2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
25 #include <linux/netdevice.h> /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
34 #include <linux/u64_stats_sync.h>
35 #include <asm/checksum.h>
36 #include <asm/homecache.h>
38 #include <hv/drv_xgbe_intf.h>
39 #include <hv/drv_xgbe_impl.h>
40 #include <hv/hypervisor.h>
41 #include <hv/netio_intf.h>
45 #include <linux/tcp.h>
49 * First, "tile_net_init_module()" initializes all four "devices" which
50 * can be used by linux.
52 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
53 * the network cpus, then uses "tile_net_open_aux()" to initialize
54 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
55 * the tiles, provide buffers to LIPP, allow ingress to start, and
56 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
58 * If registration fails due to the link being down, then "retry_work"
59 * is used to keep calling "tile_net_open_inner()" until it succeeds.
61 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
62 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
63 * LIPP/LEPP, and wipe the LEPP queue.
65 * We start out with the ingress interrupt enabled on each CPU. When
66 * this interrupt fires, we disable it, and call "napi_schedule()".
67 * This will cause "tile_net_poll()" to be called, which will pull
68 * packets from the netio queue, filtering them out, or passing them
69 * to "netif_receive_skb()". If our budget is exhausted, we will
70 * return, knowing we will be called again later. Otherwise, we
71 * reenable the ingress interrupt, and call "napi_complete()".
73 * HACK: Since disabling the ingress interrupt is not reliable, we
74 * ignore the interrupt if the global "active" flag is false.
77 * NOTE: The use of "native_driver" ensures that EPP exists, and that
78 * we are using "LIPP" and "LEPP".
80 * NOTE: Failing to free completions for an arbitrarily long time
81 * (which is defined to be illegal) does in fact cause bizarre
82 * problems. The "egress_timer" helps prevent this from happening.
86 /* HACK: Allow use of "jumbo" packets. */
87 /* This should be 1500 if "jumbo" is not set in LIPP. */
88 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
89 /* ISSUE: This has not been thoroughly tested (except at 1500). */
90 #define TILE_NET_MTU 1500
92 /* HACK: Define this to verify incoming packets. */
93 /* #define TILE_NET_VERIFY_INGRESS */
95 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
96 #define TILE_NET_TX_QUEUE_LEN 0
98 /* Define to dump packets (prints out the whole packet on tx and rx). */
99 /* #define TILE_NET_DUMP_PACKETS */
101 /* Define to enable debug spew (all PDEBUG's are enabled). */
102 /* #define TILE_NET_DEBUG */
105 /* Define to activate paranoia checks. */
106 /* #define TILE_NET_PARANOIA */
108 /* Default transmit lockup timeout period, in jiffies. */
109 #define TILE_NET_TIMEOUT (5 * HZ)
111 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
112 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
114 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
115 #define TILE_NET_DEVS 4
120 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
121 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
126 #ifdef TILE_NET_DEBUG
127 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
129 #define PDEBUG(fmt, args...)
133 MODULE_AUTHOR("Tilera");
134 MODULE_LICENSE("GPL");
138 * Queue of incoming packets for a specific cpu and device.
140 * Includes a pointer to the "system" data, and the actual "user" data.
142 struct tile_netio_queue
{
143 netio_queue_impl_t
*__system_part
;
144 netio_queue_user_impl_t __user_part
;
150 * Statistics counters for a specific cpu and device.
152 struct tile_net_stats_t
{
153 struct u64_stats_sync syncp
;
154 u64 rx_packets
; /* total packets received */
155 u64 tx_packets
; /* total packets transmitted */
156 u64 rx_bytes
; /* total bytes received */
157 u64 tx_bytes
; /* total bytes transmitted */
158 u64 rx_errors
; /* packets truncated or marked bad by hw */
159 u64 rx_dropped
; /* packets not for us or intf not up */
164 * Info for a specific cpu and device.
166 * ISSUE: There is a "dev" pointer in "napi" as well.
168 struct tile_net_cpu
{
169 /* The NAPI struct. */
170 struct napi_struct napi
;
172 struct tile_netio_queue queue
;
174 struct tile_net_stats_t stats
;
175 /* True iff NAPI is enabled. */
177 /* True if this tile has successfully registered with the IPP. */
179 /* True if the link was down last time we tried to register. */
181 /* True if "egress_timer" is scheduled. */
182 bool egress_timer_scheduled
;
183 /* Number of small sk_buffs which must still be provided. */
184 unsigned int num_needed_small_buffers
;
185 /* Number of large sk_buffs which must still be provided. */
186 unsigned int num_needed_large_buffers
;
187 /* A timer for handling egress completions. */
188 struct timer_list egress_timer
;
193 * Info for a specific device.
195 struct tile_net_priv
{
196 /* Our network device. */
197 struct net_device
*dev
;
198 /* Pages making up the egress queue. */
199 struct page
*eq_pages
;
200 /* Address of the actual egress queue. */
204 /* The hypervisor handle for this interface. */
206 /* The intr bit mask that IDs this device. */
208 /* True iff "tile_net_open_aux()" has succeeded. */
210 /* True iff the device is "active". */
212 /* Effective network cpus. */
213 struct cpumask network_cpus_map
;
214 /* Number of network cpus. */
215 int network_cpus_count
;
216 /* Credits per network cpu. */
217 int network_cpus_credits
;
218 /* For NetIO bringup retries. */
219 struct delayed_work retry_work
;
220 /* Quick access to per cpu data. */
221 struct tile_net_cpu
*cpu
[NR_CPUS
];
224 /* Log2 of the number of small pages needed for the egress queue. */
225 #define EQ_ORDER get_order(sizeof(lepp_queue_t))
226 /* Size of the egress queue's pages. */
227 #define EQ_SIZE (1 << (PAGE_SHIFT + EQ_ORDER))
230 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
232 static struct net_device
*tile_net_devs
[TILE_NET_DEVS
];
235 * The "tile_net_cpu" structures for each device.
237 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_xgbe0
);
238 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_xgbe1
);
239 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_gbe0
);
240 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_gbe1
);
244 * True if "network_cpus" was specified.
246 static bool network_cpus_used
;
249 * The actual cpus in "network_cpus".
251 static struct cpumask network_cpus_map
;
255 #ifdef TILE_NET_DEBUG
257 * printk with extra stuff.
259 * We print the CPU we're running in brackets.
261 static void net_printk(char *fmt
, ...)
266 static char buf
[256];
268 len
= sprintf(buf
, "tile_net[%2.2d]: ", smp_processor_id());
270 i
= vscnprintf(buf
+ len
, sizeof(buf
) - len
- 1, fmt
, args
);
278 #ifdef TILE_NET_DUMP_PACKETS
282 static void dump_packet(unsigned char *data
, unsigned long length
, char *s
)
284 int my_cpu
= smp_processor_id();
289 static unsigned int count
;
291 pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
292 data
, length
, s
, count
++);
296 for (i
= 0; i
< length
; i
++) {
298 sprintf(buf
, "[%02d] %8.8lx:", my_cpu
, i
);
299 sprintf(buf
+ strlen(buf
), " %2.2x", data
[i
]);
300 if ((i
& 0xf) == 0xf || i
== length
- 1) {
310 * Provide support for the __netio_fastio1() swint
311 * (see <hv/drv_xgbe_intf.h> for how it is used).
313 * The fastio swint2 call may clobber all the caller-saved registers.
314 * It rarely clobbers memory, but we allow for the possibility in
315 * the signature just to be on the safe side.
317 * Also, gcc doesn't seem to allow an input operand to be
318 * clobbered, so we fake it with dummy outputs.
320 * This function can't be static because of the way it is declared
321 * in the netio header.
323 inline int __netio_fastio1(u32 fastio_index
, u32 arg0
)
325 long result
, clobber_r1
, clobber_r10
;
326 asm volatile("swint2"
328 "=R01" (clobber_r1
), "=R10" (clobber_r10
)
329 : "R10" (fastio_index
), "R01" (arg0
)
330 : "memory", "r2", "r3", "r4",
331 "r5", "r6", "r7", "r8", "r9",
332 "r11", "r12", "r13", "r14",
333 "r15", "r16", "r17", "r18", "r19",
334 "r20", "r21", "r22", "r23", "r24",
335 "r25", "r26", "r27", "r28", "r29");
340 static void tile_net_return_credit(struct tile_net_cpu
*info
)
342 struct tile_netio_queue
*queue
= &info
->queue
;
343 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
345 /* Return four credits after every fourth packet. */
346 if (--qup
->__receive_credit_remaining
== 0) {
347 u32 interval
= qup
->__receive_credit_interval
;
348 qup
->__receive_credit_remaining
= interval
;
349 __netio_fastio_return_credits(qup
->__fastio_index
, interval
);
356 * Provide a linux buffer to LIPP.
