2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/uaccess.h>
42 #include <linux/proc_fs.h>
44 #include <linux/of_platform.h>
46 #include <asm/dcr-regs.h>
49 enum ppc_adma_init_code
{
54 PPC_ADMA_INIT_COHERENT
,
55 PPC_ADMA_INIT_CHANNEL
,
58 PPC_ADMA_INIT_REGISTER
61 static char *ppc_adma_errors
[] = {
62 [PPC_ADMA_INIT_OK
] = "ok",
63 [PPC_ADMA_INIT_MEMRES
] = "failed to get memory resource",
64 [PPC_ADMA_INIT_MEMREG
] = "failed to request memory region",
65 [PPC_ADMA_INIT_ALLOC
] = "failed to allocate memory for adev "
67 [PPC_ADMA_INIT_COHERENT
] = "failed to allocate coherent memory for "
68 "hardware descriptors",
69 [PPC_ADMA_INIT_CHANNEL
] = "failed to allocate memory for channel",
70 [PPC_ADMA_INIT_IRQ1
] = "failed to request first irq",
71 [PPC_ADMA_INIT_IRQ2
] = "failed to request second irq",
72 [PPC_ADMA_INIT_REGISTER
] = "failed to register dma async device",
75 static enum ppc_adma_init_code
76 ppc440spe_adma_devices
[PPC440SPE_ADMA_ENGINES_NUM
];
78 struct ppc_dma_chan_ref
{
79 struct dma_chan
*chan
;
80 struct list_head node
;
83 /* The list of channels exported by ppc440spe ADMA */
85 ppc440spe_adma_chan_list
= LIST_HEAD_INIT(ppc440spe_adma_chan_list
);
87 /* This flag is set when want to refetch the xor chain in the interrupt
90 static u32 do_xor_refetch
;
92 /* Pointer to DMA0, DMA1 CP/CS FIFO */
93 static void *ppc440spe_dma_fifo_buf
;
95 /* Pointers to last submitted to DMA0, DMA1 CDBs */
96 static struct ppc440spe_adma_desc_slot
*chan_last_sub
[3];
97 static struct ppc440spe_adma_desc_slot
*chan_first_cdb
[3];
99 /* Pointer to last linked and submitted xor CB */
100 static struct ppc440spe_adma_desc_slot
*xor_last_linked
;
101 static struct ppc440spe_adma_desc_slot
*xor_last_submit
;
103 /* This array is used in data-check operations for storing a pattern */
104 static char ppc440spe_qword
[16];
106 static atomic_t ppc440spe_adma_err_irq_ref
;
107 static dcr_host_t ppc440spe_mq_dcr_host
;
108 static unsigned int ppc440spe_mq_dcr_len
;
110 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
111 * the block size in transactions, then we do not allow to activate more than
112 * only one RXOR transactions simultaneously. So use this var to store
113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
114 * set) or not (PPC440SPE_RXOR_RUN is clear).
116 static unsigned long ppc440spe_rxor_state
;
118 /* These are used in enable & check routines
120 static u32 ppc440spe_r6_enabled
;
121 static struct ppc440spe_adma_chan
*ppc440spe_r6_tchan
;
122 static struct completion ppc440spe_r6_test_comp
;
124 static int ppc440spe_adma_dma2rxor_prep_src(
125 struct ppc440spe_adma_desc_slot
*desc
,
126 struct ppc440spe_rxor
*cursor
, int index
,
127 int src_cnt
, u32 addr
);
128 static void ppc440spe_adma_dma2rxor_set_src(
129 struct ppc440spe_adma_desc_slot
*desc
,
130 int index
, dma_addr_t addr
);
131 static void ppc440spe_adma_dma2rxor_set_mult(
132 struct ppc440spe_adma_desc_slot
*desc
,
136 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
138 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 static void print_cb(struct ppc440spe_adma_chan
*chan
, void *block
)
147 switch (chan
->device
->id
) {
152 pr_debug("CDB at %p [%d]:\n"
153 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
154 "\t sg1u 0x%08x sg1l 0x%08x\n"
155 "\t sg2u 0x%08x sg2l 0x%08x\n"
156 "\t sg3u 0x%08x sg3l 0x%08x\n",
157 cdb
, chan
->device
->id
,
158 cdb
->attr
, cdb
->opc
, le32_to_cpu(cdb
->cnt
),
159 le32_to_cpu(cdb
->sg1u
), le32_to_cpu(cdb
->sg1l
),
160 le32_to_cpu(cdb
->sg2u
), le32_to_cpu(cdb
->sg2l
),
161 le32_to_cpu(cdb
->sg3u
), le32_to_cpu(cdb
->sg3l
)
167 pr_debug("CB at %p [%d]:\n"
168 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
169 "\t cbtah 0x%08x cbtal 0x%08x\n"
170 "\t cblah 0x%08x cblal 0x%08x\n",
171 cb
, chan
->device
->id
,
172 cb
->cbc
, cb
->cbbc
, cb
->cbs
,
173 cb
->cbtah
, cb
->cbtal
,
174 cb
->cblah
, cb
->cblal
);
175 for (i
= 0; i
< 16; i
++) {
176 if (i
&& !cb
->ops
[i
].h
&& !cb
->ops
[i
].l
)
178 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
179 i
, cb
->ops
[i
].h
, cb
->ops
[i
].l
);
185 static void print_cb_list(struct ppc440spe_adma_chan
*chan
,
186 struct ppc440spe_adma_desc_slot
*iter
)
188 for (; iter
; iter
= iter
->hw_next
)
189 print_cb(chan
, iter
->hw_desc
);
192 static void prep_dma_xor_dbg(int id
, dma_addr_t dst
, dma_addr_t
*src
,
193 unsigned int src_cnt
)
197 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
198 for (i
= 0; i
< src_cnt
; i
++)
199 pr_debug("\t0x%016llx ", src
[i
]);
200 pr_debug("dst:\n\t0x%016llx\n", dst
);
203 static void prep_dma_pq_dbg(int id
, dma_addr_t
*dst
, dma_addr_t
*src
,
204 unsigned int src_cnt
)
208 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
209 for (i
= 0; i
< src_cnt
; i
++)
210 pr_debug("\t0x%016llx ", src
[i
]);
212 for (i
= 0; i
< 2; i
++)
213 pr_debug("\t0x%016llx ", dst
[i
]);
216 static void prep_dma_pqzero_sum_dbg(int id
, dma_addr_t
*src
,
217 unsigned int src_cnt
,
218 const unsigned char *scf
)
222 pr_debug("\n%s(%d):\nsrc(coef): ", __func__
, id
);
224 for (i
= 0; i
< src_cnt
; i
++)
225 pr_debug("\t0x%016llx(0x%02x) ", src
[i
], scf
[i
]);
227 for (i
= 0; i
< src_cnt
; i
++)
228 pr_debug("\t0x%016llx(no) ", src
[i
]);
232 for (i
= 0; i
< 2; i
++)
233 pr_debug("\t0x%016llx ", src
[src_cnt
+ i
]);
236 /******************************************************************************
237 * Command (Descriptor) Blocks low-level routines
238 ******************************************************************************/
240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot
*desc
,
244 struct ppc440spe_adma_chan
*chan
)
248 switch (chan
->device
->id
) {
249 case PPC440SPE_XOR_ID
:
251 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
252 /* NOP with Command Block Complete Enable */
253 p
->cbc
= XOR_CBCR_CBCE_BIT
;
255 case PPC440SPE_DMA0_ID
:
256 case PPC440SPE_DMA1_ID
:
257 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
258 /* NOP with interrupt */
259 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
262 printk(KERN_ERR
"Unsupported id %d in %s\n", chan
->device
->id
,
269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot
*desc
)
274 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
275 desc
->hw_next
= NULL
;
281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
283 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot
*desc
,
284 int src_cnt
, unsigned long flags
)
286 struct xor_cb
*hw_desc
= desc
->hw_desc
;
288 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
289 desc
->hw_next
= NULL
;
290 desc
->src_cnt
= src_cnt
;
293 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
| src_cnt
;
294 if (flags
& DMA_PREP_INTERRUPT
)
295 /* Enable interrupt on completion */
296 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
301 * operation in DMA2 controller
303 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot
*desc
,
304 int dst_cnt
, int src_cnt
, unsigned long flags
)
306 struct xor_cb
*hw_desc
= desc
->hw_desc
;
308 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
309 desc
->hw_next
= NULL
;
310 desc
->src_cnt
= src_cnt
;
311 desc
->dst_cnt
= dst_cnt
;
312 memset(desc
->reverse_flags
, 0, sizeof(desc
->reverse_flags
));
313 desc
->descs_per_op
= 0;
315 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
;
316 if (flags
& DMA_PREP_INTERRUPT
)
317 /* Enable interrupt on completion */
318 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
321 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
322 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
323 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot
*desc
,
330 int dst_cnt
, int src_cnt
, unsigned long flags
,
333 struct dma_cdb
*hw_desc
;
334 struct ppc440spe_adma_desc_slot
*iter
;
337 /* Common initialization of a PQ descriptors chain */
338 set_bits(op
, &desc
->flags
);
339 desc
->src_cnt
= src_cnt
;
340 desc
->dst_cnt
= dst_cnt
;
342 /* WXOR MULTICAST if both P and Q are being computed
343 * MV_SG1_SG2 if Q only
345 dopc
= (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) ?
346 DMA_CDB_OPC_MULTICAST
: DMA_CDB_OPC_MV_SG1_SG2
;
348 list_for_each_entry(iter
, &desc
->group_list
, chain_node
) {
349 hw_desc
= iter
->hw_desc
;
350 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
352 if (likely(!list_is_last(&iter
->chain_node
,
353 &desc
->group_list
))) {
354 /* set 'next' pointer */
355 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
356 struct ppc440spe_adma_desc_slot
, chain_node
);
357 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
359 /* this is the last descriptor.
360 * this slot will be pasted from ADMA level
361 * each time it wants to configure parameters
362 * of the transaction (src, dst, ...)
364 iter
->hw_next
= NULL
;
365 if (flags
& DMA_PREP_INTERRUPT
)
366 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
368 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
372 /* Set OPS depending on WXOR/RXOR type of operation */
373 if (!test_bit(PPC440SPE_DESC_RXOR
, &desc
->flags
)) {
374 /* This is a WXOR only chain:
375 * - first descriptors are for zeroing destinations
376 * if PPC440SPE_ZERO_P/Q set;
377 * - descriptors remained are for GF-XOR operations.
379 iter
= list_first_entry(&desc
->group_list
,
380 struct ppc440spe_adma_desc_slot
,
383 if (test_bit(PPC440SPE_ZERO_P
, &desc
->flags
)) {
384 hw_desc
= iter
->hw_desc
;
385 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
386 iter
= list_first_entry(&iter
->chain_node
,
387 struct ppc440spe_adma_desc_slot
,
391 if (test_bit(PPC440SPE_ZERO_Q
, &desc
->flags
)) {
392 hw_desc
= iter
->hw_desc
;
393 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
394 iter
= list_first_entry(&iter
->chain_node
,
395 struct ppc440spe_adma_desc_slot
,
399 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
400 hw_desc
= iter
->hw_desc
;
404 /* This is either RXOR-only or mixed RXOR/WXOR */
406 /* The first 1 or 2 slots in chain are always RXOR,
407 * if need to calculate P & Q, then there are two
408 * RXOR slots; if only P or only Q, then there is one
410 iter
= list_first_entry(&desc
->group_list
,
411 struct ppc440spe_adma_desc_slot
,
413 hw_desc
= iter
->hw_desc
;
414 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
416 if (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) {
417 iter
= list_first_entry(&iter
->chain_node
,
418 struct ppc440spe_adma_desc_slot
,
420 hw_desc
= iter
->hw_desc
;
421 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
424 /* The remaining descs (if any) are WXORs */
425 if (test_bit(PPC440SPE_DESC_WXOR
, &desc
->flags
)) {
426 iter
= list_first_entry(&iter
->chain_node
,
427 struct ppc440spe_adma_desc_slot
,
429 list_for_each_entry_from(iter
, &desc
->group_list
,
431 hw_desc
= iter
->hw_desc
;
439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
440 * for PQ_ZERO_SUM operation
442 static void ppc440spe_desc_init_dma01pqzero_sum(
443 struct ppc440spe_adma_desc_slot
*desc
,
444 int dst_cnt
, int src_cnt
)
446 struct dma_cdb
*hw_desc
;
447 struct ppc440spe_adma_desc_slot
*iter
;
449 u8 dopc
= (dst_cnt
== 2) ? DMA_CDB_OPC_MULTICAST
:
450 DMA_CDB_OPC_MV_SG1_SG2
;
452 * Initialize starting from 2nd or 3rd descriptor dependent
453 * on dst_cnt. First one or two slots are for cloning P
454 * and/or Q to chan->pdest and/or chan->qdest as we have
455 * to preserve original P/Q.
457 iter
= list_first_entry(&desc
->group_list
,
458 struct ppc440spe_adma_desc_slot
, chain_node
);
459 iter
= list_entry(iter
->chain_node
.next
,
460 struct ppc440spe_adma_desc_slot
, chain_node
);
463 iter
= list_entry(iter
->chain_node
.next
,
464 struct ppc440spe_adma_desc_slot
, chain_node
);
466 /* initialize each source descriptor in chain */
467 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
468 hw_desc
= iter
->hw_desc
;
469 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
473 /* This is a ZERO_SUM operation:
474 * - <src_cnt> descriptors starting from 2nd or 3rd
475 * descriptor are for GF-XOR operations;
476 * - remaining <dst_cnt> descriptors are for checking the result
479 /* MV_SG1_SG2 if only Q is being verified
480 * MULTICAST if both P and Q are being verified
484 /* DMA_CDB_OPC_DCHECK128 operation */
485 hw_desc
->opc
= DMA_CDB_OPC_DCHECK128
;
487 if (likely(!list_is_last(&iter
->chain_node
,
488 &desc
->group_list
))) {
489 /* set 'next' pointer */
490 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
491 struct ppc440spe_adma_desc_slot
,
494 /* this is the last descriptor.
495 * this slot will be pasted from ADMA level
496 * each time it wants to configure parameters
497 * of the transaction (src, dst, ...)
