x86/ldt: Further fix FPU emulation
[linux/fpc-iii.git] / drivers / net / ethernet / ti / cpmac.c
blobdd9430043536541b577a4b90418cebb33a67baf3
1 /*
2 * Copyright (C) 2006, 2007 Eugene Konev
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
44 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
45 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:cpmac");
49 static int debug_level = 8;
50 static int dumb_switch;
52 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
53 module_param(debug_level, int, 0444);
54 module_param(dumb_switch, int, 0444);
56 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
57 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
59 #define CPMAC_VERSION "0.5.2"
60 /* frame size + 802.1q tag + FCS size */
61 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
62 #define CPMAC_QUEUES 8
64 /* Ethernet registers */
65 #define CPMAC_TX_CONTROL 0x0004
66 #define CPMAC_TX_TEARDOWN 0x0008
67 #define CPMAC_RX_CONTROL 0x0014
68 #define CPMAC_RX_TEARDOWN 0x0018
69 #define CPMAC_MBP 0x0100
70 #define MBP_RXPASSCRC 0x40000000
71 #define MBP_RXQOS 0x20000000
72 #define MBP_RXNOCHAIN 0x10000000
73 #define MBP_RXCMF 0x01000000
74 #define MBP_RXSHORT 0x00800000
75 #define MBP_RXCEF 0x00400000
76 #define MBP_RXPROMISC 0x00200000
77 #define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
78 #define MBP_RXBCAST 0x00002000
79 #define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
80 #define MBP_RXMCAST 0x00000020
81 #define MBP_MCASTCHAN(channel) ((channel) & 0x7)
82 #define CPMAC_UNICAST_ENABLE 0x0104
83 #define CPMAC_UNICAST_CLEAR 0x0108
84 #define CPMAC_MAX_LENGTH 0x010c
85 #define CPMAC_BUFFER_OFFSET 0x0110
86 #define CPMAC_MAC_CONTROL 0x0160
87 #define MAC_TXPTYPE 0x00000200
88 #define MAC_TXPACE 0x00000040
89 #define MAC_MII 0x00000020
90 #define MAC_TXFLOW 0x00000010
91 #define MAC_RXFLOW 0x00000008
92 #define MAC_MTEST 0x00000004
93 #define MAC_LOOPBACK 0x00000002
94 #define MAC_FDX 0x00000001
95 #define CPMAC_MAC_STATUS 0x0164
96 #define MAC_STATUS_QOS 0x00000004
97 #define MAC_STATUS_RXFLOW 0x00000002
98 #define MAC_STATUS_TXFLOW 0x00000001
99 #define CPMAC_TX_INT_ENABLE 0x0178
100 #define CPMAC_TX_INT_CLEAR 0x017c
101 #define CPMAC_MAC_INT_VECTOR 0x0180
102 #define MAC_INT_STATUS 0x00080000
103 #define MAC_INT_HOST 0x00040000
104 #define MAC_INT_RX 0x00020000
105 #define MAC_INT_TX 0x00010000
106 #define CPMAC_MAC_EOI_VECTOR 0x0184
107 #define CPMAC_RX_INT_ENABLE 0x0198
108 #define CPMAC_RX_INT_CLEAR 0x019c
109 #define CPMAC_MAC_INT_ENABLE 0x01a8
110 #define CPMAC_MAC_INT_CLEAR 0x01ac
111 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
112 #define CPMAC_MAC_ADDR_MID 0x01d0
113 #define CPMAC_MAC_ADDR_HI 0x01d4
114 #define CPMAC_MAC_HASH_LO 0x01d8
115 #define CPMAC_MAC_HASH_HI 0x01dc
116 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
117 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
118 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
119 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
120 #define CPMAC_REG_END 0x0680
122 /* Rx/Tx statistics
123 * TODO: use some of them to fill stats in cpmac_stats()
125 #define CPMAC_STATS_RX_GOOD 0x0200
126 #define CPMAC_STATS_RX_BCAST 0x0204
127 #define CPMAC_STATS_RX_MCAST 0x0208
128 #define CPMAC_STATS_RX_PAUSE 0x020c
129 #define CPMAC_STATS_RX_CRC 0x0210
130 #define CPMAC_STATS_RX_ALIGN 0x0214
131 #define CPMAC_STATS_RX_OVER 0x0218
132 #define CPMAC_STATS_RX_JABBER 0x021c
133 #define CPMAC_STATS_RX_UNDER 0x0220
134 #define CPMAC_STATS_RX_FRAG 0x0224
135 #define CPMAC_STATS_RX_FILTER 0x0228
136 #define CPMAC_STATS_RX_QOSFILTER 0x022c
137 #define CPMAC_STATS_RX_OCTETS 0x0230
139 #define CPMAC_STATS_TX_GOOD 0x0234
140 #define CPMAC_STATS_TX_BCAST 0x0238
141 #define CPMAC_STATS_TX_MCAST 0x023c
142 #define CPMAC_STATS_TX_PAUSE 0x0240
143 #define CPMAC_STATS_TX_DEFER 0x0244
144 #define CPMAC_STATS_TX_COLLISION 0x0248
145 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
146 #define CPMAC_STATS_TX_MULTICOLL 0x0250
147 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
