2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr
; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
206 int cpu
; /* Was running on cpu */
207 int pid
; /* Pid context */
208 unsigned long when
; /* When did the operation occur */
211 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
214 static int sysfs_slab_add(struct kmem_cache
*);
215 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
241 return *(void **)(object
+ s
->offset
);
244 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
246 prefetch(object
+ s
->offset
);
249 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s
, object
);
256 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
260 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
262 *(void **)(object
+ s
->offset
) = fp
;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
279 return (p
- addr
) / s
->size
;
282 static inline int order_objects(int order
, unsigned long size
, int reserved
)
284 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
287 static inline struct kmem_cache_order_objects
oo_make(int order
,
288 unsigned long size
, int reserved
)
290 struct kmem_cache_order_objects x
= {
291 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
297 static inline int oo_order(struct kmem_cache_order_objects x
)
299 return x
.x
>> OO_SHIFT
;
302 static inline int oo_objects(struct kmem_cache_order_objects x
)
304 return x
.x
& OO_MASK
;
308 * Per slab locking using the pagelock
310 static __always_inline
void slab_lock(struct page
*page
)
312 VM_BUG_ON_PAGE(PageTail(page
), page
);
313 bit_spin_lock(PG_locked
, &page
->flags
);
316 static __always_inline
void slab_unlock(struct page
*page
)
318 VM_BUG_ON_PAGE(PageTail(page
), page
);
319 __bit_spin_unlock(PG_locked
, &page
->flags
);
322 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
325 tmp
.counters
= counters_new
;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page
->frozen
= tmp
.frozen
;
333 page
->inuse
= tmp
.inuse
;
334 page
->objects
= tmp
.objects
;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
339 void *freelist_old
, unsigned long counters_old
,
340 void *freelist_new
, unsigned long counters_new
,
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s
->flags
& __CMPXCHG_DOUBLE
) {
347 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
348 freelist_old
, counters_old
,
349 freelist_new
, counters_new
))
355 if (page
->freelist
== freelist_old
&&
356 page
->counters
== counters_old
) {
357 page
->freelist
= freelist_new
;
358 set_page_slub_counters(page
, counters_new
);
366 stat(s
, CMPXCHG_DOUBLE_FAIL
);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
375 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s
->flags
& __CMPXCHG_DOUBLE
) {
383 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
384 freelist_old
, counters_old
,
385 freelist_new
, counters_new
))
392 local_irq_save(flags
);
394 if (page
->freelist
== freelist_old
&&
395 page
->counters
== counters_old
) {
396 page
->freelist
= freelist_new
;
397 set_page_slub_counters(page
, counters_new
);
399 local_irq_restore(flags
);
403 local_irq_restore(flags
);
407 stat(s
, CMPXCHG_DOUBLE_FAIL
);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
426 void *addr
= page_address(page
);
428 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
429 set_bit(slab_index(p
, s
, addr
), map
);
432 static inline int size_from_object(struct kmem_cache
*s
)
434 if (s
->flags
& SLAB_RED_ZONE
)
435 return s
->size
- s
->red_left_pad
;
440 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
442 if (s
->flags
& SLAB_RED_ZONE
)
443 p
-= s
->red_left_pad
;
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
454 static int slub_debug
;
457 static char *slub_debug_slabs
;
458 static int disable_higher_order_debug
;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache
*s
,
482 struct page
*page
, void *object
)
489 base
= page_address(page
);
490 object
= restore_red_left(s
, object
);
491 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
492 (object
- base
) % s
->size
) {
499 static void print_section(char *level
, char *text
, u8
*addr
,
502 metadata_access_enable();
503 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
505 metadata_access_disable();
508 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
509 enum track_item alloc
)
514 p
= object
+ s
->offset
+ sizeof(void *);
516 p
= object
+ s
->inuse
;
521 static void set_track(struct kmem_cache
*s
, void *object
,
522 enum track_item alloc
, unsigned long addr
)
524 struct track
*p
= get_track(s
, object
, alloc
);
527 #ifdef CONFIG_STACKTRACE
528 struct stack_trace trace
;
531 trace
.nr_entries
= 0;
532 trace
.max_entries
= TRACK_ADDRS_COUNT
;
533 trace
.entries
= p
->addrs
;
535 metadata_access_enable();
536 save_stack_trace(&trace
);
537 metadata_access_disable();
539 /* See rant in lockdep.c */
540 if (trace
.nr_entries
!= 0 &&
541 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
544 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
548 p
->cpu
= smp_processor_id();
549 p
->pid
= current
->pid
;
552 memset(p
, 0, sizeof(struct track
));
555 static void init_tracking(struct kmem_cache
*s
, void *object
)
557 if (!(s
->flags
& SLAB_STORE_USER
))
560 set_track(s
, object
, TRACK_FREE
, 0UL);
561 set_track(s
, object
, TRACK_ALLOC
, 0UL);
564 static void print_track(const char *s
, struct track
*t
)
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
571 #ifdef CONFIG_STACKTRACE
574 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
576 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
583 static void print_tracking(struct kmem_cache
*s
, void *object
)
585 if (!(s
->flags
& SLAB_STORE_USER
))
588 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
589 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
592 static void print_page_info(struct page
*page
)
594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
599 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
601 struct va_format vaf
;
607 pr_err("=============================================================================\n");
608 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
609 pr_err("-----------------------------------------------------------------------------\n\n");
611 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
615 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
617 struct va_format vaf
;
623 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
627 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
629 unsigned int off
; /* Offset of last byte */
630 u8
*addr
= page_address(page
);
632 print_tracking(s
, p
);
634 print_page_info(page
);
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p
, p
- addr
, get_freepointer(s
, p
));
639 if (s
->flags
& SLAB_RED_ZONE
)
640 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
642 else if (p
> addr
+ 16)
643 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
645 print_section(KERN_ERR
, "Object ", p
,
646 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
647 if (s
->flags
& SLAB_RED_ZONE
)
648 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
649 s
->inuse
- s
->object_size
);
652 off
= s
->offset
+ sizeof(void *);
656 if (s
->flags
& SLAB_STORE_USER
)
657 off
+= 2 * sizeof(struct track
);
659 off
+= kasan_metadata_size(s
);
661 if (off
!= size_from_object(s
))
662 /* Beginning of the filler is the free pointer */
663 print_section(KERN_ERR
, "Padding ", p
+ off
,
664 size_from_object(s
) - off
);
669 void object_err(struct kmem_cache
*s
, struct page
*page
,
670 u8
*object
, char *reason
)
672 slab_bug(s
, "%s", reason
);
673 print_trailer(s
, page
, object
);
676 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
677 const char *fmt
, ...)
683 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
685 slab_bug(s
, "%s", buf
);
686 print_page_info(page
);
690 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
694 if (s
->flags
& SLAB_RED_ZONE
)
695 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
697 if (s
->flags
& __OBJECT_POISON
) {
698 memset(p
, POISON_FREE
, s
->object_size
- 1);
699 p
[s
->object_size
- 1] = POISON_END
;
702 if (s
->flags
& SLAB_RED_ZONE
)
703 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
706 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
707 void *from
, void *to
)
709 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
710 memset(from
, data
, to
- from
);
713 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
714 u8
*object
, char *what
,
715 u8
*start
, unsigned int value
, unsigned int bytes
)
720 metadata_access_enable();
721 fault
= memchr_inv(start
, value
, bytes
);
722 metadata_access_disable();
727 while (end
> fault
&& end
[-1] == value
)
730 slab_bug(s
, "%s overwritten", what
);
731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 fault
, end
- 1, fault
[0], value
);
733 print_trailer(s
, page
, object
);
735 restore_bytes(s
, what
, value
, fault
, end
);
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * object + s->object_size
751 * Padding to reach word boundary. This is also used for Redzoning.
752 * Padding is extended by another word if Redzoning is enabled and
753 * object_size == inuse.
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
759 * Meta data starts here.
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
763 * C. Padding to reach required alignment boundary or at mininum
764 * one word if debugging is on to be able to detect writes
765 * before the word boundary.
767 * Padding is done using 0x5a (POISON_INUSE)
770 * Nothing is used beyond s->size.
772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
773 * ignored. And therefore no slab options that rely on these boundaries
774 * may be used with merged slabcaches.
777 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
779 unsigned long off
= s
->inuse
; /* The end of info */
782 /* Freepointer is placed after the object. */
783 off
+= sizeof(void *);
785 if (s
->flags
& SLAB_STORE_USER
)
786 /* We also have user information there */
787 off
+= 2 * sizeof(struct track
);
789 off
+= kasan_metadata_size(s
);
791 if (size_from_object(s
) == off
)
794 return check_bytes_and_report(s
, page
, p
, "Object padding",
795 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
807 if (!(s
->flags
& SLAB_POISON
))
810 start
= page_address(page
);
811 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
812 end
= start
+ length
;
813 remainder
= length
% s
->size
;
817 metadata_access_enable();
818 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
819 metadata_access_disable();
822 while (end
> fault
&& end
[-1] == POISON_INUSE
)
825 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
826 print_section(KERN_ERR
, "Padding ", end
- remainder
, remainder
);
828 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
832 static int check_object(struct kmem_cache
*s
, struct page
*page
,
833 void *object
, u8 val
)
836 u8
*endobject
= object
+ s
->object_size
;
838 if (s
->flags
& SLAB_RED_ZONE
) {
839 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
840 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
843 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
844 endobject
, val
, s
->inuse
- s
->object_size
))
847 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
848 check_bytes_and_report(s
, page
, p
, "Alignment padding",
849 endobject
, POISON_INUSE
,
850 s
->inuse
- s
->object_size
);
854 if (s
->flags
& SLAB_POISON
) {
855 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
856 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
857 POISON_FREE
, s
->object_size
- 1) ||
858 !check_bytes_and_report(s
, page
, p
, "Poison",
859 p
+ s
->object_size
- 1, POISON_END
, 1)))
862 * check_pad_bytes cleans up on its own.
864 check_pad_bytes(s
, page
, p
);
867 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
876 object_err(s
, page
, p
, "Freepointer corrupt");
878 * No choice but to zap it and thus lose the remainder
879 * of the free objects in this slab. May cause
880 * another error because the object count is now wrong.
882 set_freepointer(s
, p
, NULL
);
888 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
892 VM_BUG_ON(!irqs_disabled());
894 if (!PageSlab(page
)) {
895 slab_err(s
, page
, "Not a valid slab page");
899 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
900 if (page
->objects
> maxobj
) {
901 slab_err(s
, page
, "objects %u > max %u",
902 page
->objects
, maxobj
);
905 if (page
->inuse
> page
->objects
) {
906 slab_err(s
, page
, "inuse %u > max %u",
907 page
->inuse
, page
->objects
);
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s
, page
);
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
919 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
927 while (fp
&& nr
<= page
->objects
) {
930 if (!check_valid_pointer(s
, page
, fp
)) {
932 object_err(s
, page
, object
,
933 "Freechain corrupt");
934 set_freepointer(s
, object
, NULL
);
936 slab_err(s
, page
, "Freepointer corrupt");
937 page
->freelist
= NULL
;
938 page
->inuse
= page
->objects
;
939 slab_fix(s
, "Freelist cleared");
945 fp
= get_freepointer(s
, object
);
949 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
950 if (max_objects
> MAX_OBJS_PER_PAGE
)
951 max_objects
= MAX_OBJS_PER_PAGE
;
953 if (page
->objects
!= max_objects
) {
954 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
955 page
->objects
, max_objects
);
956 page
->objects
= max_objects
;
957 slab_fix(s
, "Number of objects adjusted.");
959 if (page
->inuse
!= page
->objects
- nr
) {
960 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
961 page
->inuse
, page
->objects
- nr
);
962 page
->inuse
= page
->objects
- nr
;
963 slab_fix(s
, "Object count adjusted.");
965 return search
== NULL
;
968 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
971 if (s
->flags
& SLAB_TRACE
) {
972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 alloc
? "alloc" : "free",
979 print_section(KERN_INFO
, "Object ", (void *)object
,
987 * Tracking of fully allocated slabs for debugging purposes.
989 static void add_full(struct kmem_cache
*s
,
990 struct kmem_cache_node
*n
, struct page
*page
)
992 if (!(s
->flags
& SLAB_STORE_USER
))
995 lockdep_assert_held(&n
->list_lock
);
996 list_add(&page
->lru
, &n
->full
);
999 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1001 if (!(s
->flags
& SLAB_STORE_USER
))
1004 lockdep_assert_held(&n
->list_lock
);
1005 list_del(&page
->lru
);
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1011 struct kmem_cache_node
*n
= get_node(s
, node
);
1013 return atomic_long_read(&n
->nr_slabs
);
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1018 return atomic_long_read(&n
->nr_slabs
);
1021 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1023 struct kmem_cache_node
*n
= get_node(s
, node
);
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1032 atomic_long_inc(&n
->nr_slabs
);
1033 atomic_long_add(objects
, &n
->total_objects
);
1036 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1038 struct kmem_cache_node
*n
= get_node(s
, node
);
1040 atomic_long_dec(&n
->nr_slabs
);
1041 atomic_long_sub(objects
, &n
->total_objects
);
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1048 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1051 init_object(s
, object
, SLUB_RED_INACTIVE
);
1052 init_tracking(s
, object
);
1055 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1057 void *object
, unsigned long addr
)
1059 if (!check_slab(s
, page
))
1062 if (!check_valid_pointer(s
, page
, object
)) {
1063 object_err(s
, page
, object
, "Freelist Pointer check fails");
1067 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1073 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1075 void *object
, unsigned long addr
)
1077 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1078 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1082 /* Success perform special debug activities for allocs */
1083 if (s
->flags
& SLAB_STORE_USER
)
1084 set_track(s
, object
, TRACK_ALLOC
, addr
);
1085 trace(s
, page
, object
, 1);
1086 init_object(s
, object
, SLUB_RED_ACTIVE
);
1090 if (PageSlab(page
)) {
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
1094 * as used avoids touching the remaining objects.