499 iter
->hw_next
= NULL
;
500 /* always enable interrupt generation since we get
501 * the status of pqzero from the handler
503 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
506 desc
->src_cnt
= src_cnt
;
507 desc
->dst_cnt
= dst_cnt
;
511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
513 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot
*desc
,
516 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
518 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
519 desc
->hw_next
= NULL
;
523 if (flags
& DMA_PREP_INTERRUPT
)
524 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
526 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
528 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
532 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
534 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot
*desc
,
535 int value
, unsigned long flags
)
537 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
539 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
540 desc
->hw_next
= NULL
;
544 if (flags
& DMA_PREP_INTERRUPT
)
545 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
547 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
549 hw_desc
->sg1u
= hw_desc
->sg1l
= cpu_to_le32((u32
)value
);
550 hw_desc
->sg3u
= hw_desc
->sg3l
= cpu_to_le32((u32
)value
);
551 hw_desc
->opc
= DMA_CDB_OPC_DFILL128
;
555 * ppc440spe_desc_set_src_addr - set source address into the descriptor
557 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
558 struct ppc440spe_adma_chan
*chan
,
559 int src_idx
, dma_addr_t addrh
,
562 struct dma_cdb
*dma_hw_desc
;
563 struct xor_cb
*xor_hw_desc
;
564 phys_addr_t addr64
, tmplow
, tmphi
;
566 switch (chan
->device
->id
) {
567 case PPC440SPE_DMA0_ID
:
568 case PPC440SPE_DMA1_ID
:
571 tmphi
= (addr64
>> 32);
572 tmplow
= (addr64
& 0xFFFFFFFF);
577 dma_hw_desc
= desc
->hw_desc
;
578 dma_hw_desc
->sg1l
= cpu_to_le32((u32
)tmplow
);
579 dma_hw_desc
->sg1u
|= cpu_to_le32((u32
)tmphi
);
581 case PPC440SPE_XOR_ID
:
582 xor_hw_desc
= desc
->hw_desc
;
583 xor_hw_desc
->ops
[src_idx
].l
= addrl
;
584 xor_hw_desc
->ops
[src_idx
].h
|= addrh
;
590 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
592 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot
*desc
,
593 struct ppc440spe_adma_chan
*chan
, u32 mult_index
,
594 int sg_index
, unsigned char mult_value
)
596 struct dma_cdb
*dma_hw_desc
;
597 struct xor_cb
*xor_hw_desc
;
600 switch (chan
->device
->id
) {
601 case PPC440SPE_DMA0_ID
:
602 case PPC440SPE_DMA1_ID
:
603 dma_hw_desc
= desc
->hw_desc
;
606 /* for RXOR operations set multiplier
607 * into source cued address
610 psgu
= &dma_hw_desc
->sg1u
;
612 /* for WXOR operations set multiplier
613 * into destination cued address(es)
615 case DMA_CDB_SG_DST1
:
616 psgu
= &dma_hw_desc
->sg2u
;
618 case DMA_CDB_SG_DST2
:
619 psgu
= &dma_hw_desc
->sg3u
;
625 *psgu
|= cpu_to_le32(mult_value
<< mult_index
);
627 case PPC440SPE_XOR_ID
:
628 xor_hw_desc
= desc
->hw_desc
;
636 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
638 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
639 struct ppc440spe_adma_chan
*chan
,
640 dma_addr_t addrh
, dma_addr_t addrl
,
643 struct dma_cdb
*dma_hw_desc
;
644 struct xor_cb
*xor_hw_desc
;
645 phys_addr_t addr64
, tmphi
, tmplow
;
648 switch (chan
->device
->id
) {
649 case PPC440SPE_DMA0_ID
:
650 case PPC440SPE_DMA1_ID
:
653 tmphi
= (addr64
>> 32);
654 tmplow
= (addr64
& 0xFFFFFFFF);
659 dma_hw_desc
= desc
->hw_desc
;
661 psgu
= dst_idx
? &dma_hw_desc
->sg3u
: &dma_hw_desc
->sg2u
;
662 psgl
= dst_idx
? &dma_hw_desc
->sg3l
: &dma_hw_desc
->sg2l
;
664 *psgl
= cpu_to_le32((u32
)tmplow
);
665 *psgu
|= cpu_to_le32((u32
)tmphi
);
667 case PPC440SPE_XOR_ID
:
668 xor_hw_desc
= desc
->hw_desc
;
669 xor_hw_desc
->cbtal
= addrl
;
670 xor_hw_desc
->cbtah
|= addrh
;
676 * ppc440spe_desc_set_byte_count - set number of data bytes involved
679 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot
*desc
,
680 struct ppc440spe_adma_chan
*chan
,
683 struct dma_cdb
*dma_hw_desc
;
684 struct xor_cb
*xor_hw_desc
;
686 switch (chan
->device
->id
) {
687 case PPC440SPE_DMA0_ID
:
688 case PPC440SPE_DMA1_ID
:
689 dma_hw_desc
= desc
->hw_desc
;
690 dma_hw_desc
->cnt
= cpu_to_le32(byte_count
);
692 case PPC440SPE_XOR_ID
:
693 xor_hw_desc
= desc
->hw_desc
;
694 xor_hw_desc
->cbbc
= byte_count
;
700 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
702 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count
)
704 /* assume that byte_count is aligned on the 512-boundary;
705 * thus write it directly to the register (bits 23:31 are
708 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CF2H
, byte_count
);
712 * ppc440spe_desc_set_dcheck - set CHECK pattern
714 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot
*desc
,
715 struct ppc440spe_adma_chan
*chan
, u8
*qword
)
717 struct dma_cdb
*dma_hw_desc
;
719 switch (chan
->device
->id
) {
720 case PPC440SPE_DMA0_ID
:
721 case PPC440SPE_DMA1_ID
:
722 dma_hw_desc
= desc
->hw_desc
;
723 iowrite32(qword
[0], &dma_hw_desc
->sg3l
);
724 iowrite32(qword
[4], &dma_hw_desc
->sg3u
);
725 iowrite32(qword
[8], &dma_hw_desc
->sg2l
);
726 iowrite32(qword
[12], &dma_hw_desc
->sg2u
);
734 * ppc440spe_xor_set_link - set link address in xor CB
736 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot
*prev_desc
,
737 struct ppc440spe_adma_desc_slot
*next_desc
)
739 struct xor_cb
*xor_hw_desc
= prev_desc
->hw_desc
;
741 if (unlikely(!next_desc
|| !(next_desc
->phys
))) {
742 printk(KERN_ERR
"%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
744 next_desc
? next_desc
->phys
: 0);
748 xor_hw_desc
->cbs
= 0;
749 xor_hw_desc
->cblal
= next_desc
->phys
;
750 xor_hw_desc
->cblah
= 0;
751 xor_hw_desc
->cbc
|= XOR_CBCR_LNK_BIT
;
755 * ppc440spe_desc_set_link - set the address of descriptor following this
756 * descriptor in chain
758 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan
*chan
,
759 struct ppc440spe_adma_desc_slot
*prev_desc
,
760 struct ppc440spe_adma_desc_slot
*next_desc
)
763 struct ppc440spe_adma_desc_slot
*tail
= next_desc
;
765 if (unlikely(!prev_desc
|| !next_desc
||
766 (prev_desc
->hw_next
&& prev_desc
->hw_next
!= next_desc
))) {
767 /* If previous next is overwritten something is wrong.
768 * though we may refetch from append to initiate list
769 * processing; in this case - it's ok.
771 printk(KERN_ERR
"%s: prev_desc=0x%p; next_desc=0x%p; "
772 "prev->hw_next=0x%p\n", __func__
, prev_desc
,
773 next_desc
, prev_desc
? prev_desc
->hw_next
: 0);
777 local_irq_save(flags
);
779 /* do s/w chaining both for DMA and XOR descriptors */
780 prev_desc
->hw_next
= next_desc
;
782 switch (chan
->device
->id
) {
783 case PPC440SPE_DMA0_ID
:
784 case PPC440SPE_DMA1_ID
:
786 case PPC440SPE_XOR_ID
:
787 /* bind descriptor to the chain */
788 while (tail
->hw_next
)
789 tail
= tail
->hw_next
;
790 xor_last_linked
= tail
;
792 if (prev_desc
== xor_last_submit
)
793 /* do not link to the last submitted CB */
795 ppc440spe_xor_set_link(prev_desc
, next_desc
);
799 local_irq_restore(flags
);
803 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
805 static u32
ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
806 struct ppc440spe_adma_chan
*chan
, int src_idx
)
808 struct dma_cdb
*dma_hw_desc
;
809 struct xor_cb
*xor_hw_desc
;
811 switch (chan
->device
->id
) {
812 case PPC440SPE_DMA0_ID
:
813 case PPC440SPE_DMA1_ID
:
814 dma_hw_desc
= desc
->hw_desc
;
815 /* May have 0, 1, 2, or 3 sources */
816 switch (dma_hw_desc
->opc
) {
817 case DMA_CDB_OPC_NO_OP
:
818 case DMA_CDB_OPC_DFILL128
:
820 case DMA_CDB_OPC_DCHECK128
:
821 if (unlikely(src_idx
)) {
822 printk(KERN_ERR
"%s: try to get %d source for"
823 " DCHECK128\n", __func__
, src_idx
);
826 return le32_to_cpu(dma_hw_desc
->sg1l
);
827 case DMA_CDB_OPC_MULTICAST
:
828 case DMA_CDB_OPC_MV_SG1_SG2
:
829 if (unlikely(src_idx
> 2)) {
830 printk(KERN_ERR
"%s: try to get %d source from"
831 " DMA descr\n", __func__
, src_idx
);
835 if (le32_to_cpu(dma_hw_desc
->sg1u
) &
836 DMA_CUED_XOR_WIN_MSK
) {
844 region
= (le32_to_cpu(
845 dma_hw_desc
->sg1u
)) >>
848 region
&= DMA_CUED_REGION_MSK
;
853 (desc
->unmap_len
<< 1);
857 (desc
->unmap_len
* 3);
861 (desc
->unmap_len
<< 2);
865 " get src3 for region %02x"
866 "PPC440SPE_DESC_RXOR12?\n",
873 " source for non-cued descr\n",
878 return le32_to_cpu(dma_hw_desc
->sg1l
);
880 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
881 __func__
, dma_hw_desc
->opc
);
884 return le32_to_cpu(dma_hw_desc
->sg1l
);
885 case PPC440SPE_XOR_ID
:
886 /* May have up to 16 sources */
887 xor_hw_desc
= desc
->hw_desc
;
888 return xor_hw_desc
->ops
[src_idx
].l
;
894 * ppc440spe_desc_get_dest_addr - extract the destination address from the
897 static u32
ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
898 struct ppc440spe_adma_chan
*chan
, int idx
)
900 struct dma_cdb
*dma_hw_desc
;
901 struct xor_cb
*xor_hw_desc
;
903 switch (chan
->device
->id
) {
904 case PPC440SPE_DMA0_ID
:
905 case PPC440SPE_DMA1_ID
:
906 dma_hw_desc
= desc
->hw_desc
;
909 return le32_to_cpu(dma_hw_desc
->sg2l
);
910 return le32_to_cpu(dma_hw_desc
->sg3l
);
911 case PPC440SPE_XOR_ID
:
912 xor_hw_desc
= desc
->hw_desc
;
913 return xor_hw_desc
->cbtal
;
919 * ppc440spe_desc_get_src_num - extract the number of source addresses from
922 static u32
ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot
*desc
,
923 struct ppc440spe_adma_chan
*chan
)
925 struct dma_cdb
*dma_hw_desc
;
926 struct xor_cb
*xor_hw_desc
;
928 switch (chan
->device
->id
) {
929 case PPC440SPE_DMA0_ID
:
930 case PPC440SPE_DMA1_ID
:
931 dma_hw_desc
= desc
->hw_desc
;
933 switch (dma_hw_desc
->opc
) {
934 case DMA_CDB_OPC_NO_OP
:
935 case DMA_CDB_OPC_DFILL128
:
937 case DMA_CDB_OPC_DCHECK128
:
939 case DMA_CDB_OPC_MV_SG1_SG2
:
940 case DMA_CDB_OPC_MULTICAST
:
942 * Only for RXOR operations we have more than
945 if (le32_to_cpu(dma_hw_desc
->sg1u
) &
946 DMA_CUED_XOR_WIN_MSK
) {
947 /* RXOR op, there are 2 or 3 sources */
948 if (((le32_to_cpu(dma_hw_desc
->sg1u
) >>
949 DMA_CUED_REGION_OFF
) &
950 DMA_CUED_REGION_MSK
) == DMA_RXOR12
) {
954 /* RXOR 1-2-3/1-2-4/1-2-5 */
960 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
961 __func__
, dma_hw_desc
->opc
);
964 case PPC440SPE_XOR_ID
:
965 /* up to 16 sources */
966 xor_hw_desc
= desc
->hw_desc
;
967 return xor_hw_desc
->cbc
& XOR_CDCR_OAC_MSK
;
975 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
978 static u32
ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot
*desc
,
979 struct ppc440spe_adma_chan
*chan
)
981 struct dma_cdb
*dma_hw_desc
;
983 switch (chan
->device
->id
) {
984 case PPC440SPE_DMA0_ID
:
985 case PPC440SPE_DMA1_ID
:
986 /* May be 1 or 2 destinations */
987 dma_hw_desc
= desc
->hw_desc
;
988 switch (dma_hw_desc
->opc
) {
989 case DMA_CDB_OPC_NO_OP
:
990 case DMA_CDB_OPC_DCHECK128
:
992 case DMA_CDB_OPC_MV_SG1_SG2
:
993 case DMA_CDB_OPC_DFILL128
:
995 case DMA_CDB_OPC_MULTICAST
:
996 if (desc
->dst_cnt
== 2)
1001 printk(KERN_ERR
"%s: unknown OPC 0x%02x\n",
1002 __func__
, dma_hw_desc
->opc
);
1005 case PPC440SPE_XOR_ID
:
1006 /* Always only 1 destination */
1015 * ppc440spe_desc_get_link - get the address of the descriptor that
1018 static inline u32
ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot
*desc
,
1019 struct ppc440spe_adma_chan
*chan
)
1024 return desc
->hw_next
->phys
;
1028 * ppc440spe_desc_is_aligned - check alignment
1030 static inline int ppc440spe_desc_is_aligned(
1031 struct ppc440spe_adma_desc_slot
*desc
, int num_slots
)
1033 return (desc
->idx
& (num_slots
- 1)) ? 0 : 1;
1037 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1040 static int ppc440spe_chan_xor_slot_count(size_t len
, int src_cnt
,
1045 /* each XOR descriptor provides up to 16 source operands */
1046 slot_cnt
= *slots_per_op
= (src_cnt
+ XOR_MAX_OPS
- 1)/XOR_MAX_OPS
;
1048 if (likely(len
<= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
))
1051 printk(KERN_ERR
"%s: len %d > max %d !!\n",
1052 __func__
, len
, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
1058 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1061 static int ppc440spe_dma2_pq_slot_count(dma_addr_t
*srcs
,
1062 int src_cnt
, size_t len
)
1064 signed long long order
= 0;
1068 for (i
= 1; i
< src_cnt
; i
++) {
1069 dma_addr_t cur_addr
= srcs
[i
];
1070 dma_addr_t old_addr
= srcs
[i
-1];
1073 if (cur_addr
== old_addr
+ len
) {
1079 } else if (old_addr
== cur_addr
+ len
) {
1090 if (i
== src_cnt
-2 || (order
== -1
1091 && cur_addr
!= old_addr
- len
)) {
1095 } else if (cur_addr
== old_addr
+ len
*order
) {
1099 } else if (cur_addr
== old_addr
+ 2*len
) {
1103 } else if (cur_addr
== old_addr
+ 3*len
) {
1122 if (src_cnt
<= 1 || (state
!= 1 && state
!= 2)) {
1123 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1124 __func__
, src_cnt
, state
, addr_count
, order
);
1125 for (i
= 0; i
< src_cnt
; i
++)
1126 pr_err("\t[%d] 0x%llx \n", i
, srcs
[i
]);
1130 return (addr_count
+ XOR_MAX_OPS
- 1) / XOR_MAX_OPS
;
1134 /******************************************************************************
1135 * ADMA channel low-level routines
1136 ******************************************************************************/
1139 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
);
1140 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
);
1143 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1145 static void ppc440spe_adma_device_clear_eot_status(
1146 struct ppc440spe_adma_chan
*chan
)
1148 struct dma_regs
*dma_reg
;
1149 struct xor_regs
*xor_reg
;
1150 u8
*p
= chan
->device
->dma_desc_pool_virt
;
1151 struct dma_cdb
*cdb
;
1154 switch (chan
->device
->id
) {
1155 case PPC440SPE_DMA0_ID
:
1156 case PPC440SPE_DMA1_ID
:
1157 /* read FIFO to ack */
1158 dma_reg
= chan
->device
->dma_reg
;
1159 while ((rv
= ioread32(&dma_reg
->csfpl
))) {
1160 i
= rv
& DMA_CDB_ADDR_MSK
;
1161 cdb
= (struct dma_cdb
*)&p
[i
-
1162 (u32
)chan
->device
->dma_desc_pool
];
1164 /* Clear opcode to ack. This is necessary for
1165 * ZeroSum operations only
1169 if (test_bit(PPC440SPE_RXOR_RUN
,
1170 &ppc440spe_rxor_state
)) {
1171 /* probably this is a completed RXOR op,
1172 * get pointer to CDB using the fact that
1173 * physical and virtual addresses of CDB
1174 * in pools have the same offsets
1176 if (le32_to_cpu(cdb
->sg1u
) &
1177 DMA_CUED_XOR_BASE
) {
1178 /* this is a RXOR */
1179 clear_bit(PPC440SPE_RXOR_RUN
,
1180 &ppc440spe_rxor_state
);
1184 if (rv
& DMA_CDB_STATUS_MSK
) {
1185 /* ZeroSum check failed
1187 struct ppc440spe_adma_desc_slot
*iter
;
1188 dma_addr_t phys
= rv
& ~DMA_CDB_MSK
;
1191 * Update the status of corresponding
1194 list_for_each_entry(iter
, &chan
->chain
,
1196 if (iter
->phys
== phys
)
1200 * if cannot find the corresponding
1203 BUG_ON(&iter
->chain_node
== &chan
->chain
);
1205 if (iter
->xor_check_result
) {
1206 if (test_bit(PPC440SPE_DESC_PCHECK
,
1208 *iter
->xor_check_result
|=
1211 if (test_bit(PPC440SPE_DESC_QCHECK
,
1213 *iter
->xor_check_result
|=
1221 rv
= ioread32(&dma_reg
->dsts
);
1223 pr_err("DMA%d err status: 0x%x\n",
1224 chan
->device
->id
, rv
);
1225 /* write back to clear */
1226 iowrite32(rv
, &dma_reg
->dsts
);
1229 case PPC440SPE_XOR_ID
:
1230 /* reset status bits to ack */
1231 xor_reg
= chan
->device
->xor_reg
;
1232 rv
= ioread32be(&xor_reg
->sr
);
1233 iowrite32be(rv
, &xor_reg
->sr
);
1235 if (rv
& (XOR_IE_ICBIE_BIT
|XOR_IE_ICIE_BIT
|XOR_IE_RPTIE_BIT
)) {
1236 if (rv
& XOR_IE_RPTIE_BIT
) {
1237 /* Read PLB Timeout Error.