148 #define CPMAC_STATS_TX_LATECOLL 0x0258
149 #define CPMAC_STATS_TX_UNDERRUN 0x025c
150 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
151 #define CPMAC_STATS_TX_OCTETS 0x0264
153 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
154 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
155 (reg)))
157 /* MDIO bus */
158 #define CPMAC_MDIO_VERSION 0x0000
159 #define CPMAC_MDIO_CONTROL 0x0004
160 #define MDIOC_IDLE 0x80000000
161 #define MDIOC_ENABLE 0x40000000
162 #define MDIOC_PREAMBLE 0x00100000
163 #define MDIOC_FAULT 0x00080000
164 #define MDIOC_FAULTDETECT 0x00040000
165 #define MDIOC_INTTEST 0x00020000
166 #define MDIOC_CLKDIV(div) ((div) & 0xff)
167 #define CPMAC_MDIO_ALIVE 0x0008
168 #define CPMAC_MDIO_LINK 0x000c
169 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
170 #define MDIO_BUSY 0x80000000
171 #define MDIO_WRITE 0x40000000
172 #define MDIO_REG(reg) (((reg) & 0x1f) << 21)
173 #define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
174 #define MDIO_DATA(data) ((data) & 0xffff)
175 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
176 #define PHYSEL_LINKSEL 0x00000040
177 #define PHYSEL_LINKINT 0x00000020
179 struct cpmac_desc {
180 u32 hw_next;
181 u32 hw_data;
182 u16 buflen;
183 u16 bufflags;
184 u16 datalen;
185 u16 dataflags;
186 #define CPMAC_SOP 0x8000
187 #define CPMAC_EOP 0x4000
188 #define CPMAC_OWN 0x2000
189 #define CPMAC_EOQ 0x1000
190 struct sk_buff *skb;
191 struct cpmac_desc *next;
192 struct cpmac_desc *prev;
193 dma_addr_t mapping;
194 dma_addr_t data_mapping;
197 struct cpmac_priv {
198 spinlock_t lock;
199 spinlock_t rx_lock;
200 struct cpmac_desc *rx_head;
201 int ring_size;
202 struct cpmac_desc *desc_ring;
203 dma_addr_t dma_ring;
204 void __iomem *regs;
205 struct mii_bus *mii_bus;
206 struct phy_device *phy;
207 char phy_name[MII_BUS_ID_SIZE + 3];
208 int oldlink, oldspeed, oldduplex;
209 u32 msg_enable;
210 struct net_device *dev;
211 struct work_struct reset_work;
212 struct platform_device *pdev;
213 struct napi_struct napi;
214 atomic_t reset_pending;
217 static irqreturn_t cpmac_irq(int, void *);
218 static void cpmac_hw_start(struct net_device *dev);
219 static void cpmac_hw_stop(struct net_device *dev);
220 static int cpmac_stop(struct net_device *dev);
221 static int cpmac_open(struct net_device *dev);
223 static void cpmac_dump_regs(struct net_device *dev)
225 int i;
226 struct cpmac_priv *priv = netdev_priv(dev);
228 for (i = 0; i < CPMAC_REG_END; i += 4) {
229 if (i % 16 == 0) {
230 if (i)
231 printk("\n");
232 printk("%s: reg[%p]:", dev->name, priv->regs + i);
234 printk(" %08x", cpmac_read(priv->regs, i));
236 printk("\n");
239 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
241 int i;
243 printk("%s: desc[%p]:", dev->name, desc);
244 for (i = 0; i < sizeof(*desc) / 4; i++)
245 printk(" %08x", ((u32 *)desc)[i]);
246 printk("\n");
249 static void cpmac_dump_all_desc(struct net_device *dev)
251 struct cpmac_priv *priv = netdev_priv(dev);
252 struct cpmac_desc *dump = priv->rx_head;
254 do {
255 cpmac_dump_desc(dev, dump);
256 dump = dump->next;
257 } while (dump != priv->rx_head);
260 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
262 int i;
264 printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
265 for (i = 0; i < skb->len; i++) {
266 if (i % 16 == 0) {
267 if (i)
268 printk("\n");
269 printk("%s: data[%p]:", dev->name, skb->data + i);
271 printk(" %02x", ((u8 *)skb->data)[i]);
273 printk("\n");
276 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
278 u32 val;
280 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
281 cpu_relax();
282 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
283 MDIO_PHY(phy_id));
284 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
285 cpu_relax();
287 return MDIO_DATA(val);
290 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
291 int reg, u16 val)
293 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
294 cpu_relax();
295 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