1096 slab_fix(s
, "Marking all objects used");
1097 page
->inuse
= page
->objects
;
1098 page
->freelist
= NULL
;
1103 static inline int free_consistency_checks(struct kmem_cache
*s
,
1104 struct page
*page
, void *object
, unsigned long addr
)
1106 if (!check_valid_pointer(s
, page
, object
)) {
1107 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1111 if (on_freelist(s
, page
, object
)) {
1112 object_err(s
, page
, object
, "Object already free");
1116 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1119 if (unlikely(s
!= page
->slab_cache
)) {
1120 if (!PageSlab(page
)) {
1121 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1123 } else if (!page
->slab_cache
) {
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1128 object_err(s
, page
, object
,
1129 "page slab pointer corrupt.");
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline
int free_debug_processing(
1137 struct kmem_cache
*s
, struct page
*page
,
1138 void *head
, void *tail
, int bulk_cnt
,
1141 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1142 void *object
= head
;
1144 unsigned long uninitialized_var(flags
);
1147 spin_lock_irqsave(&n
->list_lock
, flags
);
1150 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1151 if (!check_slab(s
, page
))
1158 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1159 if (!free_consistency_checks(s
, page
, object
, addr
))
1163 if (s
->flags
& SLAB_STORE_USER
)
1164 set_track(s
, object
, TRACK_FREE
, addr
);
1165 trace(s
, page
, object
, 0);
1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 init_object(s
, object
, SLUB_RED_INACTIVE
);
1169 /* Reached end of constructed freelist yet? */
1170 if (object
!= tail
) {
1171 object
= get_freepointer(s
, object
);
1177 if (cnt
!= bulk_cnt
)
1178 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1182 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1184 slab_fix(s
, "Object at 0x%p not freed", object
);
1188 static int __init
setup_slub_debug(char *str
)
1190 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1191 if (*str
++ != '=' || !*str
)
1193 * No options specified. Switch on full debugging.
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1207 * Switch off all debugging measures.
1212 * Determine which debug features should be switched on
1214 for (; *str
&& *str
!= ','; str
++) {
1215 switch (tolower(*str
)) {
1217 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1220 slub_debug
|= SLAB_RED_ZONE
;
1223 slub_debug
|= SLAB_POISON
;
1226 slub_debug
|= SLAB_STORE_USER
;
1229 slub_debug
|= SLAB_TRACE
;
1232 slub_debug
|= SLAB_FAILSLAB
;
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1239 disable_higher_order_debug
= 1;
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1249 slub_debug_slabs
= str
+ 1;
1254 __setup("slub_debug", setup_slub_debug
);
1256 unsigned long kmem_cache_flags(unsigned long object_size
,
1257 unsigned long flags
, const char *name
,
1258 void (*ctor
)(void *))
1261 * Enable debugging if selected on the kernel commandline.
1263 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1264 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1265 flags
|= slub_debug
;
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache
*s
,
1271 struct page
*page
, void *object
) {}
1273 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1274 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1276 static inline int free_debug_processing(
1277 struct kmem_cache
*s
, struct page
*page
,
1278 void *head
, void *tail
, int bulk_cnt
,
1279 unsigned long addr
) { return 0; }
1281 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1283 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1284 void *object
, u8 val
) { return 1; }
1285 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1286 struct page
*page
) {}
1287 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1288 struct page
*page
) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size
,
1290 unsigned long flags
, const char *name
,
1291 void (*ctor
)(void *))
1295 #define slub_debug 0
1297 #define disable_higher_order_debug 0
1299 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1303 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1305 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1308 #endif /* CONFIG_SLUB_DEBUG */
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1314 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1316 kmemleak_alloc(ptr
, size
, 1, flags
);
1317 kasan_kmalloc_large(ptr
, size
, flags
);
1320 static inline void kfree_hook(const void *x
)
1323 kasan_kfree_large(x
);
1326 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1330 kmemleak_free_recursive(x
, s
->flags
);
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 unsigned long flags
;
1341 local_irq_save(flags
);
1342 kmemcheck_slab_free(s
, x
, s
->object_size
);
1343 debug_check_no_locks_freed(x
, s
->object_size
);
1344 local_irq_restore(flags
);
1347 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1348 debug_check_no_obj_freed(x
, s
->object_size
);
1350 freeptr
= get_freepointer(s
, x
);
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1355 kasan_slab_free(s
, x
);
1359 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1360 void *head
, void *tail
)
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 #if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1372 void *object
= head
;
1373 void *tail_obj
= tail
? : head
;
1377 freeptr
= slab_free_hook(s
, object
);
1378 } while ((object
!= tail_obj
) && (object
= freeptr
));
1382 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1385 setup_object_debug(s
, page
, object
);
1386 kasan_init_slab_obj(s
, object
);
1387 if (unlikely(s
->ctor
)) {
1388 kasan_unpoison_object_data(s
, object
);
1390 kasan_poison_object_data(s
, object
);
1395 * Slab allocation and freeing
1397 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1398 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1401 int order
= oo_order(oo
);
1403 flags
|= __GFP_NOTRACK
;
1405 if (node
== NUMA_NO_NODE
)
1406 page
= alloc_pages(flags
, order
);
1408 page
= __alloc_pages_node(node
, flags
, order
);
1410 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1411 __free_pages(page
, order
);
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache
*s
)
1423 unsigned long i
, count
= oo_objects(s
->oo
);
1425 /* Bailout if already initialised */
1429 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1431 pr_err("SLUB: Unable to initialize free list for %s\n",
1436 /* Transform to an offset on the set of pages */
1437 if (s
->random_seq
) {
1438 for (i
= 0; i
< count
; i
++)
1439 s
->random_seq
[i
] *= s
->size
;
1444 /* Initialize each random sequence freelist per cache */
1445 static void __init
init_freelist_randomization(void)
1447 struct kmem_cache
*s
;
1449 mutex_lock(&slab_mutex
);
1451 list_for_each_entry(s
, &slab_caches
, list
)
1452 init_cache_random_seq(s
);
1454 mutex_unlock(&slab_mutex
);
1457 /* Get the next entry on the pre-computed freelist randomized */
1458 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1459 unsigned long *pos
, void *start
,
1460 unsigned long page_limit
,
1461 unsigned long freelist_count
)
1466 * If the target page allocation failed, the number of objects on the
1467 * page might be smaller than the usual size defined by the cache.
1470 idx
= s
->random_seq
[*pos
];
1472 if (*pos
>= freelist_count
)
1474 } while (unlikely(idx
>= page_limit
));
1476 return (char *)start
+ idx
;
1479 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1480 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1485 unsigned long idx
, pos
, page_limit
, freelist_count
;
1487 if (page
->objects
< 2 || !s
->random_seq
)
1490 freelist_count
= oo_objects(s
->oo
);
1491 pos
= get_random_int() % freelist_count
;
1493 page_limit
= page
->objects
* s
->size
;
1494 start
= fixup_red_left(s
, page_address(page
));
1496 /* First entry is used as the base of the freelist */
1497 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1499 page
->freelist
= cur
;
1501 for (idx
= 1; idx
< page
->objects
; idx
++) {
1502 setup_object(s
, page
, cur
);
1503 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1505 set_freepointer(s
, cur
, next
);
1508 setup_object(s
, page
, cur
);
1509 set_freepointer(s
, cur
, NULL
);
1514 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1518 static inline void init_freelist_randomization(void) { }
1519 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1523 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1525 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1528 struct kmem_cache_order_objects oo
= s
->oo
;
1534 flags
&= gfp_allowed_mask
;
1536 if (gfpflags_allow_blocking(flags
))
1539 flags
|= s
->allocflags
;
1542 * Let the initial higher-order allocation fail under memory pressure
1543 * so we fall-back to the minimum order allocation.
1545 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1546 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1547 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1549 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1550 if (unlikely(!page
)) {
1554 * Allocation may have failed due to fragmentation.
1555 * Try a lower order alloc if possible
1557 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1558 if (unlikely(!page
))
1560 stat(s
, ORDER_FALLBACK
);
1563 if (kmemcheck_enabled
&&
1564 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1565 int pages
= 1 << oo_order(oo
);
1567 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1570 * Objects from caches that have a constructor don't get
1571 * cleared when they're allocated, so we need to do it here.
1574 kmemcheck_mark_uninitialized_pages(page
, pages
);
1576 kmemcheck_mark_unallocated_pages(page
, pages
);
1579 page
->objects
= oo_objects(oo
);
1581 order
= compound_order(page
);
1582 page
->slab_cache
= s
;
1583 __SetPageSlab(page
);
1584 if (page_is_pfmemalloc(page
))
1585 SetPageSlabPfmemalloc(page
);
1587 start
= page_address(page
);
1589 if (unlikely(s
->flags
& SLAB_POISON
))
1590 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1592 kasan_poison_slab(page
);
1594 shuffle
= shuffle_freelist(s
, page
);
1597 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1598 setup_object(s
, page
, p
);
1599 if (likely(idx
< page
->objects
))
1600 set_freepointer(s
, p
, p
+ s
->size
);
1602 set_freepointer(s
, p
, NULL
);
1604 page
->freelist
= fixup_red_left(s
, start
);
1607 page
->inuse
= page
->objects
;
1611 if (gfpflags_allow_blocking(flags
))
1612 local_irq_disable();
1616 mod_zone_page_state(page_zone(page
),
1617 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1618 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1621 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1626 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1628 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1629 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1630 flags
&= ~GFP_SLAB_BUG_MASK
;
1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632 invalid_mask
, &invalid_mask
, flags
, &flags
);
1635 return allocate_slab(s
,
1636 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1639 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1641 int order
= compound_order(page
);
1642 int pages
= 1 << order
;
1644 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1647 slab_pad_check(s
, page
);
1648 for_each_object(p
, s
, page_address(page
),
1650 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1653 kmemcheck_free_shadow(page
, compound_order(page
));
1655 mod_zone_page_state(page_zone(page
),
1656 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1657 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1660 __ClearPageSlabPfmemalloc(page
);
1661 __ClearPageSlab(page
);
1663 page_mapcount_reset(page
);
1664 if (current
->reclaim_state
)
1665 current
->reclaim_state
->reclaimed_slab
+= pages
;
1666 memcg_uncharge_slab(page
, order
, s
);
1667 __free_pages(page
, order
);
1670 #define need_reserve_slab_rcu \
1671 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1673 static void rcu_free_slab(struct rcu_head
*h
)
1677 if (need_reserve_slab_rcu
)
1678 page
= virt_to_head_page(h
);
1680 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1682 __free_slab(page
->slab_cache
, page
);
1685 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1687 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1688 struct rcu_head
*head
;
1690 if (need_reserve_slab_rcu
) {
1691 int order
= compound_order(page
);
1692 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1694 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1695 head
= page_address(page
) + offset
;
1697 head
= &page
->rcu_head
;
1700 call_rcu(head
, rcu_free_slab
);
1702 __free_slab(s
, page
);
1705 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1707 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1712 * Management of partially allocated slabs.
1715 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1718 if (tail
== DEACTIVATE_TO_TAIL
)
1719 list_add_tail(&page
->lru
, &n
->partial
);
1721 list_add(&page
->lru
, &n
->partial
);
1724 static inline void add_partial(struct kmem_cache_node
*n
,
1725 struct page
*page
, int tail
)
1727 lockdep_assert_held(&n
->list_lock
);
1728 __add_partial(n
, page
, tail
);
1731 static inline void remove_partial(struct kmem_cache_node
*n
,
1734 lockdep_assert_held(&n
->list_lock
);
1735 list_del(&page
->lru
);
1740 * Remove slab from the partial list, freeze it and
1741 * return the pointer to the freelist.
1743 * Returns a list of objects or NULL if it fails.
1745 static inline void *acquire_slab(struct kmem_cache
*s
,
1746 struct kmem_cache_node
*n
, struct page
*page
,
1747 int mode
, int *objects
)
1750 unsigned long counters
;
1753 lockdep_assert_held(&n
->list_lock
);
1756 * Zap the freelist and set the frozen bit.
1757 * The old freelist is the list of objects for the
1758 * per cpu allocation list.
1760 freelist
= page
->freelist
;
1761 counters
= page
->counters
;
1762 new.counters
= counters
;
1763 *objects
= new.objects
- new.inuse
;
1765 new.inuse
= page
->objects
;
1766 new.freelist
= NULL
;
1768 new.freelist
= freelist
;
1771 VM_BUG_ON(new.frozen
);
1774 if (!__cmpxchg_double_slab(s
, page
,
1776 new.freelist
, new.counters
,
1780 remove_partial(n
, page
);
1785 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1786 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1789 * Try to allocate a partial slab from a specific node.