1238 * Try to resubmit the CB
1240 u32 val
= ioread32be(&xor_reg
->ccbalr
);
1242 iowrite32be(val
, &xor_reg
->cblalr
);
1244 val
= ioread32be(&xor_reg
->crsr
);
1245 iowrite32be(val
| XOR_CRSR_XAE_BIT
,
1248 pr_err("XOR ERR 0x%x status\n", rv
);
1252 /* if the XORcore is idle, but there are unprocessed CBs
1253 * then refetch the s/w chain here
1255 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) &&
1257 ppc440spe_chan_append(chan
);
1263 * ppc440spe_chan_is_busy - get the channel status
1265 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan
*chan
)
1267 struct dma_regs
*dma_reg
;
1268 struct xor_regs
*xor_reg
;
1271 switch (chan
->device
->id
) {
1272 case PPC440SPE_DMA0_ID
:
1273 case PPC440SPE_DMA1_ID
:
1274 dma_reg
= chan
->device
->dma_reg
;
1275 /* if command FIFO's head and tail pointers are equal and
1276 * status tail is the same as command, then channel is free
1278 if (ioread16(&dma_reg
->cpfhp
) != ioread16(&dma_reg
->cpftp
) ||
1279 ioread16(&dma_reg
->cpftp
) != ioread16(&dma_reg
->csftp
))
1282 case PPC440SPE_XOR_ID
:
1283 /* use the special status bit for the XORcore
1285 xor_reg
= chan
->device
->xor_reg
;
1286 busy
= (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) ? 1 : 0;
1294 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1296 static void ppc440spe_chan_set_first_xor_descriptor(
1297 struct ppc440spe_adma_chan
*chan
,
1298 struct ppc440spe_adma_desc_slot
*next_desc
)
1300 struct xor_regs
*xor_reg
= chan
->device
->xor_reg
;
1302 if (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)
1303 printk(KERN_INFO
"%s: Warn: XORcore is running "
1304 "when try to set the first CDB!\n",
1307 xor_last_submit
= xor_last_linked
= next_desc
;
1309 iowrite32be(XOR_CRSR_64BA_BIT
, &xor_reg
->crsr
);
1311 iowrite32be(next_desc
->phys
, &xor_reg
->cblalr
);
1312 iowrite32be(0, &xor_reg
->cblahr
);
1313 iowrite32be(ioread32be(&xor_reg
->cbcr
) | XOR_CBCR_LNK_BIT
,
1316 chan
->hw_chain_inited
= 1;
1320 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1321 * called with irqs disabled
1323 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan
*chan
,
1324 struct ppc440spe_adma_desc_slot
*desc
)
1327 struct dma_regs
*dma_reg
= chan
->device
->dma_reg
;
1330 if (!test_bit(PPC440SPE_DESC_INT
, &desc
->flags
))
1331 pcdb
|= DMA_CDB_NO_INT
;
1333 chan_last_sub
[chan
->device
->id
] = desc
;
1335 ADMA_LL_DBG(print_cb(chan
, desc
->hw_desc
));
1337 iowrite32(pcdb
, &dma_reg
->cpfpl
);
1341 * ppc440spe_chan_append - update the h/w chain in the channel
1343 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
)
1345 struct xor_regs
*xor_reg
;
1346 struct ppc440spe_adma_desc_slot
*iter
;
1349 unsigned long flags
;
1351 local_irq_save(flags
);
1353 switch (chan
->device
->id
) {
1354 case PPC440SPE_DMA0_ID
:
1355 case PPC440SPE_DMA1_ID
:
1356 cur_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1358 if (likely(cur_desc
)) {
1359 iter
= chan_last_sub
[chan
->device
->id
];
1363 iter
= chan_first_cdb
[chan
->device
->id
];
1365 ppc440spe_dma_put_desc(chan
, iter
);
1366 chan
->hw_chain_inited
= 1;
1369 /* is there something new to append */
1373 /* flush descriptors from the s/w queue to fifo */
1374 list_for_each_entry_continue(iter
, &chan
->chain
, chain_node
) {
1375 ppc440spe_dma_put_desc(chan
, iter
);
1380 case PPC440SPE_XOR_ID
:
1381 /* update h/w links and refetch */
1382 if (!xor_last_submit
->hw_next
)
1385 xor_reg
= chan
->device
->xor_reg
;
1386 /* the last linked CDB has to generate an interrupt
1387 * that we'd be able to append the next lists to h/w
1388 * regardless of the XOR engine state at the moment of
1389 * appending of these next lists
1391 xcb
= xor_last_linked
->hw_desc
;
1392 xcb
->cbc
|= XOR_CBCR_CBCE_BIT
;
1394 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)) {
1395 /* XORcore is idle. Refetch now */
1397 ppc440spe_xor_set_link(xor_last_submit
,
1398 xor_last_submit
->hw_next
);
1400 ADMA_LL_DBG(print_cb_list(chan
,
1401 xor_last_submit
->hw_next
));
1403 xor_last_submit
= xor_last_linked
;
1404 iowrite32be(ioread32be(&xor_reg
->crsr
) |
1405 XOR_CRSR_RCBE_BIT
| XOR_CRSR_64BA_BIT
,
1408 /* XORcore is running. Refetch later in the handler */
1415 local_irq_restore(flags
);
1419 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1422 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
)
1424 struct dma_regs
*dma_reg
;
1425 struct xor_regs
*xor_reg
;
1427 if (unlikely(!chan
->hw_chain_inited
))
1428 /* h/w descriptor chain is not initialized yet */
1431 switch (chan
->device
->id
) {
1432 case PPC440SPE_DMA0_ID
:
1433 case PPC440SPE_DMA1_ID
:
1434 dma_reg
= chan
->device
->dma_reg
;
1435 return ioread32(&dma_reg
->acpl
) & (~DMA_CDB_MSK
);
1436 case PPC440SPE_XOR_ID
:
1437 xor_reg
= chan
->device
->xor_reg
;
1438 return ioread32be(&xor_reg
->ccbalr
);
1444 * ppc440spe_chan_run - enable the channel
1446 static void ppc440spe_chan_run(struct ppc440spe_adma_chan
*chan
)
1448 struct xor_regs
*xor_reg
;
1450 switch (chan
->device
->id
) {
1451 case PPC440SPE_DMA0_ID
:
1452 case PPC440SPE_DMA1_ID
:
1453 /* DMAs are always enabled, do nothing */
1455 case PPC440SPE_XOR_ID
:
1456 /* drain write buffer */
1457 xor_reg
= chan
->device
->xor_reg
;
1459 /* fetch descriptor pointed to in <link> */
1460 iowrite32be(XOR_CRSR_64BA_BIT
| XOR_CRSR_XAE_BIT
,
1466 /******************************************************************************
1468 ******************************************************************************/
1470 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
);
1471 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
);
1474 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
);
1476 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1477 dma_addr_t addr
, int index
);
1479 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1480 dma_addr_t addr
, int index
);
1483 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1484 dma_addr_t
*paddr
, unsigned long flags
);
1486 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1487 dma_addr_t addr
, int index
);
1489 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot
*tx
,
1490 unsigned char mult
, int index
, int dst_pos
);
1492 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1493 dma_addr_t paddr
, dma_addr_t qaddr
);
1495 static struct page
*ppc440spe_rxor_srcs
[32];
1498 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1500 static int ppc440spe_can_rxor(struct page
**srcs
, int src_cnt
, size_t len
)
1502 int i
, order
= 0, state
= 0;
1505 if (unlikely(!(src_cnt
> 1)))
1508 BUG_ON(src_cnt
> ARRAY_SIZE(ppc440spe_rxor_srcs
));
1510 /* Skip holes in the source list before checking */
1511 for (i
= 0; i
< src_cnt
; i
++) {
1514 ppc440spe_rxor_srcs
[idx
++] = srcs
[i
];
1518 for (i
= 1; i
< src_cnt
; i
++) {
1519 char *cur_addr
= page_address(ppc440spe_rxor_srcs
[i
]);
1520 char *old_addr
= page_address(ppc440spe_rxor_srcs
[i
- 1]);
1524 if (cur_addr
== old_addr
+ len
) {
1528 } else if (old_addr
== cur_addr
+ len
) {
1536 if ((i
== src_cnt
- 2) ||
1537 (order
== -1 && cur_addr
!= old_addr
- len
)) {
1540 } else if ((cur_addr
== old_addr
+ len
* order
) ||
1541 (cur_addr
== old_addr
+ 2 * len
) ||
1542 (cur_addr
== old_addr
+ 3 * len
)) {
1557 if (state
== 1 || state
== 2)
1564 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1565 * the operation given on this channel. It's assumed that 'chan' is
1566 * capable to process 'cap' type of operation.
1567 * @chan: channel to use
1568 * @cap: type of transaction
1569 * @dst_lst: array of destination pointers
1570 * @dst_cnt: number of destination operands
1571 * @src_lst: array of source pointers
1572 * @src_cnt: number of source operands
1573 * @src_sz: size of each source operand
1575 static int ppc440spe_adma_estimate(struct dma_chan
*chan
,
1576 enum dma_transaction_type cap
, struct page
**dst_lst
, int dst_cnt
,
1577 struct page
**src_lst
, int src_cnt
, size_t src_sz
)
1581 if (cap
== DMA_PQ
|| cap
== DMA_PQ_VAL
) {
1582 /* If RAID-6 capabilities were not activated don't try
1585 if (unlikely(!ppc440spe_r6_enabled
))
1588 /* In the current implementation of ppc440spe ADMA driver it
1589 * makes sense to pick out only pq case, because it may be
1591 * (1) either using Biskup method on DMA2;
1593 * Thus we give a favour to (1) if the sources are suitable;
1594 * else let it be processed on one of the DMA0/1 engines.
1595 * In the sum_product case where destination is also the
1596 * source process it on DMA0/1 only.
1598 if (cap
== DMA_PQ
&& chan
->chan_id
== PPC440SPE_XOR_ID
) {
1600 if (dst_cnt
== 1 && src_cnt
== 2 && dst_lst
[0] == src_lst
[1])
1601 ef
= 0; /* sum_product case, process on DMA0/1 */
1602 else if (ppc440spe_can_rxor(src_lst
, src_cnt
, src_sz
))
1603 ef
= 3; /* override (DMA0/1 + idle) */
1605 ef
= 0; /* can't process on DMA2 if !rxor */
1608 /* channel idleness increases the priority */
1610 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan
)))
1617 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap
,
1618 struct page
**dst_lst
, int dst_cnt
, struct page
**src_lst
,
1619 int src_cnt
, size_t src_sz
)
1621 struct dma_chan
*best_chan
= NULL
;
1622 struct ppc_dma_chan_ref
*ref
;
1625 if (unlikely(!src_sz
))
1627 if (src_sz
> PAGE_SIZE
) {
1629 * should a user of the api ever pass > PAGE_SIZE requests
1630 * we sort out cases where temporary page-sized buffers
1635 if (src_cnt
== 1 && dst_lst
[1] == src_lst
[0])
1637 if (src_cnt
== 2 && dst_lst
[1] == src_lst
[1])
1648 list_for_each_entry(ref
, &ppc440spe_adma_chan_list
, node
) {
1649 if (dma_has_cap(cap
, ref
->chan
->device
->cap_mask
)) {
1652 rank
= ppc440spe_adma_estimate(ref
->chan
, cap
, dst_lst
,
1653 dst_cnt
, src_lst
, src_cnt
, src_sz
);
1654 if (rank
> best_rank
) {
1656 best_chan
= ref
->chan
;
1663 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel
);
1666 * ppc440spe_get_group_entry - get group entry with index idx
1667 * @tdesc: is the last allocated slot in the group.
1669 static struct ppc440spe_adma_desc_slot
*
1670 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot
*tdesc
, u32 entry_idx
)
1672 struct ppc440spe_adma_desc_slot
*iter
= tdesc
->group_head
;
1675 if (entry_idx
< 0 || entry_idx
>= (tdesc
->src_cnt
+ tdesc
->dst_cnt
)) {
1676 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1677 __func__
, entry_idx
, tdesc
->src_cnt
, tdesc
->dst_cnt
);
1681 list_for_each_entry(iter
, &tdesc
->group_list
, chain_node
) {
1682 if (i
++ == entry_idx
)
1689 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1690 * @slot: Slot to free
1691 * Caller must hold &ppc440spe_chan->lock while calling this function
1693 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot
*slot
,
1694 struct ppc440spe_adma_chan
*chan
)
1696 int stride
= slot
->slots_per_op
;
1699 slot
->slots_per_op
= 0;
1700 slot
= list_entry(slot
->slot_node
.next
,
1701 struct ppc440spe_adma_desc_slot
,
1706 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan
*chan
,
1707 struct ppc440spe_adma_desc_slot
*desc
)
1709 u32 src_cnt
, dst_cnt
;
1713 * get the number of sources & destination
1714 * included in this descriptor and unmap
1717 src_cnt
= ppc440spe_desc_get_src_num(desc
, chan
);
1718 dst_cnt
= ppc440spe_desc_get_dst_num(desc
, chan
);
1720 /* unmap destinations */
1721 if (!(desc
->async_tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1723 addr
= ppc440spe_desc_get_dest_addr(
1724 desc
, chan
, dst_cnt
);
1725 dma_unmap_page(chan
->device
->dev
,
1726 addr
, desc
->unmap_len
,
1732 if (!(desc
->async_tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1734 addr
= ppc440spe_desc_get_src_addr(
1735 desc
, chan
, src_cnt
);
1736 dma_unmap_page(chan
->device
->dev
,
1737 addr
, desc
->unmap_len
,
1744 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1747 static dma_cookie_t
ppc440spe_adma_run_tx_complete_actions(
1748 struct ppc440spe_adma_desc_slot
*desc
,
1749 struct ppc440spe_adma_chan
*chan
,
1750 dma_cookie_t cookie
)
1754 BUG_ON(desc
->async_tx
.cookie
< 0);
1755 if (desc
->async_tx
.cookie
> 0) {
1756 cookie
= desc
->async_tx
.cookie
;
1757 desc
->async_tx
.cookie
= 0;
1759 /* call the callback (must not sleep or submit new
1760 * operations to this channel)
1762 if (desc
->async_tx
.callback
)
1763 desc
->async_tx
.callback(
1764 desc
->async_tx
.callback_param
);
1766 /* unmap dma addresses
1767 * (unmap_single vs unmap_page?)
1769 * actually, ppc's dma_unmap_page() functions are empty, so
1770 * the following code is just for the sake of completeness
1772 if (chan
&& chan
->needs_unmap
&& desc
->group_head
&&
1774 struct ppc440spe_adma_desc_slot
*unmap
=
1776 /* assume 1 slot per op always */
1777 u32 slot_count
= unmap
->slot_cnt
;
1779 /* Run through the group list and unmap addresses */
1780 for (i
= 0; i
< slot_count
; i
++) {
1782 ppc440spe_adma_unmap(chan
, unmap
);
1783 unmap
= unmap
->hw_next
;
1788 /* run dependent operations */
1789 dma_run_dependencies(&desc
->async_tx
);
1795 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1797 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot
*desc
,
1798 struct ppc440spe_adma_chan
*chan
)
1800 /* the client is allowed to attach dependent operations
1801 * until 'ack' is set
1803 if (!async_tx_test_ack(&desc
->async_tx
))
1806 /* leave the last descriptor in the chain
1807 * so we can append to it
1809 if (list_is_last(&desc
->chain_node
, &chan
->chain
) ||
1810 desc
->phys
== ppc440spe_chan_get_current_descriptor(chan
))
1813 if (chan
->device
->id
!= PPC440SPE_XOR_ID
) {
1814 /* our DMA interrupt handler clears opc field of
1815 * each processed descriptor. For all types of
1816 * operations except for ZeroSum we do not actually
1817 * need ack from the interrupt handler. ZeroSum is a
1818 * special case since the result of this operation
1819 * is available from the handler only, so if we see
1820 * such type of descriptor (which is unprocessed yet)
1821 * then leave it in chain.
1823 struct dma_cdb
*cdb
= desc
->hw_desc
;
1824 if (cdb
->opc
== DMA_CDB_OPC_DCHECK128
)
1828 dev_dbg(chan
->device
->common
.dev
, "\tfree slot %llx: %d stride: %d\n",
1829 desc
->phys
, desc
->idx
, desc
->slots_per_op
);
1831 list_del(&desc
->chain_node
);
1832 ppc440spe_adma_free_slots(desc
, chan
);
1837 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1838 * which runs through the channel CDBs list until reach the descriptor
1839 * currently processed. When routine determines that all CDBs of group
1840 * are completed then corresponding callbacks (if any) are called and slots
1843 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1845 struct ppc440spe_adma_desc_slot
*iter
, *_iter
, *group_start
= NULL
;
1846 dma_cookie_t cookie
= 0;
1847 u32 current_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1848 int busy
= ppc440spe_chan_is_busy(chan
);
1849 int seen_current
= 0, slot_cnt
= 0, slots_per_op
= 0;
1851 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: %s\n",
1852 chan
->device
->id
, __func__
);
1854 if (!current_desc
) {
1855 /* There were no transactions yet, so
1861 /* free completed slots from the chain starting with
1862 * the oldest descriptor
1864 list_for_each_entry_safe(iter
, _iter
, &chan
->chain
,
1866 dev_dbg(chan
->device
->common
.dev
, "\tcookie: %d slot: %d "
1867 "busy: %d this_desc: %#llx next_desc: %#x "
1868 "cur: %#x ack: %d\n",
1869 iter
->async_tx
.cookie
, iter
->idx
, busy
, iter
->phys
,
1870 ppc440spe_desc_get_link(iter
, chan
), current_desc
,
1871 async_tx_test_ack(&iter
->async_tx
));
1873 prefetch(&_iter
->async_tx
);
1875 /* do not advance past the current descriptor loaded into the
1876 * hardware channel,subsequent descriptors are either in process
1877 * or have not been submitted
1882 /* stop the search if we reach the current descriptor and the
1883 * channel is busy, or if it appears that the current descriptor
1884 * needs to be re-read (i.e. has been appended to)
1886 if (iter
->phys
== current_desc
) {
1887 BUG_ON(seen_current
++);
1888 if (busy
|| ppc440spe_desc_get_link(iter
, chan
)) {
1889 /* not all descriptors of the group have
1890 * been completed; exit.