296 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
298 return 0;
301 static int cpmac_mdio_reset(struct mii_bus *bus)
303 struct clk *cpmac_clk;
305 cpmac_clk = clk_get(&bus->dev, "cpmac");
306 if (IS_ERR(cpmac_clk)) {
307 pr_err("unable to get cpmac clock\n");
308 return -1;
310 ar7_device_reset(AR7_RESET_BIT_MDIO);
311 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
312 MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
314 return 0;
317 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
319 static struct mii_bus *cpmac_mii;
321 static void cpmac_set_multicast_list(struct net_device *dev)
323 struct netdev_hw_addr *ha;
324 u8 tmp;
325 u32 mbp, bit, hash[2] = { 0, };
326 struct cpmac_priv *priv = netdev_priv(dev);
328 mbp = cpmac_read(priv->regs, CPMAC_MBP);
329 if (dev->flags & IFF_PROMISC) {
330 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
331 MBP_RXPROMISC);
332 } else {
333 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
334 if (dev->flags & IFF_ALLMULTI) {
335 /* enable all multicast mode */
336 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
337 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
338 } else {
339 /* cpmac uses some strange mac address hashing
340 * (not crc32)
342 netdev_for_each_mc_addr(ha, dev) {
343 bit = 0;
344 tmp = ha->addr[0];
345 bit ^= (tmp >> 2) ^ (tmp << 4);
346 tmp = ha->addr[1];
347 bit ^= (tmp >> 4) ^ (tmp << 2);
348 tmp = ha->addr[2];
349 bit ^= (tmp >> 6) ^ tmp;
350 tmp = ha->addr[3];
351 bit ^= (tmp >> 2) ^ (tmp << 4);
352 tmp = ha->addr[4];
353 bit ^= (tmp >> 4) ^ (tmp << 2);
354 tmp = ha->addr[5];
355 bit ^= (tmp >> 6) ^ tmp;
356 bit &= 0x3f;
357 hash[bit / 32] |= 1 << (bit % 32);
360 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
361 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
366 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
367 struct cpmac_desc *desc)
369 struct sk_buff *skb, *result = NULL;
371 if (unlikely(netif_msg_hw(priv)))
372 cpmac_dump_desc(priv->dev, desc);
373 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
374 if (unlikely(!desc->datalen)) {
375 if (netif_msg_rx_err(priv) && net_ratelimit())
376 netdev_warn(priv->dev, "rx: spurious interrupt\n");
378 return NULL;
381 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
382 if (likely(skb)) {
383 skb_put(desc->skb, desc->datalen);
384 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
385 skb_checksum_none_assert(desc->skb);
386 priv->dev->stats.rx_packets++;
387 priv->dev->stats.rx_bytes += desc->datalen;
388 result = desc->skb;
389 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
390 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
391 desc->skb = skb;
392 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
393 CPMAC_SKB_SIZE,
394 DMA_FROM_DEVICE);
395 desc->hw_data = (u32)desc->data_mapping;
396 if (unlikely(netif_msg_pktdata(priv))) {
397 netdev_dbg(priv->dev, "received packet:\n");
398 cpmac_dump_skb(priv->dev, result);
400 } else {
401 if (netif_msg_rx_err(priv) && net_ratelimit())
402 netdev_warn(priv->dev,
403 "low on skbs, dropping packet\n");
405 priv->dev->stats.rx_dropped++;
408 desc->buflen = CPMAC_SKB_SIZE;
409 desc->dataflags = CPMAC_OWN;
411 return result;
414 static int cpmac_poll(struct napi_struct *napi, int budget)
416 struct sk_buff *skb;
417 struct cpmac_desc *desc, *restart;
418 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
419 int received = 0, processed = 0;
421 spin_lock(&priv->rx_lock);
422 if (unlikely(!priv->rx_head)) {
423 if (netif_msg_rx_err(priv) && net_ratelimit())
424 netdev_warn(priv->dev, "rx: polling, but no queue\n");
426 spin_unlock(&priv->rx_lock);
427 napi_complete(napi);
428 return 0;
431 desc = priv->rx_head;
432 restart = NULL;
433 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
434 processed++;
436 if ((desc->dataflags & CPMAC_EOQ) != 0) {
437 /* The last update to eoq->hw_next didn't happen
438 * soon enough, and the receiver stopped here.
439 * Remember this descriptor so we can restart
440 * the receiver after freeing some space.