1791 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1792 struct kmem_cache_cpu
*c
, gfp_t flags
)
1794 struct page
*page
, *page2
;
1795 void *object
= NULL
;
1796 unsigned int available
= 0;
1800 * Racy check. If we mistakenly see no partial slabs then we
1801 * just allocate an empty slab. If we mistakenly try to get a
1802 * partial slab and there is none available then get_partials()
1805 if (!n
|| !n
->nr_partial
)
1808 spin_lock(&n
->list_lock
);
1809 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1812 if (!pfmemalloc_match(page
, flags
))
1815 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1819 available
+= objects
;
1822 stat(s
, ALLOC_FROM_PARTIAL
);
1825 put_cpu_partial(s
, page
, 0);
1826 stat(s
, CPU_PARTIAL_NODE
);
1828 if (!kmem_cache_has_cpu_partial(s
)
1829 || available
> s
->cpu_partial
/ 2)
1833 spin_unlock(&n
->list_lock
);
1838 * Get a page from somewhere. Search in increasing NUMA distances.
1840 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1841 struct kmem_cache_cpu
*c
)
1844 struct zonelist
*zonelist
;
1847 enum zone_type high_zoneidx
= gfp_zone(flags
);
1849 unsigned int cpuset_mems_cookie
;
1852 * The defrag ratio allows a configuration of the tradeoffs between
1853 * inter node defragmentation and node local allocations. A lower
1854 * defrag_ratio increases the tendency to do local allocations
1855 * instead of attempting to obtain partial slabs from other nodes.
1857 * If the defrag_ratio is set to 0 then kmalloc() always
1858 * returns node local objects. If the ratio is higher then kmalloc()
1859 * may return off node objects because partial slabs are obtained
1860 * from other nodes and filled up.
1862 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1863 * (which makes defrag_ratio = 1000) then every (well almost)
1864 * allocation will first attempt to defrag slab caches on other nodes.
1865 * This means scanning over all nodes to look for partial slabs which
1866 * may be expensive if we do it every time we are trying to find a slab
1867 * with available objects.
1869 if (!s
->remote_node_defrag_ratio
||
1870 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1874 cpuset_mems_cookie
= read_mems_allowed_begin();
1875 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1876 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1877 struct kmem_cache_node
*n
;
1879 n
= get_node(s
, zone_to_nid(zone
));
1881 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1882 n
->nr_partial
> s
->min_partial
) {
1883 object
= get_partial_node(s
, n
, c
, flags
);
1886 * Don't check read_mems_allowed_retry()
1887 * here - if mems_allowed was updated in
1888 * parallel, that was a harmless race
1889 * between allocation and the cpuset
1896 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1902 * Get a partial page, lock it and return it.
1904 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1905 struct kmem_cache_cpu
*c
)
1908 int searchnode
= node
;
1910 if (node
== NUMA_NO_NODE
)
1911 searchnode
= numa_mem_id();
1912 else if (!node_present_pages(node
))
1913 searchnode
= node_to_mem_node(node
);
1915 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1916 if (object
|| node
!= NUMA_NO_NODE
)
1919 return get_any_partial(s
, flags
, c
);
1922 #ifdef CONFIG_PREEMPT
1924 * Calculate the next globally unique transaction for disambiguiation
1925 * during cmpxchg. The transactions start with the cpu number and are then
1926 * incremented by CONFIG_NR_CPUS.
1928 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1931 * No preemption supported therefore also no need to check for
1937 static inline unsigned long next_tid(unsigned long tid
)
1939 return tid
+ TID_STEP
;
1942 static inline unsigned int tid_to_cpu(unsigned long tid
)
1944 return tid
% TID_STEP
;
1947 static inline unsigned long tid_to_event(unsigned long tid
)
1949 return tid
/ TID_STEP
;
1952 static inline unsigned int init_tid(int cpu
)
1957 static inline void note_cmpxchg_failure(const char *n
,
1958 const struct kmem_cache
*s
, unsigned long tid
)
1960 #ifdef SLUB_DEBUG_CMPXCHG
1961 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1963 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1965 #ifdef CONFIG_PREEMPT
1966 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1967 pr_warn("due to cpu change %d -> %d\n",
1968 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1971 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1972 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1973 tid_to_event(tid
), tid_to_event(actual_tid
));
1975 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1976 actual_tid
, tid
, next_tid(tid
));
1978 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1981 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1985 for_each_possible_cpu(cpu
)
1986 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1990 * Remove the cpu slab
1992 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1995 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1996 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1998 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2000 int tail
= DEACTIVATE_TO_HEAD
;
2004 if (page
->freelist
) {
2005 stat(s
, DEACTIVATE_REMOTE_FREES
);
2006 tail
= DEACTIVATE_TO_TAIL
;
2010 * Stage one: Free all available per cpu objects back
2011 * to the page freelist while it is still frozen. Leave the
2014 * There is no need to take the list->lock because the page
2017 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2019 unsigned long counters
;
2022 prior
= page
->freelist
;
2023 counters
= page
->counters
;
2024 set_freepointer(s
, freelist
, prior
);
2025 new.counters
= counters
;
2027 VM_BUG_ON(!new.frozen
);
2029 } while (!__cmpxchg_double_slab(s
, page
,
2031 freelist
, new.counters
,
2032 "drain percpu freelist"));
2034 freelist
= nextfree
;
2038 * Stage two: Ensure that the page is unfrozen while the
2039 * list presence reflects the actual number of objects
2042 * We setup the list membership and then perform a cmpxchg
2043 * with the count. If there is a mismatch then the page
2044 * is not unfrozen but the page is on the wrong list.
2046 * Then we restart the process which may have to remove
2047 * the page from the list that we just put it on again
2048 * because the number of objects in the slab may have
2053 old
.freelist
= page
->freelist
;
2054 old
.counters
= page
->counters
;
2055 VM_BUG_ON(!old
.frozen
);
2057 /* Determine target state of the slab */
2058 new.counters
= old
.counters
;
2061 set_freepointer(s
, freelist
, old
.freelist
);
2062 new.freelist
= freelist
;
2064 new.freelist
= old
.freelist
;
2068 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2070 else if (new.freelist
) {
2075 * Taking the spinlock removes the possiblity
2076 * that acquire_slab() will see a slab page that
2079 spin_lock(&n
->list_lock
);
2083 if (kmem_cache_debug(s
) && !lock
) {
2086 * This also ensures that the scanning of full
2087 * slabs from diagnostic functions will not see
2090 spin_lock(&n
->list_lock
);
2098 remove_partial(n
, page
);
2100 else if (l
== M_FULL
)
2102 remove_full(s
, n
, page
);
2104 if (m
== M_PARTIAL
) {
2106 add_partial(n
, page
, tail
);
2109 } else if (m
== M_FULL
) {
2111 stat(s
, DEACTIVATE_FULL
);
2112 add_full(s
, n
, page
);
2118 if (!__cmpxchg_double_slab(s
, page
,
2119 old
.freelist
, old
.counters
,
2120 new.freelist
, new.counters
,
2125 spin_unlock(&n
->list_lock
);
2128 stat(s
, DEACTIVATE_EMPTY
);
2129 discard_slab(s
, page
);
2135 * Unfreeze all the cpu partial slabs.
2137 * This function must be called with interrupts disabled
2138 * for the cpu using c (or some other guarantee must be there
2139 * to guarantee no concurrent accesses).
2141 static void unfreeze_partials(struct kmem_cache
*s
,
2142 struct kmem_cache_cpu
*c
)
2144 #ifdef CONFIG_SLUB_CPU_PARTIAL
2145 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2146 struct page
*page
, *discard_page
= NULL
;
2148 while ((page
= c
->partial
)) {
2152 c
->partial
= page
->next
;
2154 n2
= get_node(s
, page_to_nid(page
));
2157 spin_unlock(&n
->list_lock
);
2160 spin_lock(&n
->list_lock
);
2165 old
.freelist
= page
->freelist
;
2166 old
.counters
= page
->counters
;
2167 VM_BUG_ON(!old
.frozen
);
2169 new.counters
= old
.counters
;
2170 new.freelist
= old
.freelist
;
2174 } while (!__cmpxchg_double_slab(s
, page
,
2175 old
.freelist
, old
.counters
,
2176 new.freelist
, new.counters
,
2177 "unfreezing slab"));
2179 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2180 page
->next
= discard_page
;
2181 discard_page
= page
;
2183 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2184 stat(s
, FREE_ADD_PARTIAL
);
2189 spin_unlock(&n
->list_lock
);
2191 while (discard_page
) {
2192 page
= discard_page
;
2193 discard_page
= discard_page
->next
;
2195 stat(s
, DEACTIVATE_EMPTY
);
2196 discard_slab(s
, page
);
2203 * Put a page that was just frozen (in __slab_free) into a partial page
2204 * slot if available. This is done without interrupts disabled and without
2205 * preemption disabled. The cmpxchg is racy and may put the partial page
2206 * onto a random cpus partial slot.
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2211 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 struct page
*oldpage
;
2222 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2225 pobjects
= oldpage
->pobjects
;
2226 pages
= oldpage
->pages
;
2227 if (drain
&& pobjects
> s
->cpu_partial
) {
2228 unsigned long flags
;
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2233 local_irq_save(flags
);
2234 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2235 local_irq_restore(flags
);
2239 stat(s
, CPU_PARTIAL_DRAIN
);
2244 pobjects
+= page
->objects
- page
->inuse
;
2246 page
->pages
= pages
;
2247 page
->pobjects
= pobjects
;
2248 page
->next
= oldpage
;
2250 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2252 if (unlikely(!s
->cpu_partial
)) {
2253 unsigned long flags
;
2255 local_irq_save(flags
);
2256 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2257 local_irq_restore(flags
);
2263 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2265 stat(s
, CPUSLAB_FLUSH
);
2266 deactivate_slab(s
, c
->page
, c
->freelist
);
2268 c
->tid
= next_tid(c
->tid
);
2276 * Called from IPI handler with interrupts disabled.
2278 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2280 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2286 unfreeze_partials(s
, c
);
2290 static void flush_cpu_slab(void *d
)
2292 struct kmem_cache
*s
= d
;
2294 __flush_cpu_slab(s
, smp_processor_id());
2297 static bool has_cpu_slab(int cpu
, void *info
)
2299 struct kmem_cache
*s
= info
;
2300 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2302 return c
->page
|| c
->partial
;
2305 static void flush_all(struct kmem_cache
*s
)
2307 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2311 * Use the cpu notifier to insure that the cpu slabs are flushed when
2314 static int slub_cpu_dead(unsigned int cpu
)
2316 struct kmem_cache
*s
;
2317 unsigned long flags
;
2319 mutex_lock(&slab_mutex
);
2320 list_for_each_entry(s
, &slab_caches
, list
) {
2321 local_irq_save(flags
);
2322 __flush_cpu_slab(s
, cpu
);
2323 local_irq_restore(flags
);
2325 mutex_unlock(&slab_mutex
);
2330 * Check if the objects in a per cpu structure fit numa
2331 * locality expectations.
2333 static inline int node_match(struct page
*page
, int node
)
2336 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2342 #ifdef CONFIG_SLUB_DEBUG
2343 static int count_free(struct page
*page
)
2345 return page
->objects
- page
->inuse
;
2348 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2350 return atomic_long_read(&n
->total_objects
);
2352 #endif /* CONFIG_SLUB_DEBUG */
2354 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2355 static unsigned long count_partial(struct kmem_cache_node
*n
,
2356 int (*get_count
)(struct page
*))
2358 unsigned long flags
;
2359 unsigned long x
= 0;
2362 spin_lock_irqsave(&n
->list_lock
, flags
);
2363 list_for_each_entry(page
, &n
->partial
, lru
)
2364 x
+= get_count(page
);
2365 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2368 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2370 static noinline
void
2371 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2373 #ifdef CONFIG_SLUB_DEBUG
2374 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2375 DEFAULT_RATELIMIT_BURST
);
2377 struct kmem_cache_node
*n
;
2379 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2382 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2383 nid
, gfpflags
, &gfpflags
);
2384 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2385 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2388 if (oo_order(s
->min
) > get_order(s
->object_size
))
2389 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2392 for_each_kmem_cache_node(s
, node
, n
) {
2393 unsigned long nr_slabs
;
2394 unsigned long nr_objs
;
2395 unsigned long nr_free
;
2397 nr_free
= count_partial(n
, count_free
);
2398 nr_slabs
= node_nr_slabs(n
);
2399 nr_objs
= node_nr_objs(n
);
2401 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2402 node
, nr_slabs
, nr_objs
, nr_free
);
2407 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2408 int node
, struct kmem_cache_cpu
**pc
)
2411 struct kmem_cache_cpu
*c
= *pc
;
2414 freelist
= get_partial(s
, flags
, node
, c
);
2419 page
= new_slab(s
, flags
, node
);
2421 c
= raw_cpu_ptr(s
->cpu_slab
);
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2429 freelist
= page
->freelist
;
2430 page
->freelist
= NULL
;
2432 stat(s
, ALLOC_SLAB
);
2441 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2443 if (unlikely(PageSlabPfmemalloc(page
)))
2444 return gfp_pfmemalloc_allowed(gfpflags
);
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2453 * The page is still frozen if the return value is not NULL.