1896 /* detect the start of a group transaction */
1897 if (!slot_cnt
&& !slots_per_op
) {
1898 slot_cnt
= iter
->slot_cnt
;
1899 slots_per_op
= iter
->slots_per_op
;
1900 if (slot_cnt
<= slots_per_op
) {
1909 slot_cnt
-= slots_per_op
;
1912 /* all the members of a group are complete */
1913 if (slots_per_op
!= 0 && slot_cnt
== 0) {
1914 struct ppc440spe_adma_desc_slot
*grp_iter
, *_grp_iter
;
1915 int end_of_chain
= 0;
1917 /* clean up the group */
1918 slot_cnt
= group_start
->slot_cnt
;
1919 grp_iter
= group_start
;
1920 list_for_each_entry_safe_from(grp_iter
, _grp_iter
,
1921 &chan
->chain
, chain_node
) {
1923 cookie
= ppc440spe_adma_run_tx_complete_actions(
1924 grp_iter
, chan
, cookie
);
1926 slot_cnt
-= slots_per_op
;
1927 end_of_chain
= ppc440spe_adma_clean_slot(
1929 if (end_of_chain
&& slot_cnt
) {
1930 /* Should wait for ZeroSum completion */
1932 chan
->completed_cookie
= cookie
;
1936 if (slot_cnt
== 0 || end_of_chain
)
1940 /* the group should be complete at this point */
1949 } else if (slots_per_op
) /* wait for group completion */
1952 cookie
= ppc440spe_adma_run_tx_complete_actions(iter
, chan
,
1955 if (ppc440spe_adma_clean_slot(iter
, chan
))
1959 BUG_ON(!seen_current
);
1962 chan
->completed_cookie
= cookie
;
1963 pr_debug("\tcompleted cookie %d\n", cookie
);
1969 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1971 static void ppc440spe_adma_tasklet(unsigned long data
)
1973 struct ppc440spe_adma_chan
*chan
= (struct ppc440spe_adma_chan
*) data
;
1975 spin_lock_nested(&chan
->lock
, SINGLE_DEPTH_NESTING
);
1976 __ppc440spe_adma_slot_cleanup(chan
);
1977 spin_unlock(&chan
->lock
);
1981 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1983 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1985 spin_lock_bh(&chan
->lock
);
1986 __ppc440spe_adma_slot_cleanup(chan
);
1987 spin_unlock_bh(&chan
->lock
);
1991 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1993 static struct ppc440spe_adma_desc_slot
*ppc440spe_adma_alloc_slots(
1994 struct ppc440spe_adma_chan
*chan
, int num_slots
,
1997 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *_iter
;
1998 struct ppc440spe_adma_desc_slot
*alloc_start
= NULL
;
1999 struct list_head chain
= LIST_HEAD_INIT(chain
);
2000 int slots_found
, retry
= 0;
2003 BUG_ON(!num_slots
|| !slots_per_op
);
2004 /* start search from the last allocated descrtiptor
2005 * if a contiguous allocation can not be found start searching
2006 * from the beginning of the list
2011 iter
= chan
->last_used
;
2013 iter
= list_entry(&chan
->all_slots
,
2014 struct ppc440spe_adma_desc_slot
,
2016 list_for_each_entry_safe_continue(iter
, _iter
, &chan
->all_slots
,
2019 prefetch(&_iter
->async_tx
);
2020 if (iter
->slots_per_op
) {
2025 /* start the allocation if the slot is correctly aligned */
2029 if (slots_found
== num_slots
) {
2030 struct ppc440spe_adma_desc_slot
*alloc_tail
= NULL
;
2031 struct ppc440spe_adma_desc_slot
*last_used
= NULL
;
2036 /* pre-ack all but the last descriptor */
2037 if (num_slots
!= slots_per_op
)
2038 async_tx_ack(&iter
->async_tx
);
2040 list_add_tail(&iter
->chain_node
, &chain
);
2042 iter
->async_tx
.cookie
= 0;
2043 iter
->hw_next
= NULL
;
2045 iter
->slot_cnt
= num_slots
;
2046 iter
->xor_check_result
= NULL
;
2047 for (i
= 0; i
< slots_per_op
; i
++) {
2048 iter
->slots_per_op
= slots_per_op
- i
;
2050 iter
= list_entry(iter
->slot_node
.next
,
2051 struct ppc440spe_adma_desc_slot
,
2054 num_slots
-= slots_per_op
;
2056 alloc_tail
->group_head
= alloc_start
;
2057 alloc_tail
->async_tx
.cookie
= -EBUSY
;
2058 list_splice(&chain
, &alloc_tail
->group_list
);
2059 chan
->last_used
= last_used
;
2066 /* try to free some slots if the allocation fails */
2067 tasklet_schedule(&chan
->irq_tasklet
);
2072 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
2074 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
)
2076 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2077 struct ppc440spe_adma_desc_slot
*slot
= NULL
;
2082 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2083 init
= ppc440spe_chan
->slots_allocated
? 0 : 1;
2084 chan
->chan_id
= ppc440spe_chan
->device
->id
;
2086 /* Allocate descriptor slots */
2087 i
= ppc440spe_chan
->slots_allocated
;
2088 if (ppc440spe_chan
->device
->id
!= PPC440SPE_XOR_ID
)
2089 db_sz
= sizeof(struct dma_cdb
);
2091 db_sz
= sizeof(struct xor_cb
);
2093 for (; i
< (ppc440spe_chan
->device
->pool_size
/ db_sz
); i
++) {
2094 slot
= kzalloc(sizeof(struct ppc440spe_adma_desc_slot
),
2097 printk(KERN_INFO
"SPE ADMA Channel only initialized"
2098 " %d descriptor slots", i
--);
2102 hw_desc
= (char *) ppc440spe_chan
->device
->dma_desc_pool_virt
;
2103 slot
->hw_desc
= (void *) &hw_desc
[i
* db_sz
];
2104 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
2105 slot
->async_tx
.tx_submit
= ppc440spe_adma_tx_submit
;
2106 INIT_LIST_HEAD(&slot
->chain_node
);
2107 INIT_LIST_HEAD(&slot
->slot_node
);
2108 INIT_LIST_HEAD(&slot
->group_list
);
2109 slot
->phys
= ppc440spe_chan
->device
->dma_desc_pool
+ i
* db_sz
;
2112 spin_lock_bh(&ppc440spe_chan
->lock
);
2113 ppc440spe_chan
->slots_allocated
++;
2114 list_add_tail(&slot
->slot_node
, &ppc440spe_chan
->all_slots
);
2115 spin_unlock_bh(&ppc440spe_chan
->lock
);
2118 if (i
&& !ppc440spe_chan
->last_used
) {
2119 ppc440spe_chan
->last_used
=
2120 list_entry(ppc440spe_chan
->all_slots
.next
,
2121 struct ppc440spe_adma_desc_slot
,
2125 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2126 "ppc440spe adma%d: allocated %d descriptor slots\n",
2127 ppc440spe_chan
->device
->id
, i
);
2129 /* initialize the channel and the chain with a null operation */
2131 switch (ppc440spe_chan
->device
->id
) {
2132 case PPC440SPE_DMA0_ID
:
2133 case PPC440SPE_DMA1_ID
:
2134 ppc440spe_chan
->hw_chain_inited
= 0;
2135 /* Use WXOR for self-testing */
2136 if (!ppc440spe_r6_tchan
)
2137 ppc440spe_r6_tchan
= ppc440spe_chan
;
2139 case PPC440SPE_XOR_ID
:
2140 ppc440spe_chan_start_null_xor(ppc440spe_chan
);
2145 ppc440spe_chan
->needs_unmap
= 1;
2148 return (i
> 0) ? i
: -ENOMEM
;
2152 * ppc440spe_desc_assign_cookie - assign a cookie
2154 static dma_cookie_t
ppc440spe_desc_assign_cookie(
2155 struct ppc440spe_adma_chan
*chan
,
2156 struct ppc440spe_adma_desc_slot
*desc
)
2158 dma_cookie_t cookie
= chan
->common
.cookie
;
2163 chan
->common
.cookie
= desc
->async_tx
.cookie
= cookie
;
2168 * ppc440spe_rxor_set_region_data -
2170 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot
*desc
,
2171 u8 xor_arg_no
, u32 mask
)
2173 struct xor_cb
*xcb
= desc
->hw_desc
;
2175 xcb
->ops
[xor_arg_no
].h
|= mask
;
2179 * ppc440spe_rxor_set_src -
2181 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot
*desc
,
2182 u8 xor_arg_no
, dma_addr_t addr
)
2184 struct xor_cb
*xcb
= desc
->hw_desc
;
2186 xcb
->ops
[xor_arg_no
].h
|= DMA_CUED_XOR_BASE
;
2187 xcb
->ops
[xor_arg_no
].l
= addr
;
2191 * ppc440spe_rxor_set_mult -
2193 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot
*desc
,
2194 u8 xor_arg_no
, u8 idx
, u8 mult
)
2196 struct xor_cb
*xcb
= desc
->hw_desc
;
2198 xcb
->ops
[xor_arg_no
].h
|= mult
<< (DMA_CUED_MULT1_OFF
+ idx
* 8);
2202 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2205 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan
*chan
)
2207 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: pending: %d\n",
2208 chan
->device
->id
, chan
->pending
);
2210 if (chan
->pending
>= PPC440SPE_ADMA_THRESHOLD
) {
2212 ppc440spe_chan_append(chan
);
2217 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2218 * (it's not necessary that descriptors will be submitted to the h/w
2219 * chains too right now)
2221 static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
)
2223 struct ppc440spe_adma_desc_slot
*sw_desc
;
2224 struct ppc440spe_adma_chan
*chan
= to_ppc440spe_adma_chan(tx
->chan
);
2225 struct ppc440spe_adma_desc_slot
*group_start
, *old_chain_tail
;
2228 dma_cookie_t cookie
;
2230 sw_desc
= tx_to_ppc440spe_adma_slot(tx
);
2232 group_start
= sw_desc
->group_head
;
2233 slot_cnt
= group_start
->slot_cnt
;
2234 slots_per_op
= group_start
->slots_per_op
;
2236 spin_lock_bh(&chan
->lock
);
2238 cookie
= ppc440spe_desc_assign_cookie(chan
, sw_desc
);
2240 if (unlikely(list_empty(&chan
->chain
))) {
2242 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
2243 chan_first_cdb
[chan
->device
->id
] = group_start
;
2245 /* isn't first peer, bind CDBs to chain */
2246 old_chain_tail
= list_entry(chan
->chain
.prev
,
2247 struct ppc440spe_adma_desc_slot
,
2249 list_splice_init(&sw_desc
->group_list
,
2250 &old_chain_tail
->chain_node
);
2251 /* fix up the hardware chain */
2252 ppc440spe_desc_set_link(chan
, old_chain_tail
, group_start
);
2255 /* increment the pending count by the number of operations */
2256 chan
->pending
+= slot_cnt
/ slots_per_op
;
2257 ppc440spe_adma_check_threshold(chan
);
2258 spin_unlock_bh(&chan
->lock
);
2260 dev_dbg(chan
->device
->common
.dev
,
2261 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2262 chan
->device
->id
, __func__
,
2263 sw_desc
->async_tx
.cookie
, sw_desc
->idx
, sw_desc
);
2269 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2271 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_interrupt(
2272 struct dma_chan
*chan
, unsigned long flags
)
2274 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2275 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2276 int slot_cnt
, slots_per_op
;
2278 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2280 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2281 "ppc440spe adma%d: %s\n", ppc440spe_chan
->device
->id
,
2284 spin_lock_bh(&ppc440spe_chan
->lock
);
2285 slot_cnt
= slots_per_op
= 1;
2286 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2289 group_start
= sw_desc
->group_head
;
2290 ppc440spe_desc_init_interrupt(group_start
, ppc440spe_chan
);
2291 group_start
->unmap_len
= 0;
2292 sw_desc
->async_tx
.flags
= flags
;
2294 spin_unlock_bh(&ppc440spe_chan
->lock
);
2296 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2300 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2302 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memcpy(
2303 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2304 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
2306 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2307 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2308 int slot_cnt
, slots_per_op
;
2310 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2315 BUG_ON(unlikely(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
));
2317 spin_lock_bh(&ppc440spe_chan
->lock
);
2319 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2320 "ppc440spe adma%d: %s len: %u int_en %d\n",
2321 ppc440spe_chan
->device
->id
, __func__
, len
,
2322 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2323 slot_cnt
= slots_per_op
= 1;
2324 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2327 group_start
= sw_desc
->group_head
;
2328 ppc440spe_desc_init_memcpy(group_start
, flags
);
2329 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2330 ppc440spe_adma_memcpy_xor_set_src(group_start
, dma_src
, 0);
2331 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2332 sw_desc
->unmap_len
= len
;
2333 sw_desc
->async_tx
.flags
= flags
;
2335 spin_unlock_bh(&ppc440spe_chan
->lock
);
2337 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2341 * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2343 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memset(
2344 struct dma_chan
*chan
, dma_addr_t dma_dest
, int value
,
2345 size_t len
, unsigned long flags
)
2347 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2348 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2349 int slot_cnt
, slots_per_op
;
2351 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2356 BUG_ON(unlikely(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
));
2358 spin_lock_bh(&ppc440spe_chan
->lock
);
2360 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2361 "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2362 ppc440spe_chan
->device
->id
, __func__
, value
, len
,
2363 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2365 slot_cnt
= slots_per_op
= 1;
2366 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2369 group_start
= sw_desc
->group_head
;
2370 ppc440spe_desc_init_memset(group_start
, value
, flags
);
2371 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2372 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2373 sw_desc
->unmap_len
= len
;
2374 sw_desc
->async_tx
.flags
= flags
;
2376 spin_unlock_bh(&ppc440spe_chan
->lock
);
2378 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2382 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2384 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor(
2385 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2386 dma_addr_t
*dma_src
, u32 src_cnt
, size_t len
,
2387 unsigned long flags
)
2389 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2390 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2391 int slot_cnt
, slots_per_op
;
2393 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2395 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan
->device
->id
,
2396 dma_dest
, dma_src
, src_cnt
));
2399 BUG_ON(unlikely(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
));
2401 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2402 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2403 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2404 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2406 spin_lock_bh(&ppc440spe_chan
->lock
);
2407 slot_cnt
= ppc440spe_chan_xor_slot_count(len
, src_cnt
, &slots_per_op
);
2408 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2411 group_start
= sw_desc
->group_head
;
2412 ppc440spe_desc_init_xor(group_start
, src_cnt
, flags
);
2413 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2415 ppc440spe_adma_memcpy_xor_set_src(group_start
,
2416 dma_src
[src_cnt
], src_cnt
);
2417 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2418 sw_desc
->unmap_len
= len
;
2419 sw_desc
->async_tx
.flags
= flags
;
2421 spin_unlock_bh(&ppc440spe_chan
->lock
);
2423 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2427 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot
*desc
,
2429 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
);
2432 * ppc440spe_adma_init_dma2rxor_slot -
2434 static void ppc440spe_adma_init_dma2rxor_slot(
2435 struct ppc440spe_adma_desc_slot
*desc
,
2436 dma_addr_t
*src
, int src_cnt
)
2440 /* initialize CDB */
2441 for (i
= 0; i
< src_cnt
; i
++) {
2442 ppc440spe_adma_dma2rxor_prep_src(desc
, &desc
->rxor_cursor
, i
,
2443 desc
->src_cnt
, (u32
)src
[i
]);
2448 * ppc440spe_dma01_prep_mult -
2449 * for Q operation where destination is also the source
2451 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_mult(
2452 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2453 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2454 const unsigned char *scf
, size_t len
, unsigned long flags
)
2456 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2457 unsigned long op
= 0;
2460 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2463 spin_lock_bh(&ppc440spe_chan
->lock
);
2465 /* use WXOR, each descriptor occupies one slot */
2466 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2468 struct ppc440spe_adma_chan
*chan
;
2469 struct ppc440spe_adma_desc_slot
*iter
;
2470 struct dma_cdb
*hw_desc
;
2472 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2473 set_bits(op
, &sw_desc
->flags
);
2474 sw_desc
->src_cnt
= src_cnt
;
2475 sw_desc
->dst_cnt
= dst_cnt
;
2476 /* First descriptor, zero data in the destination and copy it
2477 * to q page using MULTICAST transfer.
2479 iter
= list_first_entry(&sw_desc
->group_list
,
2480 struct ppc440spe_adma_desc_slot
,
2482 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2483 /* set 'next' pointer */
2484 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2485 struct ppc440spe_adma_desc_slot
,
2487 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2488 hw_desc
= iter
->hw_desc
;
2489 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2491 ppc440spe_desc_set_dest_addr(iter
, chan
,
2492 DMA_CUED_XOR_BASE
, dst
[0], 0);
2493 ppc440spe_desc_set_dest_addr(iter
, chan
, 0, dst
[1], 1);
2494 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2496 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2497 iter
->unmap_len
= len
;
2500 * Second descriptor, multiply data from the q page
2501 * and store the result in real destination.