442 if (unlikely(restart)) {
443 if (netif_msg_rx_err(priv))
444 netdev_err(priv->dev, "poll found a"
445 " duplicate EOQ: %p and %p\n",
446 restart, desc);
447 goto fatal_error;
450 restart = desc->next;
453 skb = cpmac_rx_one(priv, desc);
454 if (likely(skb)) {
455 netif_receive_skb(skb);
456 received++;
458 desc = desc->next;
461 if (desc != priv->rx_head) {
462 /* We freed some buffers, but not the whole ring,
463 * add what we did free to the rx list
465 desc->prev->hw_next = (u32)0;
466 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
469 /* Optimization: If we did not actually process an EOQ (perhaps because
470 * of quota limits), check to see if the tail of the queue has EOQ set.
471 * We should immediately restart in that case so that the receiver can
472 * restart and run in parallel with more packet processing.
473 * This lets us handle slightly larger bursts before running
474 * out of ring space (assuming dev->weight < ring_size)
477 if (!restart &&
478 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
479 == CPMAC_EOQ &&
480 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
481 /* reset EOQ so the poll loop (above) doesn't try to
482 * restart this when it eventually gets to this descriptor.
484 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
485 restart = priv->rx_head;
488 if (restart) {
489 priv->dev->stats.rx_errors++;
490 priv->dev->stats.rx_fifo_errors++;
491 if (netif_msg_rx_err(priv) && net_ratelimit())
492 netdev_warn(priv->dev, "rx dma ring overrun\n");
494 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
495 if (netif_msg_drv(priv))
496 netdev_err(priv->dev, "cpmac_poll is trying "
497 "to restart rx from a descriptor "
498 "that's not free: %p\n", restart);
499 goto fatal_error;
502 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
505 priv->rx_head = desc;
506 spin_unlock(&priv->rx_lock);
507 if (unlikely(netif_msg_rx_status(priv)))
508 netdev_dbg(priv->dev, "poll processed %d packets\n", received);
510 if (processed == 0) {
511 /* we ran out of packets to read,
512 * revert to interrupt-driven mode
514 napi_complete(napi);
515 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
516 return 0;
519 return 1;
521 fatal_error:
522 /* Something went horribly wrong.
523 * Reset hardware to try to recover rather than wedging.
525 if (netif_msg_drv(priv)) {
526 netdev_err(priv->dev, "cpmac_poll is confused. "
527 "Resetting hardware\n");
528 cpmac_dump_all_desc(priv->dev);
529 netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
530 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
531 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
534 spin_unlock(&priv->rx_lock);
535 napi_complete(napi);
536 netif_tx_stop_all_queues(priv->dev);
537 napi_disable(&priv->napi);
539 atomic_inc(&priv->reset_pending);
540 cpmac_hw_stop(priv->dev);
541 if (!schedule_work(&priv->reset_work))
542 atomic_dec(&priv->reset_pending);
544 return 0;
548 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
550 int queue, len;
551 struct cpmac_desc *desc;
552 struct cpmac_priv *priv = netdev_priv(dev);
554 if (unlikely(atomic_read(&priv->reset_pending)))
555 return NETDEV_TX_BUSY;
557 if (unlikely(skb_padto(skb, ETH_ZLEN)))
558 return NETDEV_TX_OK;
560 len = max(skb->len, ETH_ZLEN);
561 queue = skb_get_queue_mapping(skb);
562 netif_stop_subqueue(dev, queue);
564 desc = &priv->desc_ring[queue];
565 if (unlikely(desc->dataflags & CPMAC_OWN)) {
566 if (netif_msg_tx_err(priv) && net_ratelimit())
567 netdev_warn(dev, "tx dma ring full\n");
569 return NETDEV_TX_BUSY;
572 spin_lock(&priv->lock);
573 spin_unlock(&priv->lock);
574 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
575 desc->skb = skb;
576 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
577 DMA_TO_DEVICE);
578 desc->hw_data = (u32)desc->data_mapping;
579 desc->datalen = len;
580 desc->buflen = len;
581 if (unlikely(netif_msg_tx_queued(priv)))
582 netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
583 if (unlikely(netif_msg_hw(priv)))
584 cpmac_dump_desc(dev, desc);
585 if (unlikely(netif_msg_pktdata(priv)))
586 cpmac_dump_skb(dev, skb);
587 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
589 return NETDEV_TX_OK;
592 static void cpmac_end_xmit(struct net_device *dev, int queue)
594 struct cpmac_desc *desc;
595 struct cpmac_priv *priv = netdev_priv(dev);
597 desc = &priv->desc_ring[queue];
598 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
599 if (likely(desc->skb)) {
600 spin_lock(&priv->lock);
601 dev->stats.tx_packets++;
602 dev->stats.tx_bytes += desc->skb->len;
603 spin_unlock(&priv->lock);
604 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
605 DMA_TO_DEVICE);
607 if (unlikely(netif_msg_tx_done(priv)))
608 netdev_dbg(dev, "sent 0x%p, len=%d\n",
609 desc->skb, desc->skb->len);
611 dev_kfree_skb_irq(desc->skb);
612 desc->skb = NULL;
613 if (__netif_subqueue_stopped(dev, queue))