358 static void tile_net_provide_linux_buffer(struct tile_net_cpu
*info
,
359 void *va
, bool small
)
361 struct tile_netio_queue
*queue
= &info
->queue
;
363 /* Convert "va" and "small" to "linux_buffer_t". */
364 unsigned int buffer
= ((unsigned int)(__pa(va
) >> 7) << 1) + small
;
366 __netio_fastio_free_buffer(queue
->__user_part
.__fastio_index
, buffer
);
371 * Provide a linux buffer for LIPP.
373 * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
374 * plus a chunk of memory that includes not only the requested bytes, but
375 * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
377 * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
378 * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
380 * Without jumbo packets, the maximum packet size will be 1536 bytes,
381 * and we use 2 bytes (NET_IP_ALIGN) of padding. ISSUE: If we told
382 * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
383 * could save an entire cache line, but in practice, we don't need it.
385 * Since CPAs are 38 bits, and we can only encode the high 31 bits in
386 * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
387 * align the actual "va" mod 128.
389 * We assume that the underlying "head" will be aligned mod 64. Note
390 * that in practice, we have seen "head" NOT aligned mod 128 even when
391 * using 2048 byte allocations, which is surprising.
393 * If "head" WAS always aligned mod 128, we could change LIPP to
394 * assume that the low SIX bits are zero, and the 7th bit is one, that
395 * is, align the actual "va" mod 128 plus 64, which would be "free".
397 * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
398 * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
399 * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
400 * the actual packet, plus 62 bytes of empty padding, plus some
401 * padding and the "struct skb_shared_info".
403 * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
404 * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
406 * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
407 * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
408 * could presumably increase the size of small buffers.
410 * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
411 * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
413 * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
414 * bytes, or 524 bytes, which is annoyingly wasteful.
416 * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
418 * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
420 static bool tile_net_provide_needed_buffer(struct tile_net_cpu
*info
,
423 #if TILE_NET_MTU <= 1536
424 /* Without "jumbo", 2 + 1536 should be sufficient. */
425 unsigned int large_size
= NET_IP_ALIGN
+ 1536;
427 /* ISSUE: This has not been tested. */
428 unsigned int large_size
= NET_IP_ALIGN
+ TILE_NET_MTU
+ 100;
431 /* Avoid "false sharing" with last cache line. */
432 /* ISSUE: This is already done by "netdev_alloc_skb()". */
434 (((small
? LIPP_SMALL_PACKET_SIZE
: large_size
) +
435 CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
437 unsigned int padding
= 128 - NET_SKB_PAD
;
443 struct sk_buff
**skb_ptr
;
445 /* Request 96 extra bytes for alignment purposes. */
446 skb
= netdev_alloc_skb(info
->napi
.dev
, len
+ padding
);
450 /* Skip 32 or 96 bytes to align "data" mod 128. */
451 align
= -(long)skb
->data
& (128 - 1);
452 BUG_ON(align
> padding
);
453 skb_reserve(skb
, align
);
455 /* This address is given to IPP. */
458 /* Buffers must not span a huge page. */
459 BUG_ON(((((long)va
& ~HPAGE_MASK
) + len
) & HPAGE_MASK
) != 0);
461 #ifdef TILE_NET_PARANOIA
462 #if CHIP_HAS_CBOX_HOME_MAP()
464 HV_PTE pte
= *virt_to_pte(current
->mm
, (unsigned long)va
);
465 if (hv_pte_get_mode(pte
) != HV_PTE_MODE_CACHE_HASH_L3
)
466 panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
467 va
, hv_pte_get_mode(pte
), hv_pte_val(pte
));
472 /* Invalidate the packet buffer. */
474 __inv_buffer(va
, len
);
476 /* Skip two bytes to satisfy LIPP assumptions. */
477 /* Note that this aligns IP on a 16 byte boundary. */
478 /* ISSUE: Do this when the packet arrives? */
479 skb_reserve(skb
, NET_IP_ALIGN
);
481 /* Save a back-pointer to 'skb'. */
482 skb_ptr
= va
- sizeof(*skb_ptr
);
485 /* Make sure "skb_ptr" has been flushed. */
488 /* Provide the new buffer. */
489 tile_net_provide_linux_buffer(info
, va
, small
);
496 * Provide linux buffers for LIPP.
498 static void tile_net_provide_needed_buffers(struct tile_net_cpu
*info
)
500 while (info
->num_needed_small_buffers
!= 0) {
501 if (!tile_net_provide_needed_buffer(info
, true))
503 info
->num_needed_small_buffers
--;
506 while (info
->num_needed_large_buffers
!= 0) {
507 if (!tile_net_provide_needed_buffer(info
, false))
509 info
->num_needed_large_buffers
--;
516 /* Add a description to the page allocation failure dump. */
517 pr_notice("Could not provide a linux buffer to LIPP.\n");
522 * Grab some LEPP completions, and store them in "comps", of size
523 * "comps_size", and return the number of completions which were
524 * stored, so the caller can free them.
526 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t
*eq
,
527 struct sk_buff
*comps
[],
528 unsigned int comps_size
,
529 unsigned int min_size
)
533 unsigned int comp_head
= eq
->comp_head
;
534 unsigned int comp_busy
= eq
->comp_busy
;
536 while (comp_head
!= comp_busy
&& n
< comps_size
) {
537 comps
[n
++] = eq
->comps
[comp_head
];
538 LEPP_QINC(comp_head
);
544 eq
->comp_head
= comp_head
;
551 * Free some comps, and return true iff there are still some pending.
553 static bool tile_net_lepp_free_comps(struct net_device
*dev
, bool all
)
555 struct tile_net_priv
*priv
= netdev_priv(dev
);
557 lepp_queue_t
*eq
= priv
->eq
;
559 struct sk_buff
*olds
[64];
560 unsigned int wanted
= 64;
564 spin_lock(&priv
->eq_lock
);
567 eq
->comp_busy
= eq
->comp_tail
;
569 n
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
571 pending
= (eq
->comp_head
!= eq
->comp_tail
);
573 spin_unlock(&priv
->eq_lock
);
575 for (i
= 0; i
< n
; i
++)
583 * Make sure the egress timer is scheduled.
585 * Note that we use "schedule if not scheduled" logic instead of the more
586 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
588 static void tile_net_schedule_egress_timer(struct tile_net_cpu
*info
)
590 if (!info
->egress_timer_scheduled
) {
591 mod_timer_pinned(&info
->egress_timer
, jiffies
+ 1);
592 info
->egress_timer_scheduled
= true;
598 * The "function" for "info->egress_timer".
600 * This timer will reschedule itself as long as there are any pending
601 * completions expected (on behalf of any tile).
603 * ISSUE: Realistically, will the timer ever stop scheduling itself?
605 * ISSUE: This timer is almost never actually needed, so just use a global
606 * timer that can run on any tile.
608 * ISSUE: Maybe instead track number of expected completions, and free
609 * only that many, resetting to zero if "pending" is ever false.
611 static void tile_net_handle_egress_timer(unsigned long arg
)
613 struct tile_net_cpu
*info
= (struct tile_net_cpu
*)arg
;
614 struct net_device
*dev
= info
->napi
.dev
;
616 /* The timer is no longer scheduled. */
617 info
->egress_timer_scheduled
= false;
619 /* Free comps, and reschedule timer if more are pending. */
620 if (tile_net_lepp_free_comps(dev
, false))
621 tile_net_schedule_egress_timer(info
);
625 static void tile_net_discard_aux(struct tile_net_cpu
*info
, int index
)
627 struct tile_netio_queue
*queue
= &info
->queue
;
628 netio_queue_impl_t
*qsp
= queue
->__system_part
;
629 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
631 int index2_aux
= index
+ sizeof(netio_pkt_t
);
634 qsp
->__packet_receive_queue
.__last_packet_plus_one
) ?
637 netio_pkt_t
*pkt
= (netio_pkt_t
*)((unsigned long) &qsp
[1] + index
);
639 /* Extract the "linux_buffer_t". */
640 unsigned int buffer
= pkt
->__packet
.word
;
642 /* Convert "linux_buffer_t" to "va". */
643 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
645 /* Acquire the associated "skb". */
646 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
647 struct sk_buff
*skb
= *skb_ptr
;
651 /* Consume this packet. */
652 qup
->__packet_receive_read
= index2
;
657 * Like "tile_net_poll()", but just discard packets.