2455 * If this function returns NULL then the page has been unfrozen.
2457 * This function must be called with interrupt disabled.
2459 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2462 unsigned long counters
;
2466 freelist
= page
->freelist
;
2467 counters
= page
->counters
;
2469 new.counters
= counters
;
2470 VM_BUG_ON(!new.frozen
);
2472 new.inuse
= page
->objects
;
2473 new.frozen
= freelist
!= NULL
;
2475 } while (!__cmpxchg_double_slab(s
, page
,
2484 * Slow path. The lockless freelist is empty or we need to perform
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2502 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2503 unsigned long addr
, struct kmem_cache_cpu
*c
)
2513 if (unlikely(!node_match(page
, node
))) {
2514 int searchnode
= node
;
2516 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2517 searchnode
= node_to_mem_node(node
);
2519 if (unlikely(!node_match(page
, searchnode
))) {
2520 stat(s
, ALLOC_NODE_MISMATCH
);
2521 deactivate_slab(s
, page
, c
->freelist
);
2529 * By rights, we should be searching for a slab page that was
2530 * PFMEMALLOC but right now, we are losing the pfmemalloc
2531 * information when the page leaves the per-cpu allocator
2533 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2534 deactivate_slab(s
, page
, c
->freelist
);
2540 /* must check again c->freelist in case of cpu migration or IRQ */
2541 freelist
= c
->freelist
;
2545 freelist
= get_freelist(s
, page
);
2549 stat(s
, DEACTIVATE_BYPASS
);
2553 stat(s
, ALLOC_REFILL
);
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2561 VM_BUG_ON(!c
->page
->frozen
);
2562 c
->freelist
= get_freepointer(s
, freelist
);
2563 c
->tid
= next_tid(c
->tid
);
2569 page
= c
->page
= c
->partial
;
2570 c
->partial
= page
->next
;
2571 stat(s
, CPU_PARTIAL_ALLOC
);
2576 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2578 if (unlikely(!freelist
)) {
2579 slab_out_of_memory(s
, gfpflags
, node
);
2584 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2587 /* Only entered in the debug case */
2588 if (kmem_cache_debug(s
) &&
2589 !alloc_debug_processing(s
, page
, freelist
, addr
))
2590 goto new_slab
; /* Slab failed checks. Next slab needed */
2592 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2599 * Another one that disabled interrupt and compensates for possible
2600 * cpu changes by refetching the per cpu area pointer.
2602 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2603 unsigned long addr
, struct kmem_cache_cpu
*c
)
2606 unsigned long flags
;
2608 local_irq_save(flags
);
2609 #ifdef CONFIG_PREEMPT
2611 * We may have been preempted and rescheduled on a different
2612 * cpu before disabling interrupts. Need to reload cpu area
2615 c
= this_cpu_ptr(s
->cpu_slab
);
2618 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2619 local_irq_restore(flags
);
2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2625 * have the fastpath folded into their functions. So no function call
2626 * overhead for requests that can be satisfied on the fastpath.
2628 * The fastpath works by first checking if the lockless freelist can be used.
2629 * If not then __slab_alloc is called for slow processing.
2631 * Otherwise we can simply pick the next object from the lockless free list.
2633 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2634 gfp_t gfpflags
, int node
, unsigned long addr
)
2637 struct kmem_cache_cpu
*c
;
2641 s
= slab_pre_alloc_hook(s
, gfpflags
);
2646 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2647 * enabled. We may switch back and forth between cpus while
2648 * reading from one cpu area. That does not matter as long
2649 * as we end up on the original cpu again when doing the cmpxchg.
2651 * We should guarantee that tid and kmem_cache are retrieved on
2652 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2653 * to check if it is matched or not.
2656 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2657 c
= raw_cpu_ptr(s
->cpu_slab
);
2658 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2659 unlikely(tid
!= READ_ONCE(c
->tid
)));
2662 * Irqless object alloc/free algorithm used here depends on sequence
2663 * of fetching cpu_slab's data. tid should be fetched before anything
2664 * on c to guarantee that object and page associated with previous tid
2665 * won't be used with current tid. If we fetch tid first, object and
2666 * page could be one associated with next tid and our alloc/free
2667 * request will be failed. In this case, we will retry. So, no problem.
2672 * The transaction ids are globally unique per cpu and per operation on
2673 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2674 * occurs on the right processor and that there was no operation on the
2675 * linked list in between.
2678 object
= c
->freelist
;
2680 if (unlikely(!object
|| !node_match(page
, node
))) {
2681 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2682 stat(s
, ALLOC_SLOWPATH
);
2684 void *next_object
= get_freepointer_safe(s
, object
);
2687 * The cmpxchg will only match if there was no additional
2688 * operation and if we are on the right processor.
2690 * The cmpxchg does the following atomically (without lock
2692 * 1. Relocate first pointer to the current per cpu area.
2693 * 2. Verify that tid and freelist have not been changed
2694 * 3. If they were not changed replace tid and freelist
2696 * Since this is without lock semantics the protection is only
2697 * against code executing on this cpu *not* from access by
2700 if (unlikely(!this_cpu_cmpxchg_double(
2701 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2703 next_object
, next_tid(tid
)))) {
2705 note_cmpxchg_failure("slab_alloc", s
, tid
);
2708 prefetch_freepointer(s
, next_object
);
2709 stat(s
, ALLOC_FASTPATH
);
2712 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2713 memset(object
, 0, s
->object_size
);
2715 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2720 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2721 gfp_t gfpflags
, unsigned long addr
)
2723 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2726 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2728 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2730 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2735 EXPORT_SYMBOL(kmem_cache_alloc
);
2737 #ifdef CONFIG_TRACING
2738 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2740 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2741 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2742 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2745 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2749 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2751 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2753 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2754 s
->object_size
, s
->size
, gfpflags
, node
);
2758 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2760 #ifdef CONFIG_TRACING
2761 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2763 int node
, size_t size
)
2765 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2767 trace_kmalloc_node(_RET_IP_
, ret
,
2768 size
, s
->size
, gfpflags
, node
);
2770 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2773 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2778 * Slow path handling. This may still be called frequently since objects
2779 * have a longer lifetime than the cpu slabs in most processing loads.
2781 * So we still attempt to reduce cache line usage. Just take the slab
2782 * lock and free the item. If there is no additional partial page
2783 * handling required then we can return immediately.
2785 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2786 void *head
, void *tail
, int cnt
,
2793 unsigned long counters
;
2794 struct kmem_cache_node
*n
= NULL
;
2795 unsigned long uninitialized_var(flags
);
2797 stat(s
, FREE_SLOWPATH
);
2799 if (kmem_cache_debug(s
) &&
2800 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2805 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2808 prior
= page
->freelist
;
2809 counters
= page
->counters
;
2810 set_freepointer(s
, tail
, prior
);
2811 new.counters
= counters
;
2812 was_frozen
= new.frozen
;
2814 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2816 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2819 * Slab was on no list before and will be
2821 * We can defer the list move and instead
2826 } else { /* Needs to be taken off a list */
2828 n
= get_node(s
, page_to_nid(page
));
2830 * Speculatively acquire the list_lock.
2831 * If the cmpxchg does not succeed then we may
2832 * drop the list_lock without any processing.
2834 * Otherwise the list_lock will synchronize with
2835 * other processors updating the list of slabs.
2837 spin_lock_irqsave(&n
->list_lock
, flags
);
2842 } while (!cmpxchg_double_slab(s
, page
,
2850 * If we just froze the page then put it onto the
2851 * per cpu partial list.
2853 if (new.frozen
&& !was_frozen
) {
2854 put_cpu_partial(s
, page
, 1);
2855 stat(s
, CPU_PARTIAL_FREE
);
2858 * The list lock was not taken therefore no list
2859 * activity can be necessary.
2862 stat(s
, FREE_FROZEN
);
2866 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2870 * Objects left in the slab. If it was not on the partial list before
2873 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2874 if (kmem_cache_debug(s
))
2875 remove_full(s
, n
, page
);
2876 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2877 stat(s
, FREE_ADD_PARTIAL
);
2879 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2885 * Slab on the partial list.
2887 remove_partial(n
, page
);
2888 stat(s
, FREE_REMOVE_PARTIAL
);
2890 /* Slab must be on the full list */
2891 remove_full(s
, n
, page
);
2894 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2896 discard_slab(s
, page
);
2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2901 * can perform fastpath freeing without additional function calls.
2903 * The fastpath is only possible if we are freeing to the current cpu slab
2904 * of this processor. This typically the case if we have just allocated
2907 * If fastpath is not possible then fall back to __slab_free where we deal
2908 * with all sorts of special processing.
2910 * Bulk free of a freelist with several objects (all pointing to the
2911 * same page) possible by specifying head and tail ptr, plus objects
2912 * count (cnt). Bulk free indicated by tail pointer being set.
2914 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2915 struct page
*page
, void *head
, void *tail
,
2916 int cnt
, unsigned long addr
)
2918 void *tail_obj
= tail
? : head
;
2919 struct kmem_cache_cpu
*c
;
2923 * Determine the currently cpus per cpu slab.
2924 * The cpu may change afterward. However that does not matter since
2925 * data is retrieved via this pointer. If we are on the same cpu
2926 * during the cmpxchg then the free will succeed.
2929 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2930 c
= raw_cpu_ptr(s
->cpu_slab
);
2931 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2932 unlikely(tid
!= READ_ONCE(c
->tid
)));
2934 /* Same with comment on barrier() in slab_alloc_node() */
2937 if (likely(page
== c
->page
)) {
2938 set_freepointer(s
, tail_obj
, c
->freelist
);
2940 if (unlikely(!this_cpu_cmpxchg_double(
2941 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2943 head
, next_tid(tid
)))) {
2945 note_cmpxchg_failure("slab_free", s
, tid
);
2948 stat(s
, FREE_FASTPATH
);
2950 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2954 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2955 void *head
, void *tail
, int cnt
,
2958 slab_free_freelist_hook(s
, head
, tail
);
2960 * slab_free_freelist_hook() could have put the items into quarantine.
2961 * If so, no need to free them.
2963 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_DESTROY_BY_RCU
))
2965 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2969 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2971 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2975 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2977 s
= cache_from_obj(s
, x
);
2980 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2981 trace_kmem_cache_free(_RET_IP_
, x
);
2983 EXPORT_SYMBOL(kmem_cache_free
);
2985 struct detached_freelist
{
2990 struct kmem_cache
*s
;
2994 * This function progressively scans the array with free objects (with
2995 * a limited look ahead) and extract objects belonging to the same
2996 * page. It builds a detached freelist directly within the given
2997 * page/objects. This can happen without any need for
2998 * synchronization, because the objects are owned by running process.
2999 * The freelist is build up as a single linked list in the objects.
3000 * The idea is, that this detached freelist can then be bulk
3001 * transferred to the real freelist(s), but only requiring a single
3002 * synchronization primitive. Look ahead in the array is limited due
3003 * to performance reasons.
3006 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3007 void **p
, struct detached_freelist
*df
)
3009 size_t first_skipped_index
= 0;
3014 /* Always re-init detached_freelist */
3019 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3020 } while (!object
&& size
);
3025 page
= virt_to_head_page(object
);
3027 /* Handle kalloc'ed objects */
3028 if (unlikely(!PageSlab(page
))) {
3029 BUG_ON(!PageCompound(page
));
3031 __free_pages(page
, compound_order(page
));
3032 p
[size
] = NULL
; /* mark object processed */
3035 /* Derive kmem_cache from object */
3036 df
->s
= page
->slab_cache
;
3038 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3041 /* Start new detached freelist */
3043 set_freepointer(df
->s
, object
, NULL
);
3045 df
->freelist
= object
;
3046 p
[size
] = NULL
; /* mark object processed */
3052 continue; /* Skip processed objects */
3054 /* df->page is always set at this point */
3055 if (df
->page
== virt_to_head_page(object
)) {
3056 /* Opportunity build freelist */
3057 set_freepointer(df
->s
, object
, df
->freelist
);
3058 df
->freelist
= object
;
3060 p
[size
] = NULL
; /* mark object processed */
3065 /* Limit look ahead search */
3069 if (!first_skipped_index
)
3070 first_skipped_index
= size
+ 1;
3073 return first_skipped_index
;
3076 /* Note that interrupts must be enabled when calling this function. */
3077 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3083 struct detached_freelist df
;
3085 size
= build_detached_freelist(s
, size
, p
, &df
);
3086 if (unlikely(!df
.page
))
3089 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3090 } while (likely(size
));
3092 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3094 /* Note that interrupts must be enabled when calling this function. */
3095 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3098 struct kmem_cache_cpu
*c
;
3101 /* memcg and kmem_cache debug support */
3102 s
= slab_pre_alloc_hook(s
, flags
);
3106 * Drain objects in the per cpu slab, while disabling local
3107 * IRQs, which protects against PREEMPT and interrupts
3108 * handlers invoking normal fastpath.