614 netif_wake_subqueue(dev, queue);
615 } else {
616 if (netif_msg_tx_err(priv) && net_ratelimit())
617 netdev_warn(dev, "end_xmit: spurious interrupt\n");
618 if (__netif_subqueue_stopped(dev, queue))
619 netif_wake_subqueue(dev, queue);
623 static void cpmac_hw_stop(struct net_device *dev)
625 int i;
626 struct cpmac_priv *priv = netdev_priv(dev);
627 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
629 ar7_device_reset(pdata->reset_bit);
630 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
631 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
632 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
633 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
634 for (i = 0; i < 8; i++) {
635 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
636 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
638 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
639 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
640 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
641 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
642 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
643 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
646 static void cpmac_hw_start(struct net_device *dev)
648 int i;
649 struct cpmac_priv *priv = netdev_priv(dev);
650 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
652 ar7_device_reset(pdata->reset_bit);
653 for (i = 0; i < 8; i++) {
654 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
655 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
657 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
659 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
660 MBP_RXMCAST);
661 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
662 for (i = 0; i < 8; i++)
663 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
664 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
665 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
666 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
667 (dev->dev_addr[3] << 24));
668 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
669 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
670 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
671 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
672 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
673 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
674 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
675 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
676 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
678 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
679 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
680 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
681 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
682 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
683 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
684 MAC_FDX);
687 static void cpmac_clear_rx(struct net_device *dev)
689 struct cpmac_priv *priv = netdev_priv(dev);
690 struct cpmac_desc *desc;
691 int i;
693 if (unlikely(!priv->rx_head))
694 return;
695 desc = priv->rx_head;
696 for (i = 0; i < priv->ring_size; i++) {
697 if ((desc->dataflags & CPMAC_OWN) == 0) {
698 if (netif_msg_rx_err(priv) && net_ratelimit())
699 netdev_warn(dev, "packet dropped\n");
700 if (unlikely(netif_msg_hw(priv)))
701 cpmac_dump_desc(dev, desc);
702 desc->dataflags = CPMAC_OWN;
703 dev->stats.rx_dropped++;
705 desc->hw_next = desc->next->mapping;
706 desc = desc->next;
708 priv->rx_head->prev->hw_next = 0;
711 static void cpmac_clear_tx(struct net_device *dev)
713 struct cpmac_priv *priv = netdev_priv(dev);
714 int i;
716 if (unlikely(!priv->desc_ring))
717 return;
718 for (i = 0; i < CPMAC_QUEUES; i++) {
719 priv->desc_ring[i].dataflags = 0;
720 if (priv->desc_ring[i].skb) {
721 dev_kfree_skb_any(priv->desc_ring[i].skb);
722 priv->desc_ring[i].skb = NULL;
727 static void cpmac_hw_error(struct work_struct *work)
729 struct cpmac_priv *priv =
730 container_of(work, struct cpmac_priv, reset_work);
732 spin_lock(&priv->rx_lock);
733 cpmac_clear_rx(priv->dev);
734 spin_unlock(&priv->rx_lock);
735 cpmac_clear_tx(priv->dev);
736 cpmac_hw_start(priv->dev);
737 barrier();
738 atomic_dec(&priv->reset_pending);
740 netif_tx_wake_all_queues(priv->dev);
741 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
744 static void cpmac_check_status(struct net_device *dev)
746 struct cpmac_priv *priv = netdev_priv(dev);
748 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
749 int rx_channel = (macstatus >> 8) & 7;
750 int rx_code = (macstatus >> 12) & 15;
751 int tx_channel = (macstatus >> 16) & 7;
752 int tx_code = (macstatus >> 20) & 15;
754 if (rx_code || tx_code) {
755 if (netif_msg_drv(priv) && net_ratelimit()) {
756 /* Can't find any documentation on what these
757 * error codes actually are. So just log them and hope..