659 static void tile_net_discard_packets(struct net_device
*dev
)
661 struct tile_net_priv
*priv
= netdev_priv(dev
);
662 int my_cpu
= smp_processor_id();
663 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
664 struct tile_netio_queue
*queue
= &info
->queue
;
665 netio_queue_impl_t
*qsp
= queue
->__system_part
;
666 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
668 while (qup
->__packet_receive_read
!=
669 qsp
->__packet_receive_queue
.__packet_write
) {
670 int index
= qup
->__packet_receive_read
;
671 tile_net_discard_aux(info
, index
);
677 * Handle the next packet. Return true if "processed", false if "filtered".
679 static bool tile_net_poll_aux(struct tile_net_cpu
*info
, int index
)
681 struct net_device
*dev
= info
->napi
.dev
;
683 struct tile_netio_queue
*queue
= &info
->queue
;
684 netio_queue_impl_t
*qsp
= queue
->__system_part
;
685 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
686 struct tile_net_stats_t
*stats
= &info
->stats
;
690 int index2_aux
= index
+ sizeof(netio_pkt_t
);
693 qsp
->__packet_receive_queue
.__last_packet_plus_one
) ?
696 netio_pkt_t
*pkt
= (netio_pkt_t
*)((unsigned long) &qsp
[1] + index
);
698 netio_pkt_metadata_t
*metadata
= NETIO_PKT_METADATA(pkt
);
699 netio_pkt_status_t pkt_status
= NETIO_PKT_STATUS_M(metadata
, pkt
);
701 /* Extract the packet size. FIXME: Shouldn't the second line */
702 /* get subtracted? Mostly moot, since it should be "zero". */
704 (NETIO_PKT_CUSTOM_LENGTH(pkt
) +
705 NET_IP_ALIGN
- NETIO_PACKET_PADDING
);
707 /* Extract the "linux_buffer_t". */
708 unsigned int buffer
= pkt
->__packet
.word
;
710 /* Extract "small" (vs "large"). */
711 bool small
= ((buffer
& 1) != 0);
713 /* Convert "linux_buffer_t" to "va". */
714 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
716 /* Extract the packet data pointer. */
717 /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
718 unsigned char *buf
= va
+ NET_IP_ALIGN
;
720 /* Invalidate the packet buffer. */
722 __inv_buffer(buf
, len
);
724 #ifdef TILE_NET_DUMP_PACKETS
725 dump_packet(buf
, len
, "rx");
726 #endif /* TILE_NET_DUMP_PACKETS */
728 #ifdef TILE_NET_VERIFY_INGRESS
729 if (pkt_status
== NETIO_PKT_STATUS_OVERSIZE
&& len
>= 64) {
730 dump_packet(buf
, len
, "rx");
731 panic("Unexpected OVERSIZE.");
737 if (pkt_status
== NETIO_PKT_STATUS_BAD
) {
738 /* Handle CRC error and hardware truncation. */
740 } else if (!(dev
->flags
& IFF_UP
)) {
741 /* Filter packets received before we're up. */
743 } else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata
, pkt
) &&
744 pkt_status
== NETIO_PKT_STATUS_UNDERSIZE
) {
745 /* Filter "truncated" packets. */
747 } else if (!(dev
->flags
& IFF_PROMISC
)) {
748 if (!is_multicast_ether_addr(buf
)) {
749 /* Filter packets not for our address. */
750 const u8
*mine
= dev
->dev_addr
;
751 filter
= !ether_addr_equal(mine
, buf
);
755 u64_stats_update_begin(&stats
->syncp
);
764 tile_net_provide_linux_buffer(info
, va
, small
);
768 /* Acquire the associated "skb". */
769 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
770 struct sk_buff
*skb
= *skb_ptr
;
773 if (skb
->data
!= buf
)
774 panic("Corrupt linux buffer from LIPP! "
775 "VA=%p, skb=%p, skb->data=%p\n",
778 /* Encode the actual packet length. */
781 /* NOTE: This call also sets "skb->dev = dev". */
782 skb
->protocol
= eth_type_trans(skb
, dev
);
784 /* Avoid recomputing "good" TCP/UDP checksums. */
785 if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata
, pkt
))
786 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
788 netif_receive_skb(skb
);
791 stats
->rx_bytes
+= len
;
794 u64_stats_update_end(&stats
->syncp
);
796 /* ISSUE: It would be nice to defer this until the packet has */
797 /* actually been processed. */
798 tile_net_return_credit(info
);
800 /* Consume this packet. */
801 qup
->__packet_receive_read
= index2
;
808 * Handle some packets for the given device on the current CPU.
810 * If "tile_net_stop()" is called on some other tile while this
811 * function is running, we will return, hopefully before that
812 * other tile asks us to call "napi_disable()".
814 * The "rotting packet" race condition occurs if a packet arrives
815 * during the extremely narrow window between the queue appearing to
816 * be empty, and the ingress interrupt being re-enabled. This happens
817 * a LOT under heavy network load.
819 static int tile_net_poll(struct napi_struct
*napi
, int budget
)
821 struct net_device
*dev
= napi
->dev
;
822 struct tile_net_priv
*priv
= netdev_priv(dev
);
823 int my_cpu
= smp_processor_id();
824 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
825 struct tile_netio_queue
*queue
= &info
->queue
;
826 netio_queue_impl_t
*qsp
= queue
->__system_part
;
827 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
829 unsigned int work
= 0;
834 while (priv
->active
) {
835 int index
= qup
->__packet_receive_read
;
836 if (index
== qsp
->__packet_receive_queue
.__packet_write
)
839 if (tile_net_poll_aux(info
, index
)) {
840 if (++work
>= budget
)
845 napi_complete(&info
->napi
);
850 /* Re-enable the ingress interrupt. */
851 enable_percpu_irq(priv
->intr_id
, 0);
853 /* HACK: Avoid the "rotting packet" problem (see above). */
854 if (qup
->__packet_receive_read
!=
855 qsp
->__packet_receive_queue
.__packet_write
) {
856 /* ISSUE: Sometimes this returns zero, presumably */
857 /* because an interrupt was handled for this tile. */
858 (void)napi_reschedule(&info
->napi
);
864 tile_net_provide_needed_buffers(info
);
871 * Handle an ingress interrupt for the given device on the current cpu.
873 * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
874 * been called! This is probably due to "pending hypervisor downcalls".
876 * ISSUE: Is there any race condition between the "napi_schedule()" here
877 * and the "napi_complete()" call above?
879 static irqreturn_t
tile_net_handle_ingress_interrupt(int irq
, void *dev_ptr
)
881 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
882 struct tile_net_priv
*priv
= netdev_priv(dev
);
883 int my_cpu
= smp_processor_id();
884 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
886 /* Disable the ingress interrupt. */
887 disable_percpu_irq(priv
->intr_id
);
889 /* Ignore unwanted interrupts. */
893 /* ISSUE: Sometimes "info->napi_enabled" is false here. */
895 napi_schedule(&info
->napi
);
902 * One time initialization per interface.
904 static int tile_net_open_aux(struct net_device
*dev
)
906 struct tile_net_priv
*priv
= netdev_priv(dev
);
910 unsigned int epp_lotar
;
913 * Find out where EPP memory should be homed.
915 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
916 (HV_VirtAddr
)&epp_lotar
, sizeof(epp_lotar
),
919 pr_err("could not read epp_shm_queue lotar.\n");
924 * Home the page on the EPP.
927 int epp_home
= hv_lotar_to_cpu(epp_lotar
);
928 homecache_change_page_home(priv
->eq_pages
, EQ_ORDER
, epp_home
);
932 * Register the EPP shared memory queue.
935 netio_ipp_address_t ea
= {
937 .pa
= __pa(priv
->eq
),
941 ea
.pte
= hv_pte_set_lotar(ea
.pte
, epp_lotar
);
942 ea
.pte
= hv_pte_set_mode(ea
.pte
, HV_PTE_MODE_CACHE_TILE_L3
);
943 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0,
954 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
955 sizeof(dummy
), NETIO_IPP_START_SHIM_OFF
) < 0) {
956 pr_warn("Failed to start LIPP/LEPP\n");
965 * Register with hypervisor on the current CPU.
967 * Strangely, this function does important things even if it "fails",
968 * which is especially common if the link is not up yet. Hopefully
969 * these things are all "harmless" if done twice!
