10K_ERR_PARAM;
1251 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1252 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1253 if (vf_info->pf_vid)
1254 vlan |= vf_info->pf_vid;
1255 else
1256 vlan |= vf_info->sw_vid;
1257 } else if (vf_info->pf_vid) {
1258 return FM10K_ERR_PARAM;
1261 /* notify switch of request for new multicast address */
1262 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac, vlan,
1263 !(vlan & FM10K_VLAN_CLEAR));
1266 return err;
1270 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1271 * @vf_info: VF info structure containing capability flags
1272 * @mode: Requested xcast mode
1274 * This function outputs the mode that most closely matches the requested
1275 * mode. If not modes match it will request we disable the port
1277 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1278 u8 mode)
1280 u8 vf_flags = vf_info->vf_flags;
1282 /* match up mode to capabilities as best as possible */
1283 switch (mode) {
1284 case FM10K_XCAST_MODE_PROMISC:
1285 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1286 return FM10K_XCAST_MODE_PROMISC;
1287 /* fallthough */
1288 case FM10K_XCAST_MODE_ALLMULTI:
1289 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1290 return FM10K_XCAST_MODE_ALLMULTI;
1291 /* fallthough */
1292 case FM10K_XCAST_MODE_MULTI:
1293 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1294 return FM10K_XCAST_MODE_MULTI;
1295 /* fallthough */
1296 case FM10K_XCAST_MODE_NONE:
1297 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1298 return FM10K_XCAST_MODE_NONE;
1299 /* fallthough */
1300 default:
1301 break;
1304 /* disable interface as it should not be able to request any */
1305 return FM10K_XCAST_MODE_DISABLE;
1309 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1310 * @hw: Pointer to hardware structure
1311 * @results: Pointer array to message, results[0] is pointer to message
1312 * @mbx: Pointer to mailbox information structure
1314 * This function is a default handler for port state requests. The port
1315 * state requests for now are basic and consist of enabling or disabling
1316 * the port.
1318 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1319 struct fm10k_mbx_info *mbx)
1321 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1322 u32 *result;
1323 s32 err = 0;
1324 u32 msg[2];
1325 u8 mode = 0;
1327 /* verify VF is allowed to enable even minimal mode */
1328 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1329 return FM10K_ERR_PARAM;
1331 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1332 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1334 /* XCAST mode update requested */
1335 err = fm10k_tlv_attr_get_u8(result, &mode);
1336 if (err)
1337 return FM10K_ERR_PARAM;
1339 /* prep for possible demotion depending on capabilities */
1340 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1342 /* if mode is not currently enabled, enable it */
1343 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1344 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1346 /* swap mode back to a bit flag */
1347 mode = FM10K_VF_FLAG_SET_MODE(mode);
1348 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1349 /* need to disable the port if it is already enabled */
1350 if (FM10K_VF_FLAG_ENABLED(vf_info))
1351 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1352 1, false);
1354 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1355 * that we actually re-enable the LPORT state below. Note that
1356 * this has no impact if the VF is already disabled, as the
1357 * flags are already cleared.
1359 if (!err)
1360 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1362 /* when enabling the port we should reset the rate limiters */
1363 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1365 /* set mode for minimal functionality */
1366 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1368 /* generate port state response to notify VF it is ready */
1369 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1370 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1371 mbx->ops.enqueue_tx(hw, mbx, msg);
1374 /* if enable state toggled note the update */
1375 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1376 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1377 !!mode);
1379 /* if state change succeeded, then update our stored state */
1380 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1381 if (!err)
1382 vf_info->vf_flags = mode;
1384 return err;
1387 const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1388 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1389 FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1390 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1391 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1392 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1396 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1397 * @hw: pointer to hardware structure
1398 * @stats: pointer to the stats structure to update
1400 * This function collects and aggregates global and per queue hardware
1401 * statistics.