3110 local_irq_disable();
3111 c
= this_cpu_ptr(s
->cpu_slab
);
3113 for (i
= 0; i
< size
; i
++) {
3114 void *object
= c
->freelist
;
3116 if (unlikely(!object
)) {
3118 * Invoking slow path likely have side-effect
3119 * of re-populating per CPU c->freelist
3121 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3123 if (unlikely(!p
[i
]))
3126 c
= this_cpu_ptr(s
->cpu_slab
);
3127 continue; /* goto for-loop */
3129 c
->freelist
= get_freepointer(s
, object
);
3132 c
->tid
= next_tid(c
->tid
);
3135 /* Clear memory outside IRQ disabled fastpath loop */
3136 if (unlikely(flags
& __GFP_ZERO
)) {
3139 for (j
= 0; j
< i
; j
++)
3140 memset(p
[j
], 0, s
->object_size
);
3143 /* memcg and kmem_cache debug support */
3144 slab_post_alloc_hook(s
, flags
, size
, p
);
3148 slab_post_alloc_hook(s
, flags
, i
, p
);
3149 __kmem_cache_free_bulk(s
, i
, p
);
3152 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3156 * Object placement in a slab is made very easy because we always start at
3157 * offset 0. If we tune the size of the object to the alignment then we can
3158 * get the required alignment by putting one properly sized object after
3161 * Notice that the allocation order determines the sizes of the per cpu
3162 * caches. Each processor has always one slab available for allocations.
3163 * Increasing the allocation order reduces the number of times that slabs
3164 * must be moved on and off the partial lists and is therefore a factor in
3169 * Mininum / Maximum order of slab pages. This influences locking overhead
3170 * and slab fragmentation. A higher order reduces the number of partial slabs
3171 * and increases the number of allocations possible without having to
3172 * take the list_lock.
3174 static int slub_min_order
;
3175 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3176 static int slub_min_objects
;
3179 * Calculate the order of allocation given an slab object size.
3181 * The order of allocation has significant impact on performance and other
3182 * system components. Generally order 0 allocations should be preferred since
3183 * order 0 does not cause fragmentation in the page allocator. Larger objects
3184 * be problematic to put into order 0 slabs because there may be too much
3185 * unused space left. We go to a higher order if more than 1/16th of the slab
3188 * In order to reach satisfactory performance we must ensure that a minimum
3189 * number of objects is in one slab. Otherwise we may generate too much
3190 * activity on the partial lists which requires taking the list_lock. This is
3191 * less a concern for large slabs though which are rarely used.
3193 * slub_max_order specifies the order where we begin to stop considering the
3194 * number of objects in a slab as critical. If we reach slub_max_order then
3195 * we try to keep the page order as low as possible. So we accept more waste
3196 * of space in favor of a small page order.
3198 * Higher order allocations also allow the placement of more objects in a
3199 * slab and thereby reduce object handling overhead. If the user has
3200 * requested a higher mininum order then we start with that one instead of
3201 * the smallest order which will fit the object.
3203 static inline int slab_order(int size
, int min_objects
,
3204 int max_order
, int fract_leftover
, int reserved
)
3208 int min_order
= slub_min_order
;
3210 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3211 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3213 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3214 order
<= max_order
; order
++) {
3216 unsigned long slab_size
= PAGE_SIZE
<< order
;
3218 rem
= (slab_size
- reserved
) % size
;
3220 if (rem
<= slab_size
/ fract_leftover
)
3227 static inline int calculate_order(int size
, int reserved
)
3235 * Attempt to find best configuration for a slab. This
3236 * works by first attempting to generate a layout with
3237 * the best configuration and backing off gradually.
3239 * First we increase the acceptable waste in a slab. Then
3240 * we reduce the minimum objects required in a slab.
3242 min_objects
= slub_min_objects
;
3244 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3245 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3246 min_objects
= min(min_objects
, max_objects
);
3248 while (min_objects
> 1) {
3250 while (fraction
>= 4) {
3251 order
= slab_order(size
, min_objects
,
3252 slub_max_order
, fraction
, reserved
);
3253 if (order
<= slub_max_order
)
3261 * We were unable to place multiple objects in a slab. Now
3262 * lets see if we can place a single object there.
3264 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3265 if (order
<= slub_max_order
)
3269 * Doh this slab cannot be placed using slub_max_order.
3271 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3272 if (order
< MAX_ORDER
)
3278 init_kmem_cache_node(struct kmem_cache_node
*n
)
3281 spin_lock_init(&n
->list_lock
);
3282 INIT_LIST_HEAD(&n
->partial
);
3283 #ifdef CONFIG_SLUB_DEBUG
3284 atomic_long_set(&n
->nr_slabs
, 0);
3285 atomic_long_set(&n
->total_objects
, 0);
3286 INIT_LIST_HEAD(&n
->full
);
3290 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3293 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3296 * Must align to double word boundary for the double cmpxchg
3297 * instructions to work; see __pcpu_double_call_return_bool().
3299 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3300 2 * sizeof(void *));
3305 init_kmem_cache_cpus(s
);
3310 static struct kmem_cache
*kmem_cache_node
;
3313 * No kmalloc_node yet so do it by hand. We know that this is the first
3314 * slab on the node for this slabcache. There are no concurrent accesses
3317 * Note that this function only works on the kmem_cache_node
3318 * when allocating for the kmem_cache_node. This is used for bootstrapping
3319 * memory on a fresh node that has no slab structures yet.
3321 static void early_kmem_cache_node_alloc(int node
)
3324 struct kmem_cache_node
*n
;
3326 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3328 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3331 if (page_to_nid(page
) != node
) {
3332 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3333 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3338 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3341 kmem_cache_node
->node
[node
] = n
;
3342 #ifdef CONFIG_SLUB_DEBUG
3343 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3344 init_tracking(kmem_cache_node
, n
);
3346 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3348 init_kmem_cache_node(n
);
3349 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3352 * No locks need to be taken here as it has just been
3353 * initialized and there is no concurrent access.
3355 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3358 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3361 struct kmem_cache_node
*n
;
3363 for_each_kmem_cache_node(s
, node
, n
) {
3364 kmem_cache_free(kmem_cache_node
, n
);
3365 s
->node
[node
] = NULL
;
3369 void __kmem_cache_release(struct kmem_cache
*s
)
3371 cache_random_seq_destroy(s
);
3372 free_percpu(s
->cpu_slab
);
3373 free_kmem_cache_nodes(s
);
3376 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3380 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3381 struct kmem_cache_node
*n
;
3383 if (slab_state
== DOWN
) {
3384 early_kmem_cache_node_alloc(node
);
3387 n
= kmem_cache_alloc_node(kmem_cache_node
,
3391 free_kmem_cache_nodes(s
);
3396 init_kmem_cache_node(n
);
3401 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3403 if (min
< MIN_PARTIAL
)
3405 else if (min
> MAX_PARTIAL
)
3407 s
->min_partial
= min
;
3411 * calculate_sizes() determines the order and the distribution of data within
3414 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3416 unsigned long flags
= s
->flags
;
3417 size_t size
= s
->object_size
;
3421 * Round up object size to the next word boundary. We can only
3422 * place the free pointer at word boundaries and this determines
3423 * the possible location of the free pointer.
3425 size
= ALIGN(size
, sizeof(void *));
3427 #ifdef CONFIG_SLUB_DEBUG
3429 * Determine if we can poison the object itself. If the user of
3430 * the slab may touch the object after free or before allocation
3431 * then we should never poison the object itself.
3433 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3435 s
->flags
|= __OBJECT_POISON
;
3437 s
->flags
&= ~__OBJECT_POISON
;
3441 * If we are Redzoning then check if there is some space between the
3442 * end of the object and the free pointer. If not then add an
3443 * additional word to have some bytes to store Redzone information.
3445 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3446 size
+= sizeof(void *);
3450 * With that we have determined the number of bytes in actual use
3451 * by the object. This is the potential offset to the free pointer.
3455 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3458 * Relocate free pointer after the object if it is not
3459 * permitted to overwrite the first word of the object on
3462 * This is the case if we do RCU, have a constructor or
3463 * destructor or are poisoning the objects.
3466 size
+= sizeof(void *);
3469 #ifdef CONFIG_SLUB_DEBUG
3470 if (flags
& SLAB_STORE_USER
)
3472 * Need to store information about allocs and frees after
3475 size
+= 2 * sizeof(struct track
);
3478 kasan_cache_create(s
, &size
, &s
->flags
);
3479 #ifdef CONFIG_SLUB_DEBUG
3480 if (flags
& SLAB_RED_ZONE
) {
3482 * Add some empty padding so that we can catch
3483 * overwrites from earlier objects rather than let
3484 * tracking information or the free pointer be
3485 * corrupted if a user writes before the start
3488 size
+= sizeof(void *);
3490 s
->red_left_pad
= sizeof(void *);
3491 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3492 size
+= s
->red_left_pad
;
3497 * SLUB stores one object immediately after another beginning from
3498 * offset 0. In order to align the objects we have to simply size
3499 * each object to conform to the alignment.
3501 size
= ALIGN(size
, s
->align
);
3503 if (forced_order
>= 0)
3504 order
= forced_order
;
3506 order
= calculate_order(size
, s
->reserved
);
3513 s
->allocflags
|= __GFP_COMP
;
3515 if (s
->flags
& SLAB_CACHE_DMA
)
3516 s
->allocflags
|= GFP_DMA
;
3518 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3519 s
->allocflags
|= __GFP_RECLAIMABLE
;
3522 * Determine the number of objects per slab
3524 s
->oo
= oo_make(order
, size
, s
->reserved
);
3525 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3526 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3529 return !!oo_objects(s
->oo
);
3532 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3534 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3537 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3538 s
->reserved
= sizeof(struct rcu_head
);
3540 if (!calculate_sizes(s
, -1))
3542 if (disable_higher_order_debug
) {
3544 * Disable debugging flags that store metadata if the min slab
3547 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3548 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3550 if (!calculate_sizes(s
, -1))
3555 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3556 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3557 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3558 /* Enable fast mode */
3559 s
->flags
|= __CMPXCHG_DOUBLE
;
3563 * The larger the object size is, the more pages we want on the partial
3564 * list to avoid pounding the page allocator excessively.
3566 set_min_partial(s
, ilog2(s
->size
) / 2);
3569 * cpu_partial determined the maximum number of objects kept in the
3570 * per cpu partial lists of a processor.
3572 * Per cpu partial lists mainly contain slabs that just have one
3573 * object freed. If they are used for allocation then they can be
3574 * filled up again with minimal effort. The slab will never hit the
3575 * per node partial lists and therefore no locking will be required.
3577 * This setting also determines
3579 * A) The number of objects from per cpu partial slabs dumped to the
3580 * per node list when we reach the limit.
3581 * B) The number of objects in cpu partial slabs to extract from the
3582 * per node list when we run out of per cpu objects. We only fetch
3583 * 50% to keep some capacity around for frees.
3585 if (!kmem_cache_has_cpu_partial(s
))
3587 else if (s
->size
>= PAGE_SIZE
)
3589 else if (s
->size
>= 1024)
3591 else if (s
->size
>= 256)
3592 s
->cpu_partial
= 13;
3594 s
->cpu_partial
= 30;
3597 s
->remote_node_defrag_ratio
= 1000;
3600 /* Initialize the pre-computed randomized freelist if slab is up */
3601 if (slab_state
>= UP
) {
3602 if (init_cache_random_seq(s
))
3606 if (!init_kmem_cache_nodes(s
))
3609 if (alloc_kmem_cache_cpus(s
))
3612 free_kmem_cache_nodes(s
);
3614 if (flags
& SLAB_PANIC
)
3615 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3616 s
->name
, (unsigned long)s
->size
, s
->size
,
3617 oo_order(s
->oo
), s
->offset
, flags
);
3621 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3624 #ifdef CONFIG_SLUB_DEBUG
3625 void *addr
= page_address(page
);
3627 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3628 sizeof(long), GFP_ATOMIC
);
3631 slab_err(s
, page
, text
, s
->name
);
3634 get_map(s
, page
, map
);
3635 for_each_object(p
, s
, addr
, page
->objects
) {
3637 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3639 print_tracking(s
, p
);
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3652 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3655 struct page
*page
, *h
;
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n
->list_lock
);
3659 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3661 remove_partial(n
, page
);
3662 list_add(&page
->lru
, &discard
);
3664 list_slab_objects(s
, page
,
3665 "Objects remaining in %s on __kmem_cache_shutdown()");
3668 spin_unlock_irq(&n
->list_lock
);
3670 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3671 discard_slab(s
, page
);
3675 * Release all resources used by a slab cache.