971 static void tile_net_register(void *dev_ptr
)
973 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
974 struct tile_net_priv
*priv
= netdev_priv(dev
);
975 int my_cpu
= smp_processor_id();
976 struct tile_net_cpu
*info
;
978 struct tile_netio_queue
*queue
;
980 /* Only network cpus can receive packets. */
982 cpumask_test_cpu(my_cpu
, &priv
->network_cpus_map
) ? 0 : 255;
984 netio_input_config_t config
= {
986 .num_receive_packets
= priv
->network_cpus_credits
,
991 netio_queue_impl_t
*queuep
;
993 PDEBUG("tile_net_register(queue_id %d)\n", queue_id
);
995 if (!strcmp(dev
->name
, "xgbe0"))
996 info
= this_cpu_ptr(&hv_xgbe0
);
997 else if (!strcmp(dev
->name
, "xgbe1"))
998 info
= this_cpu_ptr(&hv_xgbe1
);
999 else if (!strcmp(dev
->name
, "gbe0"))
1000 info
= this_cpu_ptr(&hv_gbe0
);
1001 else if (!strcmp(dev
->name
, "gbe1"))
1002 info
= this_cpu_ptr(&hv_gbe1
);
1006 /* Initialize the egress timer. */
1007 init_timer(&info
->egress_timer
);
1008 info
->egress_timer
.data
= (long)info
;
1009 info
->egress_timer
.function
= tile_net_handle_egress_timer
;
1011 u64_stats_init(&info
->stats
.syncp
);
1013 priv
->cpu
[my_cpu
] = info
;
1016 * Register ourselves with LIPP. This does a lot of stuff,
1017 * including invoking the LIPP registration code.
1019 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0,
1020 (HV_VirtAddr
)&config
,
1021 sizeof(netio_input_config_t
),
1022 NETIO_IPP_INPUT_REGISTER_OFF
);
1023 PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1026 if (ret
!= NETIO_LINK_DOWN
) {
1027 printk(KERN_DEBUG
"hv_dev_pwrite "
1028 "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1031 info
->link_down
= (ret
== NETIO_LINK_DOWN
);
1036 * Get the pointer to our queue's system part.
1039 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
1040 (HV_VirtAddr
)&queuep
,
1041 sizeof(netio_queue_impl_t
*),
1042 NETIO_IPP_INPUT_REGISTER_OFF
);
1043 PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1045 PDEBUG("queuep %p\n", queuep
);
1047 /* ISSUE: Shouldn't this be a fatal error? */
1048 pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1052 queue
= &info
->queue
;
1054 queue
->__system_part
= queuep
;
1056 memset(&queue
->__user_part
, 0, sizeof(netio_queue_user_impl_t
));
1058 /* This is traditionally "config.num_receive_packets / 2". */
1059 queue
->__user_part
.__receive_credit_interval
= 4;
1060 queue
->__user_part
.__receive_credit_remaining
=
1061 queue
->__user_part
.__receive_credit_interval
;
1064 * Get a fastio index from the hypervisor.
1065 * ISSUE: Shouldn't this check the result?
1067 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
1068 (HV_VirtAddr
)&queue
->__user_part
.__fastio_index
,
1069 sizeof(queue
->__user_part
.__fastio_index
),
1070 NETIO_IPP_GET_FASTIO_OFF
);
1071 PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret
);
1073 /* Now we are registered. */
1074 info
->registered
= true;
1079 * Deregister with hypervisor on the current CPU.
1081 * This simply discards all our credits, so no more packets will be
1082 * delivered to this tile. There may still be packets in our queue.
1084 * Also, disable the ingress interrupt.
1086 static void tile_net_deregister(void *dev_ptr
)
1088 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1089 struct tile_net_priv
*priv
= netdev_priv(dev
);
1090 int my_cpu
= smp_processor_id();
1091 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1093 /* Disable the ingress interrupt. */
1094 disable_percpu_irq(priv
->intr_id
);
1096 /* Do nothing else if not registered. */
1097 if (info
== NULL
|| !info
->registered
)
1101 struct tile_netio_queue
*queue
= &info
->queue
;
1102 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
1104 /* Discard all our credits. */
1105 __netio_fastio_return_credits(qup
->__fastio_index
, -1);
1111 * Unregister with hypervisor on the current CPU.
1113 * Also, disable the ingress interrupt.
1115 static void tile_net_unregister(void *dev_ptr
)
1117 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1118 struct tile_net_priv
*priv
= netdev_priv(dev
);
1119 int my_cpu
= smp_processor_id();
1120 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1125 /* Disable the ingress interrupt. */
1126 disable_percpu_irq(priv
->intr_id
);
1128 /* Do nothing else if not registered. */
1129 if (info
== NULL
|| !info
->registered
)
1132 /* Unregister ourselves with LIPP/LEPP. */
1133 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1134 sizeof(dummy
), NETIO_IPP_INPUT_UNREGISTER_OFF
);
1136 panic("Failed to unregister with LIPP/LEPP!\n");
1138 /* Discard all packets still in our NetIO queue. */
1139 tile_net_discard_packets(dev
);
1142 info
->num_needed_small_buffers
= 0;
1143 info
->num_needed_large_buffers
= 0;
1145 /* Cancel egress timer. */
1146 del_timer(&info
->egress_timer
);
1147 info
->egress_timer_scheduled
= false;
1152 * Helper function for "tile_net_stop()".
1154 * Also used to handle registration failure in "tile_net_open_inner()",
1155 * when the various extra steps in "tile_net_stop()" are not necessary.
1157 static void tile_net_stop_aux(struct net_device
*dev
)
1159 struct tile_net_priv
*priv
= netdev_priv(dev
);
1165 * Unregister all tiles, so LIPP will stop delivering packets.
1166 * Also, delete all the "napi" objects (sequentially, to protect
1167 * "dev->napi_list").
1169 on_each_cpu(tile_net_unregister
, (void *)dev
, 1);
1170 for_each_online_cpu(i
) {
1171 struct tile_net_cpu
*info
= priv
->cpu
[i
];
1172 if (info
!= NULL
&& info
->registered
) {
1173 netif_napi_del(&info
->napi
);
1174 info
->registered
= false;
1178 /* Stop LIPP/LEPP. */
1179 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1180 sizeof(dummy
), NETIO_IPP_STOP_SHIM_OFF
) < 0)
1181 panic("Failed to stop LIPP/LEPP!\n");
1183 priv
->partly_opened
= false;
1188 * Disable NAPI for the given device on the current cpu.
1190 static void tile_net_stop_disable(void *dev_ptr
)
1192 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1193 struct tile_net_priv
*priv
= netdev_priv(dev
);
1194 int my_cpu
= smp_processor_id();
1195 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1197 /* Disable NAPI if needed. */
1198 if (info
!= NULL
&& info
->napi_enabled
) {
1199 napi_disable(&info
->napi
);
1200 info
->napi_enabled
= false;
1206 * Enable NAPI and the ingress interrupt for the given device
1207 * on the current cpu.
1209 * ISSUE: Only do this for "network cpus"?
1211 static void tile_net_open_enable(void *dev_ptr
)
1213 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1214 struct tile_net_priv
*priv
= netdev_priv(dev
);
1215 int my_cpu
= smp_processor_id();
1216 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1219 napi_enable(&info
->napi
);
1220 info
->napi_enabled
= true;
1222 /* Enable the ingress interrupt. */
1223 enable_percpu_irq(priv
->intr_id
, 0);
1228 * tile_net_open_inner does most of the work of bringing up the interface.
1229 * It's called from tile_net_open(), and also from tile_net_retry_open().
1230 * The return value is 0 if the interface was brought up, < 0 if
1231 * tile_net_open() should return the return value as an error, and > 0 if
1232 * tile_net_open() should return success and schedule a work item to
1233 * periodically retry the bringup.
1235 static int tile_net_open_inner(struct net_device
*dev
)
1237 struct tile_net_priv
*priv
= netdev_priv(dev
);
1238 int my_cpu
= smp_processor_id();
1239 struct tile_net_cpu
*info
;
1240 struct tile_netio_queue
*queue
;
1246 * First try to register just on the local CPU, and handle any
1247 * semi-expected "link down" failure specially. Note that we
1248 * do NOT call "tile_net_stop_aux()", unlike below.
1250 tile_net_register(dev
);
1251 info
= priv
->cpu
[my_cpu
];
1252 if (!info
->registered
) {
1253 if (info
->link_down
)
1259 * Now register everywhere else. If any registration fails,
1260 * even for "link down" (which might not be possible), we
1261 * clean up using "tile_net_stop_aux()". Also, add all the
1262 * "napi" objects (sequentially, to protect "dev->napi_list").
1263 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1265 smp_call_function(tile_net_register
, (void *)dev
, 1);
1266 for_each_online_cpu(i
) {
1267 struct tile_net_cpu
*info
= priv
->cpu
[i
];
1268 if (info
->registered
)
1269 netif_napi_add(dev
, &info
->napi
, tile_net_poll
, 64);
1274 tile_net_stop_aux(dev
);
1278 queue
= &info
->queue
;
1280 if (priv
->intr_id
== 0) {
1284 * Acquire the irq allocated by the hypervisor. Every
1285 * queue gets the same irq. The "__intr_id" field is
1286 * "1 << irq", so we use "__ffs()" to extract "irq".
