x86/ldt: Further fix FPU emulation
[linux/fpc-iii.git] / mm / vmscan.c
blob8286938c70ded6b82d4268174c92669a90eeb674
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
56 #include "internal.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
68 /* Allocation order */
69 int order;
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
75 nodemask_t *nodemask;
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup *target_mem_cgroup;
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
86 unsigned int may_writepage:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
140 * From 0 .. 100. Higher means more swappy.
142 int vm_swappiness = 60;
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
147 unsigned long vm_total_pages;
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
155 return !sc->target_mem_cgroup;
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
171 static bool sane_reclaim(struct scan_control *sc)
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 return true;
180 #endif
181 return false;
183 #else
184 static bool global_reclaim(struct scan_control *sc)
186 return true;
189 static bool sane_reclaim(struct scan_control *sc)
191 return true;
193 #endif
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
197 int nr;
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
206 return nr;
209 bool zone_reclaimable(struct zone *zone)
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
224 * Add a shrinker callback to be called from the vm.
226 int register_shrinker(struct shrinker *shrinker)
228 size_t size = sizeof(*shrinker->nr_deferred);
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
250 EXPORT_SYMBOL(register_shrinker);
253 * Remove one
255 void unregister_shrinker(struct shrinker *shrinker)
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
262 EXPORT_SYMBOL(unregister_shrinker);
264 #define SHRINK_BATCH 128
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
283 return 0;
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
292 total_scan = nr;
293 delta = (4 * nr_scanned) / shrinker->seeks;
294 delta *= freeable;
295 do_div(delta, nr_eligible + 1);
296 total_scan += delta;
297 if (total_scan < 0) {
298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 shrinker->scan_objects, total_scan);
300 total_scan = freeable;
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
309 * freeable. This is bad for sustaining a working set in
310 * memory.
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
341 * than the total number of objects on slab (freeable), we must be
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
345 while (total_scan >= batch_size ||
346 total_scan >= freeable) {
347 unsigned long ret;
348 unsigned long nr_to_scan = min(batch_size, total_scan);
350 shrinkctl->nr_to_scan = nr_to_scan;
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
359 cond_resched();
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 return freed;
378 * shrink_slab - shrink slab caches
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
381 * @memcg: memory cgroup whose slab caches to target
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
385 * Call the shrink functions to age shrinkable caches.
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
404 * Returns the number of reclaimed slab objects.
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
411 struct shrinker *shrinker;
412 unsigned long freed = 0;
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
420 if (!down_read_trylock(&shrinker_rwsem)) {
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
427 freed = 1;
428 goto out;
431 list_for_each_entry(shrinker, &shrinker_list, list) {
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
435 .memcg = memcg,
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
447 up_read(&shrinker_rwsem);
448 out:
449 cond_resched();
450 return freed;
453 void drop_slab_node(int nid)
455 unsigned long freed;
457 do {
458 struct mem_cgroup *memcg = NULL;
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
468 void drop_slab(void)
470 int nid;
472 for_each_online_node(nid)
473 drop_slab_node(nid);
476 static inline int is_page_cache_freeable(struct page *page)
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
483 return page_count(page) - page_has_private(page) == 2;
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
488 if (current->flags & PF_SWAPWRITE)
489 return 1;
490 if (!inode_write_congested(inode))
491 return 1;
492 if (inode_to_bdi(inode) == current->backing_dev_info)
493 return 1;
494 return 0;
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
509 static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
512 lock_page(page);
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
515 unlock_page(page);
518 /* possible outcome of pageout() */
519 typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528 } pageout_t;
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 struct scan_control *sc)
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
544 * If this process is currently in __generic_file_write_iter() against
545 * this page's queue, we can perform writeback even if that
546 * will block.
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
560 if (page_has_private(page)) {
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
563 pr_info("%s: orphaned page\n", __func__);
564 return PAGE_CLEAN;
567 return PAGE_KEEP;
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
571 if (!may_write_to_inode(mapping->host, sc))
572 return PAGE_KEEP;
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1,
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
588 if (res == AOP_WRITEPAGE_ACTIVATE) {
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 return PAGE_SUCCESS;
602 return PAGE_CLEAN;
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
612 unsigned long flags;
613 struct mem_cgroup *memcg;
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
621 * The non racy check for a busy page.
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
636 * [oops, our write_to data is lost]
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
645 if (!page_freeze_refs(page, 2))
646 goto cannot_free;
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
650 goto cannot_free;
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
655 mem_cgroup_swapout(page, swap);
656 __delete_from_swap_cache(page);
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
659 swapcache_free(swap);
660 } else {
661 void (*freepage)(struct page *);
662 void *shadow = NULL;
664 freepage = mapping->a_ops->freepage;
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
682 if (freepage != NULL)
683 freepage(page);
686 return 1;
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
691 return 0;
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
700 int remove_mapping(struct address_space *mapping, struct page *page)
702 if (__remove_mapping(mapping, page, false)) {
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
708 page_unfreeze_refs(page, 1);
709 return 1;
711 return 0;
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
721 * lru_lock must not be held, interrupts must be enabled.
723 void putback_lru_page(struct page *page)
725 bool is_unevictable;
726 int was_unevictable = PageUnevictable(page);
728 VM_BUG_ON_PAGE(PageLRU(page), page);
730 redo:
731 ClearPageUnevictable(page);
733 if (page_evictable(page)) {
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
740 is_unevictable = false;
741 lru_cache_add(page);
742 } else {
744 * Put unevictable pages directly on zone's unevictable
745 * list.
747 is_unevictable = true;
748 add_page_to_unevictable_list(page);
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
753 * isolation/check_move_unevictable_pages,
754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 * the page back to the evictable list.
757 * The other side is TestClearPageMlocked() or shmem_lock().
759 smp_mb();
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
767 if (is_unevictable && page_evictable(page)) {
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
778 if (was_unevictable && !is_unevictable)
779 count_vm_event(UNEVICTABLE_PGRESCUED);
780 else if (!was_unevictable && is_unevictable)
781 count_vm_event(UNEVICTABLE_PGCULLED);
783 put_page(page); /* drop ref from isolate */
786 enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
789 PAGEREF_KEEP,
790 PAGEREF_ACTIVATE,
793 static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
796 int referenced_ptes, referenced_page;
797 unsigned long vm_flags;
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
801 referenced_page = TestClearPageReferenced(page);
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
810 if (referenced_ptes) {
811 if (PageSwapBacked(page))
812 return PAGEREF_ACTIVATE;
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
827 SetPageReferenced(page);
829 if (referenced_page || referenced_ptes > 1)
830 return PAGEREF_ACTIVATE;
833 * Activate file-backed executable pages after first usage.
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
838 return PAGEREF_KEEP;
841 /* Reclaim if clean, defer dirty pages to writeback */
842 if (referenced_page && !PageSwapBacked(page))
843 return PAGEREF_RECLAIM_CLEAN;
845 return PAGEREF_RECLAIM;
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
852 struct address_space *mapping;
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
878 * shrink_page_list() returns the number of reclaimed pages
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 struct zone *zone,
882 struct scan_control *sc,
883 enum ttu_flags ttu_flags,
884 unsigned long *ret_nr_dirty,
885 unsigned long *ret_nr_unqueued_dirty,
886 unsigned long *ret_nr_congested,
887 unsigned long *ret_nr_writeback,
888 unsigned long *ret_nr_immediate,
889 bool force_reclaim)
891 LIST_HEAD(ret_pages);
892 LIST_HEAD(free_pages);
893 int pgactivate = 0;
894 unsigned long nr_unqueued_dirty = 0;
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
897 unsigned long nr_reclaimed = 0;
898 unsigned long nr_writeback = 0;
899 unsigned long nr_immediate = 0;
901 cond_resched();
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
910 cond_resched();
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
915 if (!trylock_page(page))
916 goto keep;
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
921 sc->nr_scanned++;
923 if (unlikely(!page_evictable(page)))
924 goto cull_mlocked;
926 if (!sc->may_unmap && page_mapped(page))
927 goto keep_locked;
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
955 mapping = page_mapping(page);
956 if (((dirty || writeback) && mapping &&
957 inode_write_congested(mapping->host)) ||
958 (writeback && PageReclaim(page)))
959 nr_congested++;
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
988 * 3) Legacy memcg encounters a page that is not already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
994 if (PageWriteback(page)) {
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 nr_immediate++;
1000 goto keep_locked;
1002 /* Case 2 above */
1003 } else if (sane_reclaim(sc) ||
1004 !PageReclaim(page) || !may_enter_fs) {
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1016 SetPageReclaim(page);
1017 nr_writeback++;
1019 goto keep_locked;
1021 /* Case 3 above */
1022 } else {
1023 wait_on_page_writeback(page);
1027 if (!force_reclaim)
1028 references = page_check_references(page, sc);
1030 switch (references) {
1031 case PAGEREF_ACTIVATE:
1032 goto activate_locked;
1033 case PAGEREF_KEEP:
1034 goto keep_locked;
1035 case PAGEREF_RECLAIM:
1036 case PAGEREF_RECLAIM_CLEAN:
1037 ; /* try to reclaim the page below */
1041 * Anonymous process memory has backing store?
1042 * Try to allocate it some swap space here.
1044 if (PageAnon(page) && !PageSwapCache(page)) {
1045 if (!(sc->gfp_mask & __GFP_IO))
1046 goto keep_locked;
1047 if (!add_to_swap(page, page_list))
1048 goto activate_locked;
1049 may_enter_fs = 1;
1051 /* Adding to swap updated mapping */
1052 mapping = page_mapping(page);
1056 * The page is mapped into the page tables of one or more
1057 * processes. Try to unmap it here.
1059 if (page_mapped(page) && mapping) {
1060 switch (try_to_unmap(page, ttu_flags)) {
1061 case SWAP_FAIL:
1062 goto activate_locked;
1063 case SWAP_AGAIN:
1064 goto keep_locked;
1065 case SWAP_MLOCK:
1066 goto cull_mlocked;
1067 case SWAP_SUCCESS:
1068 ; /* try to free the page below */
1072 if (PageDirty(page)) {
1074 * Only kswapd can writeback filesystem pages to
1075 * avoid risk of stack overflow but only writeback
1076 * if many dirty pages have been encountered.
1078 if (page_is_file_cache(page) &&
1079 (!current_is_kswapd() ||
1080 !test_bit(ZONE_DIRTY, &zone->flags))) {
1082 * Immediately reclaim when written back.
1083 * Similar in principal to deactivate_page()
1084 * except we already have the page isolated
1085 * and know it's dirty
1087 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1088 SetPageReclaim(page);
1090 goto keep_locked;
1093 if (references == PAGEREF_RECLAIM_CLEAN)
1094 goto keep_locked;
1095 if (!may_enter_fs)
1096 goto keep_locked;
1097 if (!sc->may_writepage)
1098 goto keep_locked;
1100 /* Page is dirty, try to write it out here */
1101 switch (pageout(page, mapping, sc)) {
1102 case PAGE_KEEP:
1103 goto keep_locked;
1104 case PAGE_ACTIVATE:
1105 goto activate_locked;
1106 case PAGE_SUCCESS:
1107 if (PageWriteback(page))
1108 goto keep;
1109 if (PageDirty(page))
1110 goto keep;
1113 * A synchronous write - probably a ramdisk. Go
1114 * ahead and try to reclaim the page.