2503 iter
= list_first_entry(&iter
->chain_node
,
2504 struct ppc440spe_adma_desc_slot
,
2506 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2507 iter
->hw_next
= NULL
;
2508 if (flags
& DMA_PREP_INTERRUPT
)
2509 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2511 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2513 hw_desc
= iter
->hw_desc
;
2514 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2515 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2516 DMA_CUED_XOR_HB
, dst
[1]);
2517 ppc440spe_desc_set_dest_addr(iter
, chan
,
2518 DMA_CUED_XOR_BASE
, dst
[0], 0);
2520 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2521 DMA_CDB_SG_DST1
, scf
[0]);
2522 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2523 iter
->unmap_len
= len
;
2524 sw_desc
->async_tx
.flags
= flags
;
2527 spin_unlock_bh(&ppc440spe_chan
->lock
);
2533 * ppc440spe_dma01_prep_sum_product -
2534 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2537 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_sum_product(
2538 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2539 dma_addr_t
*dst
, dma_addr_t
*src
, int src_cnt
,
2540 const unsigned char *scf
, size_t len
, unsigned long flags
)
2542 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2543 unsigned long op
= 0;
2546 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2549 spin_lock_bh(&ppc440spe_chan
->lock
);
2551 /* WXOR, each descriptor occupies one slot */
2552 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2554 struct ppc440spe_adma_chan
*chan
;
2555 struct ppc440spe_adma_desc_slot
*iter
;
2556 struct dma_cdb
*hw_desc
;
2558 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2559 set_bits(op
, &sw_desc
->flags
);
2560 sw_desc
->src_cnt
= src_cnt
;
2561 sw_desc
->dst_cnt
= 1;
2562 /* 1st descriptor, src[1] data to q page and zero destination */
2563 iter
= list_first_entry(&sw_desc
->group_list
,
2564 struct ppc440spe_adma_desc_slot
,
2566 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2567 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2568 struct ppc440spe_adma_desc_slot
,
2570 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2571 hw_desc
= iter
->hw_desc
;
2572 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2574 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2576 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2577 ppc440spe_chan
->qdest
, 1);
2578 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2580 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2581 iter
->unmap_len
= len
;
2583 /* 2nd descriptor, multiply src[1] data and store the
2584 * result in destination */
2585 iter
= list_first_entry(&iter
->chain_node
,
2586 struct ppc440spe_adma_desc_slot
,
2588 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2589 /* set 'next' pointer */
2590 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2591 struct ppc440spe_adma_desc_slot
,
2593 if (flags
& DMA_PREP_INTERRUPT
)
2594 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2596 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2598 hw_desc
= iter
->hw_desc
;
2599 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2600 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2601 ppc440spe_chan
->qdest
);
2602 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2604 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2605 DMA_CDB_SG_DST1
, scf
[1]);
2606 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2607 iter
->unmap_len
= len
;
2610 * 3rd descriptor, multiply src[0] data and xor it
2613 iter
= list_first_entry(&iter
->chain_node
,
2614 struct ppc440spe_adma_desc_slot
,
2616 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2617 iter
->hw_next
= NULL
;
2618 if (flags
& DMA_PREP_INTERRUPT
)
2619 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2621 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2623 hw_desc
= iter
->hw_desc
;
2624 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2625 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2627 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2629 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2630 DMA_CDB_SG_DST1
, scf
[0]);
2631 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2632 iter
->unmap_len
= len
;
2633 sw_desc
->async_tx
.flags
= flags
;
2636 spin_unlock_bh(&ppc440spe_chan
->lock
);
2641 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_pq(
2642 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2643 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2644 const unsigned char *scf
, size_t len
, unsigned long flags
)
2647 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2648 unsigned long op
= 0;
2649 unsigned char mult
= 1;
2651 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2652 __func__
, dst_cnt
, src_cnt
, len
);
2653 /* select operations WXOR/RXOR depending on the
2654 * source addresses of operators and the number
2655 * of destinations (RXOR support only Q-parity calculations)
2657 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2658 if (!test_and_set_bit(PPC440SPE_RXOR_RUN
, &ppc440spe_rxor_state
)) {
2661 * - there are more than 1 source,
2662 * - len is aligned on 512-byte boundary,
2663 * - source addresses fit to one of 4 possible regions.
2666 !(len
& MQ0_CF2H_RXOR_BS_MASK
) &&
2667 (src
[0] + len
) == src
[1]) {
2668 /* may do RXOR R1 R2 */
2669 set_bit(PPC440SPE_DESC_RXOR
, &op
);
2671 /* may try to enhance region of RXOR */
2672 if ((src
[1] + len
) == src
[2]) {
2673 /* do RXOR R1 R2 R3 */
2674 set_bit(PPC440SPE_DESC_RXOR123
,
2676 } else if ((src
[1] + len
* 2) == src
[2]) {
2677 /* do RXOR R1 R2 R4 */
2678 set_bit(PPC440SPE_DESC_RXOR124
, &op
);
2679 } else if ((src
[1] + len
* 3) == src
[2]) {
2680 /* do RXOR R1 R2 R5 */
2681 set_bit(PPC440SPE_DESC_RXOR125
,
2685 set_bit(PPC440SPE_DESC_RXOR12
,
2690 set_bit(PPC440SPE_DESC_RXOR12
, &op
);
2694 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2695 /* can not do this operation with RXOR */
2696 clear_bit(PPC440SPE_RXOR_RUN
,
2697 &ppc440spe_rxor_state
);
2699 /* can do; set block size right now */
2700 ppc440spe_desc_set_rxor_block_size(len
);
2704 /* Number of necessary slots depends on operation type selected */
2705 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2706 /* This is a WXOR only chain. Need descriptors for each
2707 * source to GF-XOR them with WXOR, and need descriptors
2708 * for each destination to zero them with WXOR
2712 if (flags
& DMA_PREP_ZERO_P
) {
2714 set_bit(PPC440SPE_ZERO_P
, &op
);
2716 if (flags
& DMA_PREP_ZERO_Q
) {
2718 set_bit(PPC440SPE_ZERO_Q
, &op
);
2721 /* Need 1/2 descriptor for RXOR operation, and
2722 * need (src_cnt - (2 or 3)) for WXOR of sources
2727 if (flags
& DMA_PREP_ZERO_P
)
2728 set_bit(PPC440SPE_ZERO_P
, &op
);
2729 if (flags
& DMA_PREP_ZERO_Q
)
2730 set_bit(PPC440SPE_ZERO_Q
, &op
);
2732 if (test_bit(PPC440SPE_DESC_RXOR12
, &op
))
2733 slot_cnt
+= src_cnt
- 2;
2735 slot_cnt
+= src_cnt
- 3;
2737 /* Thus we have either RXOR only chain or
2740 if (slot_cnt
== dst_cnt
)
2741 /* RXOR only chain */
2742 clear_bit(PPC440SPE_DESC_WXOR
, &op
);
2745 spin_lock_bh(&ppc440spe_chan
->lock
);
2746 /* for both RXOR/WXOR each descriptor occupies one slot */
2747 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2749 ppc440spe_desc_init_dma01pq(sw_desc
, dst_cnt
, src_cnt
,
2752 /* setup dst/src/mult */
2753 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2754 __func__
, dst
[0], dst
[1]);
2755 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2757 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2760 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2761 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2762 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2763 * leads to zeroing source data after RXOR.
2764 * So, for P case set-up mult=1 explicitly.
2766 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2767 mult
= scf
[src_cnt
];
2768 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2769 mult
, src_cnt
, dst_cnt
- 1);
2772 /* Setup byte count foreach slot just allocated */
2773 sw_desc
->async_tx
.flags
= flags
;
2774 list_for_each_entry(iter
, &sw_desc
->group_list
,
2776 ppc440spe_desc_set_byte_count(iter
,
2777 ppc440spe_chan
, len
);
2778 iter
->unmap_len
= len
;
2781 spin_unlock_bh(&ppc440spe_chan
->lock
);
2786 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma2_prep_pq(
2787 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2788 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2789 const unsigned char *scf
, size_t len
, unsigned long flags
)
2791 int slot_cnt
, descs_per_op
;
2792 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2793 unsigned long op
= 0;
2794 unsigned char mult
= 1;
2797 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2798 __func__, dst_cnt, src_cnt, len);*/
2800 spin_lock_bh(&ppc440spe_chan
->lock
);
2801 descs_per_op
= ppc440spe_dma2_pq_slot_count(src
, src_cnt
, len
);
2802 if (descs_per_op
< 0) {
2803 spin_unlock_bh(&ppc440spe_chan
->lock
);
2807 /* depending on number of sources we have 1 or 2 RXOR chains */
2808 slot_cnt
= descs_per_op
* dst_cnt
;
2810 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2813 sw_desc
->async_tx
.flags
= flags
;
2814 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2815 ppc440spe_desc_init_dma2pq(iter
, dst_cnt
, src_cnt
,
2817 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2819 iter
->unmap_len
= len
;
2821 ppc440spe_init_rxor_cursor(&(iter
->rxor_cursor
));
2822 iter
->rxor_cursor
.len
= len
;
2823 iter
->descs_per_op
= descs_per_op
;
2826 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2828 if (op
% descs_per_op
== 0)
2829 ppc440spe_adma_init_dma2rxor_slot(iter
, src
,
2831 if (likely(!list_is_last(&iter
->chain_node
,
2832 &sw_desc
->group_list
))) {
2833 /* set 'next' pointer */
2835 list_entry(iter
->chain_node
.next
,
2836 struct ppc440spe_adma_desc_slot
,
2838 ppc440spe_xor_set_link(iter
, iter
->hw_next
);
2840 /* this is the last descriptor. */
2841 iter
->hw_next
= NULL
;
2845 /* fixup head descriptor */
2846 sw_desc
->dst_cnt
= dst_cnt
;
2847 if (flags
& DMA_PREP_ZERO_P
)
2848 set_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
);
2849 if (flags
& DMA_PREP_ZERO_Q
)
2850 set_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
);
2852 /* setup dst/src/mult */
2853 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2856 /* handle descriptors (if dst_cnt == 2) inside
2857 * the ppc440spe_adma_pq_set_srcxxx() functions
2859 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2861 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2862 mult
= scf
[src_cnt
];
2863 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2864 mult
, src_cnt
, dst_cnt
- 1);
2867 spin_unlock_bh(&ppc440spe_chan
->lock
);
2868 ppc440spe_desc_set_rxor_block_size(len
);
2873 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2875 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pq(
2876 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
2877 unsigned int src_cnt
, const unsigned char *scf
,
2878 size_t len
, unsigned long flags
)
2880 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2881 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2884 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2886 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan
->device
->id
,
2887 dst
, src
, src_cnt
));
2889 BUG_ON(unlikely(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
));
2892 if (src_cnt
== 1 && dst
[1] == src
[0]) {
2895 /* dst[1] is real destination (Q) */
2897 /* this is the page to multicast source data to */
2898 dest
[1] = ppc440spe_chan
->qdest
;
2899 sw_desc
= ppc440spe_dma01_prep_mult(ppc440spe_chan
,
2900 dest
, 2, src
, src_cnt
, scf
, len
, flags
);
2901 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2904 if (src_cnt
== 2 && dst
[1] == src
[1]) {
2905 sw_desc
= ppc440spe_dma01_prep_sum_product(ppc440spe_chan
,
2906 &dst
[1], src
, 2, scf
, len
, flags
);
2907 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2910 if (!(flags
& DMA_PREP_PQ_DISABLE_P
)) {
2913 flags
|= DMA_PREP_ZERO_P
;
2916 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
)) {
2919 flags
|= DMA_PREP_ZERO_Q
;
2924 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2925 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2926 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2927 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2929 switch (ppc440spe_chan
->device
->id
) {
2930 case PPC440SPE_DMA0_ID
:
2931 case PPC440SPE_DMA1_ID
:
2932 sw_desc
= ppc440spe_dma01_prep_pq(ppc440spe_chan
,
2933 dst
, dst_cnt
, src
, src_cnt
, scf
,
2937 case PPC440SPE_XOR_ID
:
2938 sw_desc
= ppc440spe_dma2_prep_pq(ppc440spe_chan
,
2939 dst
, dst_cnt
, src
, src_cnt
, scf
,
2944 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2948 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2949 * a PQ_ZERO_SUM operation
2951 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pqzero_sum(
2952 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
2953 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
2954 enum sum_check_flags
*pqres
, unsigned long flags
)
2956 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2957 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
2958 dma_addr_t pdest
, qdest
;
2959 int slot_cnt
, slots_per_op
, idst
, dst_cnt
;
2961 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2963 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2968 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2973 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan
->device
->id
,
2974 src
, src_cnt
, scf
));
2976 /* Always use WXOR for P/Q calculations (two destinations).
2977 * Need 1 or 2 extra slots to verify results are zero.
2979 idst
= dst_cnt
= (pdest
&& qdest
) ? 2 : 1;
2981 /* One additional slot per destination to clone P/Q
2982 * before calculation (we have to preserve destinations).
2984 slot_cnt
= src_cnt
+ dst_cnt
* 2;
2987 spin_lock_bh(&ppc440spe_chan
->lock
);
2988 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2991 ppc440spe_desc_init_dma01pqzero_sum(sw_desc
, dst_cnt
, src_cnt
);
2993 /* Setup byte count for each slot just allocated */
2994 sw_desc
->async_tx
.flags
= flags
;
2995 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2996 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2998 iter
->unmap_len
= len
;
3002 struct dma_cdb
*hw_desc
;
3003 struct ppc440spe_adma_chan
*chan
;
3005 iter
= sw_desc
->group_head
;
3006 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
3007 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
3008 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
3009 struct ppc440spe_adma_desc_slot
,
3011 hw_desc
= iter
->hw_desc
;
3012 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
3015 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
3016 ppc440spe_chan
->pdest
, 0);
3017 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, pdest
);
3018 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
3020 iter
->unmap_len
= 0;
3021 /* override pdest to preserve original P */
3022 pdest
= ppc440spe_chan
->pdest
;
3025 struct dma_cdb
*hw_desc
;
3026 struct ppc440spe_adma_chan
*chan
;
3028 iter
= list_first_entry(&sw_desc
->group_list
,
3029 struct ppc440spe_adma_desc_slot
,
3031 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
3034 iter
= list_entry(iter
->chain_node
.next
,
3035 struct ppc440spe_adma_desc_slot
,
3039 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
3040 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
3041 struct ppc440spe_adma_desc_slot
,
3043 hw_desc
= iter
->hw_desc
;
3044 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
3047 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
3048 ppc440spe_chan
->qdest
, 0);
3049 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, qdest
);
3050 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
3052 iter
->unmap_len
= 0;
3053 /* override qdest to preserve original Q */
3054 qdest
= ppc440spe_chan
->qdest
;
3057 /* Setup destinations for P/Q ops */
3058 ppc440spe_adma_pqzero_sum_set_dest(sw_desc
, pdest
, qdest
);
3060 /* Setup zero QWORDs into DCHECK CDBs */
3062 list_for_each_entry_reverse(iter
, &sw_desc
->group_list
,
3065 * The last CDB corresponds to Q-parity check,
3066 * the one before last CDB corresponds
3069 if (idst
== DMA_DEST_MAX_NUM
) {
3070 if (idst
== dst_cnt
) {
3071 set_bit(PPC440SPE_DESC_QCHECK
,
3074 set_bit(PPC440SPE_DESC_PCHECK
,
3079 set_bit(PPC440SPE_DESC_QCHECK
,
3082 set_bit(PPC440SPE_DESC_PCHECK
,
3086 iter
->xor_check_result
= pqres
;
3089 * set it to zero, if check fail then result will
3092 *iter
->xor_check_result
= 0;
3093 ppc440spe_desc_set_dcheck(iter
, ppc440spe_chan
,
3100 /* Setup sources and mults for P/Q ops */
3101 list_for_each_entry_continue_reverse(iter
, &sw_desc
->group_list
,
3103 struct ppc440spe_adma_chan
*chan
;
3106 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
3107 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3111 mult_dst
= (dst_cnt
- 1) ? DMA_CDB_SG_DST2
:
3113 ppc440spe_desc_set_src_mult(iter
, chan
,
3122 spin_unlock_bh(&ppc440spe_chan
->lock
);
3123 return sw_desc
? &sw_desc
->async_tx
: NULL
;
3127 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3128 * XOR ZERO_SUM operation
3130 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor_zero_sum(
3131 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
3132 size_t len
, enum sum_check_flags
*result
, unsigned long flags
)
3134 struct dma_async_tx_descriptor
*tx
;
3137 /* validate P, disable Q */
3140 flags
|= DMA_PREP_PQ_DISABLE_Q
;
3142 tx
= ppc440spe_adma_prep_dma_pqzero_sum(chan
, pq
, &src
[1],
3143 src_cnt
- 1, 0, len
,
3149 * ppc440spe_adma_set_dest - set destination address into descriptor
3151 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
3152 dma_addr_t addr
, int index
)
3154 struct ppc440spe_adma_chan
*chan
;
3156 BUG_ON(index
>= sw_desc
->dst_cnt
);
3158 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3160 switch (chan
->device
->id
) {
3161 case PPC440SPE_DMA0_ID
:
3162 case PPC440SPE_DMA1_ID
:
3163 /* to do: support transfers lengths >
3164 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3166 ppc440spe_desc_set_dest_addr(sw_desc
->group_head
,
3167 chan
, 0, addr
, index
);
3169 case PPC440SPE_XOR_ID
:
3170 sw_desc
= ppc440spe_get_group_entry(sw_desc
, index
);
3171 ppc440spe_desc_set_dest_addr(sw_desc
,
3172 chan
, 0, addr
, index
);
3177 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot
*iter
,
3178 struct ppc440spe_adma_chan
*chan
, dma_addr_t addr
)
3180 /* To clear destinations update the descriptor
3181 * (P or Q depending on index) as follows:
3182 * addr is destination (0 corresponds to SG2):
3184 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
, addr
, 0);
3186 /* ... and the addr is source: */
3187 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
, addr
);
3189 /* addr is always SG2 then the mult is always DST1 */
3190 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
3191 DMA_CDB_SG_DST1
, 1);
3195 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3196 * for the PQXOR operation
3198 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
3199 dma_addr_t
*addrs
, unsigned long flags
)
3201 struct ppc440spe_adma_desc_slot
*iter
;
3202 struct ppc440spe_adma_chan
*chan
;
3203 dma_addr_t paddr
, qaddr
;
3204 dma_addr_t addr
= 0, ppath
, qpath
;
3207 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3209 if (flags
& DMA_PREP_PQ_DISABLE_P
)
3214 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
3219 if (!paddr
|| !qaddr
)
3220 addr
= paddr
? paddr
: qaddr
;
3222 switch (chan
->device
->id
) {
3223 case PPC440SPE_DMA0_ID
:
3224 case PPC440SPE_DMA1_ID
:
3225 /* walk through the WXOR source list and set P/Q-destinations
3228 if (!test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3229 /* This is WXOR-only chain; may have 1/2 zero descs */
3230 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3232 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3235 iter
= ppc440spe_get_group_entry(sw_desc
, index
);
3237 /* one destination */
3238 list_for_each_entry_from(iter
,
3239 &sw_desc
->group_list
, chain_node
)
3240 ppc440spe_desc_set_dest_addr(iter
, chan
,
3241 DMA_CUED_XOR_BASE
, addr
, 0);
3243 /* two destinations */
3244 list_for_each_entry_from(iter
,
3245 &sw_desc
->group_list
, chain_node
) {
3246 ppc440spe_desc_set_dest_addr(iter
, chan
,
3247 DMA_CUED_XOR_BASE
, paddr
, 0);
3248 ppc440spe_desc_set_dest_addr(iter
, chan
,
3249 DMA_CUED_XOR_BASE
, qaddr
, 1);
3254 /* To clear destinations update the descriptor
3255 * (1st,2nd, or both depending on flags)
3258 if (test_bit(PPC440SPE_ZERO_P
,
3260 iter
= ppc440spe_get_group_entry(
3262 ppc440spe_adma_pq_zero_op(iter
, chan
,
3266 if (test_bit(PPC440SPE_ZERO_Q
,
3268 iter
= ppc440spe_get_group_entry(
3270 ppc440spe_adma_pq_zero_op(iter
, chan
,
3277 /* This is RXOR-only or RXOR/WXOR mixed chain */
3279 /* If we want to include destination into calculations,
3280 * then make dest addresses cued with mult=1 (XOR).
