1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <asm/cmpxchg.h>
13 #include "net_driver.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
20 /**************************************************************************
22 * Management-Controller-to-Driver Interface
24 **************************************************************************
27 #define MCDI_RPC_TIMEOUT (10 * HZ)
29 /* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
33 #define MCDI_STATUS_DELAY_US 100
34 #define MCDI_STATUS_DELAY_COUNT 2500
35 #define MCDI_STATUS_SLEEP_MS \
36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
41 struct efx_mcdi_async_param
{
42 struct list_head list
;
47 efx_mcdi_async_completer
*complete
;
49 /* followed by request/response buffer */
52 static void efx_mcdi_timeout_async(unsigned long context
);
53 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
54 bool *was_attached_out
);
55 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
56 static void efx_mcdi_abandon(struct efx_nic
*efx
);
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default
;
60 module_param(mcdi_logging_default
, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default
,
62 "Enable MCDI logging on newly-probed functions");
65 int efx_mcdi_init(struct efx_nic
*efx
)
67 struct efx_mcdi_iface
*mcdi
;
68 bool already_attached
;
71 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 /* consuming code assumes buffer is page-sized */
79 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
80 if (!mcdi
->logging_buffer
)
82 mcdi
->logging_enabled
= mcdi_logging_default
;
84 init_waitqueue_head(&mcdi
->wq
);
85 spin_lock_init(&mcdi
->iface_lock
);
86 mcdi
->state
= MCDI_STATE_QUIESCENT
;
87 mcdi
->mode
= MCDI_MODE_POLL
;
88 spin_lock_init(&mcdi
->async_lock
);
89 INIT_LIST_HEAD(&mcdi
->async_list
);
90 setup_timer(&mcdi
->async_timer
, efx_mcdi_timeout_async
,
93 (void) efx_mcdi_poll_reboot(efx
);
94 mcdi
->new_epoch
= true;
96 /* Recover from a failed assertion before probing */
97 rc
= efx_mcdi_handle_assertion(efx
);
101 /* Let the MC (and BMC, if this is a LOM) know that the driver
102 * is loaded. We should do this before we reset the NIC.
104 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
106 netif_err(efx
, probe
, efx
->net_dev
,
107 "Unable to register driver with MCPU\n");
110 if (already_attached
)
111 /* Not a fatal error */
112 netif_err(efx
, probe
, efx
->net_dev
,
113 "Host already registered with MCPU\n");
115 if (efx
->mcdi
->fn_flags
&
116 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
121 #ifdef CONFIG_SFC_MCDI_LOGGING
122 free_page((unsigned long)mcdi
->logging_buffer
);
131 void efx_mcdi_fini(struct efx_nic
*efx
)
136 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
138 /* Relinquish the device (back to the BMC, if this is a LOM) */
139 efx_mcdi_drv_attach(efx
, false, NULL
);
141 #ifdef CONFIG_SFC_MCDI_LOGGING
142 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
148 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
149 const efx_dword_t
*inbuf
, size_t inlen
)
151 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
152 #ifdef CONFIG_SFC_MCDI_LOGGING
153 char *buf
= mcdi
->logging_buffer
; /* page-sized */
159 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
161 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
162 spin_lock_bh(&mcdi
->iface_lock
);
164 spin_unlock_bh(&mcdi
->iface_lock
);
166 seqno
= mcdi
->seqno
& SEQ_MASK
;
168 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
169 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
171 if (efx
->type
->mcdi_max_ver
== 1) {
173 EFX_POPULATE_DWORD_7(hdr
[0],
174 MCDI_HEADER_RESPONSE
, 0,
175 MCDI_HEADER_RESYNC
, 1,
176 MCDI_HEADER_CODE
, cmd
,
177 MCDI_HEADER_DATALEN
, inlen
,
178 MCDI_HEADER_SEQ
, seqno
,
179 MCDI_HEADER_XFLAGS
, xflags
,
180 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
184 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
185 EFX_POPULATE_DWORD_7(hdr
[0],
186 MCDI_HEADER_RESPONSE
, 0,
187 MCDI_HEADER_RESYNC
, 1,
188 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
189 MCDI_HEADER_DATALEN
, 0,
190 MCDI_HEADER_SEQ
, seqno
,
191 MCDI_HEADER_XFLAGS
, xflags
,
192 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
193 EFX_POPULATE_DWORD_2(hdr
[1],
194 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
195 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
199 #ifdef CONFIG_SFC_MCDI_LOGGING
200 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
203 /* Lengths should always be a whole number of dwords, so scream
206 WARN_ON_ONCE(hdr_len
% 4);
207 WARN_ON_ONCE(inlen
% 4);
209 /* We own the logging buffer, as only one MCDI can be in
210 * progress on a NIC at any one time. So no need for locking.