1403 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1404 struct fm10k_hw_stats *stats)
1406 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1407 u32 id, id_prev;
1409 /* Use Tx queue 0 as a canary to detect a reset */
1410 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1412 /* Read Global Statistics */
1413 do {
1414 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1415 &stats->timeout);
1416 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1417 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1418 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1419 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1420 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1421 &stats->vlan_drop);
1422 loopback_drop = fm10k_read_hw_stats_32b(hw,
1423 FM10K_STATS_LOOPBACK_DROP,
1424 &stats->loopback_drop);
1425 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1426 FM10K_STATS_NODESC_DROP,
1427 &stats->nodesc_drop);
1429 /* if value has not changed then we have consistent data */
1430 id_prev = id;
1431 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1432 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1434 /* drop non-ID bits and set VALID ID bit */
1435 id &= FM10K_TXQCTL_ID_MASK;
1436 id |= FM10K_STAT_VALID;
1438 /* Update Global Statistics */
1439 if (stats->stats_idx == id) {
1440 stats->timeout.count += timeout;
1441 stats->ur.count += ur;
1442 stats->ca.count += ca;
1443 stats->um.count += um;
1444 stats->xec.count += xec;
1445 stats->vlan_drop.count += vlan_drop;
1446 stats->loopback_drop.count += loopback_drop;
1447 stats->nodesc_drop.count += nodesc_drop;
1450 /* Update bases and record current PF id */
1451 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1452 fm10k_update_hw_base_32b(&stats->ur, ur);
1453 fm10k_update_hw_base_32b(&stats->ca, ca);
1454 fm10k_update_hw_base_32b(&stats->um, um);
1455 fm10k_update_hw_base_32b(&stats->xec, xec);
1456 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1457 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1458 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1459 stats->stats_idx = id;
1461 /* Update Queue Statistics */
1462 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1466 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1467 * @hw: pointer to hardware structure
1468 * @stats: pointer to the stats structure to update
1470 * This function resets the base for global and per queue hardware
1471 * statistics.
1473 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1474 struct fm10k_hw_stats *stats)
1476 /* Unbind Global Statistics */
1477 fm10k_unbind_hw_stats_32b(&stats->timeout);
1478 fm10k_unbind_hw_stats_32b(&stats->ur);
1479 fm10k_unbind_hw_stats_32b(&stats->ca);
1480 fm10k_unbind_hw_stats_32b(&stats->um);
1481 fm10k_unbind_hw_stats_32b(&stats->xec);
1482 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1483 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1484 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1486 /* Unbind Queue Statistics */
1487 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1489 /* Reinitialize bases for all stats */
1490 fm10k_update_hw_stats_pf(hw, stats);
1494 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1495 * @hw: pointer to hardware structure
1496 * @dma_mask: 64 bit DMA mask required for platform
1498 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1499 * to limit the access to memory beyond what is physically in the system.
1501 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1503 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1504 u32 phyaddr = (u32)(dma_mask >> 32);
1506 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1510 * fm10k_get_fault_pf - Record a fault in one of the interface units
1511 * @hw: pointer to hardware structure
1512 * @type: pointer to fault type register offset
1513 * @fault: pointer to memory location to record the fault
1515 * Record the fault register contents to the fault data structure and
1516 * clear the entry from the register.
1518 * Returns ERR_PARAM if invalid register is specified or no error is present.
1520 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1521 struct fm10k_fault *fault)
1523 u32 func;
1525 /* verify the fault register is in range and is aligned */
1526 switch (type) {
1527 case FM10K_PCA_FAULT:
1528 case FM10K_THI_FAULT:
1529 case FM10K_FUM_FAULT:
1530 break;
1531 default:
1532 return FM10K_ERR_PARAM;
1535 /* only service faults that are valid */
1536 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1537 if (!(func & FM10K_FAULT_FUNC_VALID))
1538 return FM10K_ERR_PARAM;
1540 /* read remaining fields */
1541 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1542 fault->address <<= 32;
1543 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1544 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1546 /* clear valid bit to allow for next error */
1547 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1549 /* Record which function triggered the error */
1550 if (func & FM10K_FAULT_FUNC_PF)
1551 fault->func = 0;
1552 else
1553 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1554 FM10K_FAULT_FUNC_VF_SHIFT);
1556 /* record fault type */
1557 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1559 return 0;
1563 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1564 * @hw: pointer to hardware structure
1567 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1569 struct fm10k_mbx_info *mbx = &hw->mbx;
1570 u32 msg[1];
1572 /* issue request asking for LPORT map */
1573 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1575 /* load onto outgoing mailbox */
1576 return mbx->ops.enqueue_tx(hw, mbx, msg);
1580 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1581 * @hw: pointer to hardware structure
1582 * @switch_ready: pointer to boolean value that will record switch state
1584 * This funciton will check the DMA_CTRL2 register and mailbox in order
1585 * to determine if the switch is ready for the PF to begin requesting
1586 * addresses and mapping traffic to the local interface.