1288 priv
->intr_id
= queue
->__system_part
->__intr_id
;
1289 BUG_ON(priv
->intr_id
== 0);
1290 irq
= __ffs(priv
->intr_id
);
1293 * Register the ingress interrupt handler for this
1294 * device, permanently.
1296 * We used to call "free_irq()" in "tile_net_stop()",
1297 * and then re-register the handler here every time,
1298 * but that caused DNP errors in "handle_IRQ_event()"
1299 * because "desc->action" was NULL. See bug 9143.
1301 tile_irq_activate(irq
, TILE_IRQ_PERCPU
);
1302 BUG_ON(request_irq(irq
, tile_net_handle_ingress_interrupt
,
1303 0, dev
->name
, (void *)dev
) != 0);
1307 /* Allocate initial buffers. */
1310 priv
->network_cpus_count
* priv
->network_cpus_credits
;
1312 info
->num_needed_small_buffers
=
1313 min(LIPP_SMALL_BUFFERS
, max_buffers
);
1315 info
->num_needed_large_buffers
=
1316 min(LIPP_LARGE_BUFFERS
, max_buffers
);
1318 tile_net_provide_needed_buffers(info
);
1320 if (info
->num_needed_small_buffers
!= 0 ||
1321 info
->num_needed_large_buffers
!= 0)
1322 panic("Insufficient memory for buffer stack!");
1325 /* We are about to be active. */
1326 priv
->active
= true;
1328 /* Make sure "active" is visible to all tiles. */
1331 /* On each tile, enable NAPI and the ingress interrupt. */
1332 on_each_cpu(tile_net_open_enable
, (void *)dev
, 1);
1334 /* Start LIPP/LEPP and activate "ingress" at the shim. */
1335 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1336 sizeof(dummy
), NETIO_IPP_INPUT_INIT_OFF
) < 0)
1337 panic("Failed to activate the LIPP Shim!\n");
1339 /* Start our transmit queue. */
1340 netif_start_queue(dev
);
1347 * Called periodically to retry bringing up the NetIO interface,
1348 * if it doesn't come up cleanly during tile_net_open().
1350 static void tile_net_open_retry(struct work_struct
*w
)
1352 struct delayed_work
*dw
=
1353 container_of(w
, struct delayed_work
, work
);
1355 struct tile_net_priv
*priv
=
1356 container_of(dw
, struct tile_net_priv
, retry_work
);
1359 * Try to bring the NetIO interface up. If it fails, reschedule
1360 * ourselves to try again later; otherwise, tell Linux we now have
1361 * a working link. ISSUE: What if the return value is negative?
1363 if (tile_net_open_inner(priv
->dev
) != 0)
1364 schedule_delayed_work(&priv
->retry_work
,
1365 TILE_NET_RETRY_INTERVAL
);
1367 netif_carrier_on(priv
->dev
);
1372 * Called when a network interface is made active.
1374 * Returns 0 on success, negative value on failure.
1376 * The open entry point is called when a network interface is made
1377 * active by the system (IFF_UP). At this point all resources needed
1378 * for transmit and receive operations are allocated, the interrupt
1379 * handler is registered with the OS (if needed), the watchdog timer
1380 * is started, and the stack is notified that the interface is ready.
1382 * If the actual link is not available yet, then we tell Linux that
1383 * we have no carrier, and we keep checking until the link comes up.
1385 static int tile_net_open(struct net_device
*dev
)
1388 struct tile_net_priv
*priv
= netdev_priv(dev
);
1391 * We rely on priv->partly_opened to tell us if this is the
1392 * first time this interface is being brought up. If it is
1393 * set, the IPP was already initialized and should not be
1394 * initialized again.
1396 if (!priv
->partly_opened
) {
1401 /* Initialize LIPP/LEPP, and start the Shim. */
1402 ret
= tile_net_open_aux(dev
);
1404 pr_err("tile_net_open_aux failed: %d\n", ret
);
1408 /* Analyze the network cpus. */
1410 if (network_cpus_used
)
1411 cpumask_copy(&priv
->network_cpus_map
,
1414 cpumask_copy(&priv
->network_cpus_map
, cpu_online_mask
);
1417 count
= cpumask_weight(&priv
->network_cpus_map
);
1419 /* Limit credits to available buffers, and apply min. */
1420 credits
= max(16, (LIPP_LARGE_BUFFERS
/ count
) & ~1);
1422 /* Apply "GBE" max limit. */
1423 /* ISSUE: Use higher limit for XGBE? */
1424 credits
= min(NETIO_MAX_RECEIVE_PKTS
, credits
);
1426 priv
->network_cpus_count
= count
;
1427 priv
->network_cpus_credits
= credits
;
1429 #ifdef TILE_NET_DEBUG
1430 pr_info("Using %d network cpus, with %d credits each\n",
1431 priv
->network_cpus_count
, priv
->network_cpus_credits
);
1434 priv
->partly_opened
= true;
1437 /* FIXME: Is this possible? */
1438 /* printk("Already partly opened.\n"); */
1442 * Attempt to bring up the link.
1444 ret
= tile_net_open_inner(dev
);
1447 netif_carrier_on(dev
);
1452 * We were unable to bring up the NetIO interface, but we want to
1453 * try again in a little bit. Tell Linux that we have no carrier
1454 * so it doesn't try to use the interface before the link comes up
1455 * and then remember to try again later.
1457 netif_carrier_off(dev
);
1458 schedule_delayed_work(&priv
->retry_work
, TILE_NET_RETRY_INTERVAL
);
1464 static int tile_net_drain_lipp_buffers(struct tile_net_priv
*priv
)
1468 /* Drain all the LIPP buffers. */
1470 unsigned int buffer
;
1472 /* NOTE: This should never fail. */
1473 if (hv_dev_pread(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&buffer
,
1474 sizeof(buffer
), NETIO_IPP_DRAIN_OFF
) < 0)
1477 /* Stop when done. */
1482 /* Convert "linux_buffer_t" to "va". */
1483 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
1485 /* Acquire the associated "skb". */
1486 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
1487 struct sk_buff
*skb
= *skb_ptr
;
1500 * Disables a network interface.
1502 * Returns 0, this is not allowed to fail.
1504 * The close entry point is called when an interface is de-activated
1505 * by the OS. The hardware is still under the drivers control, but
1506 * needs to be disabled. A global MAC reset is issued to stop the
1507 * hardware, and all transmit and receive resources are freed.
1509 * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1511 * Before we are called by "__dev_close()", "netif_running()" will
1512 * have been cleared, so no NEW calls to "tile_net_poll()" will be
1513 * made by "netpoll_poll_dev()".
1515 * Often, this can cause some tiles to still have packets in their
1516 * queues, so we must call "tile_net_discard_packets()" later.
1518 * Note that some other tile may still be INSIDE "tile_net_poll()",
1519 * and in fact, many will be, if there is heavy network load.
1521 * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1522 * any tile is still "napi_schedule()"'d will induce a horrible crash
1523 * when "msleep()" is called. This includes tiles which are inside
1524 * "tile_net_poll()" which have not yet called "napi_complete()".
1526 * So, we must first try to wait long enough for other tiles to finish
1527 * with any current "tile_net_poll()" call, and, hopefully, to clear
1528 * the "scheduled" flag. ISSUE: It is unclear what happens to tiles
1529 * which have called "napi_schedule()" but which had not yet tried to
1530 * call "tile_net_poll()", or which exhausted their budget inside
1531 * "tile_net_poll()" just before this function was called.
1533 static int tile_net_stop(struct net_device
*dev
)
1535 struct tile_net_priv
*priv
= netdev_priv(dev
);
1537 PDEBUG("tile_net_stop()\n");
1539 /* Start discarding packets. */
1540 priv
->active
= false;
1542 /* Make sure "active" is visible to all tiles. */
1546 * On each tile, make sure no NEW packets get delivered, and
1547 * disable the ingress interrupt.
1549 * Note that the ingress interrupt can fire AFTER this,
1550 * presumably due to packets which were recently delivered,
1551 * but it will have no effect.
1553 on_each_cpu(tile_net_deregister
, (void *)dev
, 1);
1555 /* Optimistically drain LIPP buffers. */
1556 (void)tile_net_drain_lipp_buffers(priv
);
1558 /* ISSUE: Only needed if not yet fully open. */
1559 cancel_delayed_work_sync(&priv
->retry_work
);
1561 /* Can't transmit any more. */
1562 netif_stop_queue(dev
);
1564 /* Disable NAPI on each tile. */
1565 on_each_cpu(tile_net_stop_disable
, (void *)dev
, 1);
1568 * Drain any remaining LIPP buffers. NOTE: This "printk()"
1569 * has never been observed, but in theory it could happen.