212 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
213 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
214 " %08x", le32_to_cpu(hdr
[i
].u32
[0]));
216 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
217 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
218 " %08x", le32_to_cpu(inbuf
[i
].u32
[0]));
220 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
224 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
226 mcdi
->new_epoch
= false;
229 static int efx_mcdi_errno(unsigned int mcdi_err
)
234 #define TRANSLATE_ERROR(name) \
235 case MC_CMD_ERR_ ## name: \
237 TRANSLATE_ERROR(EPERM
);
238 TRANSLATE_ERROR(ENOENT
);
239 TRANSLATE_ERROR(EINTR
);
240 TRANSLATE_ERROR(EAGAIN
);
241 TRANSLATE_ERROR(EACCES
);
242 TRANSLATE_ERROR(EBUSY
);
243 TRANSLATE_ERROR(EINVAL
);
244 TRANSLATE_ERROR(EDEADLK
);
245 TRANSLATE_ERROR(ENOSYS
);
246 TRANSLATE_ERROR(ETIME
);
247 TRANSLATE_ERROR(EALREADY
);
248 TRANSLATE_ERROR(ENOSPC
);
249 #undef TRANSLATE_ERROR
250 case MC_CMD_ERR_ENOTSUP
:
252 case MC_CMD_ERR_ALLOC_FAIL
:
254 case MC_CMD_ERR_MAC_EXIST
:
261 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
263 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
264 unsigned int respseq
, respcmd
, error
;
265 #ifdef CONFIG_SFC_MCDI_LOGGING
266 char *buf
= mcdi
->logging_buffer
; /* page-sized */
270 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
271 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
272 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
273 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
275 if (respcmd
!= MC_CMD_V2_EXTN
) {
276 mcdi
->resp_hdr_len
= 4;
277 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
279 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
280 mcdi
->resp_hdr_len
= 8;
281 mcdi
->resp_data_len
=
282 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
285 #ifdef CONFIG_SFC_MCDI_LOGGING
286 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
287 size_t hdr_len
, data_len
;
291 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
292 hdr_len
= mcdi
->resp_hdr_len
/ 4;
293 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
294 * to dword size, and the MCDI buffer is always dword size
296 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
298 /* We own the logging buffer, as only one MCDI can be in
299 * progress on a NIC at any one time. So no need for locking.
301 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
302 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
303 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
304 " %08x", le32_to_cpu(hdr
.u32
[0]));
307 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
308 efx
->type
->mcdi_read_response(efx
, &hdr
,
309 mcdi
->resp_hdr_len
+ (i
* 4), 4);
310 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
311 " %08x", le32_to_cpu(hdr
.u32
[0]));
314 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
318 if (error
&& mcdi
->resp_data_len
== 0) {
319 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
321 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
322 netif_err(efx
, hw
, efx
->net_dev
,
323 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
324 respseq
, mcdi
->seqno
);
327 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
329 efx_mcdi_errno(EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
));
335 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
337 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
340 if (!efx
->type
->mcdi_poll_response(efx
))
343 spin_lock_bh(&mcdi
->iface_lock
);
344 efx_mcdi_read_response_header(efx
);
345 spin_unlock_bh(&mcdi
->iface_lock
);
350 static int efx_mcdi_poll(struct efx_nic
*efx
)
352 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
353 unsigned long time
, finish
;
357 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
358 rc
= efx_mcdi_poll_reboot(efx
);
360 spin_lock_bh(&mcdi
->iface_lock
);
362 mcdi
->resp_hdr_len
= 0;
363 mcdi
->resp_data_len
= 0;
364 spin_unlock_bh(&mcdi
->iface_lock
);
368 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
369 * because generally mcdi responses are fast. After that, back off
370 * and poll once a jiffy (approximately)
373 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
380 schedule_timeout_uninterruptible(1);
385 if (efx_mcdi_poll_once(efx
))
388 if (time_after(time
, finish
))
392 /* Return rc=0 like wait_event_timeout() */
396 /* Test and clear MC-rebooted flag for this port/function; reset
397 * software state as necessary.
399 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
404 return efx
->type
->mcdi_poll_reboot(efx
);
407 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
409 return cmpxchg(&mcdi
->state
,
410 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
411 MCDI_STATE_QUIESCENT
;
414 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
416 /* Wait until the interface becomes QUIESCENT and we win the race
417 * to mark it RUNNING_SYNC.
420 cmpxchg(&mcdi
->state
,
421 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
422 MCDI_STATE_QUIESCENT
);
425 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
427 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
429 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
430 MCDI_RPC_TIMEOUT
) == 0)
433 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
434 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
435 * completed the request first, then we'll just end up completing the
436 * request again, which is safe.
438 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
439 * wait_event_timeout() implicitly provides.