1588 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1590 s32 ret_val = 0;
1591 u32 dma_ctrl2;
1593 /* verify the switch is ready for interaction */
1594 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1595 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1596 goto out;
1598 /* retrieve generic host state info */
1599 ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1600 if (ret_val)
1601 goto out;
1603 /* interface cannot receive traffic without logical ports */
1604 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1605 ret_val = fm10k_request_lport_map_pf(hw);
1607 out:
1608 return ret_val;
1611 /* This structure defines the attibutes to be parsed below */
1612 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1613 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1614 FM10K_TLV_ATTR_LAST
1618 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1619 * @hw: Pointer to hardware structure
1620 * @results: pointer array containing parsed data
1621 * @mbx: Pointer to mailbox information structure
1623 * This handler configures the lport mapping based on the reply from the
1624 * switch API.
1626 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1627 struct fm10k_mbx_info *mbx)
1629 u16 glort, mask;
1630 u32 dglort_map;
1631 s32 err;
1633 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1634 &dglort_map);
1635 if (err)
1636 return err;
1638 /* extract values out of the header */
1639 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1640 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1642 /* verify mask is set and none of the masked bits in glort are set */
1643 if (!mask || (glort & ~mask))
1644 return FM10K_ERR_PARAM;
1646 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1647 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1648 return FM10K_ERR_PARAM;
1650 /* record the glort, mask, and port count */
1651 hw->mac.dglort_map = dglort_map;
1653 return 0;
1656 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1657 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1658 FM10K_TLV_ATTR_LAST
1662 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1663 * @hw: Pointer to hardware structure
1664 * @results: pointer array containing parsed data
1665 * @mbx: Pointer to mailbox information structure
1667 * This handler configures the default VLAN for the PF
1669 s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1670 struct fm10k_mbx_info *mbx)
1672 u16 glort, pvid;
1673 u32 pvid_update;
1674 s32 err;
1676 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1677 &pvid_update);
1678 if (err)
1679 return err;
1681 /* extract values from the pvid update */
1682 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1683 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1685 /* if glort is not valid return error */
1686 if (!fm10k_glort_valid_pf(hw, glort))
1687 return FM10K_ERR_PARAM;
1689 /* verify VID is valid */
1690 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1691 return FM10K_ERR_PARAM;
1693 /* record the port VLAN ID value */
1694 hw->mac.default_vid = pvid;
1696 return 0;
1700 * fm10k_record_global_table_data - Move global table data to swapi table info
1701 * @from: pointer to source table data structure
1702 * @to: pointer to destination table info structure
1704 * This function is will copy table_data to the table_info contained in
1705 * the hw struct.
1707 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1708 struct fm10k_swapi_table_info *to)
1710 /* convert from le32 struct to CPU byte ordered values */
1711 to->used = le32_to_cpu(from->used);
1712 to->avail = le32_to_cpu(from->avail);
1715 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1716 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1717 sizeof(struct fm10k_swapi_error)),
1718 FM10K_TLV_ATTR_LAST
1722 * fm10k_msg_err_pf - Message handler for error reply
1723 * @hw: Pointer to hardware structure
1724 * @results: pointer array containing parsed data
1725 * @mbx: Pointer to mailbox information structure
1727 * This handler will capture the data for any error replies to previous
1728 * messages that the PF has sent.
1730 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1731 struct fm10k_mbx_info *mbx)
1733 struct fm10k_swapi_error err_msg;
1734 s32 err;
1736 /* extract structure from message */
1737 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1738 &err_msg, sizeof(err_msg));
1739 if (err)
1740 return err;
1742 /* record table status */
1743 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1744 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1745 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1747 /* record SW API status value */
1748 hw->swapi.status = le32_to_cpu(err_msg.status);
1750 return 0;
1753 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1754 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1755 sizeof(struct fm10k_swapi_1588_timestamp)),
1756 FM10K_TLV_ATTR_LAST
1759 /* currently there is no shared 1588 timestamp handler */
1762 * fm10k_adjust_systime_pf - Adjust systime frequency
1763 * @hw: pointer to hardware structure
1764 * @ppb: adjustment rate in parts per billion
1766 * This function will adjust the SYSTIME_CFG register contained in BAR 4
1767 * if this function is supported for BAR 4 access. The adjustment amount
1768 * is based on the parts per billion value provided and adjusted to a
1769 * value based on parts per 2^48 clock cycles.
1771 * If adjustment is not supported or the requested value is too large
1772 * we will return an error.