759 if (rx_code)
760 netdev_warn(dev, "host error %d on rx "
761 "channel %d (macstatus %08x), resetting\n",
762 rx_code, rx_channel, macstatus);
763 if (tx_code)
764 netdev_warn(dev, "host error %d on tx "
765 "channel %d (macstatus %08x), resetting\n",
766 tx_code, tx_channel, macstatus);
769 netif_tx_stop_all_queues(dev);
770 cpmac_hw_stop(dev);
771 if (schedule_work(&priv->reset_work))
772 atomic_inc(&priv->reset_pending);
773 if (unlikely(netif_msg_hw(priv)))
774 cpmac_dump_regs(dev);
776 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
779 static irqreturn_t cpmac_irq(int irq, void *dev_id)
781 struct net_device *dev = dev_id;
782 struct cpmac_priv *priv;
783 int queue;
784 u32 status;
786 priv = netdev_priv(dev);
788 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
790 if (unlikely(netif_msg_intr(priv)))
791 netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
793 if (status & MAC_INT_TX)
794 cpmac_end_xmit(dev, (status & 7));
796 if (status & MAC_INT_RX) {
797 queue = (status >> 8) & 7;
798 if (napi_schedule_prep(&priv->napi)) {
799 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
800 __napi_schedule(&priv->napi);
804 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
806 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
807 cpmac_check_status(dev);
809 return IRQ_HANDLED;
812 static void cpmac_tx_timeout(struct net_device *dev)
814 struct cpmac_priv *priv = netdev_priv(dev);
816 spin_lock(&priv->lock);
817 dev->stats.tx_errors++;
818 spin_unlock(&priv->lock);
819 if (netif_msg_tx_err(priv) && net_ratelimit())
820 netdev_warn(dev, "transmit timeout\n");
822 atomic_inc(&priv->reset_pending);
823 barrier();
824 cpmac_clear_tx(dev);
825 barrier();
826 atomic_dec(&priv->reset_pending);
828 netif_tx_wake_all_queues(priv->dev);
831 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
833 struct cpmac_priv *priv = netdev_priv(dev);
835 if (!(netif_running(dev)))
836 return -EINVAL;
837 if (!priv->phy)
838 return -EINVAL;
840 return phy_mii_ioctl(priv->phy, ifr, cmd);
843 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
845 struct cpmac_priv *priv = netdev_priv(dev);
847 if (priv->phy)
848 return phy_ethtool_gset(priv->phy, cmd);
850 return -EINVAL;
853 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
855 struct cpmac_priv *priv = netdev_priv(dev);
857 if (!capable(CAP_NET_ADMIN))
858 return -EPERM;
860 if (priv->phy)
861 return phy_ethtool_sset(priv->phy, cmd);
863 return -EINVAL;
866 static void cpmac_get_ringparam(struct net_device *dev,
867 struct ethtool_ringparam *ring)
869 struct cpmac_priv *priv = netdev_priv(dev);
871 ring->rx_max_pending = 1024;
872 ring->rx_mini_max_pending = 1;
873 ring->rx_jumbo_max_pending = 1;
874 ring->tx_max_pending = 1;
876 ring->rx_pending = priv->ring_size;
877 ring->rx_mini_pending = 1;
878 ring->rx_jumbo_pending = 1;
879 ring->tx_pending = 1;
882 static int cpmac_set_ringparam(struct net_device *dev,
883 struct ethtool_ringparam *ring)
885 struct cpmac_priv *priv = netdev_priv(dev);
887 if (netif_running(dev))
888 return -EBUSY;
889 priv->ring_size = ring->rx_pending;
891 return 0;
894 static void cpmac_get_drvinfo(struct net_device *dev,
895 struct ethtool_drvinfo *info)
897 strlcpy(info->driver, "cpmac", sizeof(info->driver));
898 strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
899 snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
900 info->regdump_len = 0;
903 static const struct ethtool_ops cpmac_ethtool_ops = {
904 .get_settings = cpmac_get_settings,
905 .set_settings = cpmac_set_settings,
906 .get_drvinfo = cpmac_get_drvinfo,
907 .get_link = ethtool_op_get_link,
908 .get_ringparam = cpmac_get_ringparam,
909 .set_ringparam = cpmac_set_ringparam,
912 static void cpmac_adjust_link(struct net_device *dev)
914 struct cpmac_priv *priv = netdev_priv(dev);
915 int new_state = 0;
917 spin_lock(&priv->lock);
918 if (priv->phy->link) {
919 netif_tx_start_all_queues(dev);
920 if (priv->phy->duplex != priv->oldduplex) {
921 new_state = 1;
922 priv->oldduplex = priv->phy->duplex;
925 if (priv->phy->speed != priv->oldspeed) {
926 new_state = 1;
927 priv->oldspeed = priv->phy->speed;
930 if (!priv->oldlink) {
931 new_state = 1;
932 priv->oldlink = 1;
934 } else if (priv->oldlink) {
935 new_state = 1;
936 priv->oldlink = 0;
937 priv->oldspeed = 0;