441 if (mcdi
->mode
== MCDI_MODE_POLL
)
442 return efx_mcdi_poll(efx
);
447 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
448 * requester. Return whether this was done. Does not take any locks.
450 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
452 if (cmpxchg(&mcdi
->state
,
453 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
454 MCDI_STATE_RUNNING_SYNC
) {
462 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
464 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
465 struct efx_mcdi_async_param
*async
;
466 struct efx_nic
*efx
= mcdi
->efx
;
468 /* Process the asynchronous request queue */
469 spin_lock_bh(&mcdi
->async_lock
);
470 async
= list_first_entry_or_null(
471 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
473 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
474 efx_mcdi_send_request(efx
, async
->cmd
,
475 (const efx_dword_t
*)(async
+ 1),
477 mod_timer(&mcdi
->async_timer
,
478 jiffies
+ MCDI_RPC_TIMEOUT
);
480 spin_unlock_bh(&mcdi
->async_lock
);
486 mcdi
->state
= MCDI_STATE_QUIESCENT
;
490 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
491 * asynchronous completion function, and release the interface.
492 * Return whether this was done. Must be called in bh-disabled
493 * context. Will take iface_lock and async_lock.
495 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
497 struct efx_nic
*efx
= mcdi
->efx
;
498 struct efx_mcdi_async_param
*async
;
499 size_t hdr_len
, data_len
, err_len
;
501 MCDI_DECLARE_BUF_ERR(errbuf
);
504 if (cmpxchg(&mcdi
->state
,
505 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
506 MCDI_STATE_RUNNING_ASYNC
)
509 spin_lock(&mcdi
->iface_lock
);
511 /* Ensure that if the completion event arrives later,
512 * the seqno check in efx_mcdi_ev_cpl() will fail
521 hdr_len
= mcdi
->resp_hdr_len
;
522 data_len
= mcdi
->resp_data_len
;
524 spin_unlock(&mcdi
->iface_lock
);
526 /* Stop the timer. In case the timer function is running, we
527 * must wait for it to return so that there is no possibility
528 * of it aborting the next request.
531 del_timer_sync(&mcdi
->async_timer
);
533 spin_lock(&mcdi
->async_lock
);
534 async
= list_first_entry(&mcdi
->async_list
,
535 struct efx_mcdi_async_param
, list
);
536 list_del(&async
->list
);
537 spin_unlock(&mcdi
->async_lock
);
539 outbuf
= (efx_dword_t
*)(async
+ 1);
540 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
541 min(async
->outlen
, data_len
));
542 if (!timeout
&& rc
&& !async
->quiet
) {
543 err_len
= min(sizeof(errbuf
), data_len
);
544 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
546 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
549 async
->complete(efx
, async
->cookie
, rc
, outbuf
, data_len
);
552 efx_mcdi_release(mcdi
);
557 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
558 unsigned int datalen
, unsigned int mcdi_err
)
560 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
563 spin_lock(&mcdi
->iface_lock
);
565 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
567 /* The request has been cancelled */
570 netif_err(efx
, hw
, efx
->net_dev
,
571 "MC response mismatch tx seq 0x%x rx "
572 "seq 0x%x\n", seqno
, mcdi
->seqno
);
574 if (efx
->type
->mcdi_max_ver
>= 2) {
575 /* MCDI v2 responses don't fit in an event */
576 efx_mcdi_read_response_header(efx
);
578 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
579 mcdi
->resp_hdr_len
= 4;
580 mcdi
->resp_data_len
= datalen
;
586 spin_unlock(&mcdi
->iface_lock
);
589 if (!efx_mcdi_complete_async(mcdi
, false))
590 (void) efx_mcdi_complete_sync(mcdi
);
592 /* If the interface isn't RUNNING_ASYNC or
593 * RUNNING_SYNC then we've received a duplicate
594 * completion after we've already transitioned back to
595 * QUIESCENT. [A subsequent invocation would increment
596 * seqno, so would have failed the seqno check].
601 static void efx_mcdi_timeout_async(unsigned long context
)
603 struct efx_mcdi_iface
*mcdi
= (struct efx_mcdi_iface
*)context
;
605 efx_mcdi_complete_async(mcdi
, true);
609 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
611 if (efx
->type
->mcdi_max_ver
< 0 ||
612 (efx
->type
->mcdi_max_ver
< 2 &&
613 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
616 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
617 (efx
->type
->mcdi_max_ver
< 2 &&
618 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
624 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
625 efx_dword_t
*outbuf
, size_t outlen
,
626 size_t *outlen_actual
, bool quiet
)
628 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
629 MCDI_DECLARE_BUF_ERR(errbuf
);
632 if (mcdi
->mode
== MCDI_MODE_POLL
)
633 rc
= efx_mcdi_poll(efx
);
635 rc
= efx_mcdi_await_completion(efx
);
638 netif_err(efx
, hw
, efx
->net_dev
,
639 "MC command 0x%x inlen %d mode %d timed out\n",
640 cmd
, (int)inlen
, mcdi
->mode
);
642 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
643 netif_err(efx
, hw
, efx
->net_dev
,
644 "MCDI request was completed without an event\n");
648 efx_mcdi_abandon(efx
);
650 /* Close the race with efx_mcdi_ev_cpl() executing just too late
651 * and completing a request we've just cancelled, by ensuring
652 * that the seqno check therein fails.