1116 if (!trylock_page(page))
1117 goto keep;
1118 if (PageDirty(page) || PageWriteback(page))
1119 goto keep_locked;
1120 mapping = page_mapping(page);
1121 case PAGE_CLEAN:
1122 ; /* try to free the page below */
1127 * If the page has buffers, try to free the buffer mappings
1128 * associated with this page. If we succeed we try to free
1129 * the page as well.
1131 * We do this even if the page is PageDirty().
1132 * try_to_release_page() does not perform I/O, but it is
1133 * possible for a page to have PageDirty set, but it is actually
1134 * clean (all its buffers are clean). This happens if the
1135 * buffers were written out directly, with submit_bh(). ext3
1136 * will do this, as well as the blockdev mapping.
1137 * try_to_release_page() will discover that cleanness and will
1138 * drop the buffers and mark the page clean - it can be freed.
1140 * Rarely, pages can have buffers and no ->mapping. These are
1141 * the pages which were not successfully invalidated in
1142 * truncate_complete_page(). We try to drop those buffers here
1143 * and if that worked, and the page is no longer mapped into
1144 * process address space (page_count == 1) it can be freed.
1145 * Otherwise, leave the page on the LRU so it is swappable.
1147 if (page_has_private(page)) {
1148 if (!try_to_release_page(page, sc->gfp_mask))
1149 goto activate_locked;
1150 if (!mapping && page_count(page) == 1) {
1151 unlock_page(page);
1152 if (put_page_testzero(page))
1153 goto free_it;
1154 else {
1156 * rare race with speculative reference.
1157 * the speculative reference will free
1158 * this page shortly, so we may
1159 * increment nr_reclaimed here (and
1160 * leave it off the LRU).
1162 nr_reclaimed++;
1163 continue;
1168 if (!mapping || !__remove_mapping(mapping, page, true))
1169 goto keep_locked;
1172 * At this point, we have no other references and there is
1173 * no way to pick any more up (removed from LRU, removed
1174 * from pagecache). Can use non-atomic bitops now (and
1175 * we obviously don't have to worry about waking up a process
1176 * waiting on the page lock, because there are no references.
1178 __clear_page_locked(page);
1179 free_it:
1180 nr_reclaimed++;
1183 * Is there need to periodically free_page_list? It would
1184 * appear not as the counts should be low
1186 list_add(&page->lru, &free_pages);
1187 continue;
1189 cull_mlocked:
1190 if (PageSwapCache(page))
1191 try_to_free_swap(page);
1192 unlock_page(page);
1193 putback_lru_page(page);
1194 continue;
1196 activate_locked:
1197 /* Not a candidate for swapping, so reclaim swap space. */
1198 if (PageSwapCache(page) && vm_swap_full())
1199 try_to_free_swap(page);
1200 VM_BUG_ON_PAGE(PageActive(page), page);
1201 SetPageActive(page);
1202 pgactivate++;
1203 keep_locked:
1204 unlock_page(page);
1205 keep:
1206 list_add(&page->lru, &ret_pages);
1207 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1210 mem_cgroup_uncharge_list(&free_pages);
1211 free_hot_cold_page_list(&free_pages, true);
1213 list_splice(&ret_pages, page_list);
1214 count_vm_events(PGACTIVATE, pgactivate);
1216 *ret_nr_dirty += nr_dirty;
1217 *ret_nr_congested += nr_congested;
1218 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1219 *ret_nr_writeback += nr_writeback;
1220 *ret_nr_immediate += nr_immediate;
1221 return nr_reclaimed;
1224 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1225 struct list_head *page_list)
1227 struct scan_control sc = {
1228 .gfp_mask = GFP_KERNEL,
1229 .priority = DEF_PRIORITY,
1230 .may_unmap = 1,
1232 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1233 struct page *page, *next;
1234 LIST_HEAD(clean_pages);
1236 list_for_each_entry_safe(page, next, page_list, lru) {
1237 if (page_is_file_cache(page) && !PageDirty(page) &&
1238 !isolated_balloon_page(page)) {
1239 ClearPageActive(page);
1240 list_move(&page->lru, &clean_pages);
1244 ret = shrink_page_list(&clean_pages, zone, &sc,
1245 TTU_UNMAP|TTU_IGNORE_ACCESS,
1246 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1247 list_splice(&clean_pages, page_list);
1248 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1249 return ret;
1253 * Attempt to remove the specified page from its LRU. Only take this page
1254 * if it is of the appropriate PageActive status. Pages which are being
1255 * freed elsewhere are also ignored.
1257 * page: page to consider
1258 * mode: one of the LRU isolation modes defined above
1260 * returns 0 on success, -ve errno on failure.
1262 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1264 int ret = -EINVAL;
1266 /* Only take pages on the LRU. */
1267 if (!PageLRU(page))
1268 return ret;
1270 /* Compaction should not handle unevictable pages but CMA can do so */
1271 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1272 return ret;
1274 ret = -EBUSY;
1277 * To minimise LRU disruption, the caller can indicate that it only
1278 * wants to isolate pages it will be able to operate on without
1279 * blocking - clean pages for the most part.
1281 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1282 * is used by reclaim when it is cannot write to backing storage
1284 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1285 * that it is possible to migrate without blocking
1287 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1288 /* All the caller can do on PageWriteback is block */
1289 if (PageWriteback(page))
1290 return ret;
1292 if (PageDirty(page)) {
1293 struct address_space *mapping;
1295 /* ISOLATE_CLEAN means only clean pages */
1296 if (mode & ISOLATE_CLEAN)
1297 return ret;
1300 * Only pages without mappings or that have a
1301 * ->migratepage callback are possible to migrate
1302 * without blocking
1304 mapping = page_mapping(page);
1305 if (mapping && !mapping->a_ops->migratepage)
1306 return ret;
1310 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1311 return ret;
1313 if (likely(get_page_unless_zero(page))) {
1315 * Be careful not to clear PageLRU until after we're
1316 * sure the page is not being freed elsewhere -- the
1317 * page release code relies on it.
1319 ClearPageLRU(page);
1320 ret = 0;
1323 return ret;
1327 * zone->lru_lock is heavily contended. Some of the functions that
1328 * shrink the lists perform better by taking out a batch of pages
1329 * and working on them outside the LRU lock.
1331 * For pagecache intensive workloads, this function is the hottest
1332 * spot in the kernel (apart from copy_*_user functions).
1334 * Appropriate locks must be held before calling this function.
1336 * @nr_to_scan: The number of pages to look through on the list.
1337 * @lruvec: The LRU vector to pull pages from.
1338 * @dst: The temp list to put pages on to.
1339 * @nr_scanned: The number of pages that were scanned.
1340 * @sc: The scan_control struct for this reclaim session
1341 * @mode: One of the LRU isolation modes
1342 * @lru: LRU list id for isolating
1344 * returns how many pages were moved onto *@dst.
1346 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1347 struct lruvec *lruvec, struct list_head *dst,
1348 unsigned long *nr_scanned, struct scan_control *sc,
1349 isolate_mode_t mode, enum lru_list lru)
1351 struct list_head *src = &lruvec->lists[lru];
1352 unsigned long nr_taken = 0;
1353 unsigned long scan;
1355 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1356 struct page *page;
1357 int nr_pages;
1359 page = lru_to_page(src);
1360 prefetchw_prev_lru_page(page, src, flags);
1362 VM_BUG_ON_PAGE(!PageLRU(page), page);
1364 switch (__isolate_lru_page(page, mode)) {
1365 case 0:
1366 nr_pages = hpage_nr_pages(page);
1367 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1368 list_move(&page->lru, dst);
1369 nr_taken += nr_pages;
1370 break;
1372 case -EBUSY:
1373 /* else it is being freed elsewhere */
1374 list_move(&page->lru, src);
1375 continue;
1377 default:
1378 BUG();
1382 *nr_scanned = scan;
1383 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1384 nr_taken, mode, is_file_lru(lru));
1385 return nr_taken;
1389 * isolate_lru_page - tries to isolate a page from its LRU list
1390 * @page: page to isolate from its LRU list
1392 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1393 * vmstat statistic corresponding to whatever LRU list the page was on.
1395 * Returns 0 if the page was removed from an LRU list.
1396 * Returns -EBUSY if the page was not on an LRU list.
1398 * The returned page will have PageLRU() cleared. If it was found on
1399 * the active list, it will have PageActive set. If it was found on
1400 * the unevictable list, it will have the PageUnevictable bit set. That flag
1401 * may need to be cleared by the caller before letting the page go.
1403 * The vmstat statistic corresponding to the list on which the page was
1404 * found will be decremented.
1406 * Restrictions:
1407 * (1) Must be called with an elevated refcount on the page. This is a
1408 * fundamentnal difference from isolate_lru_pages (which is called
1409 * without a stable reference).
1410 * (2) the lru_lock must not be held.
1411 * (3) interrupts must be enabled.
1413 int isolate_lru_page(struct page *page)
1415 int ret = -EBUSY;
1417 VM_BUG_ON_PAGE(!page_count(page), page);
1419 if (PageLRU(page)) {
1420 struct zone *zone = page_zone(page);
1421 struct lruvec *lruvec;
1423 spin_lock_irq(&zone->lru_lock);
1424 lruvec = mem_cgroup_page_lruvec(page, zone);
1425 if (PageLRU(page)) {
1426 int lru = page_lru(page);
1427 get_page(page);
1428 ClearPageLRU(page);
1429 del_page_from_lru_list(page, lruvec, lru);
1430 ret = 0;
1432 spin_unlock_irq(&zone->lru_lock);
1434 return ret;
1438 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1439 * then get resheduled. When there are massive number of tasks doing page
1440 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1441 * the LRU list will go small and be scanned faster than necessary, leading to
1442 * unnecessary swapping, thrashing and OOM.
1444 static int too_many_isolated(struct zone *zone, int file,
1445 struct scan_control *sc)
1447 unsigned long inactive, isolated;
1449 if (current_is_kswapd())
1450 return 0;
1452 if (!sane_reclaim(sc))
1453 return 0;
1455 if (file) {
1456 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1457 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1458 } else {
1459 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1460 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1464 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1465 * won't get blocked by normal direct-reclaimers, forming a circular
1466 * deadlock.
1468 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1469 inactive >>= 3;
1471 return isolated > inactive;
1474 static noinline_for_stack void
1475 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1477 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1478 struct zone *zone = lruvec_zone(lruvec);
1479 LIST_HEAD(pages_to_free);
1482 * Put back any unfreeable pages.