1571 if (tile_net_drain_lipp_buffers(priv
) != 0)
1572 printk("Had to drain some extra LIPP buffers!\n");
1574 /* Stop LIPP/LEPP. */
1575 tile_net_stop_aux(dev
);
1578 * ISSUE: It appears that, in practice anyway, by the time we
1579 * get here, there are no pending completions, but just in case,
1580 * we free (all of) them anyway.
1582 while (tile_net_lepp_free_comps(dev
, true))
1585 /* Wipe the EPP queue, and wait till the stores hit the EPP. */
1586 memset(priv
->eq
, 0, sizeof(lepp_queue_t
));
1594 * Prepare the "frags" info for the resulting LEPP command.
1596 * If needed, flush the memory used by the frags.
1598 static unsigned int tile_net_tx_frags(lepp_frag_t
*frags
,
1599 struct sk_buff
*skb
,
1600 void *b_data
, unsigned int b_len
)
1602 unsigned int i
, n
= 0;
1604 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1611 finv_buffer_remote(b_data
, b_len
, 0);
1614 frags
[n
].cpa_lo
= cpa
;
1615 frags
[n
].cpa_hi
= cpa
>> 32;
1616 frags
[n
].length
= b_len
;
1617 frags
[n
].hash_for_home
= hash_default
;
1621 for (i
= 0; i
< sh
->nr_frags
; i
++) {
1623 skb_frag_t
*f
= &sh
->frags
[i
];
1624 unsigned long pfn
= page_to_pfn(skb_frag_page(f
));
1626 /* FIXME: Compute "hash_for_home" properly. */
1627 /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1628 int hash_for_home
= hash_default
;
1631 if (!hash_default
) {
1632 void *va
= pfn_to_kaddr(pfn
) + f
->page_offset
;
1633 BUG_ON(PageHighMem(skb_frag_page(f
)));
1634 finv_buffer_remote(va
, skb_frag_size(f
), 0);
1637 cpa
= ((phys_addr_t
)pfn
<< PAGE_SHIFT
) + f
->page_offset
;
1638 frags
[n
].cpa_lo
= cpa
;
1639 frags
[n
].cpa_hi
= cpa
>> 32;
1640 frags
[n
].length
= skb_frag_size(f
);
1641 frags
[n
].hash_for_home
= hash_for_home
;
1650 * This function takes "skb", consisting of a header template and a
1651 * payload, and hands it to LEPP, to emit as one or more segments,
1652 * each consisting of a possibly modified header, plus a piece of the
1653 * payload, via a process known as "tcp segmentation offload".
1655 * Usually, "data" will contain the header template, of size "sh_len",
1656 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1657 * there will be "sh->gso_segs" segments.
1659 * Sometimes, if "sendfile()" requires copying, we will be called with
1660 * "data" containing the header and payload, with "frags" being empty.
1662 * Sometimes, for example when using NFS over TCP, a single segment can
1663 * span 3 fragments, which must be handled carefully in LEPP.
1665 * See "emulate_large_send_offload()" for some reference code, which
1666 * does not handle checksumming.
1668 * ISSUE: How do we make sure that high memory DMA does not migrate?
1670 static int tile_net_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
)
1672 struct tile_net_priv
*priv
= netdev_priv(dev
);
1673 int my_cpu
= smp_processor_id();
1674 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1675 struct tile_net_stats_t
*stats
= &info
->stats
;
1677 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1679 unsigned char *data
= skb
->data
;
1681 /* The ip header follows the ethernet header. */
1682 struct iphdr
*ih
= ip_hdr(skb
);
1683 unsigned int ih_len
= ih
->ihl
* 4;
1685 /* Note that "nh == ih", by definition. */
1686 unsigned char *nh
= skb_network_header(skb
);
1687 unsigned int eh_len
= nh
- data
;
1689 /* The tcp header follows the ip header. */
1690 struct tcphdr
*th
= (struct tcphdr
*)(nh
+ ih_len
);
1691 unsigned int th_len
= th
->doff
* 4;
1693 /* The total number of header bytes. */
1694 /* NOTE: This may be less than skb_headlen(skb). */
1695 unsigned int sh_len
= eh_len
+ ih_len
+ th_len
;
1697 /* The number of payload bytes at "skb->data + sh_len". */
1698 /* This is non-zero for sendfile() without HIGHDMA. */
1699 unsigned int b_len
= skb_headlen(skb
) - sh_len
;
1701 /* The total number of payload bytes. */
1702 unsigned int d_len
= b_len
+ skb
->data_len
;
1704 /* The maximum payload size. */
1705 unsigned int p_len
= sh
->gso_size
;
1707 /* The total number of segments. */
1708 unsigned int num_segs
= sh
->gso_segs
;
1710 /* The temporary copy of the command. */
1711 u32 cmd_body
[(LEPP_MAX_CMD_SIZE
+ 3) / 4];
1712 lepp_tso_cmd_t
*cmd
= (lepp_tso_cmd_t
*)cmd_body
;
1714 /* Analyze the "frags". */
1715 unsigned int num_frags
=
1716 tile_net_tx_frags(cmd
->frags
, skb
, data
+ sh_len
, b_len
);
1718 /* The size of the command, including frags and header. */
1719 size_t cmd_size
= LEPP_TSO_CMD_SIZE(num_frags
, sh_len
);
1721 /* The command header. */
1722 lepp_tso_cmd_t cmd_init
= {
1724 .header_size
= sh_len
,
1725 .ip_offset
= eh_len
,
1726 .tcp_offset
= eh_len
+ ih_len
,
1727 .payload_size
= p_len
,
1728 .num_frags
= num_frags
,
1731 unsigned long irqflags
;
1733 lepp_queue_t
*eq
= priv
->eq
;
1735 struct sk_buff
*olds
[8];
1736 unsigned int wanted
= 8;
1737 unsigned int i
, nolds
= 0;
1739 unsigned int cmd_head
, cmd_tail
, cmd_next
;
1740 unsigned int comp_tail
;
1744 BUG_ON(skb
->protocol
!= htons(ETH_P_IP
));
1745 BUG_ON(ih
->protocol
!= IPPROTO_TCP
);
1746 BUG_ON(skb
->ip_summed
!= CHECKSUM_PARTIAL
);
1747 BUG_ON(num_frags
> LEPP_MAX_FRAGS
);
1748 /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1749 BUG_ON(num_segs
<= 1);
1752 /* Finish preparing the command. */
1754 /* Copy the command header. */
1757 /* Copy the "header". */
1758 memcpy(&cmd
->frags
[num_frags
], data
, sh_len
);
1761 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1762 prefetch_L1(&eq
->comp_tail
);
1763 prefetch_L1(&eq
->cmd_tail
);
1767 /* Enqueue the command. */
1769 spin_lock_irqsave(&priv
->eq_lock
, irqflags
);
1771 /* Handle completions if needed to make room. */
1772 /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1773 if (lepp_num_free_comp_slots(eq
) == 0) {
1774 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
1777 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
1778 return NETDEV_TX_BUSY
;
1782 cmd_head
= eq
->cmd_head
;
1783 cmd_tail
= eq
->cmd_tail
;
1785 /* Prepare to advance, detecting full queue. */
1786 /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1787 cmd_next
= cmd_tail
+ cmd_size
;
1788 if (cmd_tail
< cmd_head
&& cmd_next
>= cmd_head
)
1790 if (cmd_next
> LEPP_CMD_LIMIT
) {
1792 if (cmd_next
== cmd_head
)
1796 /* Copy the command. */
1797 memcpy(&eq
->cmds
[cmd_tail
], cmd
, cmd_size
);
1800 cmd_tail
= cmd_next
;
1802 /* Record "skb" for eventual freeing. */
1803 comp_tail
= eq
->comp_tail
;
1804 eq
->comps
[comp_tail
] = skb
;
1805 LEPP_QINC(comp_tail
);
1806 eq
->comp_tail
= comp_tail
;
1808 /* Flush before allowing LEPP to handle the command. */
1809 /* ISSUE: Is this the optimal location for the flush? */
1812 eq
->cmd_tail
= cmd_tail
;
1814 /* NOTE: Using "4" here is more efficient than "0" or "2", */
1815 /* and, strangely, more efficient than pre-checking the number */
1816 /* of available completions, and comparing it to 4. */
1818 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 4);
1820 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
1822 /* Handle completions. */
1823 for (i
= 0; i
< nolds
; i
++)
1824 dev_consume_skb_any(olds
[i
]);
1827 u64_stats_update_begin(&stats
->syncp
);
1828 stats
->tx_packets
+= num_segs
;
1829 stats
->tx_bytes
+= (num_segs
* sh_len
) + d_len
;
1830 u64_stats_update_end(&stats
->syncp
);
1832 /* Make sure the egress timer is scheduled. */
1833 tile_net_schedule_egress_timer(info
);
1835 return NETDEV_TX_OK
;
1840 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1842 static int tile_net_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1844 struct tile_net_priv
*priv
= netdev_priv(dev
);
1845 int my_cpu
= smp_processor_id();
1846 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1847 struct tile_net_stats_t
*stats
= &info
->stats
;
1849 unsigned long irqflags
;
1851 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1853 unsigned int len
= skb
->len
;
1854 unsigned char *data
= skb
->data
;
1856 unsigned int csum_start
= skb_checksum_start_offset(skb
);
1858 lepp_frag_t frags
[1 + MAX_SKB_FRAGS
];
1860 unsigned int num_frags
;
1862 lepp_queue_t
*eq
= priv
->eq
;
1864 struct sk_buff
*olds
[8];
1865 unsigned int wanted
= 8;
1866 unsigned int i
, nolds
= 0;
1868 unsigned int cmd_size
= sizeof(lepp_cmd_t
);
1870 unsigned int cmd_head
, cmd_tail
, cmd_next
;
1871 unsigned int comp_tail
;
1873 lepp_cmd_t cmds
[1 + MAX_SKB_FRAGS
];
1877 * This is paranoia, since we think that if the link doesn't come
1878 * up, telling Linux we have no carrier will keep it from trying
1879 * to transmit. If it does, though, we can't execute this routine,
1880 * since data structures we depend on aren't set up yet.