654 spin_lock_bh(&mcdi
->iface_lock
);
657 spin_unlock_bh(&mcdi
->iface_lock
);
664 size_t hdr_len
, data_len
, err_len
;
666 /* At the very least we need a memory barrier here to ensure
667 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
668 * a spurious efx_mcdi_ev_cpl() running concurrently by
669 * acquiring the iface_lock. */
670 spin_lock_bh(&mcdi
->iface_lock
);
672 hdr_len
= mcdi
->resp_hdr_len
;
673 data_len
= mcdi
->resp_data_len
;
674 err_len
= min(sizeof(errbuf
), data_len
);
675 spin_unlock_bh(&mcdi
->iface_lock
);
679 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
680 min(outlen
, data_len
));
682 *outlen_actual
= data_len
;
684 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
686 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
687 /* Don't reset if MC_CMD_REBOOT returns EIO */
688 } else if (rc
== -EIO
|| rc
== -EINTR
) {
689 netif_err(efx
, hw
, efx
->net_dev
, "MC fatal error %d\n",
691 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
692 } else if (rc
&& !quiet
) {
693 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
697 if (rc
== -EIO
|| rc
== -EINTR
) {
698 msleep(MCDI_STATUS_SLEEP_MS
);
699 efx_mcdi_poll_reboot(efx
);
700 mcdi
->new_epoch
= true;
704 efx_mcdi_release(mcdi
);
708 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
709 const efx_dword_t
*inbuf
, size_t inlen
,
710 efx_dword_t
*outbuf
, size_t outlen
,
711 size_t *outlen_actual
, bool quiet
)
715 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
721 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
722 outlen_actual
, quiet
);
725 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
726 const efx_dword_t
*inbuf
, size_t inlen
,
727 efx_dword_t
*outbuf
, size_t outlen
,
728 size_t *outlen_actual
)
730 return _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
731 outlen_actual
, false);
734 /* Normally, on receiving an error code in the MCDI response,
735 * efx_mcdi_rpc will log an error message containing (among other
736 * things) the raw error code, by means of efx_mcdi_display_error.
737 * This _quiet version suppresses that; if the caller wishes to log
738 * the error conditionally on the return code, it should call this
739 * function and is then responsible for calling efx_mcdi_display_error
742 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
743 const efx_dword_t
*inbuf
, size_t inlen
,
744 efx_dword_t
*outbuf
, size_t outlen
,
745 size_t *outlen_actual
)
747 return _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
748 outlen_actual
, true);
751 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
752 const efx_dword_t
*inbuf
, size_t inlen
)
754 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
757 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
761 if (efx
->mc_bist_for_other_fn
)
764 if (mcdi
->mode
== MCDI_MODE_FAIL
)
767 efx_mcdi_acquire_sync(mcdi
);
768 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
772 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
773 const efx_dword_t
*inbuf
, size_t inlen
,
775 efx_mcdi_async_completer
*complete
,
776 unsigned long cookie
, bool quiet
)
778 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
779 struct efx_mcdi_async_param
*async
;
782 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
786 if (efx
->mc_bist_for_other_fn
)
789 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
795 async
->inlen
= inlen
;
796 async
->outlen
= outlen
;
797 async
->quiet
= quiet
;
798 async
->complete
= complete
;
799 async
->cookie
= cookie
;
800 memcpy(async
+ 1, inbuf
, inlen
);
802 spin_lock_bh(&mcdi
->async_lock
);
804 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
805 list_add_tail(&async
->list
, &mcdi
->async_list
);
807 /* If this is at the front of the queue, try to start it
810 if (mcdi
->async_list
.next
== &async
->list
&&
811 efx_mcdi_acquire_async(mcdi
)) {
812 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
813 mod_timer(&mcdi
->async_timer
,
814 jiffies
+ MCDI_RPC_TIMEOUT
);
821 spin_unlock_bh(&mcdi
->async_lock
);
827 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
828 * @efx: NIC through which to issue the command
829 * @cmd: Command type number
830 * @inbuf: Command parameters
831 * @inlen: Length of command parameters, in bytes
832 * @outlen: Length to allocate for response buffer, in bytes
833 * @complete: Function to be called on completion or cancellation.
834 * @cookie: Arbitrary value to be passed to @complete.