938 priv->oldduplex = -1;
941 if (new_state && netif_msg_link(priv) && net_ratelimit())
942 phy_print_status(priv->phy);
944 spin_unlock(&priv->lock);
947 static int cpmac_open(struct net_device *dev)
949 int i, size, res;
950 struct cpmac_priv *priv = netdev_priv(dev);
951 struct resource *mem;
952 struct cpmac_desc *desc;
953 struct sk_buff *skb;
955 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
956 if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
957 if (netif_msg_drv(priv))
958 netdev_err(dev, "failed to request registers\n");
960 res = -ENXIO;
961 goto fail_reserve;
964 priv->regs = ioremap(mem->start, resource_size(mem));
965 if (!priv->regs) {
966 if (netif_msg_drv(priv))
967 netdev_err(dev, "failed to remap registers\n");
969 res = -ENXIO;
970 goto fail_remap;
973 size = priv->ring_size + CPMAC_QUEUES;
974 priv->desc_ring = dma_alloc_coherent(&dev->dev,
975 sizeof(struct cpmac_desc) * size,
976 &priv->dma_ring,
977 GFP_KERNEL);
978 if (!priv->desc_ring) {
979 res = -ENOMEM;
980 goto fail_alloc;
983 for (i = 0; i < size; i++)
984 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
986 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
987 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
988 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
989 if (unlikely(!skb)) {
990 res = -ENOMEM;
991 goto fail_desc;
993 desc->skb = skb;
994 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
995 CPMAC_SKB_SIZE,
996 DMA_FROM_DEVICE);
997 desc->hw_data = (u32)desc->data_mapping;
998 desc->buflen = CPMAC_SKB_SIZE;
999 desc->dataflags = CPMAC_OWN;
1000 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1001 desc->next->prev = desc;
1002 desc->hw_next = (u32)desc->next->mapping;
1005 priv->rx_head->prev->hw_next = (u32)0;
1007 res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1008 if (res) {
1009 if (netif_msg_drv(priv))
1010 netdev_err(dev, "failed to obtain irq\n");
1012 goto fail_irq;
1015 atomic_set(&priv->reset_pending, 0);
1016 INIT_WORK(&priv->reset_work, cpmac_hw_error);
1017 cpmac_hw_start(dev);
1019 napi_enable(&priv->napi);
1020 priv->phy->state = PHY_CHANGELINK;
1021 phy_start(priv->phy);
1023 return 0;
1025 fail_irq:
1026 fail_desc:
1027 for (i = 0; i < priv->ring_size; i++) {
1028 if (priv->rx_head[i].skb) {
1029 dma_unmap_single(&dev->dev,
1030 priv->rx_head[i].data_mapping,
1031 CPMAC_SKB_SIZE,
1032 DMA_FROM_DEVICE);
1033 kfree_skb(priv->rx_head[i].skb);
1036 fail_alloc:
1037 kfree(priv->desc_ring);
1038 iounmap(priv->regs);
1040 fail_remap:
1041 release_mem_region(mem->start, resource_size(mem));
1043 fail_reserve:
1044 return res;
1047 static int cpmac_stop(struct net_device *dev)
1049 int i;
1050 struct cpmac_priv *priv = netdev_priv(dev);
1051 struct resource *mem;
1053 netif_tx_stop_all_queues(dev);
1055 cancel_work_sync(&priv->reset_work);
1056 napi_disable(&priv->napi);
1057 phy_stop(priv->phy);
1059 cpmac_hw_stop(dev);
1061 for (i = 0; i < 8; i++)
1062 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1063 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1064 cpmac_write(priv->regs, CPMAC_MBP, 0);
1066 free_irq(dev->irq, dev);
1067 iounmap(priv->regs);
1068 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1069 release_mem_region(mem->start, resource_size(mem));
1070 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1071 for (i = 0; i < priv->ring_size; i++) {
1072 if (priv->rx_head[i].skb) {
1073 dma_unmap_single(&dev->dev,
1074 priv->rx_head[i].data_mapping,
1075 CPMAC_SKB_SIZE,
1076 DMA_FROM_DEVICE);
1077 kfree_skb(priv->rx_head[i].skb);
1081 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1082 (CPMAC_QUEUES + priv->ring_size),
1083 priv->desc_ring, priv->dma_ring);
1085 return 0;
1088 static const struct net_device_ops cpmac_netdev_ops = {
1089 .ndo_open = cpmac_open,
1090 .ndo_stop = cpmac_stop,
1091 .ndo_start_xmit = cpmac_start_xmit,
1092 .ndo_tx_timeout = cpmac_tx_timeout,
1093 .ndo_set_rx_mode = cpmac_set_multicast_list,
1094 .ndo_do_ioctl = cpmac_ioctl,
1095 .ndo_change_mtu = eth_change_mtu,
1096 .ndo_validate_addr = eth_validate_addr,
1097 .ndo_set_mac_address = eth_mac_addr,
1100 static int external_switch;
1102 static int cpmac_probe(struct platform_device *pdev)
1104 int rc, phy_id;
1105 char mdio_bus_id[MII_BUS_ID_SIZE];