1882 if (!info
->registered
)
1883 return NETDEV_TX_BUSY
;
1886 /* Save the timestamp. */
1887 dev
->trans_start
= jiffies
;
1890 #ifdef TILE_NET_PARANOIA
1891 #if CHIP_HAS_CBOX_HOME_MAP()
1893 HV_PTE pte
= *virt_to_pte(current
->mm
, (unsigned long)data
);
1894 if (hv_pte_get_mode(pte
) != HV_PTE_MODE_CACHE_HASH_L3
)
1895 panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1896 data
, hv_pte_get_mode(pte
), hv_pte_val(pte
));
1902 #ifdef TILE_NET_DUMP_PACKETS
1903 /* ISSUE: Does not dump the "frags". */
1904 dump_packet(data
, skb_headlen(skb
), "tx");
1905 #endif /* TILE_NET_DUMP_PACKETS */
1908 if (sh
->gso_size
!= 0)
1909 return tile_net_tx_tso(skb
, dev
);
1912 /* Prepare the commands. */
1914 num_frags
= tile_net_tx_frags(frags
, skb
, data
, skb_headlen(skb
));
1916 for (i
= 0; i
< num_frags
; i
++) {
1918 bool final
= (i
== num_frags
- 1);
1921 .cpa_lo
= frags
[i
].cpa_lo
,
1922 .cpa_hi
= frags
[i
].cpa_hi
,
1923 .length
= frags
[i
].length
,
1924 .hash_for_home
= frags
[i
].hash_for_home
,
1925 .send_completion
= final
,
1926 .end_of_packet
= final
1929 if (i
== 0 && skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1930 cmd
.compute_checksum
= 1;
1931 cmd
.checksum_data
.bits
.start_byte
= csum_start
;
1932 cmd
.checksum_data
.bits
.count
= len
- csum_start
;
1933 cmd
.checksum_data
.bits
.destination_byte
=
1934 csum_start
+ skb
->csum_offset
;
1941 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1942 prefetch_L1(&eq
->comp_tail
);
1943 prefetch_L1(&eq
->cmd_tail
);
1947 /* Enqueue the commands. */
1949 spin_lock_irqsave(&priv
->eq_lock
, irqflags
);
1951 /* Handle completions if needed to make room. */
1952 /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1953 if (lepp_num_free_comp_slots(eq
) == 0) {
1954 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
1957 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
1958 return NETDEV_TX_BUSY
;
1962 cmd_head
= eq
->cmd_head
;
1963 cmd_tail
= eq
->cmd_tail
;
1965 /* Copy the commands, or fail. */
1966 /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1967 for (i
= 0; i
< num_frags
; i
++) {
1969 /* Prepare to advance, detecting full queue. */
1970 cmd_next
= cmd_tail
+ cmd_size
;
1971 if (cmd_tail
< cmd_head
&& cmd_next
>= cmd_head
)
1973 if (cmd_next
> LEPP_CMD_LIMIT
) {
1975 if (cmd_next
== cmd_head
)
1979 /* Copy the command. */
1980 *(lepp_cmd_t
*)&eq
->cmds
[cmd_tail
] = cmds
[i
];
1983 cmd_tail
= cmd_next
;
1986 /* Record "skb" for eventual freeing. */
1987 comp_tail
= eq
->comp_tail
;
1988 eq
->comps
[comp_tail
] = skb
;
1989 LEPP_QINC(comp_tail
);
1990 eq
->comp_tail
= comp_tail
;
1992 /* Flush before allowing LEPP to handle the command. */
1993 /* ISSUE: Is this the optimal location for the flush? */
1996 eq
->cmd_tail
= cmd_tail
;
1998 /* NOTE: Using "4" here is more efficient than "0" or "2", */
1999 /* and, strangely, more efficient than pre-checking the number */
2000 /* of available completions, and comparing it to 4. */
2002 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 4);
2004 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
2006 /* Handle completions. */
2007 for (i
= 0; i
< nolds
; i
++)
2008 dev_consume_skb_any(olds
[i
]);
2010 /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2011 u64_stats_update_begin(&stats
->syncp
);
2012 stats
->tx_packets
++;
2013 stats
->tx_bytes
+= ((len
>= ETH_ZLEN
) ? len
: ETH_ZLEN
);
2014 u64_stats_update_end(&stats
->syncp
);
2016 /* Make sure the egress timer is scheduled. */
2017 tile_net_schedule_egress_timer(info
);
2019 return NETDEV_TX_OK
;
2024 * Deal with a transmit timeout.
2026 static void tile_net_tx_timeout(struct net_device
*dev
)
2028 PDEBUG("tile_net_tx_timeout()\n");
2029 PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies
,
2030 jiffies
- dev
->trans_start
);
2032 /* XXX: ISSUE: This doesn't seem useful for us. */
2033 netif_wake_queue(dev
);
2040 static int tile_net_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2047 * Get System Network Statistics.
2049 * Returns the address of the device statistics structure.
2051 static struct rtnl_link_stats64
*tile_net_get_stats64(struct net_device
*dev
,
2052 struct rtnl_link_stats64
*stats
)
2054 struct tile_net_priv
*priv
= netdev_priv(dev
);
2055 u64 rx_packets
= 0, tx_packets
= 0;
2056 u64 rx_bytes
= 0, tx_bytes
= 0;
2057 u64 rx_errors
= 0, rx_dropped
= 0;
2060 for_each_online_cpu(i
) {
2061 struct tile_net_stats_t
*cpu_stats
;
2062 u64 trx_packets
, ttx_packets
, trx_bytes
, ttx_bytes
;
2063 u64 trx_errors
, trx_dropped
;
2066 if (priv
->cpu
[i
] == NULL
)
2068 cpu_stats
= &priv
->cpu
[i
]->stats
;
2071 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
2072 trx_packets
= cpu_stats
->rx_packets
;
2073 ttx_packets
= cpu_stats
->tx_packets
;
2074 trx_bytes
= cpu_stats
->rx_bytes
;
2075 ttx_bytes
= cpu_stats
->tx_bytes
;
2076 trx_errors
= cpu_stats
->rx_errors
;
2077 trx_dropped
= cpu_stats
->rx_dropped
;
2078 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
2080 rx_packets
+= trx_packets
;
2081 tx_packets
+= ttx_packets
;
2082 rx_bytes
+= trx_bytes
;
2083 tx_bytes
+= ttx_bytes
;
2084 rx_errors
+= trx_errors
;
2085 rx_dropped
+= trx_dropped
;
2088 stats
->rx_packets
= rx_packets
;
2089 stats
->tx_packets
= tx_packets
;
2090 stats
->rx_bytes
= rx_bytes
;
2091 stats
->tx_bytes
= tx_bytes
;
2092 stats
->rx_errors
= rx_errors
;
2093 stats
->rx_dropped
= rx_dropped
;
2102 * The "change_mtu" method is usually not needed.
2103 * If you need it, it must be like this.
2105 static int tile_net_change_mtu(struct net_device
*dev
, int new_mtu
)
2107 PDEBUG("tile_net_change_mtu()\n");
2110 if ((new_mtu
< 68) || (new_mtu
> 1500))
2113 /* Accept the value. */
2121 * Change the Ethernet Address of the NIC.
2123 * The hypervisor driver does not support changing MAC address. However,
2124 * the IPP does not do anything with the MAC address, so the address which
2125 * gets used on outgoing packets, and which is accepted on incoming packets,
2126 * is completely up to the NetIO program or kernel driver which is actually
2129 * Returns 0 on success, negative on failure.