836 * This function does not sleep and therefore may be called in atomic
837 * context. It will fail if event queues are disabled or if MCDI
838 * event completions have been disabled due to an error.
840 * If it succeeds, the @complete function will be called exactly once
841 * in atomic context, when one of the following occurs:
842 * (a) the completion event is received (in NAPI context)
843 * (b) event queues are disabled (in the process that disables them)
844 * (c) the request times-out (in timer context)
847 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
848 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
849 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
851 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
855 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
856 const efx_dword_t
*inbuf
, size_t inlen
,
857 size_t outlen
, efx_mcdi_async_completer
*complete
,
858 unsigned long cookie
)
860 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
864 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
865 efx_dword_t
*outbuf
, size_t outlen
,
866 size_t *outlen_actual
)
868 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
869 outlen_actual
, false);
872 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
873 efx_dword_t
*outbuf
, size_t outlen
,
874 size_t *outlen_actual
)
876 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
877 outlen_actual
, true);
880 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
881 size_t inlen
, efx_dword_t
*outbuf
,
882 size_t outlen
, int rc
)
884 int code
= 0, err_arg
= 0;
886 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
887 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
888 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
889 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
890 netif_err(efx
, hw
, efx
->net_dev
,
891 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
892 cmd
, (int)inlen
, rc
, code
, err_arg
);
895 /* Switch to polled MCDI completions. This can be called in various
896 * error conditions with various locks held, so it must be lockless.
897 * Caller is responsible for flushing asynchronous requests later.
899 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
901 struct efx_mcdi_iface
*mcdi
;
906 mcdi
= efx_mcdi(efx
);
907 /* If already in polling mode, nothing to do.
908 * If in fail-fast state, don't switch to polled completion.
909 * FLR recovery will do that later.
911 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
914 /* We can switch from event completion to polled completion, because
915 * mcdi requests are always completed in shared memory. We do this by
916 * switching the mode to POLL'd then completing the request.
917 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
919 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
920 * which efx_mcdi_complete_sync() provides for us.
922 mcdi
->mode
= MCDI_MODE_POLL
;
924 efx_mcdi_complete_sync(mcdi
);
927 /* Flush any running or queued asynchronous requests, after event processing
930 void efx_mcdi_flush_async(struct efx_nic
*efx
)
932 struct efx_mcdi_async_param
*async
, *next
;
933 struct efx_mcdi_iface
*mcdi
;
938 mcdi
= efx_mcdi(efx
);
940 /* We must be in poll or fail mode so no more requests can be queued */
941 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
943 del_timer_sync(&mcdi
->async_timer
);
945 /* If a request is still running, make sure we give the MC
946 * time to complete it so that the response won't overwrite our
949 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
951 mcdi
->state
= MCDI_STATE_QUIESCENT
;
954 /* Nothing else will access the async list now, so it is safe
955 * to walk it without holding async_lock. If we hold it while
956 * calling a completer then lockdep may warn that we have
957 * acquired locks in the wrong order.
959 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
960 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
961 list_del(&async
->list
);
966 void efx_mcdi_mode_event(struct efx_nic
*efx
)
968 struct efx_mcdi_iface
*mcdi
;
973 mcdi
= efx_mcdi(efx
);
974 /* If already in event completion mode, nothing to do.
975 * If in fail-fast state, don't switch to event completion. FLR
976 * recovery will do that later.
978 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
981 /* We can't switch from polled to event completion in the middle of a
982 * request, because the completion method is specified in the request.
983 * So acquire the interface to serialise the requestors. We don't need
984 * to acquire the iface_lock to change the mode here, but we do need a
985 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
986 * efx_mcdi_acquire() provides.
988 efx_mcdi_acquire_sync(mcdi
);
989 mcdi
->mode
= MCDI_MODE_EVENTS
;
990 efx_mcdi_release(mcdi
);
993 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
995 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
997 /* If there is an outstanding MCDI request, it has been terminated
998 * either by a BADASSERT or REBOOT event. If the mcdi interface is
999 * in polled mode, then do nothing because the MC reboot handler will
1000 * set the header correctly. However, if the mcdi interface is waiting
1001 * for a CMDDONE event it won't receive it [and since all MCDI events
1002 * are sent to the same queue, we can't be racing with
1003 * efx_mcdi_ev_cpl()]
1005 * If there is an outstanding asynchronous request, we can't
1006 * complete it now (efx_mcdi_complete() would deadlock). The
1007 * reset process will take care of this.
1009 * There's a race here with efx_mcdi_send_request(), because
1010 * we might receive a REBOOT event *before* the request has
1011 * been copied out. In polled mode (during startup) this is
1012 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1013 * event mode, this condition is just an edge-case of
1014 * receiving a REBOOT event after posting the MCDI
1015 * request. Did the mc reboot before or after the copyout? The
1016 * best we can do always is just return failure.