3282 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
3285 (1 << DMA_CUED_MULT1_OFF
);
3286 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3289 (1 << DMA_CUED_MULT1_OFF
);
3291 /* Setup destination(s) in RXOR slot(s) */
3292 iter
= ppc440spe_get_group_entry(sw_desc
, index
++);
3293 ppc440spe_desc_set_dest_addr(iter
, chan
,
3294 paddr
? ppath
: qpath
,
3295 paddr
? paddr
: qaddr
, 0);
3297 /* two destinations */
3298 iter
= ppc440spe_get_group_entry(sw_desc
,
3300 ppc440spe_desc_set_dest_addr(iter
, chan
,
3304 if (test_bit(PPC440SPE_DESC_WXOR
, &sw_desc
->flags
)) {
3305 /* Setup destination(s) in remaining WXOR
3308 iter
= ppc440spe_get_group_entry(sw_desc
,
3311 /* one destination */
3312 list_for_each_entry_from(iter
,
3313 &sw_desc
->group_list
,
3315 ppc440spe_desc_set_dest_addr(
3321 /* two destinations */
3322 list_for_each_entry_from(iter
,
3323 &sw_desc
->group_list
,
3325 ppc440spe_desc_set_dest_addr(
3329 ppc440spe_desc_set_dest_addr(
3340 case PPC440SPE_XOR_ID
:
3341 /* DMA2 descriptors have only 1 destination, so there are
3342 * two chains - one for each dest.
3343 * If we want to include destination into calculations,
3344 * then make dest addresses cued with mult=1 (XOR).
3346 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
3349 (1 << DMA_CUED_MULT1_OFF
);
3351 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3354 (1 << DMA_CUED_MULT1_OFF
);
3356 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3357 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3358 ppc440spe_desc_set_dest_addr(iter
, chan
,
3359 paddr
? ppath
: qpath
,
3360 paddr
? paddr
: qaddr
, 0);
3361 iter
= list_entry(iter
->chain_node
.next
,
3362 struct ppc440spe_adma_desc_slot
,
3367 /* Two destinations; setup Q here */
3368 iter
= ppc440spe_get_group_entry(sw_desc
,
3369 sw_desc
->descs_per_op
);
3370 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3371 ppc440spe_desc_set_dest_addr(iter
,
3372 chan
, qpath
, qaddr
, 0);
3373 iter
= list_entry(iter
->chain_node
.next
,
3374 struct ppc440spe_adma_desc_slot
,
3384 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3385 * for the PQ_ZERO_SUM operation
3387 static void ppc440spe_adma_pqzero_sum_set_dest(
3388 struct ppc440spe_adma_desc_slot
*sw_desc
,
3389 dma_addr_t paddr
, dma_addr_t qaddr
)
3391 struct ppc440spe_adma_desc_slot
*iter
, *end
;
3392 struct ppc440spe_adma_chan
*chan
;
3393 dma_addr_t addr
= 0;
3396 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3398 /* walk through the WXOR source list and set P/Q-destinations
3401 idx
= (paddr
&& qaddr
) ? 2 : 1;
3403 list_for_each_entry_reverse(end
, &sw_desc
->group_list
,
3409 idx
= (paddr
&& qaddr
) ? 2 : 1;
3410 iter
= ppc440spe_get_group_entry(sw_desc
, idx
);
3412 if (paddr
&& qaddr
) {
3413 /* two destinations */
3414 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3416 if (unlikely(iter
== end
))
3418 ppc440spe_desc_set_dest_addr(iter
, chan
,
3419 DMA_CUED_XOR_BASE
, paddr
, 0);
3420 ppc440spe_desc_set_dest_addr(iter
, chan
,
3421 DMA_CUED_XOR_BASE
, qaddr
, 1);
3424 /* one destination */
3425 addr
= paddr
? paddr
: qaddr
;
3426 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3428 if (unlikely(iter
== end
))
3430 ppc440spe_desc_set_dest_addr(iter
, chan
,
3431 DMA_CUED_XOR_BASE
, addr
, 0);
3435 /* The remaining descriptors are DATACHECK. These have no need in
3436 * destination. Actually, these destinations are used there
3437 * as sources for check operation. So, set addr as source.
3439 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, addr
? addr
: paddr
);
3442 end
= list_entry(end
->chain_node
.next
,
3443 struct ppc440spe_adma_desc_slot
, chain_node
);
3444 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, qaddr
);
3449 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3451 static inline void ppc440spe_desc_set_xor_src_cnt(
3452 struct ppc440spe_adma_desc_slot
*desc
,
3455 struct xor_cb
*hw_desc
= desc
->hw_desc
;
3457 hw_desc
->cbc
&= ~XOR_CDCR_OAC_MSK
;
3458 hw_desc
->cbc
|= src_cnt
;
3462 * ppc440spe_adma_pq_set_src - set source address into descriptor
3464 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*sw_desc
,
3465 dma_addr_t addr
, int index
)
3467 struct ppc440spe_adma_chan
*chan
;
3468 dma_addr_t haddr
= 0;
3469 struct ppc440spe_adma_desc_slot
*iter
= NULL
;
3471 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3473 switch (chan
->device
->id
) {
3474 case PPC440SPE_DMA0_ID
:
3475 case PPC440SPE_DMA1_ID
:
3476 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3478 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3479 /* RXOR-only or RXOR/WXOR operation */
3480 int iskip
= test_bit(PPC440SPE_DESC_RXOR12
,
3481 &sw_desc
->flags
) ? 2 : 3;
3484 /* 1st slot (RXOR) */
3485 /* setup sources region (R1-2-3, R1-2-4,
3488 if (test_bit(PPC440SPE_DESC_RXOR12
,
3490 haddr
= DMA_RXOR12
<<
3491 DMA_CUED_REGION_OFF
;
3492 else if (test_bit(PPC440SPE_DESC_RXOR123
,
3494 haddr
= DMA_RXOR123
<<
3495 DMA_CUED_REGION_OFF
;
3496 else if (test_bit(PPC440SPE_DESC_RXOR124
,
3498 haddr
= DMA_RXOR124
<<
3499 DMA_CUED_REGION_OFF
;
3500 else if (test_bit(PPC440SPE_DESC_RXOR125
,
3502 haddr
= DMA_RXOR125
<<
3503 DMA_CUED_REGION_OFF
;
3506 haddr
|= DMA_CUED_XOR_BASE
;
3507 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3508 } else if (index
< iskip
) {
3510 * shall actually set source address only once
3511 * instead of first <iskip>
3515 /* 2nd/3d and next slots (WXOR);
3516 * skip first slot with RXOR
3518 haddr
= DMA_CUED_XOR_HB
;
3519 iter
= ppc440spe_get_group_entry(sw_desc
,
3520 index
- iskip
+ sw_desc
->dst_cnt
);
3525 /* WXOR-only operation; skip first slots with
3526 * zeroing destinations
3528 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3530 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3533 haddr
= DMA_CUED_XOR_HB
;
3534 iter
= ppc440spe_get_group_entry(sw_desc
,
3539 ppc440spe_desc_set_src_addr(iter
, chan
, 0, haddr
, addr
);
3542 test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
) &&
3543 sw_desc
->dst_cnt
== 2) {
3544 /* if we have two destinations for RXOR, then
3545 * setup source in the second descr too
3547 iter
= ppc440spe_get_group_entry(sw_desc
, 1);
3548 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3554 case PPC440SPE_XOR_ID
:
3555 /* DMA2 may do Biskup */
3556 iter
= sw_desc
->group_head
;
3557 if (iter
->dst_cnt
== 2) {
3558 /* both P & Q calculations required; set P src here */
3559 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3562 iter
= ppc440spe_get_group_entry(sw_desc
,
3563 sw_desc
->descs_per_op
);
3565 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3571 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3573 static void ppc440spe_adma_memcpy_xor_set_src(
3574 struct ppc440spe_adma_desc_slot
*sw_desc
,
3575 dma_addr_t addr
, int index
)
3577 struct ppc440spe_adma_chan
*chan
;
3579 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3580 sw_desc
= sw_desc
->group_head
;
3582 if (likely(sw_desc
))
3583 ppc440spe_desc_set_src_addr(sw_desc
, chan
, index
, 0, addr
);
3587 * ppc440spe_adma_dma2rxor_inc_addr -
3589 static void ppc440spe_adma_dma2rxor_inc_addr(
3590 struct ppc440spe_adma_desc_slot
*desc
,
3591 struct ppc440spe_rxor
*cursor
, int index
, int src_cnt
)
3593 cursor
->addr_count
++;
3594 if (index
== src_cnt
- 1) {
3595 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3596 } else if (cursor
->addr_count
== XOR_MAX_OPS
) {
3597 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3598 cursor
->addr_count
= 0;
3599 cursor
->desc_count
++;
3604 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3606 static int ppc440spe_adma_dma2rxor_prep_src(
3607 struct ppc440spe_adma_desc_slot
*hdesc
,
3608 struct ppc440spe_rxor
*cursor
, int index
,
3609 int src_cnt
, u32 addr
)
3613 struct ppc440spe_adma_desc_slot
*desc
= hdesc
;
3616 for (i
= 0; i
< cursor
->desc_count
; i
++) {
3617 desc
= list_entry(hdesc
->chain_node
.next
,
3618 struct ppc440spe_adma_desc_slot
,
3622 switch (cursor
->state
) {
3624 if (addr
== cursor
->addrl
+ cursor
->len
) {
3627 cursor
->xor_count
++;
3628 if (index
== src_cnt
-1) {
3629 ppc440spe_rxor_set_region(desc
,
3631 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3632 ppc440spe_adma_dma2rxor_inc_addr(
3633 desc
, cursor
, index
, src_cnt
);
3635 } else if (cursor
->addrl
== addr
+ cursor
->len
) {
3638 cursor
->xor_count
++;
3639 set_bit(cursor
->addr_count
, &desc
->reverse_flags
[0]);
3640 if (index
== src_cnt
-1) {
3641 ppc440spe_rxor_set_region(desc
,
3643 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3644 ppc440spe_adma_dma2rxor_inc_addr(
3645 desc
, cursor
, index
, src_cnt
);
3648 printk(KERN_ERR
"Cannot build "
3649 "DMA2 RXOR command block.\n");
3654 sign
= test_bit(cursor
->addr_count
,
3655 desc
->reverse_flags
)
3657 if (index
== src_cnt
-2 || (sign
== -1
3658 && addr
!= cursor
->addrl
- 2*cursor
->len
)) {
3660 cursor
->xor_count
= 1;
3661 cursor
->addrl
= addr
;
3662 ppc440spe_rxor_set_region(desc
,
3664 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3665 ppc440spe_adma_dma2rxor_inc_addr(
3666 desc
, cursor
, index
, src_cnt
);
3667 } else if (addr
== cursor
->addrl
+ 2*sign
*cursor
->len
) {
3669 cursor
->xor_count
= 0;
3670 ppc440spe_rxor_set_region(desc
,
3672 DMA_RXOR123
<< DMA_CUED_REGION_OFF
);
3673 if (index
== src_cnt
-1) {
3674 ppc440spe_adma_dma2rxor_inc_addr(
3675 desc
, cursor
, index
, src_cnt
);
3677 } else if (addr
== cursor
->addrl
+ 3*cursor
->len
) {
3679 cursor
->xor_count
= 0;
3680 ppc440spe_rxor_set_region(desc
,
3682 DMA_RXOR124
<< DMA_CUED_REGION_OFF
);
3683 if (index
== src_cnt
-1) {
3684 ppc440spe_adma_dma2rxor_inc_addr(
3685 desc
, cursor
, index
, src_cnt
);
3687 } else if (addr
== cursor
->addrl
+ 4*cursor
->len
) {
3689 cursor
->xor_count
= 0;
3690 ppc440spe_rxor_set_region(desc
,
3692 DMA_RXOR125
<< DMA_CUED_REGION_OFF
);
3693 if (index
== src_cnt
-1) {
3694 ppc440spe_adma_dma2rxor_inc_addr(
3695 desc
, cursor
, index
, src_cnt
);
3699 cursor
->xor_count
= 1;
3700 cursor
->addrl
= addr
;
3701 ppc440spe_rxor_set_region(desc
,
3703 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3704 ppc440spe_adma_dma2rxor_inc_addr(
3705 desc
, cursor
, index
, src_cnt
);
3710 cursor
->addrl
= addr
;
3711 cursor
->xor_count
++;
3713 ppc440spe_adma_dma2rxor_inc_addr(
3714 desc
, cursor
, index
, src_cnt
);
3723 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3724 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3726 static void ppc440spe_adma_dma2rxor_set_src(
3727 struct ppc440spe_adma_desc_slot
*desc
,
3728 int index
, dma_addr_t addr
)
3730 struct xor_cb
*xcb
= desc
->hw_desc
;
3731 int k
= 0, op
= 0, lop
= 0;
3733 /* get the RXOR operand which corresponds to index addr */
3734 while (op
<= index
) {
3736 if (k
== XOR_MAX_OPS
) {
3738 desc
= list_entry(desc
->chain_node
.next
,
3739 struct ppc440spe_adma_desc_slot
, chain_node
);
3740 xcb
= desc
->hw_desc
;
3743 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3744 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3752 if (test_bit(k
-1, desc
->reverse_flags
)) {
3753 /* reverse operand order; put last op in RXOR group */
3754 if (index
== op
- 1)
3755 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3757 /* direct operand order; put first op in RXOR group */
3759 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3764 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3765 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3767 static void ppc440spe_adma_dma2rxor_set_mult(
3768 struct ppc440spe_adma_desc_slot
*desc
,
3771 struct xor_cb
*xcb
= desc
->hw_desc
;
3772 int k
= 0, op
= 0, lop
= 0;
3774 /* get the RXOR operand which corresponds to index mult */
3775 while (op
<= index
) {
3777 if (k
== XOR_MAX_OPS
) {
3779 desc
= list_entry(desc
->chain_node
.next
,
3780 struct ppc440spe_adma_desc_slot
,
3782 xcb
= desc
->hw_desc
;
3785 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3786 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3793 if (test_bit(k
-1, desc
->reverse_flags
)) {
3795 ppc440spe_rxor_set_mult(desc
, k
- 1, op
- index
- 1, mult
);
3798 ppc440spe_rxor_set_mult(desc
, k
- 1, index
- lop
, mult
);
3803 * ppc440spe_init_rxor_cursor -
3805 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
)
3807 memset(cursor
, 0, sizeof(struct ppc440spe_rxor
));
3812 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3813 * descriptor for the PQXOR operation
3815 static void ppc440spe_adma_pq_set_src_mult(
3816 struct ppc440spe_adma_desc_slot
*sw_desc
,
3817 unsigned char mult
, int index
, int dst_pos
)
3819 struct ppc440spe_adma_chan
*chan
;
3820 u32 mult_idx
, mult_dst
;
3821 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *iter1
= NULL
;
3823 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3825 switch (chan
->device
->id
) {
3826 case PPC440SPE_DMA0_ID
:
3827 case PPC440SPE_DMA1_ID
:
3828 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3829 int region
= test_bit(PPC440SPE_DESC_RXOR12
,
3830 &sw_desc
->flags
) ? 2 : 3;
3832 if (index
< region
) {
3833 /* RXOR multipliers */
3834 iter
= ppc440spe_get_group_entry(sw_desc
,
3835 sw_desc
->dst_cnt
- 1);
3836 if (sw_desc
->dst_cnt
== 2)
3837 iter1
= ppc440spe_get_group_entry(
3840 mult_idx
= DMA_CUED_MULT1_OFF
+ (index
<< 3);
3841 mult_dst
= DMA_CDB_SG_SRC
;
3843 /* WXOR multiplier */
3844 iter
= ppc440spe_get_group_entry(sw_desc
,
3847 mult_idx
= DMA_CUED_MULT1_OFF
;
3848 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
:
3855 * skip first slots with destinations (if ZERO_DST has
3858 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3860 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3863 iter
= ppc440spe_get_group_entry(sw_desc
, index
+ znum
);
3864 mult_idx
= DMA_CUED_MULT1_OFF
;
3865 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
: DMA_CDB_SG_DST1
;
3869 ppc440spe_desc_set_src_mult(iter
, chan
,
3870 mult_idx
, mult_dst
, mult
);
3872 if (unlikely(iter1
)) {
3873 /* if we have two destinations for RXOR, then
3874 * we've just set Q mult. Set-up P now.