1484 while (!list_empty(page_list)) {
1485 struct page *page = lru_to_page(page_list);
1486 int lru;
1488 VM_BUG_ON_PAGE(PageLRU(page), page);
1489 list_del(&page->lru);
1490 if (unlikely(!page_evictable(page))) {
1491 spin_unlock_irq(&zone->lru_lock);
1492 putback_lru_page(page);
1493 spin_lock_irq(&zone->lru_lock);
1494 continue;
1497 lruvec = mem_cgroup_page_lruvec(page, zone);
1499 SetPageLRU(page);
1500 lru = page_lru(page);
1501 add_page_to_lru_list(page, lruvec, lru);
1503 if (is_active_lru(lru)) {
1504 int file = is_file_lru(lru);
1505 int numpages = hpage_nr_pages(page);
1506 reclaim_stat->recent_rotated[file] += numpages;
1508 if (put_page_testzero(page)) {
1509 __ClearPageLRU(page);
1510 __ClearPageActive(page);
1511 del_page_from_lru_list(page, lruvec, lru);
1513 if (unlikely(PageCompound(page))) {
1514 spin_unlock_irq(&zone->lru_lock);
1515 mem_cgroup_uncharge(page);
1516 (*get_compound_page_dtor(page))(page);
1517 spin_lock_irq(&zone->lru_lock);
1518 } else
1519 list_add(&page->lru, &pages_to_free);
1524 * To save our caller's stack, now use input list for pages to free.
1526 list_splice(&pages_to_free, page_list);
1530 * If a kernel thread (such as nfsd for loop-back mounts) services
1531 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1532 * In that case we should only throttle if the backing device it is
1533 * writing to is congested. In other cases it is safe to throttle.
1535 static int current_may_throttle(void)
1537 return !(current->flags & PF_LESS_THROTTLE) ||
1538 current->backing_dev_info == NULL ||
1539 bdi_write_congested(current->backing_dev_info);
1543 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1544 * of reclaimed pages
1546 static noinline_for_stack unsigned long
1547 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1548 struct scan_control *sc, enum lru_list lru)
1550 LIST_HEAD(page_list);
1551 unsigned long nr_scanned;
1552 unsigned long nr_reclaimed = 0;
1553 unsigned long nr_taken;
1554 unsigned long nr_dirty = 0;
1555 unsigned long nr_congested = 0;
1556 unsigned long nr_unqueued_dirty = 0;
1557 unsigned long nr_writeback = 0;
1558 unsigned long nr_immediate = 0;
1559 isolate_mode_t isolate_mode = 0;
1560 int file = is_file_lru(lru);
1561 struct zone *zone = lruvec_zone(lruvec);
1562 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1564 while (unlikely(too_many_isolated(zone, file, sc))) {
1565 congestion_wait(BLK_RW_ASYNC, HZ/10);
1567 /* We are about to die and free our memory. Return now. */
1568 if (fatal_signal_pending(current))
1569 return SWAP_CLUSTER_MAX;
1572 lru_add_drain();
1574 if (!sc->may_unmap)
1575 isolate_mode |= ISOLATE_UNMAPPED;
1576 if (!sc->may_writepage)
1577 isolate_mode |= ISOLATE_CLEAN;
1579 spin_lock_irq(&zone->lru_lock);
1581 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1582 &nr_scanned, sc, isolate_mode, lru);
1584 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1585 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1587 if (global_reclaim(sc)) {
1588 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1589 if (current_is_kswapd())
1590 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1591 else
1592 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1594 spin_unlock_irq(&zone->lru_lock);
1596 if (nr_taken == 0)
1597 return 0;
1599 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1600 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1601 &nr_writeback, &nr_immediate,
1602 false);
1604 spin_lock_irq(&zone->lru_lock);
1606 reclaim_stat->recent_scanned[file] += nr_taken;
1608 if (global_reclaim(sc)) {
1609 if (current_is_kswapd())
1610 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1611 nr_reclaimed);
1612 else
1613 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1614 nr_reclaimed);
1617 putback_inactive_pages(lruvec, &page_list);
1619 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1621 spin_unlock_irq(&zone->lru_lock);
1623 mem_cgroup_uncharge_list(&page_list);
1624 free_hot_cold_page_list(&page_list, true);
1627 * If reclaim is isolating dirty pages under writeback, it implies
1628 * that the long-lived page allocation rate is exceeding the page
1629 * laundering rate. Either the global limits are not being effective
1630 * at throttling processes due to the page distribution throughout
1631 * zones or there is heavy usage of a slow backing device. The
1632 * only option is to throttle from reclaim context which is not ideal
1633 * as there is no guarantee the dirtying process is throttled in the
1634 * same way balance_dirty_pages() manages.
1636 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1637 * of pages under pages flagged for immediate reclaim and stall if any
1638 * are encountered in the nr_immediate check below.
1640 if (nr_writeback && nr_writeback == nr_taken)
1641 set_bit(ZONE_WRITEBACK, &zone->flags);
1644 * Legacy memcg will stall in page writeback so avoid forcibly
1645 * stalling here.
1647 if (sane_reclaim(sc)) {
1649 * Tag a zone as congested if all the dirty pages scanned were
1650 * backed by a congested BDI and wait_iff_congested will stall.
1652 if (nr_dirty && nr_dirty == nr_congested)
1653 set_bit(ZONE_CONGESTED, &zone->flags);
1656 * If dirty pages are scanned that are not queued for IO, it
1657 * implies that flushers are not keeping up. In this case, flag
1658 * the zone ZONE_DIRTY and kswapd will start writing pages from
1659 * reclaim context.
1661 if (nr_unqueued_dirty == nr_taken)
1662 set_bit(ZONE_DIRTY, &zone->flags);
1665 * If kswapd scans pages marked marked for immediate
1666 * reclaim and under writeback (nr_immediate), it implies
1667 * that pages are cycling through the LRU faster than
1668 * they are written so also forcibly stall.
1670 if (nr_immediate && current_may_throttle())
1671 congestion_wait(BLK_RW_ASYNC, HZ/10);
1675 * Stall direct reclaim for IO completions if underlying BDIs or zone
1676 * is congested. Allow kswapd to continue until it starts encountering
1677 * unqueued dirty pages or cycling through the LRU too quickly.
1679 if (!sc->hibernation_mode && !current_is_kswapd() &&
1680 current_may_throttle())
1681 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1683 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1684 zone_idx(zone),
1685 nr_scanned, nr_reclaimed,
1686 sc->priority,
1687 trace_shrink_flags(file));
1688 return nr_reclaimed;
1692 * This moves pages from the active list to the inactive list.
1694 * We move them the other way if the page is referenced by one or more
1695 * processes, from rmap.
1697 * If the pages are mostly unmapped, the processing is fast and it is
1698 * appropriate to hold zone->lru_lock across the whole operation. But if
1699 * the pages are mapped, the processing is slow (page_referenced()) so we
1700 * should drop zone->lru_lock around each page. It's impossible to balance
1701 * this, so instead we remove the pages from the LRU while processing them.
1702 * It is safe to rely on PG_active against the non-LRU pages in here because
1703 * nobody will play with that bit on a non-LRU page.
1705 * The downside is that we have to touch page->_count against each page.
1706 * But we had to alter page->flags anyway.
1709 static void move_active_pages_to_lru(struct lruvec *lruvec,
1710 struct list_head *list,
1711 struct list_head *pages_to_free,
1712 enum lru_list lru)
1714 struct zone *zone = lruvec_zone(lruvec);
1715 unsigned long pgmoved = 0;
1716 struct page *page;
1717 int nr_pages;
1719 while (!list_empty(list)) {
1720 page = lru_to_page(list);
1721 lruvec = mem_cgroup_page_lruvec(page, zone);
1723 VM_BUG_ON_PAGE(PageLRU(page), page);
1724 SetPageLRU(page);
1726 nr_pages = hpage_nr_pages(page);
1727 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1728 list_move(&page->lru, &lruvec->lists[lru]);
1729 pgmoved += nr_pages;
1731 if (put_page_testzero(page)) {
1732 __ClearPageLRU(page);
1733 __ClearPageActive(page);
1734 del_page_from_lru_list(page, lruvec, lru);
1736 if (unlikely(PageCompound(page))) {
1737 spin_unlock_irq(&zone->lru_lock);
1738 mem_cgroup_uncharge(page);
1739 (*get_compound_page_dtor(page))(page);
1740 spin_lock_irq(&zone->lru_lock);
1741 } else
1742 list_add(&page->lru, pages_to_free);
1745 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1746 if (!is_active_lru(lru))
1747 __count_vm_events(PGDEACTIVATE, pgmoved);
1750 static void shrink_active_list(unsigned long nr_to_scan,
1751 struct lruvec *lruvec,
1752 struct scan_control *sc,
1753 enum lru_list lru)
1755 unsigned long nr_taken;
1756 unsigned long nr_scanned;
1757 unsigned long vm_flags;
1758 LIST_HEAD(l_hold); /* The pages which were snipped off */
1759 LIST_HEAD(l_active);
1760 LIST_HEAD(l_inactive);
1761 struct page *page;
1762 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1763 unsigned long nr_rotated = 0;
1764 isolate_mode_t isolate_mode = 0;
1765 int file = is_file_lru(lru);
1766 struct zone *zone = lruvec_zone(lruvec);
1768 lru_add_drain();
1770 if (!sc->may_unmap)
1771 isolate_mode |= ISOLATE_UNMAPPED;
1772 if (!sc->may_writepage)
1773 isolate_mode |= ISOLATE_CLEAN;
1775 spin_lock_irq(&zone->lru_lock);
1777 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1778 &nr_scanned, sc, isolate_mode, lru);
1779 if (global_reclaim(sc))
1780 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1782 reclaim_stat->recent_scanned[file] += nr_taken;
1784 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1785 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1786 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1787 spin_unlock_irq(&zone->lru_lock);
1789 while (!list_empty(&l_hold)) {
1790 cond_resched();
1791 page = lru_to_page(&l_hold);
1792 list_del(&page->lru);
1794 if (unlikely(!page_evictable(page))) {
1795 putback_lru_page(page);
1796 continue;
1799 if (unlikely(buffer_heads_over_limit)) {
1800 if (page_has_private(page) && trylock_page(page)) {
1801 if (page_has_private(page))
1802 try_to_release_page(page, 0);
1803 unlock_page(page);
1807 if (page_referenced(page, 0, sc->target_mem_cgroup,
1808 &vm_flags)) {
1809 nr_rotated += hpage_nr_pages(page);
1811 * Identify referenced, file-backed active pages and
1812 * give them one more trip around the active list. So
1813 * that executable code get better chances to stay in
1814 * memory under moderate memory pressure. Anon pages
1815 * are not likely to be evicted by use-once streaming
1816 * IO, plus JVM can create lots of anon VM_EXEC pages,
1817 * so we ignore them here.
1819 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1820 list_add(&page->lru, &l_active);
1821 continue;
1825 ClearPageActive(page); /* we are de-activating */
1826 list_add(&page->lru, &l_inactive);
1830 * Move pages back to the lru list.
1832 spin_lock_irq(&zone->lru_lock);
1834 * Count referenced pages from currently used mappings as rotated,
1835 * even though only some of them are actually re-activated. This
1836 * helps balance scan pressure between file and anonymous pages in
1837 * get_scan_count.