1018 spin_lock(&mcdi
->iface_lock
);
1019 if (efx_mcdi_complete_sync(mcdi
)) {
1020 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1022 mcdi
->resp_hdr_len
= 0;
1023 mcdi
->resp_data_len
= 0;
1029 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1030 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1031 if (efx_mcdi_poll_reboot(efx
))
1033 udelay(MCDI_STATUS_DELAY_US
);
1035 mcdi
->new_epoch
= true;
1037 /* Nobody was waiting for an MCDI request, so trigger a reset */
1038 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1041 spin_unlock(&mcdi
->iface_lock
);
1044 /* The MC is going down in to BIST mode. set the BIST flag to block
1045 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1046 * (which doesn't actually execute a reset, it waits for the controlling
1047 * function to reset it).
1049 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1051 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1053 spin_lock(&mcdi
->iface_lock
);
1054 efx
->mc_bist_for_other_fn
= true;
1055 if (efx_mcdi_complete_sync(mcdi
)) {
1056 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1057 mcdi
->resprc
= -EIO
;
1058 mcdi
->resp_hdr_len
= 0;
1059 mcdi
->resp_data_len
= 0;
1063 mcdi
->new_epoch
= true;
1064 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1065 spin_unlock(&mcdi
->iface_lock
);
1068 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1071 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1073 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1075 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1076 return; /* it had already been done */
1077 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1078 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1081 /* Called from falcon_process_eventq for MCDI events */
1082 void efx_mcdi_process_event(struct efx_channel
*channel
,
1085 struct efx_nic
*efx
= channel
->efx
;
1086 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1087 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1090 case MCDI_EVENT_CODE_BADSSERT
:
1091 netif_err(efx
, hw
, efx
->net_dev
,
1092 "MC watchdog or assertion failure at 0x%x\n", data
);
1093 efx_mcdi_ev_death(efx
, -EINTR
);
1096 case MCDI_EVENT_CODE_PMNOTICE
:
1097 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1100 case MCDI_EVENT_CODE_CMDDONE
:
1101 efx_mcdi_ev_cpl(efx
,
1102 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1103 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1104 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1107 case MCDI_EVENT_CODE_LINKCHANGE
:
1108 efx_mcdi_process_link_change(efx
, event
);
1110 case MCDI_EVENT_CODE_SENSOREVT
:
1111 efx_mcdi_sensor_event(efx
, event
);
1113 case MCDI_EVENT_CODE_SCHEDERR
:
1114 netif_dbg(efx
, hw
, efx
->net_dev
,
1115 "MC Scheduler alert (0x%x)\n", data
);
1117 case MCDI_EVENT_CODE_REBOOT
:
1118 case MCDI_EVENT_CODE_MC_REBOOT
:
1119 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1120 efx_mcdi_ev_death(efx
, -EIO
);
1122 case MCDI_EVENT_CODE_MC_BIST
:
1123 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1124 efx_mcdi_ev_bist(efx
);
1126 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1127 /* MAC stats are gather lazily. We can ignore this. */
1129 case MCDI_EVENT_CODE_FLR
:
1130 if (efx
->type
->sriov_flr
)
1131 efx
->type
->sriov_flr(efx
,
1132 MCDI_EVENT_FIELD(*event
, FLR_VF
));
1134 case MCDI_EVENT_CODE_PTP_RX
:
1135 case MCDI_EVENT_CODE_PTP_FAULT
:
1136 case MCDI_EVENT_CODE_PTP_PPS
:
1137 efx_ptp_event(efx
, event
);
1139 case MCDI_EVENT_CODE_PTP_TIME
:
1140 efx_time_sync_event(channel
, event
);
1142 case MCDI_EVENT_CODE_TX_FLUSH
:
1143 case MCDI_EVENT_CODE_RX_FLUSH
:
1144 /* Two flush events will be sent: one to the same event
1145 * queue as completions, and one to event queue 0.
1146 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1147 * flag will be set, and we should ignore the event
1148 * because we want to wait for all completions.
1150 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1151 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1152 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1153 efx_ef10_handle_drain_event(efx
);
1155 case MCDI_EVENT_CODE_TX_ERR
:
1156 case MCDI_EVENT_CODE_RX_ERR
:
1157 netif_err(efx
, hw
, efx
->net_dev
,
1158 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1159 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1160 EFX_QWORD_VAL(*event
));
1161 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1164 netif_err(efx
, hw
, efx
->net_dev
, "Unknown MCDI event 0x%x\n",
1169 /**************************************************************************
1171 * Specific request functions
1173 **************************************************************************
1176 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1178 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1180 const __le16
*ver_words
;
1184 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1185 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1186 outbuf
, sizeof(outbuf
), &outlength
);
1189 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1194 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1195 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1196 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1197 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1199 /* EF10 may have multiple datapath firmware variants within a
1200 * single version. Report which variants are running.