3876 ppc440spe_desc_set_src_mult(iter1
, chan
,
3877 mult_idx
, mult_dst
, 1);
3883 case PPC440SPE_XOR_ID
:
3884 iter
= sw_desc
->group_head
;
3885 if (sw_desc
->dst_cnt
== 2) {
3886 /* both P & Q calculations required; set P mult here */
3887 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, 1);
3889 /* and then set Q mult */
3890 iter
= ppc440spe_get_group_entry(sw_desc
,
3891 sw_desc
->descs_per_op
);
3893 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, mult
);
3899 * ppc440spe_adma_free_chan_resources - free the resources allocated
3901 static void ppc440spe_adma_free_chan_resources(struct dma_chan
*chan
)
3903 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3904 struct ppc440spe_adma_desc_slot
*iter
, *_iter
;
3905 int in_use_descs
= 0;
3907 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3908 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3910 spin_lock_bh(&ppc440spe_chan
->lock
);
3911 list_for_each_entry_safe(iter
, _iter
, &ppc440spe_chan
->chain
,
3914 list_del(&iter
->chain_node
);
3916 list_for_each_entry_safe_reverse(iter
, _iter
,
3917 &ppc440spe_chan
->all_slots
, slot_node
) {
3918 list_del(&iter
->slot_node
);
3920 ppc440spe_chan
->slots_allocated
--;
3922 ppc440spe_chan
->last_used
= NULL
;
3924 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3925 "ppc440spe adma%d %s slots_allocated %d\n",
3926 ppc440spe_chan
->device
->id
,
3927 __func__
, ppc440spe_chan
->slots_allocated
);
3928 spin_unlock_bh(&ppc440spe_chan
->lock
);
3930 /* one is ok since we left it on there on purpose */
3931 if (in_use_descs
> 1)
3932 printk(KERN_ERR
"SPE: Freeing %d in use descriptors!\n",
3937 * ppc440spe_adma_is_complete - poll the status of an ADMA transaction
3938 * @chan: ADMA channel handle
3939 * @cookie: ADMA transaction identifier
3941 static enum dma_status
ppc440spe_adma_is_complete(struct dma_chan
*chan
,
3942 dma_cookie_t cookie
, dma_cookie_t
*done
, dma_cookie_t
*used
)
3944 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3945 dma_cookie_t last_used
;
3946 dma_cookie_t last_complete
;
3947 enum dma_status ret
;
3949 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3950 last_used
= chan
->cookie
;
3951 last_complete
= ppc440spe_chan
->completed_cookie
;
3954 *done
= last_complete
;
3958 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
3959 if (ret
== DMA_SUCCESS
)
3962 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3964 last_used
= chan
->cookie
;
3965 last_complete
= ppc440spe_chan
->completed_cookie
;
3968 *done
= last_complete
;
3972 return dma_async_is_complete(cookie
, last_complete
, last_used
);
3976 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3978 static irqreturn_t
ppc440spe_adma_eot_handler(int irq
, void *data
)
3980 struct ppc440spe_adma_chan
*chan
= data
;
3982 dev_dbg(chan
->device
->common
.dev
,
3983 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3985 tasklet_schedule(&chan
->irq_tasklet
);
3986 ppc440spe_adma_device_clear_eot_status(chan
);
3992 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3993 * do the same things as a eot handler
3995 static irqreturn_t
ppc440spe_adma_err_handler(int irq
, void *data
)
3997 struct ppc440spe_adma_chan
*chan
= data
;
3999 dev_dbg(chan
->device
->common
.dev
,
4000 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
4002 tasklet_schedule(&chan
->irq_tasklet
);
4003 ppc440spe_adma_device_clear_eot_status(chan
);
4009 * ppc440spe_test_callback - called when test operation has been done
4011 static void ppc440spe_test_callback(void *unused
)
4013 complete(&ppc440spe_r6_test_comp
);
4017 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
4019 static void ppc440spe_adma_issue_pending(struct dma_chan
*chan
)
4021 struct ppc440spe_adma_chan
*ppc440spe_chan
;
4023 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
4024 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
4025 "ppc440spe adma%d: %s %d \n", ppc440spe_chan
->device
->id
,
4026 __func__
, ppc440spe_chan
->pending
);
4028 if (ppc440spe_chan
->pending
) {
4029 ppc440spe_chan
->pending
= 0;
4030 ppc440spe_chan_append(ppc440spe_chan
);
4035 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4036 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
4037 * specific operation)
4039 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
)
4041 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
4042 dma_cookie_t cookie
;
4043 int slot_cnt
, slots_per_op
;
4045 dev_dbg(chan
->device
->common
.dev
,
4046 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
4048 spin_lock_bh(&chan
->lock
);
4049 slot_cnt
= ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op
);
4050 sw_desc
= ppc440spe_adma_alloc_slots(chan
, slot_cnt
, slots_per_op
);
4052 group_start
= sw_desc
->group_head
;
4053 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
4054 async_tx_ack(&sw_desc
->async_tx
);
4055 ppc440spe_desc_init_null_xor(group_start
);
4057 cookie
= chan
->common
.cookie
;
4062 /* initialize the completed cookie to be less than
4063 * the most recently used cookie
4065 chan
->completed_cookie
= cookie
- 1;
4066 chan
->common
.cookie
= sw_desc
->async_tx
.cookie
= cookie
;
4068 /* channel should not be busy */
4069 BUG_ON(ppc440spe_chan_is_busy(chan
));
4071 /* set the descriptor address */
4072 ppc440spe_chan_set_first_xor_descriptor(chan
, sw_desc
);
4074 /* run the descriptor */
4075 ppc440spe_chan_run(chan
);
4077 printk(KERN_ERR
"ppc440spe adma%d"
4078 " failed to allocate null descriptor\n",
4080 spin_unlock_bh(&chan
->lock
);
4084 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4085 * For this we just perform one WXOR operation with the same source
4086 * and destination addresses, the GF-multiplier is 1; so if RAID-6
4087 * capabilities are enabled then we'll get src/dst filled with zero.
4089 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan
*chan
)
4091 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
4094 dma_addr_t dma_addr
, addrs
[2];
4095 unsigned long op
= 0;
4098 set_bit(PPC440SPE_DESC_WXOR
, &op
);
4100 pg
= alloc_page(GFP_KERNEL
);
4104 spin_lock_bh(&chan
->lock
);
4105 sw_desc
= ppc440spe_adma_alloc_slots(chan
, 1, 1);
4107 /* 1 src, 1 dsr, int_ena, WXOR */
4108 ppc440spe_desc_init_dma01pq(sw_desc
, 1, 1, 1, op
);
4109 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
4110 ppc440spe_desc_set_byte_count(iter
, chan
, PAGE_SIZE
);
4111 iter
->unmap_len
= PAGE_SIZE
;
4115 spin_unlock_bh(&chan
->lock
);
4118 spin_unlock_bh(&chan
->lock
);
4120 /* Fill the test page with ones */
4121 memset(page_address(pg
), 0xFF, PAGE_SIZE
);
4122 dma_addr
= dma_map_page(chan
->device
->dev
, pg
, 0,
4123 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4125 /* Setup addresses */
4126 ppc440spe_adma_pq_set_src(sw_desc
, dma_addr
, 0);
4127 ppc440spe_adma_pq_set_src_mult(sw_desc
, 1, 0, 0);
4128 addrs
[0] = dma_addr
;
4130 ppc440spe_adma_pq_set_dest(sw_desc
, addrs
, DMA_PREP_PQ_DISABLE_Q
);
4132 async_tx_ack(&sw_desc
->async_tx
);
4133 sw_desc
->async_tx
.callback
= ppc440spe_test_callback
;
4134 sw_desc
->async_tx
.callback_param
= NULL
;
4136 init_completion(&ppc440spe_r6_test_comp
);
4138 ppc440spe_adma_tx_submit(&sw_desc
->async_tx
);
4139 ppc440spe_adma_issue_pending(&chan
->common
);
4141 wait_for_completion(&ppc440spe_r6_test_comp
);
4143 /* Now check if the test page is zeroed */
4144 a
= page_address(pg
);
4145 if ((*(u32
*)a
) == 0 && memcmp(a
, a
+4, PAGE_SIZE
-4) == 0) {
4146 /* page is zero - RAID-6 enabled */
4149 /* RAID-6 was not enabled */
4157 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device
*adev
)
4160 case PPC440SPE_DMA0_ID
:
4161 case PPC440SPE_DMA1_ID
:
4162 dma_cap_set(DMA_MEMCPY
, adev
->common
.cap_mask
);
4163 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
4164 dma_cap_set(DMA_MEMSET
, adev
->common
.cap_mask
);
4165 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
4166 dma_cap_set(DMA_PQ_VAL
, adev
->common
.cap_mask
);
4167 dma_cap_set(DMA_XOR_VAL
, adev
->common
.cap_mask
);
4169 case PPC440SPE_XOR_ID
:
4170 dma_cap_set(DMA_XOR
, adev
->common
.cap_mask
);
4171 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
4172 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
4173 adev
->common
.cap_mask
= adev
->common
.cap_mask
;
4177 /* Set base routines */
4178 adev
->common
.device_alloc_chan_resources
=
4179 ppc440spe_adma_alloc_chan_resources
;
4180 adev
->common
.device_free_chan_resources
=
4181 ppc440spe_adma_free_chan_resources
;
4182 adev
->common
.device_is_tx_complete
= ppc440spe_adma_is_complete
;
4183 adev
->common
.device_issue_pending
= ppc440spe_adma_issue_pending
;
4185 /* Set prep routines based on capability */
4186 if (dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
)) {
4187 adev
->common
.device_prep_dma_memcpy
=
4188 ppc440spe_adma_prep_dma_memcpy
;
4190 if (dma_has_cap(DMA_MEMSET
, adev
->common
.cap_mask
)) {
4191 adev
->common
.device_prep_dma_memset
=
4192 ppc440spe_adma_prep_dma_memset
;
4194 if (dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
)) {
4195 adev
->common
.max_xor
= XOR_MAX_OPS
;
4196 adev
->common
.device_prep_dma_xor
=
4197 ppc440spe_adma_prep_dma_xor
;
4199 if (dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
)) {
4201 case PPC440SPE_DMA0_ID
:
4202 dma_set_maxpq(&adev
->common
,
4203 DMA0_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
4205 case PPC440SPE_DMA1_ID
:
4206 dma_set_maxpq(&adev
->common
,
4207 DMA1_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
4209 case PPC440SPE_XOR_ID
:
4210 adev
->common
.max_pq
= XOR_MAX_OPS
* 3;
4213 adev
->common
.device_prep_dma_pq
=
4214 ppc440spe_adma_prep_dma_pq
;
4216 if (dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
)) {
4218 case PPC440SPE_DMA0_ID
:
4219 adev
->common
.max_pq
= DMA0_FIFO_SIZE
/
4220 sizeof(struct dma_cdb
);
4222 case PPC440SPE_DMA1_ID
:
4223 adev
->common
.max_pq
= DMA1_FIFO_SIZE
/
4224 sizeof(struct dma_cdb
);
4227 adev
->common
.device_prep_dma_pq_val
=
4228 ppc440spe_adma_prep_dma_pqzero_sum
;
4230 if (dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
)) {
4232 case PPC440SPE_DMA0_ID
:
4233 adev
->common
.max_xor
= DMA0_FIFO_SIZE
/
4234 sizeof(struct dma_cdb
);
4236 case PPC440SPE_DMA1_ID
:
4237 adev
->common
.max_xor
= DMA1_FIFO_SIZE
/
4238 sizeof(struct dma_cdb
);
4241 adev
->common
.device_prep_dma_xor_val
=
4242 ppc440spe_adma_prep_dma_xor_zero_sum
;
4244 if (dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
)) {
4245 adev
->common
.device_prep_dma_interrupt
=
4246 ppc440spe_adma_prep_dma_interrupt
;
4248 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4249 "( %s%s%s%s%s%s%s)\n",
4250 dev_name(adev
->dev
),
4251 dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
) ? "pq " : "",
4252 dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
) ? "pq_val " : "",
4253 dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
) ? "xor " : "",
4254 dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
) ? "xor_val " : "",
4255 dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
) ? "memcpy " : "",
4256 dma_has_cap(DMA_MEMSET
, adev
->common
.cap_mask
) ? "memset " : "",
4257 dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
) ? "intr " : "");
4260 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device
*adev
,
4261 struct ppc440spe_adma_chan
*chan
,
4264 struct device_node
*np
;
4267 np
= container_of(adev
->dev
, struct of_device
, dev
)->node
;
4268 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4269 adev
->err_irq
= irq_of_parse_and_map(np
, 1);
4270 if (adev
->err_irq
== NO_IRQ
) {
4271 dev_warn(adev
->dev
, "no err irq resource?\n");
4272 *initcode
= PPC_ADMA_INIT_IRQ2
;
4273 adev
->err_irq
= -ENXIO
;
4275 atomic_inc(&ppc440spe_adma_err_irq_ref
);
4277 adev
->err_irq
= -ENXIO
;
4280 adev
->irq
= irq_of_parse_and_map(np
, 0);
4281 if (adev
->irq
== NO_IRQ
) {
4282 dev_err(adev
->dev
, "no irq resource\n");
4283 *initcode
= PPC_ADMA_INIT_IRQ1
;
4287 dev_dbg(adev
->dev
, "irq %d, err irq %d\n",
4288 adev
->irq
, adev
->err_irq
);
4290 ret
= request_irq(adev
->irq
, ppc440spe_adma_eot_handler
,
4291 0, dev_driver_string(adev
->dev
), chan
);
4293 dev_err(adev
->dev
, "can't request irq %d\n",
4295 *initcode
= PPC_ADMA_INIT_IRQ1
;
4300 /* only DMA engines have a separate error IRQ
4301 * so it's Ok if err_irq < 0 in XOR engine case.
4303 if (adev
->err_irq
> 0) {
4304 /* both DMA engines share common error IRQ */
4305 ret
= request_irq(adev
->err_irq
,
4306 ppc440spe_adma_err_handler
,
4308 dev_driver_string(adev
->dev
),
4311 dev_err(adev
->dev
, "can't request irq %d\n",
4313 *initcode
= PPC_ADMA_INIT_IRQ2
;
4319 if (adev
->id
== PPC440SPE_XOR_ID
) {
4320 /* enable XOR engine interrupts */
4321 iowrite32be(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
4322 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
,
4323 &adev
->xor_reg
->ier
);
4327 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4329 pr_err("%s: can't find I2O device tree node\n",
4334 adev
->i2o_reg
= of_iomap(np
, 0);
4335 if (!adev
->i2o_reg
) {
4336 pr_err("%s: failed to map I2O registers\n", __func__
);
4342 /* Unmask 'CS FIFO Attention' interrupts and
4343 * enable generating interrupts on errors
4345 enable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4346 ~(I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4347 ~(I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4348 mask
= ioread32(&adev
->i2o_reg
->iopim
) & enable
;
4349 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4354 free_irq(adev
->irq
, chan
);
4356 irq_dispose_mapping(adev
->irq
);
4358 if (adev
->err_irq
> 0) {
4359 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
))
4360 irq_dispose_mapping(adev
->err_irq
);
4365 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device
*adev
,
4366 struct ppc440spe_adma_chan
*chan
)
4370 if (adev
->id
== PPC440SPE_XOR_ID
) {
4371 /* disable XOR engine interrupts */
4372 mask
= ioread32be(&adev
->xor_reg
->ier
);
4373 mask
&= ~(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
4374 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
);
4375 iowrite32be(mask
, &adev
->xor_reg
->ier
);
4377 /* disable DMAx engine interrupts */
4378 disable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4379 (I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4380 (I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4381 mask
= ioread32(&adev
->i2o_reg
->iopim
) | disable
;
4382 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4384 free_irq(adev
->irq
, chan
);
4385 irq_dispose_mapping(adev
->irq
);
4386 if (adev
->err_irq
> 0) {
4387 free_irq(adev
->err_irq
, chan
);
4388 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
)) {
4389 irq_dispose_mapping(adev
->err_irq
);
4390 iounmap(adev
->i2o_reg
);
4396 * ppc440spe_adma_probe - probe the asynch device
4398 static int __devinit
ppc440spe_adma_probe(struct of_device
*ofdev
,
4399 const struct of_device_id
*match
)
4401 struct device_node
*np
= ofdev
->node
;
4402 struct resource res
;
4403 struct ppc440spe_adma_device
*adev
;
4404 struct ppc440spe_adma_chan
*chan
;
4405 struct ppc_dma_chan_ref
*ref
, *_ref
;
4406 int ret
= 0, initcode
= PPC_ADMA_INIT_OK
;
4412 if (of_device_is_compatible(np
, "amcc,xor-accelerator")) {
4413 id
= PPC440SPE_XOR_ID
;
4414 /* As far as the XOR engine is concerned, it does not
4415 * use FIFOs but uses linked list. So there is no dependency
4416 * between pool size to allocate and the engine configuration.
4418 pool_size
= PAGE_SIZE
<< 1;
4420 /* it is DMA0 or DMA1 */
4421 idx
= of_get_property(np
, "cell-index", &len
);
4422 if (!idx
|| (len
!= sizeof(u32
))) {
4423 dev_err(&ofdev
->dev
, "Device node %s has missing "
4424 "or invalid cell-index property\n",
4429 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4430 * should allocate the pool accordingly to size of this
4431 * FIFO. Thus, the pool size depends on the FIFO depth:
4432 * how much CDBs pointers the FIFO may contain then so
4433 * much CDBs we should provide in the pool.