1839 reclaim_stat->recent_rotated[file] += nr_rotated;
1841 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1842 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1843 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1844 spin_unlock_irq(&zone->lru_lock);
1846 mem_cgroup_uncharge_list(&l_hold);
1847 free_hot_cold_page_list(&l_hold, true);
1850 #ifdef CONFIG_SWAP
1851 static int inactive_anon_is_low_global(struct zone *zone)
1853 unsigned long active, inactive;
1855 active = zone_page_state(zone, NR_ACTIVE_ANON);
1856 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1858 if (inactive * zone->inactive_ratio < active)
1859 return 1;
1861 return 0;
1865 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1866 * @lruvec: LRU vector to check
1868 * Returns true if the zone does not have enough inactive anon pages,
1869 * meaning some active anon pages need to be deactivated.
1871 static int inactive_anon_is_low(struct lruvec *lruvec)
1874 * If we don't have swap space, anonymous page deactivation
1875 * is pointless.
1877 if (!total_swap_pages)
1878 return 0;
1880 if (!mem_cgroup_disabled())
1881 return mem_cgroup_inactive_anon_is_low(lruvec);
1883 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1885 #else
1886 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1888 return 0;
1890 #endif
1893 * inactive_file_is_low - check if file pages need to be deactivated
1894 * @lruvec: LRU vector to check
1896 * When the system is doing streaming IO, memory pressure here
1897 * ensures that active file pages get deactivated, until more
1898 * than half of the file pages are on the inactive list.
1900 * Once we get to that situation, protect the system's working
1901 * set from being evicted by disabling active file page aging.
1903 * This uses a different ratio than the anonymous pages, because
1904 * the page cache uses a use-once replacement algorithm.
1906 static int inactive_file_is_low(struct lruvec *lruvec)
1908 unsigned long inactive;
1909 unsigned long active;
1911 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1912 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1914 return active > inactive;
1917 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1919 if (is_file_lru(lru))
1920 return inactive_file_is_low(lruvec);
1921 else
1922 return inactive_anon_is_low(lruvec);
1925 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1926 struct lruvec *lruvec, struct scan_control *sc)
1928 if (is_active_lru(lru)) {
1929 if (inactive_list_is_low(lruvec, lru))
1930 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1931 return 0;
1934 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1937 enum scan_balance {
1938 SCAN_EQUAL,
1939 SCAN_FRACT,
1940 SCAN_ANON,
1941 SCAN_FILE,
1945 * Determine how aggressively the anon and file LRU lists should be
1946 * scanned. The relative value of each set of LRU lists is determined
1947 * by looking at the fraction of the pages scanned we did rotate back
1948 * onto the active list instead of evict.
1950 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1951 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1953 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1954 struct scan_control *sc, unsigned long *nr,
1955 unsigned long *lru_pages)
1957 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1958 u64 fraction[2];
1959 u64 denominator = 0; /* gcc */
1960 struct zone *zone = lruvec_zone(lruvec);
1961 unsigned long anon_prio, file_prio;
1962 enum scan_balance scan_balance;
1963 unsigned long anon, file;
1964 bool force_scan = false;
1965 unsigned long ap, fp;
1966 enum lru_list lru;
1967 bool some_scanned;
1968 int pass;
1971 * If the zone or memcg is small, nr[l] can be 0. This
1972 * results in no scanning on this priority and a potential
1973 * priority drop. Global direct reclaim can go to the next
1974 * zone and tends to have no problems. Global kswapd is for
1975 * zone balancing and it needs to scan a minimum amount. When
1976 * reclaiming for a memcg, a priority drop can cause high
1977 * latencies, so it's better to scan a minimum amount there as
1978 * well.
1980 if (current_is_kswapd()) {
1981 if (!zone_reclaimable(zone))
1982 force_scan = true;
1983 if (!mem_cgroup_lruvec_online(lruvec))
1984 force_scan = true;
1986 if (!global_reclaim(sc))
1987 force_scan = true;
1989 /* If we have no swap space, do not bother scanning anon pages. */
1990 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1991 scan_balance = SCAN_FILE;
1992 goto out;
1996 * Global reclaim will swap to prevent OOM even with no
1997 * swappiness, but memcg users want to use this knob to
1998 * disable swapping for individual groups completely when
1999 * using the memory controller's swap limit feature would be
2000 * too expensive.
2002 if (!global_reclaim(sc) && !swappiness) {
2003 scan_balance = SCAN_FILE;
2004 goto out;
2008 * Do not apply any pressure balancing cleverness when the
2009 * system is close to OOM, scan both anon and file equally
2010 * (unless the swappiness setting disagrees with swapping).
2012 if (!sc->priority && swappiness) {
2013 scan_balance = SCAN_EQUAL;
2014 goto out;
2018 * Prevent the reclaimer from falling into the cache trap: as
2019 * cache pages start out inactive, every cache fault will tip
2020 * the scan balance towards the file LRU. And as the file LRU
2021 * shrinks, so does the window for rotation from references.
2022 * This means we have a runaway feedback loop where a tiny
2023 * thrashing file LRU becomes infinitely more attractive than
2024 * anon pages. Try to detect this based on file LRU size.
2026 if (global_reclaim(sc)) {
2027 unsigned long zonefile;
2028 unsigned long zonefree;
2030 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2031 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2032 zone_page_state(zone, NR_INACTIVE_FILE);
2034 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2035 scan_balance = SCAN_ANON;
2036 goto out;
2041 * There is enough inactive page cache, do not reclaim
2042 * anything from the anonymous working set right now.
2044 if (!inactive_file_is_low(lruvec)) {
2045 scan_balance = SCAN_FILE;
2046 goto out;
2049 scan_balance = SCAN_FRACT;
2052 * With swappiness at 100, anonymous and file have the same priority.
2053 * This scanning priority is essentially the inverse of IO cost.
2055 anon_prio = swappiness;
2056 file_prio = 200 - anon_prio;
2059 * OK, so we have swap space and a fair amount of page cache
2060 * pages. We use the recently rotated / recently scanned
2061 * ratios to determine how valuable each cache is.
2063 * Because workloads change over time (and to avoid overflow)
2064 * we keep these statistics as a floating average, which ends
2065 * up weighing recent references more than old ones.
2067 * anon in [0], file in [1]
2070 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2071 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2072 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2073 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2075 spin_lock_irq(&zone->lru_lock);
2076 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2077 reclaim_stat->recent_scanned[0] /= 2;
2078 reclaim_stat->recent_rotated[0] /= 2;
2081 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2082 reclaim_stat->recent_scanned[1] /= 2;
2083 reclaim_stat->recent_rotated[1] /= 2;
2087 * The amount of pressure on anon vs file pages is inversely
2088 * proportional to the fraction of recently scanned pages on
2089 * each list that were recently referenced and in active use.
2091 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2092 ap /= reclaim_stat->recent_rotated[0] + 1;
2094 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2095 fp /= reclaim_stat->recent_rotated[1] + 1;
2096 spin_unlock_irq(&zone->lru_lock);
2098 fraction[0] = ap;
2099 fraction[1] = fp;
2100 denominator = ap + fp + 1;
2101 out:
2102 some_scanned = false;
2103 /* Only use force_scan on second pass. */
2104 for (pass = 0; !some_scanned && pass < 2; pass++) {
2105 *lru_pages = 0;
2106 for_each_evictable_lru(lru) {
2107 int file = is_file_lru(lru);
2108 unsigned long size;
2109 unsigned long scan;
2111 size = get_lru_size(lruvec, lru);
2112 scan = size >> sc->priority;
2114 if (!scan && pass && force_scan)
2115 scan = min(size, SWAP_CLUSTER_MAX);
2117 switch (scan_balance) {
2118 case SCAN_EQUAL:
2119 /* Scan lists relative to size */
2120 break;
2121 case SCAN_FRACT:
2123 * Scan types proportional to swappiness and
2124 * their relative recent reclaim efficiency.
2126 scan = div64_u64(scan * fraction[file],
2127 denominator);
2128 break;
2129 case SCAN_FILE:
2130 case SCAN_ANON:
2131 /* Scan one type exclusively */
2132 if ((scan_balance == SCAN_FILE) != file) {
2133 size = 0;
2134 scan = 0;
2136 break;
2137 default:
2138 /* Look ma, no brain */
2139 BUG();
2142 *lru_pages += size;
2143 nr[lru] = scan;
2146 * Skip the second pass and don't force_scan,
2147 * if we found something to scan.
2149 some_scanned |= !!scan;
2155 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2157 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2158 struct scan_control *sc, unsigned long *lru_pages)
2160 unsigned long nr[NR_LRU_LISTS];
2161 unsigned long targets[NR_LRU_LISTS];
2162 unsigned long nr_to_scan;
2163 enum lru_list lru;
2164 unsigned long nr_reclaimed = 0;
2165 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2166 struct blk_plug plug;
2167 bool scan_adjusted;
2169 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2171 /* Record the original scan target for proportional adjustments later */
2172 memcpy(targets, nr, sizeof(nr));
2175 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2176 * event that can occur when there is little memory pressure e.g.
2177 * multiple streaming readers/writers. Hence, we do not abort scanning
2178 * when the requested number of pages are reclaimed when scanning at
2179 * DEF_PRIORITY on the assumption that the fact we are direct
2180 * reclaiming implies that kswapd is not keeping up and it is best to
2181 * do a batch of work at once. For memcg reclaim one check is made to
2182 * abort proportional reclaim if either the file or anon lru has already
2183 * dropped to zero at the first pass.
2185 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2186 sc->priority == DEF_PRIORITY);
2188 blk_start_plug(&plug);
2189 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2190 nr[LRU_INACTIVE_FILE]) {
2191 unsigned long nr_anon, nr_file, percentage;
2192 unsigned long nr_scanned;
2194 for_each_evictable_lru(lru) {
2195 if (nr[lru]) {
2196 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2197 nr[lru] -= nr_to_scan;
2199 nr_reclaimed += shrink_list(lru, nr_to_scan,
2200 lruvec, sc);
2204 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2205 continue;
2208 * For kswapd and memcg, reclaim at least the number of pages
2209 * requested. Ensure that the anon and file LRUs are scanned
2210 * proportionally what was requested by get_scan_count(). We
2211 * stop reclaiming one LRU and reduce the amount scanning
2212 * proportional to the original scan target.
2214 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2215 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2218 * It's just vindictive to attack the larger once the smaller
2219 * has gone to zero. And given the way we stop scanning the
2220 * smaller below, this makes sure that we only make one nudge
2221 * towards proportionality once we've got nr_to_reclaim.
2223 if (!nr_file || !nr_anon)
2224 break;
2226 if (nr_file > nr_anon) {
2227 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2228 targets[LRU_ACTIVE_ANON] + 1;
2229 lru = LRU_BASE;
2230 percentage = nr_anon * 100 / scan_target;
2231 } else {
2232 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2233 targets[LRU_ACTIVE_FILE] + 1;
2234 lru = LRU_FILE;
2235 percentage = nr_file * 100 / scan_target;
2238 /* Stop scanning the smaller of the LRU */
2239 nr[lru] = 0;
2240 nr[lru + LRU_ACTIVE] = 0;
2243 * Recalculate the other LRU scan count based on its original
2244 * scan target and the percentage scanning already complete
2246 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2247 nr_scanned = targets[lru] - nr[lru];
2248 nr[lru] = targets[lru] * (100 - percentage) / 100;
2249 nr[lru] -= min(nr[lru], nr_scanned);
2251 lru += LRU_ACTIVE;
2252 nr_scanned = targets[lru] - nr[lru];
2253 nr[lru] = targets[lru] * (100 - percentage) / 100;
2254 nr[lru] -= min(nr[lru], nr_scanned);
2256 scan_adjusted = true;
2258 blk_finish_plug(&plug);
2259 sc->nr_reclaimed += nr_reclaimed;
2262 * Even if we did not try to evict anon pages at all, we want to
2263 * rebalance the anon lru active/inactive ratio.