3677 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3680 struct kmem_cache_node
*n
;
3683 /* Attempt to free all objects */
3684 for_each_kmem_cache_node(s
, node
, n
) {
3686 if (n
->nr_partial
|| slabs_node(s
, node
))
3692 /********************************************************************
3694 *******************************************************************/
3696 static int __init
setup_slub_min_order(char *str
)
3698 get_option(&str
, &slub_min_order
);
3703 __setup("slub_min_order=", setup_slub_min_order
);
3705 static int __init
setup_slub_max_order(char *str
)
3707 get_option(&str
, &slub_max_order
);
3708 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3713 __setup("slub_max_order=", setup_slub_max_order
);
3715 static int __init
setup_slub_min_objects(char *str
)
3717 get_option(&str
, &slub_min_objects
);
3722 __setup("slub_min_objects=", setup_slub_min_objects
);
3724 void *__kmalloc(size_t size
, gfp_t flags
)
3726 struct kmem_cache
*s
;
3729 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3730 return kmalloc_large(size
, flags
);
3732 s
= kmalloc_slab(size
, flags
);
3734 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3737 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3739 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3741 kasan_kmalloc(s
, ret
, size
, flags
);
3745 EXPORT_SYMBOL(__kmalloc
);
3748 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3753 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3754 page
= alloc_pages_node(node
, flags
, get_order(size
));
3756 ptr
= page_address(page
);
3758 kmalloc_large_node_hook(ptr
, size
, flags
);
3762 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3764 struct kmem_cache
*s
;
3767 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3768 ret
= kmalloc_large_node(size
, flags
, node
);
3770 trace_kmalloc_node(_RET_IP_
, ret
,
3771 size
, PAGE_SIZE
<< get_order(size
),
3777 s
= kmalloc_slab(size
, flags
);
3779 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3782 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3784 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3786 kasan_kmalloc(s
, ret
, size
, flags
);
3790 EXPORT_SYMBOL(__kmalloc_node
);
3793 #ifdef CONFIG_HARDENED_USERCOPY
3795 * Rejects objects that are incorrectly sized.
3797 * Returns NULL if check passes, otherwise const char * to name of cache
3798 * to indicate an error.
3800 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3803 struct kmem_cache
*s
;
3804 unsigned long offset
;
3807 /* Find object and usable object size. */
3808 s
= page
->slab_cache
;
3809 object_size
= slab_ksize(s
);
3811 /* Reject impossible pointers. */
3812 if (ptr
< page_address(page
))
3815 /* Find offset within object. */
3816 offset
= (ptr
- page_address(page
)) % s
->size
;
3818 /* Adjust for redzone and reject if within the redzone. */
3819 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3820 if (offset
< s
->red_left_pad
)
3822 offset
-= s
->red_left_pad
;
3825 /* Allow address range falling entirely within object size. */
3826 if (offset
<= object_size
&& n
<= object_size
- offset
)
3831 #endif /* CONFIG_HARDENED_USERCOPY */
3833 static size_t __ksize(const void *object
)
3837 if (unlikely(object
== ZERO_SIZE_PTR
))
3840 page
= virt_to_head_page(object
);
3842 if (unlikely(!PageSlab(page
))) {
3843 WARN_ON(!PageCompound(page
));
3844 return PAGE_SIZE
<< compound_order(page
);
3847 return slab_ksize(page
->slab_cache
);
3850 size_t ksize(const void *object
)
3852 size_t size
= __ksize(object
);
3853 /* We assume that ksize callers could use whole allocated area,
3854 * so we need to unpoison this area.
3856 kasan_unpoison_shadow(object
, size
);
3859 EXPORT_SYMBOL(ksize
);
3861 void kfree(const void *x
)
3864 void *object
= (void *)x
;
3866 trace_kfree(_RET_IP_
, x
);
3868 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3871 page
= virt_to_head_page(x
);
3872 if (unlikely(!PageSlab(page
))) {
3873 BUG_ON(!PageCompound(page
));
3875 __free_pages(page
, compound_order(page
));
3878 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3880 EXPORT_SYMBOL(kfree
);
3882 #define SHRINK_PROMOTE_MAX 32
3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3886 * up most to the head of the partial lists. New allocations will then
3887 * fill those up and thus they can be removed from the partial lists.
3889 * The slabs with the least items are placed last. This results in them
3890 * being allocated from last increasing the chance that the last objects
3891 * are freed in them.
3893 int __kmem_cache_shrink(struct kmem_cache
*s
)
3897 struct kmem_cache_node
*n
;
3900 struct list_head discard
;
3901 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3902 unsigned long flags
;
3906 for_each_kmem_cache_node(s
, node
, n
) {
3907 INIT_LIST_HEAD(&discard
);
3908 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3909 INIT_LIST_HEAD(promote
+ i
);
3911 spin_lock_irqsave(&n
->list_lock
, flags
);
3914 * Build lists of slabs to discard or promote.
3916 * Note that concurrent frees may occur while we hold the
3917 * list_lock. page->inuse here is the upper limit.
3919 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3920 int free
= page
->objects
- page
->inuse
;
3922 /* Do not reread page->inuse */
3925 /* We do not keep full slabs on the list */
3928 if (free
== page
->objects
) {
3929 list_move(&page
->lru
, &discard
);
3931 } else if (free
<= SHRINK_PROMOTE_MAX
)
3932 list_move(&page
->lru
, promote
+ free
- 1);
3936 * Promote the slabs filled up most to the head of the
3939 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3940 list_splice(promote
+ i
, &n
->partial
);
3942 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3944 /* Release empty slabs */
3945 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3946 discard_slab(s
, page
);
3948 if (slabs_node(s
, node
))
3955 static int slab_mem_going_offline_callback(void *arg
)
3957 struct kmem_cache
*s
;
3959 mutex_lock(&slab_mutex
);
3960 list_for_each_entry(s
, &slab_caches
, list
)
3961 __kmem_cache_shrink(s
);
3962 mutex_unlock(&slab_mutex
);
3967 static void slab_mem_offline_callback(void *arg
)
3969 struct kmem_cache_node
*n
;
3970 struct kmem_cache
*s
;
3971 struct memory_notify
*marg
= arg
;
3974 offline_node
= marg
->status_change_nid_normal
;
3977 * If the node still has available memory. we need kmem_cache_node
3980 if (offline_node
< 0)
3983 mutex_lock(&slab_mutex
);
3984 list_for_each_entry(s
, &slab_caches
, list
) {
3985 n
= get_node(s
, offline_node
);
3988 * if n->nr_slabs > 0, slabs still exist on the node
3989 * that is going down. We were unable to free them,
3990 * and offline_pages() function shouldn't call this
3991 * callback. So, we must fail.
3993 BUG_ON(slabs_node(s
, offline_node
));
3995 s
->node
[offline_node
] = NULL
;
3996 kmem_cache_free(kmem_cache_node
, n
);
3999 mutex_unlock(&slab_mutex
);
4002 static int slab_mem_going_online_callback(void *arg
)
4004 struct kmem_cache_node
*n
;
4005 struct kmem_cache
*s
;
4006 struct memory_notify
*marg
= arg
;
4007 int nid
= marg
->status_change_nid_normal
;
4011 * If the node's memory is already available, then kmem_cache_node is
4012 * already created. Nothing to do.
4018 * We are bringing a node online. No memory is available yet. We must
4019 * allocate a kmem_cache_node structure in order to bring the node
4022 mutex_lock(&slab_mutex
);
4023 list_for_each_entry(s
, &slab_caches
, list
) {
4025 * XXX: kmem_cache_alloc_node will fallback to other nodes
4026 * since memory is not yet available from the node that
4029 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4034 init_kmem_cache_node(n
);
4038 mutex_unlock(&slab_mutex
);
4042 static int slab_memory_callback(struct notifier_block
*self
,
4043 unsigned long action
, void *arg
)
4048 case MEM_GOING_ONLINE
:
4049 ret
= slab_mem_going_online_callback(arg
);
4051 case MEM_GOING_OFFLINE
:
4052 ret
= slab_mem_going_offline_callback(arg
);
4055 case MEM_CANCEL_ONLINE
:
4056 slab_mem_offline_callback(arg
);
4059 case MEM_CANCEL_OFFLINE
:
4063 ret
= notifier_from_errno(ret
);
4069 static struct notifier_block slab_memory_callback_nb
= {
4070 .notifier_call
= slab_memory_callback
,
4071 .priority
= SLAB_CALLBACK_PRI
,
4074 /********************************************************************
4075 * Basic setup of slabs
4076 *******************************************************************/
4079 * Used for early kmem_cache structures that were allocated using
4080 * the page allocator. Allocate them properly then fix up the pointers
4081 * that may be pointing to the wrong kmem_cache structure.
4084 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4087 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4088 struct kmem_cache_node
*n
;
4090 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4093 * This runs very early, and only the boot processor is supposed to be
4094 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4097 __flush_cpu_slab(s
, smp_processor_id());
4098 for_each_kmem_cache_node(s
, node
, n
) {
4101 list_for_each_entry(p
, &n
->partial
, lru
)
4104 #ifdef CONFIG_SLUB_DEBUG
4105 list_for_each_entry(p
, &n
->full
, lru
)
4109 slab_init_memcg_params(s
);
4110 list_add(&s
->list
, &slab_caches
);
4114 void __init
kmem_cache_init(void)
4116 static __initdata
struct kmem_cache boot_kmem_cache
,
4117 boot_kmem_cache_node
;
4119 if (debug_guardpage_minorder())
4122 kmem_cache_node
= &boot_kmem_cache_node
;
4123 kmem_cache
= &boot_kmem_cache
;
4125 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4126 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4128 register_hotmemory_notifier(&slab_memory_callback_nb
);
4130 /* Able to allocate the per node structures */
4131 slab_state
= PARTIAL
;
4133 create_boot_cache(kmem_cache
, "kmem_cache",
4134 offsetof(struct kmem_cache
, node
) +
4135 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4136 SLAB_HWCACHE_ALIGN
);
4138 kmem_cache
= bootstrap(&boot_kmem_cache
);
4141 * Allocate kmem_cache_node properly from the kmem_cache slab.
4142 * kmem_cache_node is separately allocated so no need to
4143 * update any list pointers.
4145 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4147 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4148 setup_kmalloc_cache_index_table();
4149 create_kmalloc_caches(0);
4151 /* Setup random freelists for each cache */
4152 init_freelist_randomization();
4154 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4157 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4159 slub_min_order
, slub_max_order
, slub_min_objects
,
4160 nr_cpu_ids
, nr_node_ids
);
4163 void __init
kmem_cache_init_late(void)
4168 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4169 unsigned long flags
, void (*ctor
)(void *))
4171 struct kmem_cache
*s
, *c
;
4173 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4178 * Adjust the object sizes so that we clear
4179 * the complete object on kzalloc.
4181 s
->object_size
= max(s
->object_size
, (int)size
);
4182 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4184 for_each_memcg_cache(c
, s
) {
4185 c
->object_size
= s
->object_size
;
4186 c
->inuse
= max_t(int, c
->inuse
,
4187 ALIGN(size
, sizeof(void *)));
4190 if (sysfs_slab_alias(s
, name
)) {
4199 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4203 err
= kmem_cache_open(s
, flags
);
4207 /* Mutex is not taken during early boot */
4208 if (slab_state
<= UP
)
4211 memcg_propagate_slab_attrs(s
);
4212 err
= sysfs_slab_add(s
);
4214 __kmem_cache_release(s
);
4219 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4221 struct kmem_cache
*s
;
4224 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4225 return kmalloc_large(size
, gfpflags
);
4227 s
= kmalloc_slab(size
, gfpflags
);
4229 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4232 ret
= slab_alloc(s
, gfpflags
, caller
);
4234 /* Honor the call site pointer we received. */
4235 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4241 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4242 int node
, unsigned long caller
)
4244 struct kmem_cache
*s
;
4247 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4248 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4250 trace_kmalloc_node(caller
, ret
,
4251 size
, PAGE_SIZE
<< get_order(size
),
4257 s
= kmalloc_slab(size
, gfpflags
);
4259 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4262 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4264 /* Honor the call site pointer we received. */
4265 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4272 static int count_inuse(struct page
*page
)
4277 static int count_total(struct page
*page
)
4279 return page
->objects
;
4283 #ifdef CONFIG_SLUB_DEBUG
4284 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4288 void *addr
= page_address(page
);
4290 if (!check_slab(s
, page
) ||
4291 !on_freelist(s
, page
, NULL
))
4294 /* Now we know that a valid freelist exists */
4295 bitmap_zero(map
, page
->objects
);
4297 get_map(s
, page
, map
);
4298 for_each_object(p
, s
, addr
, page
->objects
) {
4299 if (test_bit(slab_index(p
, s
, addr
), map
))
4300 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4304 for_each_object(p
, s
, addr
, page
->objects
)
4305 if (!test_bit(slab_index(p
, s
, addr
), map
))
4306 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4311 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4315 validate_slab(s
, page
, map
);
4319 static int validate_slab_node(struct kmem_cache
*s
,
4320 struct kmem_cache_node
*n
, unsigned long *map
)
4322 unsigned long count
= 0;
4324 unsigned long flags
;
4326 spin_lock_irqsave(&n
->list_lock
, flags
);
4328 list_for_each_entry(page
, &n
->partial
, lru
) {
4329 validate_slab_slab(s
, page
, map
);
4332 if (count
!= n
->nr_partial
)
4333 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4334 s
->name
, count
, n
->nr_partial
);
4336 if (!(s
->flags
& SLAB_STORE_USER
))
4339 list_for_each_entry(page
, &n
->full
, lru
) {
4340 validate_slab_slab(s
, page
, map
);
4343 if (count
!= atomic_long_read(&n
->nr_slabs
))
4344 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4345 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4348 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4352 static long validate_slab_cache(struct kmem_cache
*s
)
4355 unsigned long count
= 0;
4356 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4357 sizeof(unsigned long), GFP_KERNEL
);
4358 struct kmem_cache_node
*n
;
4364 for_each_kmem_cache_node(s
, node
, n
)
4365 count
+= validate_slab_node(s
, n
, map
);
4370 * Generate lists of code addresses where slabcache objects are allocated
4375 unsigned long count
;
4382 DECLARE_BITMAP(cpus
, NR_CPUS
);
4388 unsigned long count
;
4389 struct location
*loc
;
4392 static void free_loc_track(struct loc_track
*t
)
4395 free_pages((unsigned long)t
->loc
,
4396 get_order(sizeof(struct location
) * t
->max
));
4399 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4404 order
= get_order(sizeof(struct location
) * max
);
4406 l
= (void *)__get_free_pages(flags
, order
);
4411 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4419 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4420 const struct track
*track
)
4422 long start
, end
, pos
;
4424 unsigned long caddr
;
4425 unsigned long age
= jiffies
- track
->when
;
4431 pos
= start
+ (end
- start
+ 1) / 2;
4434 * There is nothing at "end". If we end up there
4435 * we need to add something to before end.
