kconfig/[mn]conf: handle backspace (^H) key
[linux/fpc-iii.git] / mm / page_isolation.c
bloba5594bfcc5ed2be4361e0885c9a066b22cde8b1b
1 /*
2 * linux/mm/page_isolation.c
3 */
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include <linux/page_owner.h>
11 #include "internal.h"
13 #define CREATE_TRACE_POINTS
14 #include <trace/events/page_isolation.h>
16 static int set_migratetype_isolate(struct page *page,
17 bool skip_hwpoisoned_pages)
19 struct zone *zone;
20 unsigned long flags, pfn;
21 struct memory_isolate_notify arg;
22 int notifier_ret;
23 int ret = -EBUSY;
25 zone = page_zone(page);
27 spin_lock_irqsave(&zone->lock, flags);
29 pfn = page_to_pfn(page);
30 arg.start_pfn = pfn;
31 arg.nr_pages = pageblock_nr_pages;
32 arg.pages_found = 0;
35 * It may be possible to isolate a pageblock even if the
36 * migratetype is not MIGRATE_MOVABLE. The memory isolation
37 * notifier chain is used by balloon drivers to return the
38 * number of pages in a range that are held by the balloon
39 * driver to shrink memory. If all the pages are accounted for
40 * by balloons, are free, or on the LRU, isolation can continue.
41 * Later, for example, when memory hotplug notifier runs, these
42 * pages reported as "can be isolated" should be isolated(freed)
43 * by the balloon driver through the memory notifier chain.
45 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
46 notifier_ret = notifier_to_errno(notifier_ret);
47 if (notifier_ret)
48 goto out;
50 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
51 * We just check MOVABLE pages.
53 if (!has_unmovable_pages(zone, page, arg.pages_found,
54 skip_hwpoisoned_pages))
55 ret = 0;
58 * immobile means "not-on-lru" pages. If immobile is larger than
59 * removable-by-driver pages reported by notifier, we'll fail.
62 out:
63 if (!ret) {
64 unsigned long nr_pages;
65 int migratetype = get_pageblock_migratetype(page);
67 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
68 zone->nr_isolate_pageblock++;
69 nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
71 __mod_zone_freepage_state(zone, -nr_pages, migratetype);
74 spin_unlock_irqrestore(&zone->lock, flags);
75 if (!ret)
76 drain_all_pages(zone);
77 return ret;
80 static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
82 struct zone *zone;
83 unsigned long flags, nr_pages;
84 bool isolated_page = false;
85 unsigned int order;
86 unsigned long page_idx, buddy_idx;
87 struct page *buddy;
89 zone = page_zone(page);
90 spin_lock_irqsave(&zone->lock, flags);
91 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
92 goto out;
95 * Because freepage with more than pageblock_order on isolated
96 * pageblock is restricted to merge due to freepage counting problem,
97 * it is possible that there is free buddy page.
98 * move_freepages_block() doesn't care of merge so we need other
99 * approach in order to merge them. Isolation and free will make
100 * these pages to be merged.
102 if (PageBuddy(page)) {
103 order = page_order(page);
104 if (order >= pageblock_order) {
105 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
106 buddy_idx = __find_buddy_index(page_idx, order);
107 buddy = page + (buddy_idx - page_idx);
109 if (pfn_valid_within(page_to_pfn(buddy)) &&
110 !is_migrate_isolate_page(buddy)) {
111 __isolate_free_page(page, order);
112 isolated_page = true;
118 * If we isolate freepage with more than pageblock_order, there
119 * should be no freepage in the range, so we could avoid costly
120 * pageblock scanning for freepage moving.
122 if (!isolated_page) {
123 nr_pages = move_freepages_block(zone, page, migratetype);
124 __mod_zone_freepage_state(zone, nr_pages, migratetype);
126 set_pageblock_migratetype(page, migratetype);
127 zone->nr_isolate_pageblock--;
128 out:
129 spin_unlock_irqrestore(&zone->lock, flags);
130 if (isolated_page) {
131 post_alloc_hook(page, order, __GFP_MOVABLE);
132 __free_pages(page, order);
136 static inline struct page *
137 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
139 int i;
140 for (i = 0; i < nr_pages; i++)
141 if (pfn_valid_within(pfn + i))
142 break;
143 if (unlikely(i == nr_pages))
144 return NULL;
145 return pfn_to_page(pfn + i);
149 * start_isolate_page_range() -- make page-allocation-type of range of pages
150 * to be MIGRATE_ISOLATE.