2131 static int tile_net_set_mac_address(struct net_device
*dev
, void *p
)
2133 struct sockaddr
*addr
= p
;
2135 if (!is_valid_ether_addr(addr
->sa_data
))
2136 return -EADDRNOTAVAIL
;
2138 /* ISSUE: Note that "dev_addr" is now a pointer. */
2139 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
2146 * Obtain the MAC address from the hypervisor.
2147 * This must be done before opening the device.
2149 static int tile_net_get_mac(struct net_device
*dev
)
2151 struct tile_net_priv
*priv
= netdev_priv(dev
);
2153 char hv_dev_name
[32];
2156 __netio_getset_offset_t offset
= { .word
= NETIO_IPP_PARAM_OFF
};
2160 /* For example, "xgbe0". */
2161 strcpy(hv_dev_name
, dev
->name
);
2162 len
= strlen(hv_dev_name
);
2164 /* For example, "xgbe/0". */
2165 hv_dev_name
[len
] = hv_dev_name
[len
- 1];
2166 hv_dev_name
[len
- 1] = '/';
2169 /* For example, "xgbe/0/native_hash". */
2170 strcpy(hv_dev_name
+ len
, hash_default
? "/native_hash" : "/native");
2172 /* Get the hypervisor handle for this device. */
2173 priv
->hv_devhdl
= hv_dev_open((HV_VirtAddr
)hv_dev_name
, 0);
2174 PDEBUG("hv_dev_open(%s) returned %d %p\n",
2175 hv_dev_name
, priv
->hv_devhdl
, &priv
->hv_devhdl
);
2176 if (priv
->hv_devhdl
< 0) {
2177 if (priv
->hv_devhdl
== HV_ENODEV
)
2178 printk(KERN_DEBUG
"Ignoring unconfigured device %s\n",
2181 printk(KERN_DEBUG
"hv_dev_open(%s) returned %d\n",
2182 hv_dev_name
, priv
->hv_devhdl
);
2187 * Read the hardware address from the hypervisor.
2188 * ISSUE: Note that "dev_addr" is now a pointer.
2190 offset
.bits
.class = NETIO_PARAM
;
2191 offset
.bits
.addr
= NETIO_PARAM_MAC
;
2192 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
2193 (HV_VirtAddr
)dev
->dev_addr
, dev
->addr_len
,
2195 PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret
);
2197 printk(KERN_DEBUG
"hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2200 * Since the device is configured by the hypervisor but we
2201 * can't get its MAC address, we are most likely running
2202 * the simulator, so let's generate a random MAC address.
2204 eth_hw_addr_random(dev
);
2211 #ifdef CONFIG_NET_POLL_CONTROLLER
2213 * Polling 'interrupt' - used by things like netconsole to send skbs
2214 * without having to re-enable interrupts. It's not called while
2215 * the interrupt routine is executing.
2217 static void tile_net_netpoll(struct net_device
*dev
)
2219 struct tile_net_priv
*priv
= netdev_priv(dev
);
2220 disable_percpu_irq(priv
->intr_id
);
2221 tile_net_handle_ingress_interrupt(priv
->intr_id
, dev
);
2222 enable_percpu_irq(priv
->intr_id
, 0);
2227 static const struct net_device_ops tile_net_ops
= {
2228 .ndo_open
= tile_net_open
,
2229 .ndo_stop
= tile_net_stop
,
2230 .ndo_start_xmit
= tile_net_tx
,
2231 .ndo_do_ioctl
= tile_net_ioctl
,
2232 .ndo_get_stats64
= tile_net_get_stats64
,
2233 .ndo_change_mtu
= tile_net_change_mtu
,
2234 .ndo_tx_timeout
= tile_net_tx_timeout
,
2235 .ndo_set_mac_address
= tile_net_set_mac_address
,
2236 #ifdef CONFIG_NET_POLL_CONTROLLER
2237 .ndo_poll_controller
= tile_net_netpoll
,
2243 * The setup function.
2245 * This uses ether_setup() to assign various fields in dev, including
2246 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2248 static void tile_net_setup(struct net_device
*dev
)
2250 netdev_features_t features
= 0;
2253 dev
->netdev_ops
= &tile_net_ops
;
2254 dev
->watchdog_timeo
= TILE_NET_TIMEOUT
;
2255 dev
->tx_queue_len
= TILE_NET_TX_QUEUE_LEN
;
2256 dev
->mtu
= TILE_NET_MTU
;
2258 features
|= NETIF_F_HW_CSUM
;
2259 features
|= NETIF_F_SG
;
2261 /* We support TSO iff the HV supports sufficient frags. */
2262 if (LEPP_MAX_FRAGS
>= 1 + MAX_SKB_FRAGS
)
2263 features
|= NETIF_F_TSO
;
2265 /* We can't support HIGHDMA without hash_default, since we need
2266 * to be able to finv() with a VA if we don't have hash_default.
2269 features
|= NETIF_F_HIGHDMA
;
2271 dev
->hw_features
|= features
;
2272 dev
->vlan_features
|= features
;
2273 dev
->features
|= features
;
2278 * Allocate the device structure, register the device, and obtain the
2279 * MAC address from the hypervisor.
2281 static struct net_device
*tile_net_dev_init(const char *name
)
2284 struct net_device
*dev
;
2285 struct tile_net_priv
*priv
;
2288 * Allocate the device structure. This allocates "priv", calls
2289 * tile_net_setup(), and saves "name". Normally, "name" is a
2290 * template, instantiated by register_netdev(), but not for us.
2292 dev
= alloc_netdev(sizeof(*priv
), name
, NET_NAME_UNKNOWN
,
2295 pr_err("alloc_netdev(%s) failed\n", name
);
2299 priv
= netdev_priv(dev
);
2301 /* Initialize "priv". */
2303 memset(priv
, 0, sizeof(*priv
));
2305 /* Save "dev" for "tile_net_open_retry()". */
2308 INIT_DELAYED_WORK(&priv
->retry_work
, tile_net_open_retry
);
2310 spin_lock_init(&priv
->eq_lock
);
2312 /* Allocate "eq". */
2313 priv
->eq_pages
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, EQ_ORDER
);
2314 if (!priv
->eq_pages
) {
2318 priv
->eq
= page_address(priv
->eq_pages
);
2320 /* Register the network device. */
2321 ret
= register_netdev(dev
);
2323 pr_err("register_netdev %s failed %d\n", dev
->name
, ret
);
2324 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2329 /* Get the MAC address. */
2330 ret
= tile_net_get_mac(dev
);
2332 unregister_netdev(dev
);
2333 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2345 * FIXME: If compiled as a module, this module cannot be "unloaded",
2346 * because the "ingress interrupt handler" is registered permanently.
2348 static void tile_net_cleanup(void)
2352 for (i
= 0; i
< TILE_NET_DEVS
; i
++) {
2353 if (tile_net_devs
[i
]) {
2354 struct net_device
*dev
= tile_net_devs
[i
];
2355 struct tile_net_priv
*priv
= netdev_priv(dev
);
2356 unregister_netdev(dev
);
2357 finv_buffer_remote(priv
->eq
, EQ_SIZE
, 0);
2358 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2366 * Module initialization.
2368 static int tile_net_init_module(void)
2370 pr_info("Tilera Network Driver\n");
2372 tile_net_devs
[0] = tile_net_dev_init("xgbe0");
2373 tile_net_devs
[1] = tile_net_dev_init("xgbe1");
2374 tile_net_devs
[2] = tile_net_dev_init("gbe0");
2375 tile_net_devs
[3] = tile_net_dev_init("gbe1");
2381 module_init(tile_net_init_module
);
2382 module_exit(tile_net_cleanup
);
2388 * The "network_cpus" boot argument specifies the cpus that are dedicated
2389 * to handle ingress packets.
2391 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2392 * m, n, x, y are integer numbers that represent the cpus that can be
2393 * neither a dedicated cpu nor a dataplane cpu.
2395 static int __init
network_cpus_setup(char *str
)
2397 int rc
= cpulist_parse_crop(str
, &network_cpus_map
);
2399 pr_warn("network_cpus=%s: malformed cpu list\n", str
);
2402 /* Remove dedicated cpus. */
2403 cpumask_and(&network_cpus_map
, &network_cpus_map
,
2407 if (cpumask_empty(&network_cpus_map
)) {
2408 pr_warn("Ignoring network_cpus='%s'\n", str
);
2410 pr_info("Linux network CPUs: %*pbl\n",
2411 cpumask_pr_args(&network_cpus_map
));
2412 network_cpus_used
= true;
2418 __setup("network_cpus=", network_cpus_setup
);