1202 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1203 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1205 offset
+= snprintf(buf
+ offset
, len
- offset
, " rx%x tx%x",
1206 nic_data
->rx_dpcpu_fw_id
,
1207 nic_data
->tx_dpcpu_fw_id
);
1209 /* It's theoretically possible for the string to exceed 31
1210 * characters, though in practice the first three version
1211 * components are short enough that this doesn't happen.
1213 if (WARN_ON(offset
>= len
))
1220 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1224 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1227 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1228 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1232 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1233 driver_operating
? 1 : 0);
1234 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1235 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1237 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1238 outbuf
, sizeof(outbuf
), &outlen
);
1239 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1240 * specified will fail with EPERM, and we have to tell the MC we don't
1241 * care what firmware we get.
1244 netif_dbg(efx
, probe
, efx
->net_dev
,
1245 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1246 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1247 MC_CMD_FW_DONT_CARE
);
1248 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1249 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1253 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1254 outbuf
, outlen
, rc
);
1257 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1262 if (driver_operating
) {
1263 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1264 efx
->mcdi
->fn_flags
=
1266 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1268 /* Synthesise flags for Siena */
1269 efx
->mcdi
->fn_flags
=
1270 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1271 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1272 (efx_port_num(efx
) == 0) <<
1273 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1277 /* We currently assume we have control of the external link
1278 * and are completely trusted by firmware. Abort probing
1279 * if that's not true for this function.
1282 if (was_attached
!= NULL
)
1283 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1287 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1291 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1292 u16
*fw_subtype_list
, u32
*capabilities
)
1294 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1296 int port_num
= efx_port_num(efx
);
1299 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1300 /* we need __aligned(2) for ether_addr_copy */
1301 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1302 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1304 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1305 outbuf
, sizeof(outbuf
), &outlen
);
1309 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1315 ether_addr_copy(mac_address
,
1317 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1318 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1319 if (fw_subtype_list
) {
1321 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1322 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1324 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1325 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1326 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1327 fw_subtype_list
[i
] = 0;
1331 *capabilities
= MCDI_DWORD(outbuf
,
1332 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1334 *capabilities
= MCDI_DWORD(outbuf
,
1335 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1341 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1342 __func__
, rc
, (int)outlen
);
1347 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1349 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1354 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1356 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1358 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1359 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1361 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1363 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1368 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1370 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1374 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1376 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1377 outbuf
, sizeof(outbuf
), &outlen
);
1380 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1385 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1389 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1394 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1395 size_t *size_out
, size_t *erase_size_out
,
1396 bool *protected_out
)
1398 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1399 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1403 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1405 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1406 outbuf
, sizeof(outbuf
), &outlen
);
1409 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1414 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1415 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1416 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1417 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1421 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1425 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1427 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1428 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1431 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1433 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1434 outbuf
, sizeof(outbuf
), NULL
);
1438 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1439 case MC_CMD_NVRAM_TEST_PASS
:
1440 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1447 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1453 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1458 while (nvram_types
!= 0) {
1459 if (nvram_types
& 1) {
1460 rc
= efx_mcdi_nvram_test(efx
, type
);
1471 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1474 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1478 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1479 * negative on error.
1481 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1483 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1484 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1485 unsigned int flags
, index
;
1491 /* Attempt to read any stored assertion state before we reboot
1492 * the mcfw out of the assertion handler. Retry twice, once
1493 * because a boot-time assertion might cause this command to fail
1494 * with EINTR. And once again because GET_ASSERTS can race with
1495 * MC_CMD_REBOOT running on the other port. */
1498 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1499 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1500 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1501 outbuf
, sizeof(outbuf
), &outlen
);
1504 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1507 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1508 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1512 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1515 /* Print out any recorded assertion state */
1516 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1517 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1520 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1521 ? "system-level assertion"
1522 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1523 ? "thread-level assertion"
1524 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1526 : "unknown assertion";
1527 netif_err(efx
, hw
, efx
->net_dev
,
1528 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1529 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1530 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1532 /* Print out the registers */
1534 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1536 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1538 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1544 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1546 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1549 /* If the MC is running debug firmware, it might now be
1550 * waiting for a debugger to attach, but we just want it to
1551 * reboot. We set a flag that makes the command a no-op if it
1552 * has already done so.
1553 * The MCDI will thus return either 0 or -EIO.