151 * @start_pfn: The lower PFN of the range to be isolated.
152 * @end_pfn: The upper PFN of the range to be isolated.
153 * @migratetype: migrate type to set in error recovery.
155 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
156 * the range will never be allocated. Any free pages and pages freed in the
157 * future will not be allocated again.
159 * start_pfn/end_pfn must be aligned to pageblock_order.
160 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
162 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
163 unsigned migratetype, bool skip_hwpoisoned_pages)
165 unsigned long pfn;
166 unsigned long undo_pfn;
167 struct page *page;
169 BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
170 BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
172 for (pfn = start_pfn;
173 pfn < end_pfn;
174 pfn += pageblock_nr_pages) {
175 page = __first_valid_page(pfn, pageblock_nr_pages);
176 if (page &&
177 set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
178 undo_pfn = pfn;
179 goto undo;
182 return 0;
183 undo:
184 for (pfn = start_pfn;
185 pfn < undo_pfn;
186 pfn += pageblock_nr_pages)
187 unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
189 return -EBUSY;
193 * Make isolated pages available again.
195 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
196 unsigned migratetype)
198 unsigned long pfn;
199 struct page *page;
201 BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
202 BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
204 for (pfn = start_pfn;
205 pfn < end_pfn;
206 pfn += pageblock_nr_pages) {
207 page = __first_valid_page(pfn, pageblock_nr_pages);
208 if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
209 continue;
210 unset_migratetype_isolate(page, migratetype);
212 return 0;
215 * Test all pages in the range is free(means isolated) or not.
216 * all pages in [start_pfn...end_pfn) must be in the same zone.
217 * zone->lock must be held before call this.
219 * Returns the last tested pfn.
221 static unsigned long
222 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
223 bool skip_hwpoisoned_pages)
225 struct page *page;
227 while (pfn < end_pfn) {
228 if (!pfn_valid_within(pfn)) {
229 pfn++;
230 continue;
232 page = pfn_to_page(pfn);
233 if (PageBuddy(page))
235 * If the page is on a free list, it has to be on
236 * the correct MIGRATE_ISOLATE freelist. There is no
237 * simple way to verify that as VM_BUG_ON(), though.
239 pfn += 1 << page_order(page);
240 else if (skip_hwpoisoned_pages && PageHWPoison(page))
241 /* A HWPoisoned page cannot be also PageBuddy */
242 pfn++;
243 else
244 break;
247 return pfn;
250 /* Caller should ensure that requested range is in a single zone */
251 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
252 bool skip_hwpoisoned_pages)
254 unsigned long pfn, flags;
255 struct page *page;
256 struct zone *zone;
259 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
260 * are not aligned to pageblock_nr_pages.
261 * Then we just check migratetype first.
263 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
264 page = __first_valid_page(pfn, pageblock_nr_pages);
265 if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
266 break;
268 page = __first_valid_page(start_pfn, end_pfn - start_pfn);
269 if ((pfn < end_pfn) || !page)
270 return -EBUSY;
271 /* Check all pages are free or marked as ISOLATED */
272 zone = page_zone(page);
273 spin_lock_irqsave(&zone->lock, flags);
274 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
275 skip_hwpoisoned_pages);
276 spin_unlock_irqrestore(&zone->lock, flags);
278 trace_test_pages_isolated(start_pfn, end_pfn, pfn);
280 return pfn < end_pfn ? -EBUSY : 0;
283 struct page *alloc_migrate_target(struct page *page, unsigned long private,
284 int **resultp)
286 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
289 * TODO: allocate a destination hugepage from a nearest neighbor node,
290 * accordance with memory policy of the user process if possible. For
291 * now as a simple work-around, we use the next node for destination.
293 if (PageHuge(page))
294 return alloc_huge_page_node(page_hstate(compound_head(page)),
295 next_node_in(page_to_nid(page),
296 node_online_map));
298 if (PageHighMem(page))
299 gfp_mask |= __GFP_HIGHMEM;
301 return alloc_page(gfp_mask);