1774 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1776 u64 systime_adjust;
1778 /* if sw_addr is not set we don't have switch register access */
1779 if (!hw->sw_addr)
1780 return ppb ? FM10K_ERR_PARAM : 0;
1782 /* we must convert the value from parts per billion to parts per
1783 * 2^48 cycles. In addition I have opted to only use the 30 most
1784 * significant bits of the adjustment value as the 8 least
1785 * significant bits are located in another register and represent
1786 * a value significantly less than a part per billion, the result
1787 * of dropping the 8 least significant bits is that the adjustment
1788 * value is effectively multiplied by 2^8 when we write it.
1790 * As a result of all this the math for this breaks down as follows:
1791 * ppb / 10^9 == adjust * 2^8 / 2^48
1792 * If we solve this for adjust, and simplify it comes out as:
1793 * ppb * 2^31 / 5^9 == adjust
1795 systime_adjust = (ppb < 0) ? -ppb : ppb;
1796 systime_adjust <<= 31;
1797 do_div(systime_adjust, 1953125);
1799 /* verify the requested adjustment value is in range */
1800 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1801 return FM10K_ERR_PARAM;
1803 if (ppb > 0)
1804 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
1806 fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1808 return 0;
1812 * fm10k_read_systime_pf - Reads value of systime registers
1813 * @hw: pointer to the hardware structure
1815 * Function reads the content of 2 registers, combined to represent a 64 bit
1816 * value measured in nanosecods. In order to guarantee the value is accurate
1817 * we check the 32 most significant bits both before and after reading the
1818 * 32 least significant bits to verify they didn't change as we were reading
1819 * the registers.
1821 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1823 u32 systime_l, systime_h, systime_tmp;
1825 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1827 do {
1828 systime_tmp = systime_h;
1829 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1830 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1831 } while (systime_tmp != systime_h);
1833 return ((u64)systime_h << 32) | systime_l;
1836 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1837 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1838 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1839 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1840 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1841 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1842 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1843 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1846 static struct fm10k_mac_ops mac_ops_pf = {
1847 .get_bus_info = &fm10k_get_bus_info_generic,
1848 .reset_hw = &fm10k_reset_hw_pf,
1849 .init_hw = &fm10k_init_hw_pf,
1850 .start_hw = &fm10k_start_hw_generic,
1851 .stop_hw = &fm10k_stop_hw_generic,
1852 .is_slot_appropriate = &fm10k_is_slot_appropriate_pf,
1853 .update_vlan = &fm10k_update_vlan_pf,
1854 .read_mac_addr = &fm10k_read_mac_addr_pf,
1855 .update_uc_addr = &fm10k_update_uc_addr_pf,
1856 .update_mc_addr = &fm10k_update_mc_addr_pf,
1857 .update_xcast_mode = &fm10k_update_xcast_mode_pf,
1858 .update_int_moderator = &fm10k_update_int_moderator_pf,
1859 .update_lport_state = &fm10k_update_lport_state_pf,
1860 .update_hw_stats = &fm10k_update_hw_stats_pf,
1861 .rebind_hw_stats = &fm10k_rebind_hw_stats_pf,
1862 .configure_dglort_map = &fm10k_configure_dglort_map_pf,
1863 .set_dma_mask = &fm10k_set_dma_mask_pf,
1864 .get_fault = &fm10k_get_fault_pf,
1865 .get_host_state = &fm10k_get_host_state_pf,
1866 .adjust_systime = &fm10k_adjust_systime_pf,
1867 .read_systime = &fm10k_read_systime_pf,
1870 static struct fm10k_iov_ops iov_ops_pf = {
1871 .assign_resources = &fm10k_iov_assign_resources_pf,
1872 .configure_tc = &fm10k_iov_configure_tc_pf,
1873 .assign_int_moderator = &fm10k_iov_assign_int_moderator_pf,
1874 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1875 .reset_resources = &fm10k_iov_reset_resources_pf,
1876 .set_lport = &fm10k_iov_set_lport_pf,
1877 .reset_lport = &fm10k_iov_reset_lport_pf,
1878 .update_stats = &fm10k_iov_update_stats_pf,
1879 .report_timestamp = &fm10k_iov_report_timestamp_pf,
1882 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1884 fm10k_get_invariants_generic(hw);
1886 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1889 struct fm10k_info fm10k_pf_info = {
1890 .mac = fm10k_mac_pf,
1891 .get_invariants = &fm10k_get_invariants_pf,
1892 .mac_ops = &mac_ops_pf,
1893 .iov_ops = &iov_ops_pf,