2265 if (inactive_anon_is_low(lruvec))
2266 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2267 sc, LRU_ACTIVE_ANON);
2269 throttle_vm_writeout(sc->gfp_mask);
2272 /* Use reclaim/compaction for costly allocs or under memory pressure */
2273 static bool in_reclaim_compaction(struct scan_control *sc)
2275 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2276 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2277 sc->priority < DEF_PRIORITY - 2))
2278 return true;
2280 return false;
2284 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2285 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2286 * true if more pages should be reclaimed such that when the page allocator
2287 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2288 * It will give up earlier than that if there is difficulty reclaiming pages.
2290 static inline bool should_continue_reclaim(struct zone *zone,
2291 unsigned long nr_reclaimed,
2292 unsigned long nr_scanned,
2293 struct scan_control *sc)
2295 unsigned long pages_for_compaction;
2296 unsigned long inactive_lru_pages;
2298 /* If not in reclaim/compaction mode, stop */
2299 if (!in_reclaim_compaction(sc))
2300 return false;
2302 /* Consider stopping depending on scan and reclaim activity */
2303 if (sc->gfp_mask & __GFP_REPEAT) {
2305 * For __GFP_REPEAT allocations, stop reclaiming if the
2306 * full LRU list has been scanned and we are still failing
2307 * to reclaim pages. This full LRU scan is potentially
2308 * expensive but a __GFP_REPEAT caller really wants to succeed
2310 if (!nr_reclaimed && !nr_scanned)
2311 return false;
2312 } else {
2314 * For non-__GFP_REPEAT allocations which can presumably
2315 * fail without consequence, stop if we failed to reclaim
2316 * any pages from the last SWAP_CLUSTER_MAX number of
2317 * pages that were scanned. This will return to the
2318 * caller faster at the risk reclaim/compaction and
2319 * the resulting allocation attempt fails
2321 if (!nr_reclaimed)
2322 return false;
2326 * If we have not reclaimed enough pages for compaction and the
2327 * inactive lists are large enough, continue reclaiming
2329 pages_for_compaction = (2UL << sc->order);
2330 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2331 if (get_nr_swap_pages() > 0)
2332 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2333 if (sc->nr_reclaimed < pages_for_compaction &&
2334 inactive_lru_pages > pages_for_compaction)
2335 return true;
2337 /* If compaction would go ahead or the allocation would succeed, stop */
2338 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2339 case COMPACT_PARTIAL:
2340 case COMPACT_CONTINUE:
2341 return false;
2342 default:
2343 return true;
2347 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2348 bool is_classzone)
2350 struct reclaim_state *reclaim_state = current->reclaim_state;
2351 unsigned long nr_reclaimed, nr_scanned;
2352 bool reclaimable = false;
2354 do {
2355 struct mem_cgroup *root = sc->target_mem_cgroup;
2356 struct mem_cgroup_reclaim_cookie reclaim = {
2357 .zone = zone,
2358 .priority = sc->priority,
2360 unsigned long zone_lru_pages = 0;
2361 struct mem_cgroup *memcg;
2363 nr_reclaimed = sc->nr_reclaimed;
2364 nr_scanned = sc->nr_scanned;
2366 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2367 do {
2368 unsigned long lru_pages;
2369 unsigned long scanned;
2370 struct lruvec *lruvec;
2371 int swappiness;
2373 if (mem_cgroup_low(root, memcg)) {
2374 if (!sc->may_thrash)
2375 continue;
2376 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2379 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2380 swappiness = mem_cgroup_swappiness(memcg);
2381 scanned = sc->nr_scanned;
2383 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2384 zone_lru_pages += lru_pages;
2386 if (memcg && is_classzone)
2387 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2388 memcg, sc->nr_scanned - scanned,
2389 lru_pages);
2392 * Direct reclaim and kswapd have to scan all memory
2393 * cgroups to fulfill the overall scan target for the
2394 * zone.
2396 * Limit reclaim, on the other hand, only cares about
2397 * nr_to_reclaim pages to be reclaimed and it will
2398 * retry with decreasing priority if one round over the
2399 * whole hierarchy is not sufficient.
2401 if (!global_reclaim(sc) &&
2402 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2403 mem_cgroup_iter_break(root, memcg);
2404 break;
2406 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2409 * Shrink the slab caches in the same proportion that
2410 * the eligible LRU pages were scanned.
2412 if (global_reclaim(sc) && is_classzone)
2413 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2414 sc->nr_scanned - nr_scanned,
2415 zone_lru_pages);
2417 if (reclaim_state) {
2418 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2419 reclaim_state->reclaimed_slab = 0;
2422 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2423 sc->nr_scanned - nr_scanned,
2424 sc->nr_reclaimed - nr_reclaimed);
2426 if (sc->nr_reclaimed - nr_reclaimed)
2427 reclaimable = true;
2429 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2430 sc->nr_scanned - nr_scanned, sc));
2432 return reclaimable;
2436 * Returns true if compaction should go ahead for a high-order request, or
2437 * the high-order allocation would succeed without compaction.
2439 static inline bool compaction_ready(struct zone *zone, int order)
2441 unsigned long balance_gap, watermark;
2442 bool watermark_ok;
2445 * Compaction takes time to run and there are potentially other
2446 * callers using the pages just freed. Continue reclaiming until
2447 * there is a buffer of free pages available to give compaction
2448 * a reasonable chance of completing and allocating the page
2450 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2451 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2452 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2453 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2456 * If compaction is deferred, reclaim up to a point where
2457 * compaction will have a chance of success when re-enabled
2459 if (compaction_deferred(zone, order))
2460 return watermark_ok;
2463 * If compaction is not ready to start and allocation is not likely
2464 * to succeed without it, then keep reclaiming.
2466 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2467 return false;
2469 return watermark_ok;
2473 * This is the direct reclaim path, for page-allocating processes. We only
2474 * try to reclaim pages from zones which will satisfy the caller's allocation
2475 * request.
2477 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2478 * Because:
2479 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2480 * allocation or
2481 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2482 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2483 * zone defense algorithm.
2485 * If a zone is deemed to be full of pinned pages then just give it a light
2486 * scan then give up on it.
2488 * Returns true if a zone was reclaimable.
2490 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2492 struct zoneref *z;
2493 struct zone *zone;
2494 unsigned long nr_soft_reclaimed;
2495 unsigned long nr_soft_scanned;
2496 gfp_t orig_mask;
2497 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2498 bool reclaimable = false;
2501 * If the number of buffer_heads in the machine exceeds the maximum
2502 * allowed level, force direct reclaim to scan the highmem zone as
2503 * highmem pages could be pinning lowmem pages storing buffer_heads
2505 orig_mask = sc->gfp_mask;
2506 if (buffer_heads_over_limit)
2507 sc->gfp_mask |= __GFP_HIGHMEM;
2509 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2510 requested_highidx, sc->nodemask) {
2511 enum zone_type classzone_idx;
2513 if (!populated_zone(zone))
2514 continue;
2516 classzone_idx = requested_highidx;
2517 while (!populated_zone(zone->zone_pgdat->node_zones +
2518 classzone_idx))
2519 classzone_idx--;
2522 * Take care memory controller reclaiming has small influence
2523 * to global LRU.
2525 if (global_reclaim(sc)) {
2526 if (!cpuset_zone_allowed(zone,
2527 GFP_KERNEL | __GFP_HARDWALL))
2528 continue;
2530 if (sc->priority != DEF_PRIORITY &&
2531 !zone_reclaimable(zone))
2532 continue; /* Let kswapd poll it */
2535 * If we already have plenty of memory free for
2536 * compaction in this zone, don't free any more.
2537 * Even though compaction is invoked for any
2538 * non-zero order, only frequent costly order
2539 * reclamation is disruptive enough to become a
2540 * noticeable problem, like transparent huge
2541 * page allocations.
2543 if (IS_ENABLED(CONFIG_COMPACTION) &&
2544 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2545 zonelist_zone_idx(z) <= requested_highidx &&
2546 compaction_ready(zone, sc->order)) {
2547 sc->compaction_ready = true;
2548 continue;
2552 * This steals pages from memory cgroups over softlimit
2553 * and returns the number of reclaimed pages and
2554 * scanned pages. This works for global memory pressure
2555 * and balancing, not for a memcg's limit.
2557 nr_soft_scanned = 0;
2558 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2559 sc->order, sc->gfp_mask,
2560 &nr_soft_scanned);
2561 sc->nr_reclaimed += nr_soft_reclaimed;
2562 sc->nr_scanned += nr_soft_scanned;
2563 if (nr_soft_reclaimed)
2564 reclaimable = true;
2565 /* need some check for avoid more shrink_zone() */
2568 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2569 reclaimable = true;
2571 if (global_reclaim(sc) &&
2572 !reclaimable && zone_reclaimable(zone))
2573 reclaimable = true;
2577 * Restore to original mask to avoid the impact on the caller if we
2578 * promoted it to __GFP_HIGHMEM.
2580 sc->gfp_mask = orig_mask;
2582 return reclaimable;
2586 * This is the main entry point to direct page reclaim.
2588 * If a full scan of the inactive list fails to free enough memory then we
2589 * are "out of memory" and something needs to be killed.
2591 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2592 * high - the zone may be full of dirty or under-writeback pages, which this
2593 * caller can't do much about. We kick the writeback threads and take explicit
2594 * naps in the hope that some of these pages can be written. But if the
2595 * allocating task holds filesystem locks which prevent writeout this might not
2596 * work, and the allocation attempt will fail.
2598 * returns: 0, if no pages reclaimed
2599 * else, the number of pages reclaimed
2601 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2602 struct scan_control *sc)
2604 int initial_priority = sc->priority;
2605 unsigned long total_scanned = 0;
2606 unsigned long writeback_threshold;
2607 bool zones_reclaimable;
2608 retry:
2609 delayacct_freepages_start();
2611 if (global_reclaim(sc))
2612 count_vm_event(ALLOCSTALL);
2614 do {
2615 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2616 sc->priority);
2617 sc->nr_scanned = 0;
2618 zones_reclaimable = shrink_zones(zonelist, sc);
2620 total_scanned += sc->nr_scanned;
2621 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2622 break;
2624 if (sc->compaction_ready)
2625 break;
2628 * If we're getting trouble reclaiming, start doing
2629 * writepage even in laptop mode.
2631 if (sc->priority < DEF_PRIORITY - 2)
2632 sc->may_writepage = 1;
2635 * Try to write back as many pages as we just scanned. This
2636 * tends to cause slow streaming writers to write data to the
2637 * disk smoothly, at the dirtying rate, which is nice. But
2638 * that's undesirable in laptop mode, where we *want* lumpy
2639 * writeout. So in laptop mode, write out the whole world.