4440 caddr
= t
->loc
[pos
].addr
;
4441 if (track
->addr
== caddr
) {
4447 if (age
< l
->min_time
)
4449 if (age
> l
->max_time
)
4452 if (track
->pid
< l
->min_pid
)
4453 l
->min_pid
= track
->pid
;
4454 if (track
->pid
> l
->max_pid
)
4455 l
->max_pid
= track
->pid
;
4457 cpumask_set_cpu(track
->cpu
,
4458 to_cpumask(l
->cpus
));
4460 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4464 if (track
->addr
< caddr
)
4471 * Not found. Insert new tracking element.
4473 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4479 (t
->count
- pos
) * sizeof(struct location
));
4482 l
->addr
= track
->addr
;
4486 l
->min_pid
= track
->pid
;
4487 l
->max_pid
= track
->pid
;
4488 cpumask_clear(to_cpumask(l
->cpus
));
4489 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4490 nodes_clear(l
->nodes
);
4491 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4495 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4496 struct page
*page
, enum track_item alloc
,
4499 void *addr
= page_address(page
);
4502 bitmap_zero(map
, page
->objects
);
4503 get_map(s
, page
, map
);
4505 for_each_object(p
, s
, addr
, page
->objects
)
4506 if (!test_bit(slab_index(p
, s
, addr
), map
))
4507 add_location(t
, s
, get_track(s
, p
, alloc
));
4510 static int list_locations(struct kmem_cache
*s
, char *buf
,
4511 enum track_item alloc
)
4515 struct loc_track t
= { 0, 0, NULL
};
4517 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4518 sizeof(unsigned long), GFP_KERNEL
);
4519 struct kmem_cache_node
*n
;
4521 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4524 return sprintf(buf
, "Out of memory\n");
4526 /* Push back cpu slabs */
4529 for_each_kmem_cache_node(s
, node
, n
) {
4530 unsigned long flags
;
4533 if (!atomic_long_read(&n
->nr_slabs
))
4536 spin_lock_irqsave(&n
->list_lock
, flags
);
4537 list_for_each_entry(page
, &n
->partial
, lru
)
4538 process_slab(&t
, s
, page
, alloc
, map
);
4539 list_for_each_entry(page
, &n
->full
, lru
)
4540 process_slab(&t
, s
, page
, alloc
, map
);
4541 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4544 for (i
= 0; i
< t
.count
; i
++) {
4545 struct location
*l
= &t
.loc
[i
];
4547 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4549 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4552 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4554 len
+= sprintf(buf
+ len
, "<not-available>");
4556 if (l
->sum_time
!= l
->min_time
) {
4557 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4559 (long)div_u64(l
->sum_time
, l
->count
),
4562 len
+= sprintf(buf
+ len
, " age=%ld",
4565 if (l
->min_pid
!= l
->max_pid
)
4566 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4567 l
->min_pid
, l
->max_pid
);
4569 len
+= sprintf(buf
+ len
, " pid=%ld",
4572 if (num_online_cpus() > 1 &&
4573 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4574 len
< PAGE_SIZE
- 60)
4575 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4577 cpumask_pr_args(to_cpumask(l
->cpus
)));
4579 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4580 len
< PAGE_SIZE
- 60)
4581 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4583 nodemask_pr_args(&l
->nodes
));
4585 len
+= sprintf(buf
+ len
, "\n");
4591 len
+= sprintf(buf
, "No data\n");
4596 #ifdef SLUB_RESILIENCY_TEST
4597 static void __init
resiliency_test(void)
4601 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4603 pr_err("SLUB resiliency testing\n");
4604 pr_err("-----------------------\n");
4605 pr_err("A. Corruption after allocation\n");
4607 p
= kzalloc(16, GFP_KERNEL
);
4609 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4612 validate_slab_cache(kmalloc_caches
[4]);
4614 /* Hmmm... The next two are dangerous */
4615 p
= kzalloc(32, GFP_KERNEL
);
4616 p
[32 + sizeof(void *)] = 0x34;
4617 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4619 pr_err("If allocated object is overwritten then not detectable\n\n");
4621 validate_slab_cache(kmalloc_caches
[5]);
4622 p
= kzalloc(64, GFP_KERNEL
);
4623 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4625 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
4628 validate_slab_cache(kmalloc_caches
[6]);
4630 pr_err("\nB. Corruption after free\n");
4631 p
= kzalloc(128, GFP_KERNEL
);
4634 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4635 validate_slab_cache(kmalloc_caches
[7]);
4637 p
= kzalloc(256, GFP_KERNEL
);
4640 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4641 validate_slab_cache(kmalloc_caches
[8]);
4643 p
= kzalloc(512, GFP_KERNEL
);
4646 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4647 validate_slab_cache(kmalloc_caches
[9]);
4651 static void resiliency_test(void) {};
4656 enum slab_stat_type
{
4657 SL_ALL
, /* All slabs */
4658 SL_PARTIAL
, /* Only partially allocated slabs */
4659 SL_CPU
, /* Only slabs used for cpu caches */
4660 SL_OBJECTS
, /* Determine allocated objects not slabs */
4661 SL_TOTAL
/* Determine object capacity not slabs */
4664 #define SO_ALL (1 << SL_ALL)
4665 #define SO_PARTIAL (1 << SL_PARTIAL)
4666 #define SO_CPU (1 << SL_CPU)
4667 #define SO_OBJECTS (1 << SL_OBJECTS)
4668 #define SO_TOTAL (1 << SL_TOTAL)
4670 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4671 char *buf
, unsigned long flags
)
4673 unsigned long total
= 0;
4676 unsigned long *nodes
;
4678 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4682 if (flags
& SO_CPU
) {
4685 for_each_possible_cpu(cpu
) {
4686 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4691 page
= READ_ONCE(c
->page
);
4695 node
= page_to_nid(page
);
4696 if (flags
& SO_TOTAL
)
4698 else if (flags
& SO_OBJECTS
)
4706 page
= READ_ONCE(c
->partial
);
4708 node
= page_to_nid(page
);
4709 if (flags
& SO_TOTAL
)
4711 else if (flags
& SO_OBJECTS
)
4722 #ifdef CONFIG_SLUB_DEBUG
4723 if (flags
& SO_ALL
) {
4724 struct kmem_cache_node
*n
;
4726 for_each_kmem_cache_node(s
, node
, n
) {
4728 if (flags
& SO_TOTAL
)
4729 x
= atomic_long_read(&n
->total_objects
);
4730 else if (flags
& SO_OBJECTS
)
4731 x
= atomic_long_read(&n
->total_objects
) -
4732 count_partial(n
, count_free
);
4734 x
= atomic_long_read(&n
->nr_slabs
);
4741 if (flags
& SO_PARTIAL
) {
4742 struct kmem_cache_node
*n
;
4744 for_each_kmem_cache_node(s
, node
, n
) {
4745 if (flags
& SO_TOTAL
)
4746 x
= count_partial(n
, count_total
);
4747 else if (flags
& SO_OBJECTS
)
4748 x
= count_partial(n
, count_inuse
);
4755 x
= sprintf(buf
, "%lu", total
);
4757 for (node
= 0; node
< nr_node_ids
; node
++)
4759 x
+= sprintf(buf
+ x
, " N%d=%lu",
4764 return x
+ sprintf(buf
+ x
, "\n");
4767 #ifdef CONFIG_SLUB_DEBUG
4768 static int any_slab_objects(struct kmem_cache
*s
)
4771 struct kmem_cache_node
*n
;
4773 for_each_kmem_cache_node(s
, node
, n
)
4774 if (atomic_long_read(&n
->total_objects
))
4781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4782 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4784 struct slab_attribute
{
4785 struct attribute attr
;
4786 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4787 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4790 #define SLAB_ATTR_RO(_name) \
4791 static struct slab_attribute _name##_attr = \
4792 __ATTR(_name, 0400, _name##_show, NULL)
4794 #define SLAB_ATTR(_name) \
4795 static struct slab_attribute _name##_attr = \
4796 __ATTR(_name, 0600, _name##_show, _name##_store)
4798 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4800 return sprintf(buf
, "%d\n", s
->size
);
4802 SLAB_ATTR_RO(slab_size
);
4804 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4806 return sprintf(buf
, "%d\n", s
->align
);
4808 SLAB_ATTR_RO(align
);
4810 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4812 return sprintf(buf
, "%d\n", s
->object_size
);
4814 SLAB_ATTR_RO(object_size
);
4816 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4818 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4820 SLAB_ATTR_RO(objs_per_slab
);
4822 static ssize_t
order_store(struct kmem_cache
*s
,
4823 const char *buf
, size_t length
)
4825 unsigned long order
;
4828 err
= kstrtoul(buf
, 10, &order
);
4832 if (order
> slub_max_order
|| order
< slub_min_order
)
4835 calculate_sizes(s
, order
);
4839 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4841 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4845 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4847 return sprintf(buf
, "%lu\n", s
->min_partial
);
4850 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4856 err
= kstrtoul(buf
, 10, &min
);
4860 set_min_partial(s
, min
);
4863 SLAB_ATTR(min_partial
);
4865 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4867 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4870 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4873 unsigned int objects
;
4876 err
= kstrtouint(buf
, 10, &objects
);
4879 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4882 s
->cpu_partial
= objects
;
4886 SLAB_ATTR(cpu_partial
);
4888 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4892 return sprintf(buf
, "%pS\n", s
->ctor
);
4896 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4898 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4900 SLAB_ATTR_RO(aliases
);
4902 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4904 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4906 SLAB_ATTR_RO(partial
);
4908 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4910 return show_slab_objects(s
, buf
, SO_CPU
);
4912 SLAB_ATTR_RO(cpu_slabs
);
4914 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4916 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4918 SLAB_ATTR_RO(objects
);
4920 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4922 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4924 SLAB_ATTR_RO(objects_partial
);
4926 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4933 for_each_online_cpu(cpu
) {
4934 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4937 pages
+= page
->pages
;
4938 objects
+= page
->pobjects
;
4942 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4945 for_each_online_cpu(cpu
) {
4946 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4948 if (page
&& len
< PAGE_SIZE
- 20)
4949 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4950 page
->pobjects
, page
->pages
);
4953 return len
+ sprintf(buf
+ len
, "\n");
4955 SLAB_ATTR_RO(slabs_cpu_partial
);
4957 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4959 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4962 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4963 const char *buf
, size_t length
)
4965 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4967 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4970 SLAB_ATTR(reclaim_account
);
4972 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4974 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4976 SLAB_ATTR_RO(hwcache_align
);
4978 #ifdef CONFIG_ZONE_DMA
4979 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4981 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4983 SLAB_ATTR_RO(cache_dma
);
4986 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4988 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4990 SLAB_ATTR_RO(destroy_by_rcu
);
4992 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4994 return sprintf(buf
, "%d\n", s
->reserved
);
4996 SLAB_ATTR_RO(reserved
);
4998 #ifdef CONFIG_SLUB_DEBUG
4999 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5001 return show_slab_objects(s
, buf
, SO_ALL
);
5003 SLAB_ATTR_RO(slabs
);
5005 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5007 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5009 SLAB_ATTR_RO(total_objects
);
5011 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5013 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5016 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5017 const char *buf
, size_t length
)
5019 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5020 if (buf
[0] == '1') {
5021 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5022 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5026 SLAB_ATTR(sanity_checks
);
5028 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5030 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5033 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5037 * Tracing a merged cache is going to give confusing results
5038 * as well as cause other issues like converting a mergeable
5039 * cache into an umergeable one.