1555 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1556 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1557 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1558 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1563 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1568 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1572 rc
= efx_mcdi_read_assertion(efx
);
1576 return efx_mcdi_exit_assertion(efx
);
1579 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1581 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1584 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1585 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1586 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1588 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1590 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1592 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1596 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1598 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1601 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1602 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1603 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1604 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1609 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1611 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1614 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1615 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1616 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1618 /* White is black, and up is down */
1626 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1628 return RESET_TYPE_RECOVER_OR_ALL
;
1631 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1635 /* If MCDI is down, we can't handle_assertion */
1636 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1637 rc
= pci_reset_function(efx
->pci_dev
);
1640 /* Re-enable polled MCDI completion */
1642 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1643 mcdi
->mode
= MCDI_MODE_POLL
;
1648 /* Recover from a failed assertion pre-reset */
1649 rc
= efx_mcdi_handle_assertion(efx
);
1653 if (method
== RESET_TYPE_DATAPATH
)
1655 else if (method
== RESET_TYPE_WORLD
)
1656 return efx_mcdi_reset_mc(efx
);
1658 return efx_mcdi_reset_func(efx
);
1661 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1662 const u8
*mac
, int *id_out
)
1664 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1665 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1669 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1670 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1671 MC_CMD_FILTER_MODE_SIMPLE
);
1672 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1674 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1675 outbuf
, sizeof(outbuf
), &outlen
);
1679 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1684 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1690 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1697 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1699 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1703 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1705 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1709 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1710 outbuf
, sizeof(outbuf
), &outlen
);
1714 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1719 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1725 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1730 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1732 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1735 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1737 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1742 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1744 struct efx_channel
*channel
;
1745 struct efx_rx_queue
*rx_queue
;
1746 MCDI_DECLARE_BUF(inbuf
,
1747 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1750 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1751 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1754 efx_for_each_channel(channel
, efx
) {
1755 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1756 if (rx_queue
->flush_pending
) {
1757 rx_queue
->flush_pending
= false;
1758 atomic_dec(&efx
->rxq_flush_pending
);
1759 MCDI_SET_ARRAY_DWORD(
1760 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1761 count
, efx_rx_queue_index(rx_queue
));
1767 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1768 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
1774 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
1778 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
1782 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
)
1784 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
1786 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
1787 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
1788 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
1789 return efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
1793 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
1794 unsigned int *enabled_out
)
1796 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
1800 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
1801 outbuf
, sizeof(outbuf
), &outlen
);
1805 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
1811 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
1814 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
1819 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1823 #ifdef CONFIG_SFC_MTD
1825 #define EFX_MCDI_NVRAM_LEN_MAX 128
1827 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
1829 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_IN_LEN
);
1832 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
1834 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
1836 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
1841 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
1842 loff_t offset
, u8
*buffer
, size_t length
)
1844 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_LEN
);
1845 MCDI_DECLARE_BUF(outbuf
,
1846 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
1850 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
1851 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
1852 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
1854 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
1855 outbuf
, sizeof(outbuf
), &outlen
);
1859 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
1863 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
1864 loff_t offset
, const u8
*buffer
, size_t length
)
1866 MCDI_DECLARE_BUF(inbuf
,
1867 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
1870 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
1871 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
1872 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
1873 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
1875 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
1877 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
1878 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
1883 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
1884 loff_t offset
, size_t length
)
1886 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
1889 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
1890 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
1891 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
1893 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
1895 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
1900 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
1902 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN
);
1905 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
1907 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN
!= 0);
1909 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
1914 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
1915 size_t len
, size_t *retlen
, u8
*buffer
)
1917 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1918 struct efx_nic
*efx
= mtd
->priv
;
1919 loff_t offset
= start
;
1920 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1924 while (offset
< end
) {
1925 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
1926 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
1934 *retlen
= offset
- start
;
1938 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
1940 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1941 struct efx_nic
*efx
= mtd
->priv
;
1942 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
1943 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1944 size_t chunk
= part
->common
.mtd
.erasesize
;
1947 if (!part
->updating
) {
1948 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
1951 part
->updating
= true;
1954 /* The MCDI interface can in fact do multiple erase blocks at once;
1955 * but erasing may be slow, so we make multiple calls here to avoid
1956 * tripping the MCDI RPC timeout. */
1957 while (offset
< end
) {
1958 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
1968 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
1969 size_t len
, size_t *retlen
, const u8
*buffer
)
1971 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1972 struct efx_nic
*efx
= mtd
->priv
;
1973 loff_t offset
= start
;
1974 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1978 if (!part
->updating
) {
1979 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
1982 part
->updating
= true;
1985 while (offset
< end
) {
1986 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
1987 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
1995 *retlen
= offset
- start
;
1999 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2001 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2002 struct efx_nic
*efx
= mtd
->priv
;
2005 if (part
->updating
) {
2006 part
->updating
= false;
2007 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2013 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2015 struct efx_mcdi_mtd_partition
*mcdi_part
=
2016 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2017 struct efx_nic
*efx
= part
->mtd
.priv
;
2019 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2020 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2023 #endif /* CONFIG_SFC_MTD */