4436 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4437 * Pool size = CDBs number * CDB size =
4438 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4440 pool_size
= (id
== PPC440SPE_DMA0_ID
) ?
4441 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4445 if (of_address_to_resource(np
, 0, &res
)) {
4446 dev_err(&ofdev
->dev
, "failed to get memory resource\n");
4447 initcode
= PPC_ADMA_INIT_MEMRES
;
4452 if (!request_mem_region(res
.start
, resource_size(&res
),
4453 dev_driver_string(&ofdev
->dev
))) {
4454 dev_err(&ofdev
->dev
, "failed to request memory region "
4455 "(0x%016llx-0x%016llx)\n",
4456 (u64
)res
.start
, (u64
)res
.end
);
4457 initcode
= PPC_ADMA_INIT_MEMREG
;
4462 /* create a device */
4463 adev
= kzalloc(sizeof(*adev
), GFP_KERNEL
);
4465 dev_err(&ofdev
->dev
, "failed to allocate device\n");
4466 initcode
= PPC_ADMA_INIT_ALLOC
;
4468 goto err_adev_alloc
;
4472 adev
->pool_size
= pool_size
;
4473 /* allocate coherent memory for hardware descriptors */
4474 adev
->dma_desc_pool_virt
= dma_alloc_coherent(&ofdev
->dev
,
4475 adev
->pool_size
, &adev
->dma_desc_pool
,
4477 if (adev
->dma_desc_pool_virt
== NULL
) {
4478 dev_err(&ofdev
->dev
, "failed to allocate %d bytes of coherent "
4479 "memory for hardware descriptors\n",
4481 initcode
= PPC_ADMA_INIT_COHERENT
;
4485 dev_dbg(&ofdev
->dev
, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
4486 adev
->dma_desc_pool_virt
, (u64
)adev
->dma_desc_pool
);
4488 regs
= ioremap(res
.start
, resource_size(&res
));
4490 dev_err(&ofdev
->dev
, "failed to ioremap regs!\n");
4491 goto err_regs_alloc
;
4494 if (adev
->id
== PPC440SPE_XOR_ID
) {
4495 adev
->xor_reg
= regs
;
4497 iowrite32be(XOR_CRSR_XASR_BIT
, &adev
->xor_reg
->crsr
);
4498 iowrite32be(XOR_CRSR_64BA_BIT
, &adev
->xor_reg
->crrr
);
4500 size_t fifo_size
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4501 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4502 adev
->dma_reg
= regs
;
4503 /* DMAx_FIFO_SIZE is defined in bytes,
4504 * <fsiz> - is defined in number of CDB pointers (8byte).
4505 * DMA FIFO Length = CSlength + CPlength, where
4506 * CSlength = CPlength = (fsiz + 1) * 8.
4508 iowrite32(DMA_FIFO_ENABLE
| ((fifo_size
>> 3) - 2),
4509 &adev
->dma_reg
->fsiz
);
4510 /* Configure DMA engine */
4511 iowrite32(DMA_CFG_DXEPR_HP
| DMA_CFG_DFMPP_HP
| DMA_CFG_FALGN
,
4512 &adev
->dma_reg
->cfg
);
4514 iowrite32(~0, &adev
->dma_reg
->dsts
);
4517 adev
->dev
= &ofdev
->dev
;
4518 adev
->common
.dev
= &ofdev
->dev
;
4519 INIT_LIST_HEAD(&adev
->common
.channels
);
4520 dev_set_drvdata(&ofdev
->dev
, adev
);
4522 /* create a channel */
4523 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
4525 dev_err(&ofdev
->dev
, "can't allocate channel structure\n");
4526 initcode
= PPC_ADMA_INIT_CHANNEL
;
4528 goto err_chan_alloc
;
4531 spin_lock_init(&chan
->lock
);
4532 INIT_LIST_HEAD(&chan
->chain
);
4533 INIT_LIST_HEAD(&chan
->all_slots
);
4534 chan
->device
= adev
;
4535 chan
->common
.device
= &adev
->common
;
4536 list_add_tail(&chan
->common
.device_node
, &adev
->common
.channels
);
4537 tasklet_init(&chan
->irq_tasklet
, ppc440spe_adma_tasklet
,
4538 (unsigned long)chan
);
4540 /* allocate and map helper pages for async validation or
4541 * async_mult/async_sum_product operations on DMA0/1.
4543 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4544 chan
->pdest_page
= alloc_page(GFP_KERNEL
);
4545 chan
->qdest_page
= alloc_page(GFP_KERNEL
);
4546 if (!chan
->pdest_page
||
4547 !chan
->qdest_page
) {
4548 if (chan
->pdest_page
)
4549 __free_page(chan
->pdest_page
);
4550 if (chan
->qdest_page
)
4551 __free_page(chan
->qdest_page
);
4553 goto err_page_alloc
;
4555 chan
->pdest
= dma_map_page(&ofdev
->dev
, chan
->pdest_page
, 0,
4556 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4557 chan
->qdest
= dma_map_page(&ofdev
->dev
, chan
->qdest_page
, 0,
4558 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4561 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
4563 ref
->chan
= &chan
->common
;
4564 INIT_LIST_HEAD(&ref
->node
);
4565 list_add_tail(&ref
->node
, &ppc440spe_adma_chan_list
);
4567 dev_err(&ofdev
->dev
, "failed to allocate channel reference!\n");
4572 ret
= ppc440spe_adma_setup_irqs(adev
, chan
, &initcode
);
4576 ppc440spe_adma_init_capabilities(adev
);
4578 ret
= dma_async_device_register(&adev
->common
);
4580 initcode
= PPC_ADMA_INIT_REGISTER
;
4581 dev_err(&ofdev
->dev
, "failed to register dma device\n");
4588 ppc440spe_adma_release_irqs(adev
, chan
);
4590 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
, node
) {
4591 if (chan
== to_ppc440spe_adma_chan(ref
->chan
)) {
4592 list_del(&ref
->node
);
4597 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4598 dma_unmap_page(&ofdev
->dev
, chan
->pdest
,
4599 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4600 dma_unmap_page(&ofdev
->dev
, chan
->qdest
,
4601 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4602 __free_page(chan
->pdest_page
);
4603 __free_page(chan
->qdest_page
);
4608 if (adev
->id
== PPC440SPE_XOR_ID
)
4609 iounmap(adev
->xor_reg
);
4611 iounmap(adev
->dma_reg
);
4613 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4614 adev
->dma_desc_pool_virt
,
4615 adev
->dma_desc_pool
);
4619 release_mem_region(res
.start
, resource_size(&res
));
4621 if (id
< PPC440SPE_ADMA_ENGINES_NUM
)
4622 ppc440spe_adma_devices
[id
] = initcode
;
4628 * ppc440spe_adma_remove - remove the asynch device
4630 static int __devexit
ppc440spe_adma_remove(struct of_device
*ofdev
)
4632 struct ppc440spe_adma_device
*adev
= dev_get_drvdata(&ofdev
->dev
);
4633 struct device_node
*np
= ofdev
->node
;
4634 struct resource res
;
4635 struct dma_chan
*chan
, *_chan
;
4636 struct ppc_dma_chan_ref
*ref
, *_ref
;
4637 struct ppc440spe_adma_chan
*ppc440spe_chan
;
4639 dev_set_drvdata(&ofdev
->dev
, NULL
);
4640 if (adev
->id
< PPC440SPE_ADMA_ENGINES_NUM
)
4641 ppc440spe_adma_devices
[adev
->id
] = -1;
4643 dma_async_device_unregister(&adev
->common
);
4645 list_for_each_entry_safe(chan
, _chan
, &adev
->common
.channels
,
4647 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
4648 ppc440spe_adma_release_irqs(adev
, ppc440spe_chan
);
4649 tasklet_kill(&ppc440spe_chan
->irq_tasklet
);
4650 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4651 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->pdest
,
4652 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4653 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->qdest
,
4654 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4655 __free_page(ppc440spe_chan
->pdest_page
);
4656 __free_page(ppc440spe_chan
->qdest_page
);
4658 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
,
4660 if (ppc440spe_chan
==
4661 to_ppc440spe_adma_chan(ref
->chan
)) {
4662 list_del(&ref
->node
);
4666 list_del(&chan
->device_node
);
4667 kfree(ppc440spe_chan
);
4670 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4671 adev
->dma_desc_pool_virt
, adev
->dma_desc_pool
);
4672 if (adev
->id
== PPC440SPE_XOR_ID
)
4673 iounmap(adev
->xor_reg
);
4675 iounmap(adev
->dma_reg
);
4676 of_address_to_resource(np
, 0, &res
);
4677 release_mem_region(res
.start
, resource_size(&res
));
4683 * /sys driver interface to enable h/w RAID-6 capabilities
4684 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4685 * directory are "devices", "enable" and "poly".
4686 * "devices" shows available engines.
4687 * "enable" is used to enable RAID-6 capabilities or to check
4688 * whether these has been activated.
4689 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4692 static ssize_t
show_ppc440spe_devices(struct device_driver
*dev
, char *buf
)
4697 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++) {
4698 if (ppc440spe_adma_devices
[i
] == -1)
4700 size
+= snprintf(buf
+ size
, PAGE_SIZE
- size
,
4701 "PPC440SP(E)-ADMA.%d: %s\n", i
,
4702 ppc_adma_errors
[ppc440spe_adma_devices
[i
]]);
4707 static ssize_t
show_ppc440spe_r6enable(struct device_driver
*dev
, char *buf
)
4709 return snprintf(buf
, PAGE_SIZE
,
4710 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4711 ppc440spe_r6_enabled
? "EN" : "DIS");
4714 static ssize_t
store_ppc440spe_r6enable(struct device_driver
*dev
,
4715 const char *buf
, size_t count
)
4719 if (!count
|| count
> 11)
4722 if (!ppc440spe_r6_tchan
)
4726 sscanf(buf
, "%lx", &val
);
4727 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_XORBA
, val
);
4730 /* Verify whether it really works now */
4731 if (ppc440spe_test_raid6(ppc440spe_r6_tchan
) == 0) {
4732 pr_info("PPC440SP(e) RAID-6 has been activated "
4734 ppc440spe_r6_enabled
= 1;
4736 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4738 ppc440spe_r6_enabled
= 0;
4743 static ssize_t
show_ppc440spe_r6poly(struct device_driver
*dev
, char *buf
)
4749 /* 440SP has fixed polynomial */
4752 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4753 reg
>>= MQ0_CFBHL_POLY
;
4757 size
= snprintf(buf
, PAGE_SIZE
, "PPC440SP(e) RAID-6 driver "
4758 "uses 0x1%02x polynomial.\n", reg
);
4762 static ssize_t
store_ppc440spe_r6poly(struct device_driver
*dev
,
4763 const char *buf
, size_t count
)
4765 unsigned long reg
, val
;
4768 /* 440SP uses default 0x14D polynomial only */
4772 if (!count
|| count
> 6)
4775 /* e.g., 0x14D or 0x11D */
4776 sscanf(buf
, "%lx", &val
);
4782 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4783 reg
&= ~(0xFF << MQ0_CFBHL_POLY
);
4784 reg
|= val
<< MQ0_CFBHL_POLY
;
4785 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
, reg
);
4790 static DRIVER_ATTR(devices
, S_IRUGO
, show_ppc440spe_devices
, NULL
);
4791 static DRIVER_ATTR(enable
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6enable
,
4792 store_ppc440spe_r6enable
);
4793 static DRIVER_ATTR(poly
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6poly
,
4794 store_ppc440spe_r6poly
);
4797 * Common initialisation for RAID engines; allocate memory for
4798 * DMAx FIFOs, perform configuration common for all DMA engines.
4799 * Further DMA engine specific configuration is done at probe time.
4801 static int ppc440spe_configure_raid_devices(void)
4803 struct device_node
*np
;
4804 struct resource i2o_res
;
4805 struct i2o_regs __iomem
*i2o_reg
;
4806 dcr_host_t i2o_dcr_host
;
4807 unsigned int dcr_base
, dcr_len
;
4810 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4812 pr_err("%s: can't find I2O device tree node\n",
4817 if (of_address_to_resource(np
, 0, &i2o_res
)) {
4822 i2o_reg
= of_iomap(np
, 0);
4824 pr_err("%s: failed to map I2O registers\n", __func__
);
4829 /* Get I2O DCRs base */
4830 dcr_base
= dcr_resource_start(np
, 0);
4831 dcr_len
= dcr_resource_len(np
, 0);
4832 if (!dcr_base
&& !dcr_len
) {
4833 pr_err("%s: can't get DCR registers base/len!\n",
4840 i2o_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4841 if (!DCR_MAP_OK(i2o_dcr_host
)) {
4842 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4849 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4850 * the base address of FIFO memory space.
4851 * Actually we need twice more physical memory than programmed in the
4852 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4854 ppc440spe_dma_fifo_buf
= kmalloc((DMA0_FIFO_SIZE
+ DMA1_FIFO_SIZE
) << 1,
4856 if (!ppc440spe_dma_fifo_buf
) {
4857 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__
);
4859 dcr_unmap(i2o_dcr_host
, dcr_len
);
4867 mtdcri(SDR0
, DCRN_SDR0_SRST
, DCRN_SDR0_SRST_I2ODMA
);
4868 mtdcri(SDR0
, DCRN_SDR0_SRST
, 0);
4870 /* Setup the base address of mmaped registers */
4871 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAH
, (u32
)(i2o_res
.start
>> 32));
4872 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAL
, (u32
)(i2o_res
.start
) |
4874 dcr_unmap(i2o_dcr_host
, dcr_len
);
4876 /* Setup FIFO memory space base address */
4877 iowrite32(0, &i2o_reg
->ifbah
);
4878 iowrite32(((u32
)__pa(ppc440spe_dma_fifo_buf
)), &i2o_reg
->ifbal
);
4880 /* set zero FIFO size for I2O, so the whole
4881 * ppc440spe_dma_fifo_buf is used by DMAs.
4882 * DMAx_FIFOs will be configured while probe.
4884 iowrite32(0, &i2o_reg
->ifsiz
);
4887 /* To prepare WXOR/RXOR functionality we need access to
4888 * Memory Queue Module DCRs (finally it will be enabled
4889 * via /sys interface of the ppc440spe ADMA driver).
4891 np
= of_find_compatible_node(NULL
, NULL
, "ibm,mq-440spe");
4893 pr_err("%s: can't find MQ device tree node\n",
4899 /* Get MQ DCRs base */
4900 dcr_base
= dcr_resource_start(np
, 0);
4901 dcr_len
= dcr_resource_len(np
, 0);
4902 if (!dcr_base
&& !dcr_len
) {
4903 pr_err("%s: can't get DCR registers base/len!\n",
4909 ppc440spe_mq_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4910 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host
)) {
4911 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4916 ppc440spe_mq_dcr_len
= dcr_len
;
4919 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_BAUH
, DMA_CUED_XOR_HB
);
4922 * - LL transaction passing limit to 1;
4923 * - Memory controller cycle limit to 1;
4924 * - Galois Polynomial to 0x14d (default)
4926 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
,
4927 (1 << MQ0_CFBHL_TPLM
) | (1 << MQ0_CFBHL_HBCL
) |
4928 (PPC440SPE_DEFAULT_POLY
<< MQ0_CFBHL_POLY
));
4930 atomic_set(&ppc440spe_adma_err_irq_ref
, 0);
4931 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++)
4932 ppc440spe_adma_devices
[i
] = -1;
4939 kfree(ppc440spe_dma_fifo_buf
);
4943 static const struct of_device_id ppc440spe_adma_of_match
[] __devinitconst
= {
4944 { .compatible
= "ibm,dma-440spe", },
4945 { .compatible
= "amcc,xor-accelerator", },
4948 MODULE_DEVICE_TABLE(of
, ppc440spe_adma_of_match
);
4950 static struct of_platform_driver ppc440spe_adma_driver
= {
4951 .match_table
= ppc440spe_adma_of_match
,
4952 .probe
= ppc440spe_adma_probe
,
4953 .remove
= __devexit_p(ppc440spe_adma_remove
),
4955 .name
= "PPC440SP(E)-ADMA",
4956 .owner
= THIS_MODULE
,
4960 static __init
int ppc440spe_adma_init(void)
4964 ret
= ppc440spe_configure_raid_devices();
4968 ret
= of_register_platform_driver(&ppc440spe_adma_driver
);
4970 pr_err("%s: failed to register platform driver\n",
4975 /* Initialization status */
4976 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4977 &driver_attr_devices
);
4981 /* RAID-6 h/w enable entry */
4982 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4983 &driver_attr_enable
);
4987 /* GF polynomial to use */
4988 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4993 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4994 &driver_attr_enable
);
4996 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4997 &driver_attr_devices
);
4999 /* User will not be able to enable h/w RAID-6 */
5000 pr_err("%s: failed to create RAID-6 driver interface\n",
5002 of_unregister_platform_driver(&ppc440spe_adma_driver
);
5004 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
5005 kfree(ppc440spe_dma_fifo_buf
);
5009 static void __exit
ppc440spe_adma_exit(void)
5011 driver_remove_file(&ppc440spe_adma_driver
.driver
,
5013 driver_remove_file(&ppc440spe_adma_driver
.driver
,
5014 &driver_attr_enable
);
5015 driver_remove_file(&ppc440spe_adma_driver
.driver
,
5016 &driver_attr_devices
);
5017 of_unregister_platform_driver(&ppc440spe_adma_driver
);
5018 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
5019 kfree(ppc440spe_dma_fifo_buf
);
5022 arch_initcall(ppc440spe_adma_init
);
5023 module_exit(ppc440spe_adma_exit
);
5025 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
5026 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
5027 MODULE_LICENSE("GPL");