2641 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2642 if (total_scanned > writeback_threshold) {
2643 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2644 WB_REASON_TRY_TO_FREE_PAGES);
2645 sc->may_writepage = 1;
2647 } while (--sc->priority >= 0);
2649 delayacct_freepages_end();
2651 if (sc->nr_reclaimed)
2652 return sc->nr_reclaimed;
2654 /* Aborted reclaim to try compaction? don't OOM, then */
2655 if (sc->compaction_ready)
2656 return 1;
2658 /* Untapped cgroup reserves? Don't OOM, retry. */
2659 if (!sc->may_thrash) {
2660 sc->priority = initial_priority;
2661 sc->may_thrash = 1;
2662 goto retry;
2665 /* Any of the zones still reclaimable? Don't OOM. */
2666 if (zones_reclaimable)
2667 return 1;
2669 return 0;
2672 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2674 struct zone *zone;
2675 unsigned long pfmemalloc_reserve = 0;
2676 unsigned long free_pages = 0;
2677 int i;
2678 bool wmark_ok;
2680 for (i = 0; i <= ZONE_NORMAL; i++) {
2681 zone = &pgdat->node_zones[i];
2682 if (!populated_zone(zone) ||
2683 zone_reclaimable_pages(zone) == 0)
2684 continue;
2686 pfmemalloc_reserve += min_wmark_pages(zone);
2687 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2690 /* If there are no reserves (unexpected config) then do not throttle */
2691 if (!pfmemalloc_reserve)
2692 return true;
2694 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2696 /* kswapd must be awake if processes are being throttled */
2697 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2698 pgdat->classzone_idx = min(pgdat->classzone_idx,
2699 (enum zone_type)ZONE_NORMAL);
2700 wake_up_interruptible(&pgdat->kswapd_wait);
2703 return wmark_ok;
2707 * Throttle direct reclaimers if backing storage is backed by the network
2708 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2709 * depleted. kswapd will continue to make progress and wake the processes
2710 * when the low watermark is reached.
2712 * Returns true if a fatal signal was delivered during throttling. If this
2713 * happens, the page allocator should not consider triggering the OOM killer.
2715 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2716 nodemask_t *nodemask)
2718 struct zoneref *z;
2719 struct zone *zone;
2720 pg_data_t *pgdat = NULL;
2723 * Kernel threads should not be throttled as they may be indirectly
2724 * responsible for cleaning pages necessary for reclaim to make forward
2725 * progress. kjournald for example may enter direct reclaim while
2726 * committing a transaction where throttling it could forcing other
2727 * processes to block on log_wait_commit().
2729 if (current->flags & PF_KTHREAD)
2730 goto out;
2733 * If a fatal signal is pending, this process should not throttle.
2734 * It should return quickly so it can exit and free its memory
2736 if (fatal_signal_pending(current))
2737 goto out;
2740 * Check if the pfmemalloc reserves are ok by finding the first node
2741 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2742 * GFP_KERNEL will be required for allocating network buffers when
2743 * swapping over the network so ZONE_HIGHMEM is unusable.
2745 * Throttling is based on the first usable node and throttled processes
2746 * wait on a queue until kswapd makes progress and wakes them. There
2747 * is an affinity then between processes waking up and where reclaim
2748 * progress has been made assuming the process wakes on the same node.
2749 * More importantly, processes running on remote nodes will not compete
2750 * for remote pfmemalloc reserves and processes on different nodes
2751 * should make reasonable progress.
2753 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2754 gfp_zone(gfp_mask), nodemask) {
2755 if (zone_idx(zone) > ZONE_NORMAL)
2756 continue;
2758 /* Throttle based on the first usable node */
2759 pgdat = zone->zone_pgdat;
2760 if (pfmemalloc_watermark_ok(pgdat))
2761 goto out;
2762 break;
2765 /* If no zone was usable by the allocation flags then do not throttle */
2766 if (!pgdat)
2767 goto out;
2769 /* Account for the throttling */
2770 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2773 * If the caller cannot enter the filesystem, it's possible that it
2774 * is due to the caller holding an FS lock or performing a journal
2775 * transaction in the case of a filesystem like ext[3|4]. In this case,
2776 * it is not safe to block on pfmemalloc_wait as kswapd could be
2777 * blocked waiting on the same lock. Instead, throttle for up to a
2778 * second before continuing.
2780 if (!(gfp_mask & __GFP_FS)) {
2781 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2782 pfmemalloc_watermark_ok(pgdat), HZ);
2784 goto check_pending;
2787 /* Throttle until kswapd wakes the process */
2788 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2789 pfmemalloc_watermark_ok(pgdat));
2791 check_pending:
2792 if (fatal_signal_pending(current))
2793 return true;
2795 out:
2796 return false;
2799 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2800 gfp_t gfp_mask, nodemask_t *nodemask)
2802 unsigned long nr_reclaimed;
2803 struct scan_control sc = {
2804 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2805 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2806 .order = order,
2807 .nodemask = nodemask,
2808 .priority = DEF_PRIORITY,
2809 .may_writepage = !laptop_mode,
2810 .may_unmap = 1,
2811 .may_swap = 1,
2815 * Do not enter reclaim if fatal signal was delivered while throttled.
2816 * 1 is returned so that the page allocator does not OOM kill at this
2817 * point.
2819 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2820 return 1;
2822 trace_mm_vmscan_direct_reclaim_begin(order,
2823 sc.may_writepage,
2824 gfp_mask);
2826 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2828 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2830 return nr_reclaimed;
2833 #ifdef CONFIG_MEMCG
2835 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2836 gfp_t gfp_mask, bool noswap,
2837 struct zone *zone,
2838 unsigned long *nr_scanned)
2840 struct scan_control sc = {
2841 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2842 .target_mem_cgroup = memcg,
2843 .may_writepage = !laptop_mode,
2844 .may_unmap = 1,
2845 .may_swap = !noswap,
2847 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2848 int swappiness = mem_cgroup_swappiness(memcg);
2849 unsigned long lru_pages;
2851 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2852 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2854 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2855 sc.may_writepage,
2856 sc.gfp_mask);
2859 * NOTE: Although we can get the priority field, using it
2860 * here is not a good idea, since it limits the pages we can scan.
2861 * if we don't reclaim here, the shrink_zone from balance_pgdat
2862 * will pick up pages from other mem cgroup's as well. We hack
2863 * the priority and make it zero.
2865 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2867 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2869 *nr_scanned = sc.nr_scanned;
2870 return sc.nr_reclaimed;
2873 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2874 unsigned long nr_pages,
2875 gfp_t gfp_mask,
2876 bool may_swap)
2878 struct zonelist *zonelist;
2879 unsigned long nr_reclaimed;
2880 int nid;
2881 struct scan_control sc = {
2882 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2883 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2884 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2885 .target_mem_cgroup = memcg,
2886 .priority = DEF_PRIORITY,
2887 .may_writepage = !laptop_mode,
2888 .may_unmap = 1,
2889 .may_swap = may_swap,
2893 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2894 * take care of from where we get pages. So the node where we start the
2895 * scan does not need to be the current node.
2897 nid = mem_cgroup_select_victim_node(memcg);
2899 zonelist = NODE_DATA(nid)->node_zonelists;
2901 trace_mm_vmscan_memcg_reclaim_begin(0,
2902 sc.may_writepage,
2903 sc.gfp_mask);
2905 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2907 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2909 return nr_reclaimed;
2911 #endif
2913 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2915 struct mem_cgroup *memcg;
2917 if (!total_swap_pages)
2918 return;
2920 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2921 do {
2922 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2924 if (inactive_anon_is_low(lruvec))
2925 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2926 sc, LRU_ACTIVE_ANON);
2928 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2929 } while (memcg);
2932 static bool zone_balanced(struct zone *zone, int order,
2933 unsigned long balance_gap, int classzone_idx)
2935 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2936 balance_gap, classzone_idx, 0))
2937 return false;
2939 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2940 order, 0, classzone_idx) == COMPACT_SKIPPED)
2941 return false;
2943 return true;
2947 * pgdat_balanced() is used when checking if a node is balanced.
2949 * For order-0, all zones must be balanced!
2951 * For high-order allocations only zones that meet watermarks and are in a
2952 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2953 * total of balanced pages must be at least 25% of the zones allowed by
2954 * classzone_idx for the node to be considered balanced. Forcing all zones to
2955 * be balanced for high orders can cause excessive reclaim when there are
2956 * imbalanced zones.
2957 * The choice of 25% is due to
2958 * o a 16M DMA zone that is balanced will not balance a zone on any
2959 * reasonable sized machine
2960 * o On all other machines, the top zone must be at least a reasonable
2961 * percentage of the middle zones. For example, on 32-bit x86, highmem
2962 * would need to be at least 256M for it to be balance a whole node.
2963 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2964 * to balance a node on its own. These seemed like reasonable ratios.
2966 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2968 unsigned long managed_pages = 0;
2969 unsigned long balanced_pages = 0;
2970 int i;
2972 /* Check the watermark levels */
2973 for (i = 0; i <= classzone_idx; i++) {
2974 struct zone *zone = pgdat->node_zones + i;
2976 if (!populated_zone(zone))
2977 continue;
2979 managed_pages += zone->managed_pages;
2982 * A special case here:
2984 * balance_pgdat() skips over all_unreclaimable after
2985 * DEF_PRIORITY. Effectively, it considers them balanced so
2986 * they must be considered balanced here as well!
2988 if (!zone_reclaimable(zone)) {
2989 balanced_pages += zone->managed_pages;
2990 continue;
2993 if (zone_balanced(zone, order, 0, i))
2994 balanced_pages += zone->managed_pages;
2995 else if (!order)
2996 return false;
2999 if (order)
3000 return balanced_pages >= (managed_pages >> 2);
3001 else
3002 return true;
3006 * Prepare kswapd for sleeping. This verifies that there are no processes
3007 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3009 * Returns true if kswapd is ready to sleep
3011 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3012 int classzone_idx)
3014 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3015 if (remaining)
3016 return false;
3019 * The throttled processes are normally woken up in balance_pgdat() as
3020 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3021 * race between when kswapd checks the watermarks and a process gets
3022 * throttled. There is also a potential race if processes get
3023 * throttled, kswapd wakes, a large process exits thereby balancing the
3024 * zones, which causes kswapd to exit balance_pgdat() before reaching
3025 * the wake up checks. If kswapd is going to sleep, no process should
3026 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3027 * the wake up is premature, processes will wake kswapd and get
3028 * throttled again. The difference from wake ups in balance_pgdat() is
3029 * that here we are under prepare_to_wait().
3031 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3032 wake_up_all(&pgdat->pfmemalloc_wait);
3034 return pgdat_balanced(pgdat, order, classzone_idx);
3038 * kswapd shrinks the zone by the number of pages required to reach
3039 * the high watermark.
3041 * Returns true if kswapd scanned at least the requested number of pages to
3042 * reclaim or if the lack of progress was due to pages under writeback.
3043 * This is used to determine if the scanning priority needs to be raised.