5041 if (s
->refcount
> 1)
5044 s
->flags
&= ~SLAB_TRACE
;
5045 if (buf
[0] == '1') {
5046 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5047 s
->flags
|= SLAB_TRACE
;
5053 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5055 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5058 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5059 const char *buf
, size_t length
)
5061 if (any_slab_objects(s
))
5064 s
->flags
&= ~SLAB_RED_ZONE
;
5065 if (buf
[0] == '1') {
5066 s
->flags
|= SLAB_RED_ZONE
;
5068 calculate_sizes(s
, -1);
5071 SLAB_ATTR(red_zone
);
5073 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5075 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5078 static ssize_t
poison_store(struct kmem_cache
*s
,
5079 const char *buf
, size_t length
)
5081 if (any_slab_objects(s
))
5084 s
->flags
&= ~SLAB_POISON
;
5085 if (buf
[0] == '1') {
5086 s
->flags
|= SLAB_POISON
;
5088 calculate_sizes(s
, -1);
5093 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5095 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5098 static ssize_t
store_user_store(struct kmem_cache
*s
,
5099 const char *buf
, size_t length
)
5101 if (any_slab_objects(s
))
5104 s
->flags
&= ~SLAB_STORE_USER
;
5105 if (buf
[0] == '1') {
5106 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5107 s
->flags
|= SLAB_STORE_USER
;
5109 calculate_sizes(s
, -1);
5112 SLAB_ATTR(store_user
);
5114 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5119 static ssize_t
validate_store(struct kmem_cache
*s
,
5120 const char *buf
, size_t length
)
5124 if (buf
[0] == '1') {
5125 ret
= validate_slab_cache(s
);
5131 SLAB_ATTR(validate
);
5133 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5135 if (!(s
->flags
& SLAB_STORE_USER
))
5137 return list_locations(s
, buf
, TRACK_ALLOC
);
5139 SLAB_ATTR_RO(alloc_calls
);
5141 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5143 if (!(s
->flags
& SLAB_STORE_USER
))
5145 return list_locations(s
, buf
, TRACK_FREE
);
5147 SLAB_ATTR_RO(free_calls
);
5148 #endif /* CONFIG_SLUB_DEBUG */
5150 #ifdef CONFIG_FAILSLAB
5151 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5153 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5156 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5159 if (s
->refcount
> 1)
5162 s
->flags
&= ~SLAB_FAILSLAB
;
5164 s
->flags
|= SLAB_FAILSLAB
;
5167 SLAB_ATTR(failslab
);
5170 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5175 static ssize_t
shrink_store(struct kmem_cache
*s
,
5176 const char *buf
, size_t length
)
5179 kmem_cache_shrink(s
);
5187 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5189 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5192 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5193 const char *buf
, size_t length
)
5195 unsigned long ratio
;
5198 err
= kstrtoul(buf
, 10, &ratio
);
5203 s
->remote_node_defrag_ratio
= ratio
* 10;
5207 SLAB_ATTR(remote_node_defrag_ratio
);
5210 #ifdef CONFIG_SLUB_STATS
5211 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5213 unsigned long sum
= 0;
5216 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5221 for_each_online_cpu(cpu
) {
5222 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5228 len
= sprintf(buf
, "%lu", sum
);
5231 for_each_online_cpu(cpu
) {
5232 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5233 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5237 return len
+ sprintf(buf
+ len
, "\n");
5240 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5244 for_each_online_cpu(cpu
)
5245 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5248 #define STAT_ATTR(si, text) \
5249 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5251 return show_stat(s, buf, si); \
5253 static ssize_t text##_store(struct kmem_cache *s, \
5254 const char *buf, size_t length) \
5256 if (buf[0] != '0') \
5258 clear_stat(s, si); \
5263 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5264 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5265 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5266 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5267 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5268 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5269 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5270 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5271 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5272 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5273 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5274 STAT_ATTR(FREE_SLAB
, free_slab
);
5275 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5276 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5277 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5278 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5279 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5280 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5281 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5282 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5283 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5284 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5285 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5286 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5287 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5288 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5291 static struct attribute
*slab_attrs
[] = {
5292 &slab_size_attr
.attr
,
5293 &object_size_attr
.attr
,
5294 &objs_per_slab_attr
.attr
,
5296 &min_partial_attr
.attr
,
5297 &cpu_partial_attr
.attr
,
5299 &objects_partial_attr
.attr
,
5301 &cpu_slabs_attr
.attr
,
5305 &hwcache_align_attr
.attr
,
5306 &reclaim_account_attr
.attr
,
5307 &destroy_by_rcu_attr
.attr
,
5309 &reserved_attr
.attr
,
5310 &slabs_cpu_partial_attr
.attr
,
5311 #ifdef CONFIG_SLUB_DEBUG
5312 &total_objects_attr
.attr
,
5314 &sanity_checks_attr
.attr
,
5316 &red_zone_attr
.attr
,
5318 &store_user_attr
.attr
,
5319 &validate_attr
.attr
,
5320 &alloc_calls_attr
.attr
,
5321 &free_calls_attr
.attr
,
5323 #ifdef CONFIG_ZONE_DMA
5324 &cache_dma_attr
.attr
,
5327 &remote_node_defrag_ratio_attr
.attr
,
5329 #ifdef CONFIG_SLUB_STATS
5330 &alloc_fastpath_attr
.attr
,
5331 &alloc_slowpath_attr
.attr
,
5332 &free_fastpath_attr
.attr
,
5333 &free_slowpath_attr
.attr
,
5334 &free_frozen_attr
.attr
,
5335 &free_add_partial_attr
.attr
,
5336 &free_remove_partial_attr
.attr
,
5337 &alloc_from_partial_attr
.attr
,
5338 &alloc_slab_attr
.attr
,
5339 &alloc_refill_attr
.attr
,
5340 &alloc_node_mismatch_attr
.attr
,
5341 &free_slab_attr
.attr
,
5342 &cpuslab_flush_attr
.attr
,
5343 &deactivate_full_attr
.attr
,
5344 &deactivate_empty_attr
.attr
,
5345 &deactivate_to_head_attr
.attr
,
5346 &deactivate_to_tail_attr
.attr
,
5347 &deactivate_remote_frees_attr
.attr
,
5348 &deactivate_bypass_attr
.attr
,
5349 &order_fallback_attr
.attr
,
5350 &cmpxchg_double_fail_attr
.attr
,
5351 &cmpxchg_double_cpu_fail_attr
.attr
,
5352 &cpu_partial_alloc_attr
.attr
,
5353 &cpu_partial_free_attr
.attr
,
5354 &cpu_partial_node_attr
.attr
,
5355 &cpu_partial_drain_attr
.attr
,
5357 #ifdef CONFIG_FAILSLAB
5358 &failslab_attr
.attr
,
5364 static struct attribute_group slab_attr_group
= {
5365 .attrs
= slab_attrs
,
5368 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5369 struct attribute
*attr
,
5372 struct slab_attribute
*attribute
;
5373 struct kmem_cache
*s
;
5376 attribute
= to_slab_attr(attr
);
5379 if (!attribute
->show
)
5382 err
= attribute
->show(s
, buf
);
5387 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5388 struct attribute
*attr
,
5389 const char *buf
, size_t len
)
5391 struct slab_attribute
*attribute
;
5392 struct kmem_cache
*s
;
5395 attribute
= to_slab_attr(attr
);
5398 if (!attribute
->store
)
5401 err
= attribute
->store(s
, buf
, len
);
5403 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5404 struct kmem_cache
*c
;
5406 mutex_lock(&slab_mutex
);
5407 if (s
->max_attr_size
< len
)
5408 s
->max_attr_size
= len
;
5411 * This is a best effort propagation, so this function's return
5412 * value will be determined by the parent cache only. This is
5413 * basically because not all attributes will have a well
5414 * defined semantics for rollbacks - most of the actions will
5415 * have permanent effects.
5417 * Returning the error value of any of the children that fail
5418 * is not 100 % defined, in the sense that users seeing the
5419 * error code won't be able to know anything about the state of
5422 * Only returning the error code for the parent cache at least
5423 * has well defined semantics. The cache being written to
5424 * directly either failed or succeeded, in which case we loop
5425 * through the descendants with best-effort propagation.
5427 for_each_memcg_cache(c
, s
)
5428 attribute
->store(c
, buf
, len
);
5429 mutex_unlock(&slab_mutex
);
5435 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5439 char *buffer
= NULL
;
5440 struct kmem_cache
*root_cache
;
5442 if (is_root_cache(s
))
5445 root_cache
= s
->memcg_params
.root_cache
;
5448 * This mean this cache had no attribute written. Therefore, no point
5449 * in copying default values around
5451 if (!root_cache
->max_attr_size
)
5454 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5457 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5460 if (!attr
|| !attr
->store
|| !attr
->show
)
5464 * It is really bad that we have to allocate here, so we will
5465 * do it only as a fallback. If we actually allocate, though,
5466 * we can just use the allocated buffer until the end.
5468 * Most of the slub attributes will tend to be very small in
5469 * size, but sysfs allows buffers up to a page, so they can
5470 * theoretically happen.
5474 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5477 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5478 if (WARN_ON(!buffer
))
5483 len
= attr
->show(root_cache
, buf
);
5485 attr
->store(s
, buf
, len
);
5489 free_page((unsigned long)buffer
);
5493 static void kmem_cache_release(struct kobject
*k
)
5495 slab_kmem_cache_release(to_slab(k
));
5498 static const struct sysfs_ops slab_sysfs_ops
= {
5499 .show
= slab_attr_show
,
5500 .store
= slab_attr_store
,
5503 static struct kobj_type slab_ktype
= {
5504 .sysfs_ops
= &slab_sysfs_ops
,
5505 .release
= kmem_cache_release
,
5508 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5510 struct kobj_type
*ktype
= get_ktype(kobj
);
5512 if (ktype
== &slab_ktype
)
5517 static const struct kset_uevent_ops slab_uevent_ops
= {
5518 .filter
= uevent_filter
,
5521 static struct kset
*slab_kset
;
5523 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5526 if (!is_root_cache(s
))
5527 return s
->memcg_params
.root_cache
->memcg_kset
;
5532 #define ID_STR_LENGTH 64
5534 /* Create a unique string id for a slab cache:
5536 * Format :[flags-]size
5538 static char *create_unique_id(struct kmem_cache
*s
)
5540 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5547 * First flags affecting slabcache operations. We will only
5548 * get here for aliasable slabs so we do not need to support
5549 * too many flags. The flags here must cover all flags that
5550 * are matched during merging to guarantee that the id is
5553 if (s
->flags
& SLAB_CACHE_DMA
)
5555 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5557 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5559 if (!(s
->flags
& SLAB_NOTRACK
))
5561 if (s
->flags
& SLAB_ACCOUNT
)
5565 p
+= sprintf(p
, "%07d", s
->size
);
5567 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5571 static int sysfs_slab_add(struct kmem_cache
*s
)
5575 int unmergeable
= slab_unmergeable(s
);
5579 * Slabcache can never be merged so we can use the name proper.
5580 * This is typically the case for debug situations. In that
5581 * case we can catch duplicate names easily.
5583 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5587 * Create a unique name for the slab as a target
5590 name
= create_unique_id(s
);
5593 s
->kobj
.kset
= cache_kset(s
);
5594 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5598 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5603 if (is_root_cache(s
)) {
5604 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5605 if (!s
->memcg_kset
) {
5612 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5614 /* Setup first alias */
5615 sysfs_slab_alias(s
, s
->name
);
5622 kobject_del(&s
->kobj
);
5626 void sysfs_slab_remove(struct kmem_cache
*s
)
5628 if (slab_state
< FULL
)
5630 * Sysfs has not been setup yet so no need to remove the
5636 kset_unregister(s
->memcg_kset
);
5638 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5639 kobject_del(&s
->kobj
);
5640 kobject_put(&s
->kobj
);
5644 * Need to buffer aliases during bootup until sysfs becomes
5645 * available lest we lose that information.
5647 struct saved_alias
{
5648 struct kmem_cache
*s
;
5650 struct saved_alias
*next
;
5653 static struct saved_alias
*alias_list
;
5655 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5657 struct saved_alias
*al
;
5659 if (slab_state
== FULL
) {
5661 * If we have a leftover link then remove it.
5663 sysfs_remove_link(&slab_kset
->kobj
, name
);
5664 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5667 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5673 al
->next
= alias_list
;
5678 static int __init
slab_sysfs_init(void)
5680 struct kmem_cache
*s
;
5683 mutex_lock(&slab_mutex
);
5685 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5687 mutex_unlock(&slab_mutex
);
5688 pr_err("Cannot register slab subsystem.\n");
5694 list_for_each_entry(s
, &slab_caches
, list
) {
5695 err
= sysfs_slab_add(s
);
5697 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5701 while (alias_list
) {
5702 struct saved_alias
*al
= alias_list
;
5704 alias_list
= alias_list
->next
;
5705 err
= sysfs_slab_alias(al
->s
, al
->name
);
5707 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5712 mutex_unlock(&slab_mutex
);
5717 __initcall(slab_sysfs_init
);
5718 #endif /* CONFIG_SYSFS */
5721 * The /proc/slabinfo ABI
5723 #ifdef CONFIG_SLABINFO
5724 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5726 unsigned long nr_slabs
= 0;
5727 unsigned long nr_objs
= 0;
5728 unsigned long nr_free
= 0;
5730 struct kmem_cache_node
*n
;
5732 for_each_kmem_cache_node(s
, node
, n
) {
5733 nr_slabs
+= node_nr_slabs(n
);
5734 nr_objs
+= node_nr_objs(n
);
5735 nr_free
+= count_partial(n
, count_free
);
5738 sinfo
->active_objs
= nr_objs
- nr_free
;
5739 sinfo
->num_objs
= nr_objs
;
5740 sinfo
->active_slabs
= nr_slabs
;
5741 sinfo
->num_slabs
= nr_slabs
;
5742 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5743 sinfo
->cache_order
= oo_order(s
->oo
);
5746 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5750 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5751 size_t count
, loff_t
*ppos
)
5755 #endif /* CONFIG_SLABINFO */