1106 struct resource *mem;
1107 struct cpmac_priv *priv;
1108 struct net_device *dev;
1109 struct plat_cpmac_data *pdata;
1111 pdata = dev_get_platdata(&pdev->dev);
1113 if (external_switch || dumb_switch) {
1114 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1115 phy_id = pdev->id;
1116 } else {
1117 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1118 if (!(pdata->phy_mask & (1 << phy_id)))
1119 continue;
1120 if (!cpmac_mii->phy_map[phy_id])
1121 continue;
1122 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1123 break;
1127 if (phy_id == PHY_MAX_ADDR) {
1128 dev_err(&pdev->dev, "no PHY present, falling back "
1129 "to switch on MDIO bus 0\n");
1130 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1131 phy_id = pdev->id;
1133 mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1135 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1136 if (!dev)
1137 return -ENOMEM;
1139 platform_set_drvdata(pdev, dev);
1140 priv = netdev_priv(dev);
1142 priv->pdev = pdev;
1143 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1144 if (!mem) {
1145 rc = -ENODEV;
1146 goto out;
1149 dev->irq = platform_get_irq_byname(pdev, "irq");
1151 dev->netdev_ops = &cpmac_netdev_ops;
1152 dev->ethtool_ops = &cpmac_ethtool_ops;
1154 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1156 spin_lock_init(&priv->lock);
1157 spin_lock_init(&priv->rx_lock);
1158 priv->dev = dev;
1159 priv->ring_size = 64;
1160 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1161 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1163 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1164 mdio_bus_id, phy_id);
1166 priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1167 PHY_INTERFACE_MODE_MII);
1169 if (IS_ERR(priv->phy)) {
1170 if (netif_msg_drv(priv))
1171 dev_err(&pdev->dev, "Could not attach to PHY\n");
1173 rc = PTR_ERR(priv->phy);
1174 goto out;
1177 rc = register_netdev(dev);
1178 if (rc) {
1179 dev_err(&pdev->dev, "Could not register net device\n");
1180 goto fail;
1183 if (netif_msg_probe(priv)) {
1184 dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1185 "mac: %pM\n", (void *)mem->start, dev->irq,
1186 priv->phy_name, dev->dev_addr);
1189 return 0;
1191 fail:
1192 free_netdev(dev);
1193 out:
1194 return rc;
1197 static int cpmac_remove(struct platform_device *pdev)
1199 struct net_device *dev = platform_get_drvdata(pdev);
1201 unregister_netdev(dev);
1202 free_netdev(dev);
1204 return 0;
1207 static struct platform_driver cpmac_driver = {
1208 .driver = {
1209 .name = "cpmac",
1211 .probe = cpmac_probe,
1212 .remove = cpmac_remove,
1215 int cpmac_init(void)
1217 u32 mask;
1218 int i, res;
1220 cpmac_mii = mdiobus_alloc();
1221 if (cpmac_mii == NULL)
1222 return -ENOMEM;
1224 cpmac_mii->name = "cpmac-mii";
1225 cpmac_mii->read = cpmac_mdio_read;
1226 cpmac_mii->write = cpmac_mdio_write;
1227 cpmac_mii->reset = cpmac_mdio_reset;
1228 cpmac_mii->irq = mii_irqs;
1230 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1232 if (!cpmac_mii->priv) {
1233 pr_err("Can't ioremap mdio registers\n");
1234 res = -ENXIO;
1235 goto fail_alloc;
1238 #warning FIXME: unhardcode gpio&reset bits
1239 ar7_gpio_disable(26);
1240 ar7_gpio_disable(27);
1241 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1242 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1243 ar7_device_reset(AR7_RESET_BIT_EPHY);
1245 cpmac_mii->reset(cpmac_mii);
1247 for (i = 0; i < 300; i++) {
1248 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1249 if (mask)
1250 break;
1251 else
1252 msleep(10);
1255 mask &= 0x7fffffff;
1256 if (mask & (mask - 1)) {
1257 external_switch = 1;
1258 mask = 0;
1261 cpmac_mii->phy_mask = ~(mask | 0x80000000);
1262 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1264 res = mdiobus_register(cpmac_mii);
1265 if (res)
1266 goto fail_mii;
1268 res = platform_driver_register(&cpmac_driver);
1269 if (res)
1270 goto fail_cpmac;
1272 return 0;
1274 fail_cpmac:
1275 mdiobus_unregister(cpmac_mii);
1277 fail_mii:
1278 iounmap(cpmac_mii->priv);
1280 fail_alloc:
1281 mdiobus_free(cpmac_mii);
1283 return res;
1286 void cpmac_exit(void)
1288 platform_driver_unregister(&cpmac_driver);
1289 mdiobus_unregister(cpmac_mii);
1290 iounmap(cpmac_mii->priv);
1291 mdiobus_free(cpmac_mii);
1294 module_init(cpmac_init);
1295 module_exit(cpmac_exit);