3045 static bool kswapd_shrink_zone(struct zone *zone,
3046 int classzone_idx,
3047 struct scan_control *sc,
3048 unsigned long *nr_attempted)
3050 int testorder = sc->order;
3051 unsigned long balance_gap;
3052 bool lowmem_pressure;
3054 /* Reclaim above the high watermark. */
3055 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3058 * Kswapd reclaims only single pages with compaction enabled. Trying
3059 * too hard to reclaim until contiguous free pages have become
3060 * available can hurt performance by evicting too much useful data
3061 * from memory. Do not reclaim more than needed for compaction.
3063 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3064 compaction_suitable(zone, sc->order, 0, classzone_idx)
3065 != COMPACT_SKIPPED)
3066 testorder = 0;
3069 * We put equal pressure on every zone, unless one zone has way too
3070 * many pages free already. The "too many pages" is defined as the
3071 * high wmark plus a "gap" where the gap is either the low
3072 * watermark or 1% of the zone, whichever is smaller.
3074 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3075 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3078 * If there is no low memory pressure or the zone is balanced then no
3079 * reclaim is necessary
3081 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3082 if (!lowmem_pressure && zone_balanced(zone, testorder,
3083 balance_gap, classzone_idx))
3084 return true;
3086 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3088 /* Account for the number of pages attempted to reclaim */
3089 *nr_attempted += sc->nr_to_reclaim;
3091 clear_bit(ZONE_WRITEBACK, &zone->flags);
3094 * If a zone reaches its high watermark, consider it to be no longer
3095 * congested. It's possible there are dirty pages backed by congested
3096 * BDIs but as pressure is relieved, speculatively avoid congestion
3097 * waits.
3099 if (zone_reclaimable(zone) &&
3100 zone_balanced(zone, testorder, 0, classzone_idx)) {
3101 clear_bit(ZONE_CONGESTED, &zone->flags);
3102 clear_bit(ZONE_DIRTY, &zone->flags);
3105 return sc->nr_scanned >= sc->nr_to_reclaim;
3109 * For kswapd, balance_pgdat() will work across all this node's zones until
3110 * they are all at high_wmark_pages(zone).
3112 * Returns the final order kswapd was reclaiming at
3114 * There is special handling here for zones which are full of pinned pages.
3115 * This can happen if the pages are all mlocked, or if they are all used by
3116 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3117 * What we do is to detect the case where all pages in the zone have been
3118 * scanned twice and there has been zero successful reclaim. Mark the zone as
3119 * dead and from now on, only perform a short scan. Basically we're polling
3120 * the zone for when the problem goes away.
3122 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3123 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3124 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3125 * lower zones regardless of the number of free pages in the lower zones. This
3126 * interoperates with the page allocator fallback scheme to ensure that aging
3127 * of pages is balanced across the zones.
3129 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3130 int *classzone_idx)
3132 int i;
3133 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3134 unsigned long nr_soft_reclaimed;
3135 unsigned long nr_soft_scanned;
3136 struct scan_control sc = {
3137 .gfp_mask = GFP_KERNEL,
3138 .order = order,
3139 .priority = DEF_PRIORITY,
3140 .may_writepage = !laptop_mode,
3141 .may_unmap = 1,
3142 .may_swap = 1,
3144 count_vm_event(PAGEOUTRUN);
3146 do {
3147 unsigned long nr_attempted = 0;
3148 bool raise_priority = true;
3149 bool pgdat_needs_compaction = (order > 0);
3151 sc.nr_reclaimed = 0;
3154 * Scan in the highmem->dma direction for the highest
3155 * zone which needs scanning
3157 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3158 struct zone *zone = pgdat->node_zones + i;
3160 if (!populated_zone(zone))
3161 continue;
3163 if (sc.priority != DEF_PRIORITY &&
3164 !zone_reclaimable(zone))
3165 continue;
3168 * Do some background aging of the anon list, to give
3169 * pages a chance to be referenced before reclaiming.
3171 age_active_anon(zone, &sc);
3174 * If the number of buffer_heads in the machine
3175 * exceeds the maximum allowed level and this node
3176 * has a highmem zone, force kswapd to reclaim from
3177 * it to relieve lowmem pressure.
3179 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3180 end_zone = i;
3181 break;
3184 if (!zone_balanced(zone, order, 0, 0)) {
3185 end_zone = i;
3186 break;
3187 } else {
3189 * If balanced, clear the dirty and congested
3190 * flags
3192 clear_bit(ZONE_CONGESTED, &zone->flags);
3193 clear_bit(ZONE_DIRTY, &zone->flags);
3197 if (i < 0)
3198 goto out;
3200 for (i = 0; i <= end_zone; i++) {
3201 struct zone *zone = pgdat->node_zones + i;
3203 if (!populated_zone(zone))
3204 continue;
3207 * If any zone is currently balanced then kswapd will
3208 * not call compaction as it is expected that the
3209 * necessary pages are already available.
3211 if (pgdat_needs_compaction &&
3212 zone_watermark_ok(zone, order,
3213 low_wmark_pages(zone),
3214 *classzone_idx, 0))
3215 pgdat_needs_compaction = false;
3219 * If we're getting trouble reclaiming, start doing writepage
3220 * even in laptop mode.
3222 if (sc.priority < DEF_PRIORITY - 2)
3223 sc.may_writepage = 1;
3226 * Now scan the zone in the dma->highmem direction, stopping
3227 * at the last zone which needs scanning.
3229 * We do this because the page allocator works in the opposite
3230 * direction. This prevents the page allocator from allocating
3231 * pages behind kswapd's direction of progress, which would
3232 * cause too much scanning of the lower zones.
3234 for (i = 0; i <= end_zone; i++) {
3235 struct zone *zone = pgdat->node_zones + i;
3237 if (!populated_zone(zone))
3238 continue;
3240 if (sc.priority != DEF_PRIORITY &&
3241 !zone_reclaimable(zone))
3242 continue;
3244 sc.nr_scanned = 0;
3246 nr_soft_scanned = 0;
3248 * Call soft limit reclaim before calling shrink_zone.
3250 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3251 order, sc.gfp_mask,
3252 &nr_soft_scanned);
3253 sc.nr_reclaimed += nr_soft_reclaimed;
3256 * There should be no need to raise the scanning
3257 * priority if enough pages are already being scanned
3258 * that that high watermark would be met at 100%
3259 * efficiency.
3261 if (kswapd_shrink_zone(zone, end_zone,
3262 &sc, &nr_attempted))
3263 raise_priority = false;
3267 * If the low watermark is met there is no need for processes
3268 * to be throttled on pfmemalloc_wait as they should not be
3269 * able to safely make forward progress. Wake them
3271 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3272 pfmemalloc_watermark_ok(pgdat))
3273 wake_up_all(&pgdat->pfmemalloc_wait);
3276 * Fragmentation may mean that the system cannot be rebalanced
3277 * for high-order allocations in all zones. If twice the
3278 * allocation size has been reclaimed and the zones are still
3279 * not balanced then recheck the watermarks at order-0 to
3280 * prevent kswapd reclaiming excessively. Assume that a
3281 * process requested a high-order can direct reclaim/compact.
3283 if (order && sc.nr_reclaimed >= 2UL << order)
3284 order = sc.order = 0;
3286 /* Check if kswapd should be suspending */
3287 if (try_to_freeze() || kthread_should_stop())
3288 break;
3291 * Compact if necessary and kswapd is reclaiming at least the
3292 * high watermark number of pages as requsted
3294 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3295 compact_pgdat(pgdat, order);
3298 * Raise priority if scanning rate is too low or there was no
3299 * progress in reclaiming pages
3301 if (raise_priority || !sc.nr_reclaimed)
3302 sc.priority--;
3303 } while (sc.priority >= 1 &&
3304 !pgdat_balanced(pgdat, order, *classzone_idx));
3306 out:
3308 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3309 * makes a decision on the order we were last reclaiming at. However,
3310 * if another caller entered the allocator slow path while kswapd
3311 * was awake, order will remain at the higher level
3313 *classzone_idx = end_zone;
3314 return order;
3317 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3319 long remaining = 0;
3320 DEFINE_WAIT(wait);
3322 if (freezing(current) || kthread_should_stop())
3323 return;
3325 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3327 /* Try to sleep for a short interval */
3328 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3329 remaining = schedule_timeout(HZ/10);
3330 finish_wait(&pgdat->kswapd_wait, &wait);
3331 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3335 * After a short sleep, check if it was a premature sleep. If not, then
3336 * go fully to sleep until explicitly woken up.
3338 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3339 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3342 * vmstat counters are not perfectly accurate and the estimated
3343 * value for counters such as NR_FREE_PAGES can deviate from the
3344 * true value by nr_online_cpus * threshold. To avoid the zone
3345 * watermarks being breached while under pressure, we reduce the
3346 * per-cpu vmstat threshold while kswapd is awake and restore
3347 * them before going back to sleep.
3349 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3352 * Compaction records what page blocks it recently failed to
3353 * isolate pages from and skips them in the future scanning.
3354 * When kswapd is going to sleep, it is reasonable to assume
3355 * that pages and compaction may succeed so reset the cache.
3357 reset_isolation_suitable(pgdat);
3359 if (!kthread_should_stop())
3360 schedule();
3362 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3363 } else {
3364 if (remaining)
3365 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3366 else
3367 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3369 finish_wait(&pgdat->kswapd_wait, &wait);
3373 * The background pageout daemon, started as a kernel thread
3374 * from the init process.
3376 * This basically trickles out pages so that we have _some_
3377 * free memory available even if there is no other activity
3378 * that frees anything up. This is needed for things like routing
3379 * etc, where we otherwise might have all activity going on in
3380 * asynchronous contexts that cannot page things out.
3382 * If there are applications that are active memory-allocators
3383 * (most normal use), this basically shouldn't matter.
3385 static int kswapd(void *p)
3387 unsigned long order, new_order;
3388 unsigned balanced_order;
3389 int classzone_idx, new_classzone_idx;
3390 int balanced_classzone_idx;
3391 pg_data_t *pgdat = (pg_data_t*)p;
3392 struct task_struct *tsk = current;
3394 struct reclaim_state reclaim_state = {
3395 .reclaimed_slab = 0,
3397 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3399 lockdep_set_current_reclaim_state(GFP_KERNEL);
3401 if (!cpumask_empty(cpumask))
3402 set_cpus_allowed_ptr(tsk, cpumask);
3403 current->reclaim_state = &reclaim_state;
3406 * Tell the memory management that we're a "memory allocator",
3407 * and that if we need more memory we should get access to it
3408 * regardless (see "__alloc_pages()"). "kswapd" should
3409 * never get caught in the normal page freeing logic.
3411 * (Kswapd normally doesn't need memory anyway, but sometimes
3412 * you need a small amount of memory in order to be able to
3413 * page out something else, and this flag essentially protects
3414 * us from recursively trying to free more memory as we're
3415 * trying to free the first piece of memory in the first place).
3417 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3418 set_freezable();
3420 order = new_order = 0;
3421 balanced_order = 0;
3422 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3423 balanced_classzone_idx = classzone_idx;
3424 for ( ; ; ) {
3425 bool ret;
3428 * If the last balance_pgdat was unsuccessful it's unlikely a
3429 * new request of a similar or harder type will succeed soon
3430 * so consider going to sleep on the basis we reclaimed at
3432 if (balanced_classzone_idx >= new_classzone_idx &&
3433 balanced_order == new_order) {
3434 new_order = pgdat->kswapd_max_order;
3435 new_classzone_idx = pgdat->classzone_idx;
3436 pgdat->kswapd_max_order = 0;
3437 pgdat->classzone_idx = pgdat->nr_zones - 1;
3440 if (order < new_order || classzone_idx > new_classzone_idx) {
3442 * Don't sleep if someone wants a larger 'order'
3443 * allocation or has tigher zone constraints
3445 order = new_order;
3446 classzone_idx = new_classzone_idx;
3447 } else {
3448 kswapd_try_to_sleep(pgdat, balanced_order,
3449 balanced_classzone_idx);
3450 order = pgdat->kswapd_max_order;
3451 classzone_idx = pgdat->classzone_idx;
3452 new_order = order;
3453 new_classzone_idx = classzone_idx;
3454 pgdat->kswapd_max_order = 0;
3455 pgdat->classzone_idx = pgdat->nr_zones - 1;
3458 ret = try_to_freeze();
3459 if (kthread_should_stop())
3460 break;
3463 * We can speed up thawing tasks if we don't call balance_pgdat
3464 * after returning from the refrigerator
3466 if (!ret) {
3467 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3468 balanced_classzone_idx = classzone_idx;
3469 balanced_order = balance_pgdat(pgdat, order,
3470 &balanced_classzone_idx);
3474 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3475 current->reclaim_state = NULL;
3476 lockdep_clear_current_reclaim_state();
3478 return 0;
3482 * A zone is low on free memory, so wake its kswapd task to service it.
3484 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3486 pg_data_t *pgdat;
3488 if (!populated_zone(zone))
3489 return;
3491 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3492 return;
3493 pgdat = zone->zone_pgdat;
3494 if (pgdat->kswapd_max_order < order) {
3495 pgdat->kswapd_max_order = order;
3496 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3498 if (!waitqueue_active(&pgdat->kswapd_wait))
3499 return;
3500 if (zone_balanced(zone, order, 0, 0))
3501 return;
3503 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3504 wake_up_interruptible(&pgdat->kswapd_wait);
3507 #ifdef CONFIG_HIBERNATION
3509 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3510 * freed pages.
3512 * Rather than trying to age LRUs the aim is to preserve the overall
3513 * LRU order by reclaiming preferentially
3514 * inactive > active > active referenced > active mapped
3516 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3518 struct reclaim_state reclaim_state;
3519 struct scan_control sc = {
3520 .nr_to_reclaim = nr_to_reclaim,
3521 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3522 .priority = DEF_PRIORITY,
3523 .may_writepage = 1,
3524 .may_unmap = 1,
3525 .may_swap = 1,
3526 .hibernation_mode = 1,
3528 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3529 struct task_struct *p = current;
3530 unsigned long nr_reclaimed;
3532 p->flags |= PF_MEMALLOC;
3533 lockdep_set_current_reclaim_state(sc.gfp_mask);
3534 reclaim_state.reclaimed_slab = 0;
3535 p->reclaim_state = &reclaim_state;
3537 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3539 p->reclaim_state = NULL;
3540 lockdep_clear_current_reclaim_state();
3541 p->flags &= ~PF_MEMALLOC;
3543 return nr_reclaimed;
3545 #endif /* CONFIG_HIBERNATION */
3547 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3548 not required for correctness. So if the last cpu in a node goes
3549 away, we get changed to run anywhere: as the first one comes back,
3550 restore their cpu bindings. */
3551 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3552 void *hcpu)
3554 int nid;
3556 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3557 for_each_node_state(nid, N_MEMORY) {
3558 pg_data_t *pgdat = NODE_DATA(nid);
3559 const struct cpumask *mask;
3561 mask = cpumask_of_node(pgdat->node_id);
3563 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3564 /* One of our CPUs online: restore mask */
3565 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3568 return NOTIFY_OK;
3572 * This kswapd start function will be called by init and node-hot-add.
3573 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3575 int kswapd_run(int nid)
3577 pg_data_t *pgdat = NODE_DATA(nid);
3578 int ret = 0;
3580 if (pgdat->kswapd)
3581 return 0;
3583 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3584 if (IS_ERR(pgdat->kswapd)) {
3585 /* failure at boot is fatal */
3586 BUG_ON(system_state == SYSTEM_BOOTING);
3587 pr_err("Failed to start kswapd on node %d\n", nid);
3588 ret = PTR_ERR(pgdat->kswapd);
3589 pgdat->kswapd = NULL;
3591 return ret;
3595 * Called by memory hotplug when all memory in a node is offlined. Caller must
3596 * hold mem_hotplug_begin/end().
3598 void kswapd_stop(int nid)
3600 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3602 if (kswapd) {
3603 kthread_stop(kswapd);
3604 NODE_DATA(nid)->kswapd = NULL;
3608 static int __init kswapd_init(void)
3610 int nid;
3612 swap_setup();
3613 for_each_node_state(nid, N_MEMORY)
3614 kswapd_run(nid);
3615 hotcpu_notifier(cpu_callback, 0);
3616 return 0;
3619 module_init(kswapd_init)
3621 #ifdef CONFIG_NUMA
3623 * Zone reclaim mode
3625 * If non-zero call zone_reclaim when the number of free pages falls below
3626 * the watermarks.
3628 int zone_reclaim_mode __read_mostly;
3630 #define RECLAIM_OFF 0
3631 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3632 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3633 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3636 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3637 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3638 * a zone.
3640 #define ZONE_RECLAIM_PRIORITY 4
3643 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3644 * occur.
3646 int sysctl_min_unmapped_ratio = 1;
3649 * If the number of slab pages in a zone grows beyond this percentage then
3650 * slab reclaim needs to occur.
3652 int sysctl_min_slab_ratio = 5;
3654 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3656 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3657 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3658 zone_page_state(zone, NR_ACTIVE_FILE);
3661 * It's possible for there to be more file mapped pages than
3662 * accounted for by the pages on the file LRU lists because
3663 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3665 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3668 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3669 static long zone_pagecache_reclaimable(struct zone *zone)
3671 long nr_pagecache_reclaimable;
3672 long delta = 0;
3675 * If RECLAIM_UNMAP is set, then all file pages are considered
3676 * potentially reclaimable. Otherwise, we have to worry about
3677 * pages like swapcache and zone_unmapped_file_pages() provides
3678 * a better estimate
3680 if (zone_reclaim_mode & RECLAIM_UNMAP)
3681 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3682 else
3683 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3685 /* If we can't clean pages, remove dirty pages from consideration */
3686 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3687 delta += zone_page_state(zone, NR_FILE_DIRTY);
3689 /* Watch for any possible underflows due to delta */
3690 if (unlikely(delta > nr_pagecache_reclaimable))
3691 delta = nr_pagecache_reclaimable;
3693 return nr_pagecache_reclaimable - delta;
3697 * Try to free up some pages from this zone through reclaim.
3699 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3701 /* Minimum pages needed in order to stay on node */
3702 const unsigned long nr_pages = 1 << order;
3703 struct task_struct *p = current;
3704 struct reclaim_state reclaim_state;
3705 struct scan_control sc = {
3706 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3707 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3708 .order = order,
3709 .priority = ZONE_RECLAIM_PRIORITY,
3710 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3711 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3712 .may_swap = 1,
3715 cond_resched();
3717 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3718 * and we also need to be able to write out pages for RECLAIM_WRITE
3719 * and RECLAIM_UNMAP.
3721 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3722 lockdep_set_current_reclaim_state(gfp_mask);
3723 reclaim_state.reclaimed_slab = 0;
3724 p->reclaim_state = &reclaim_state;
3726 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3728 * Free memory by calling shrink zone with increasing
3729 * priorities until we have enough memory freed.
3731 do {
3732 shrink_zone(zone, &sc, true);
3733 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3736 p->reclaim_state = NULL;
3737 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3738 lockdep_clear_current_reclaim_state();
3739 return sc.nr_reclaimed >= nr_pages;
3742 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3744 int node_id;
3745 int ret;
3748 * Zone reclaim reclaims unmapped file backed pages and
3749 * slab pages if we are over the defined limits.
3751 * A small portion of unmapped file backed pages is needed for
3752 * file I/O otherwise pages read by file I/O will be immediately
3753 * thrown out if the zone is overallocated. So we do not reclaim
3754 * if less than a specified percentage of the zone is used by
3755 * unmapped file backed pages.
3757 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3758 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3759 return ZONE_RECLAIM_FULL;
3761 if (!zone_reclaimable(zone))
3762 return ZONE_RECLAIM_FULL;
3765 * Do not scan if the allocation should not be delayed.
3767 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3768 return ZONE_RECLAIM_NOSCAN;
3771 * Only run zone reclaim on the local zone or on zones that do not
3772 * have associated processors. This will favor the local processor
3773 * over remote processors and spread off node memory allocations
3774 * as wide as possible.
3776 node_id = zone_to_nid(zone);
3777 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3778 return ZONE_RECLAIM_NOSCAN;
3780 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3781 return ZONE_RECLAIM_NOSCAN;
3783 ret = __zone_reclaim(zone, gfp_mask, order);
3784 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3786 if (!ret)
3787 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3789 return ret;
3791 #endif
3794 * page_evictable - test whether a page is evictable
3795 * @page: the page to test
3797 * Test whether page is evictable--i.e., should be placed on active/inactive
3798 * lists vs unevictable list.
3800 * Reasons page might not be evictable:
3801 * (1) page's mapping marked unevictable
3802 * (2) page is part of an mlocked VMA
3805 int page_evictable(struct page *page)
3807 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3810 #ifdef CONFIG_SHMEM
3812 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3813 * @pages: array of pages to check
3814 * @nr_pages: number of pages to check
3816 * Checks pages for evictability and moves them to the appropriate lru list.
3818 * This function is only used for SysV IPC SHM_UNLOCK.
3820 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3822 struct lruvec *lruvec;
3823 struct zone *zone = NULL;
3824 int pgscanned = 0;
3825 int pgrescued = 0;
3826 int i;
3828 for (i = 0; i < nr_pages; i++) {
3829 struct page *page = pages[i];
3830 struct zone *pagezone;
3832 pgscanned++;
3833 pagezone = page_zone(page);
3834 if (pagezone != zone) {
3835 if (zone)
3836 spin_unlock_irq(&zone->lru_lock);
3837 zone = pagezone;
3838 spin_lock_irq(&zone->lru_lock);
3840 lruvec = mem_cgroup_page_lruvec(page, zone);
3842 if (!PageLRU(page) || !PageUnevictable(page))
3843 continue;
3845 if (page_evictable(page)) {
3846 enum lru_list lru = page_lru_base_type(page);
3848 VM_BUG_ON_PAGE(PageActive(page), page);
3849 ClearPageUnevictable(page);
3850 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3851 add_page_to_lru_list(page, lruvec, lru);
3852 pgrescued++;
3856 if (zone) {
3857 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3858 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3859 spin_unlock_irq(&zone->lru_lock);
3862 #endif /* CONFIG_SHMEM */