2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
32 #include "intel_drv.h"
35 #include "drm_dp_helper.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
42 static void intel_update_watermarks(struct drm_device
*dev
);
43 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
);
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t
;
69 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
71 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
72 int, int, intel_clock_t
*);
75 #define I8XX_DOT_MIN 25000
76 #define I8XX_DOT_MAX 350000
77 #define I8XX_VCO_MIN 930000
78 #define I8XX_VCO_MAX 1400000
82 #define I8XX_M_MAX 140
83 #define I8XX_M1_MIN 18
84 #define I8XX_M1_MAX 26
86 #define I8XX_M2_MAX 16
88 #define I8XX_P_MAX 128
90 #define I8XX_P1_MAX 33
91 #define I8XX_P1_LVDS_MIN 1
92 #define I8XX_P1_LVDS_MAX 6
93 #define I8XX_P2_SLOW 4
94 #define I8XX_P2_FAST 2
95 #define I8XX_P2_LVDS_SLOW 14
96 #define I8XX_P2_LVDS_FAST 7
97 #define I8XX_P2_SLOW_LIMIT 165000
99 #define I9XX_DOT_MIN 20000
100 #define I9XX_DOT_MAX 400000
101 #define I9XX_VCO_MIN 1400000
102 #define I9XX_VCO_MAX 2800000
103 #define PINEVIEW_VCO_MIN 1700000
104 #define PINEVIEW_VCO_MAX 3500000
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN 3
109 #define PINEVIEW_N_MAX 6
110 #define I9XX_M_MIN 70
111 #define I9XX_M_MAX 120
112 #define PINEVIEW_M_MIN 2
113 #define PINEVIEW_M_MAX 256
114 #define I9XX_M1_MIN 10
115 #define I9XX_M1_MAX 22
116 #define I9XX_M2_MIN 5
117 #define I9XX_M2_MAX 9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN 0
120 #define PINEVIEW_M1_MAX 0
121 #define PINEVIEW_M2_MIN 0
122 #define PINEVIEW_M2_MAX 254
123 #define I9XX_P_SDVO_DAC_MIN 5
124 #define I9XX_P_SDVO_DAC_MAX 80
125 #define I9XX_P_LVDS_MIN 7
126 #define I9XX_P_LVDS_MAX 98
127 #define PINEVIEW_P_LVDS_MIN 7
128 #define PINEVIEW_P_LVDS_MAX 112
129 #define I9XX_P1_MIN 1
130 #define I9XX_P1_MAX 8
131 #define I9XX_P2_SDVO_DAC_SLOW 10
132 #define I9XX_P2_SDVO_DAC_FAST 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
134 #define I9XX_P2_LVDS_SLOW 14
135 #define I9XX_P2_LVDS_FAST 7
136 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN 25000
140 #define G4X_DOT_SDVO_MAX 270000
141 #define G4X_VCO_MIN 1750000
142 #define G4X_VCO_MAX 3500000
143 #define G4X_N_SDVO_MIN 1
144 #define G4X_N_SDVO_MAX 4
145 #define G4X_M_SDVO_MIN 104
146 #define G4X_M_SDVO_MAX 138
147 #define G4X_M1_SDVO_MIN 17
148 #define G4X_M1_SDVO_MAX 23
149 #define G4X_M2_SDVO_MIN 5
150 #define G4X_M2_SDVO_MAX 11
151 #define G4X_P_SDVO_MIN 10
152 #define G4X_P_SDVO_MAX 30
153 #define G4X_P1_SDVO_MIN 1
154 #define G4X_P1_SDVO_MAX 3
155 #define G4X_P2_SDVO_SLOW 10
156 #define G4X_P2_SDVO_FAST 10
157 #define G4X_P2_SDVO_LIMIT 270000
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN 22000
161 #define G4X_DOT_HDMI_DAC_MAX 400000
162 #define G4X_N_HDMI_DAC_MIN 1
163 #define G4X_N_HDMI_DAC_MAX 4
164 #define G4X_M_HDMI_DAC_MIN 104
165 #define G4X_M_HDMI_DAC_MAX 138
166 #define G4X_M1_HDMI_DAC_MIN 16
167 #define G4X_M1_HDMI_DAC_MAX 23
168 #define G4X_M2_HDMI_DAC_MIN 5
169 #define G4X_M2_HDMI_DAC_MAX 11
170 #define G4X_P_HDMI_DAC_MIN 5
171 #define G4X_P_HDMI_DAC_MAX 80
172 #define G4X_P1_HDMI_DAC_MIN 1
173 #define G4X_P1_HDMI_DAC_MAX 8
174 #define G4X_P2_HDMI_DAC_SLOW 10
175 #define G4X_P2_HDMI_DAC_FAST 5
176 #define G4X_P2_HDMI_DAC_LIMIT 165000
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN 161670
218 #define G4X_DOT_DISPLAY_PORT_MAX 227000
219 #define G4X_N_DISPLAY_PORT_MIN 1
220 #define G4X_N_DISPLAY_PORT_MAX 2
221 #define G4X_M_DISPLAY_PORT_MIN 97
222 #define G4X_M_DISPLAY_PORT_MAX 108
223 #define G4X_M1_DISPLAY_PORT_MIN 0x10
224 #define G4X_M1_DISPLAY_PORT_MAX 0x12
225 #define G4X_M2_DISPLAY_PORT_MIN 0x05
226 #define G4X_M2_DISPLAY_PORT_MAX 0x06
227 #define G4X_P_DISPLAY_PORT_MIN 10
228 #define G4X_P_DISPLAY_PORT_MAX 20
229 #define G4X_P1_DISPLAY_PORT_MIN 1
230 #define G4X_P1_DISPLAY_PORT_MAX 2
231 #define G4X_P2_DISPLAY_PORT_SLOW 10
232 #define G4X_P2_DISPLAY_PORT_FAST 10
233 #define G4X_P2_DISPLAY_PORT_LIMIT 0
235 /* Ironlake / Sandybridge */
236 /* as we calculate clock using (register_value + 2) for
237 N/M1/M2, so here the range value for them is (actual_value-2).
239 #define IRONLAKE_DOT_MIN 25000
240 #define IRONLAKE_DOT_MAX 350000
241 #define IRONLAKE_VCO_MIN 1760000
242 #define IRONLAKE_VCO_MAX 3510000
243 #define IRONLAKE_M1_MIN 12
244 #define IRONLAKE_M1_MAX 22
245 #define IRONLAKE_M2_MIN 5
246 #define IRONLAKE_M2_MAX 9
247 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
249 /* We have parameter ranges for different type of outputs. */
251 /* DAC & HDMI Refclk 120Mhz */
252 #define IRONLAKE_DAC_N_MIN 1
253 #define IRONLAKE_DAC_N_MAX 5
254 #define IRONLAKE_DAC_M_MIN 79
255 #define IRONLAKE_DAC_M_MAX 127
256 #define IRONLAKE_DAC_P_MIN 5
257 #define IRONLAKE_DAC_P_MAX 80
258 #define IRONLAKE_DAC_P1_MIN 1
259 #define IRONLAKE_DAC_P1_MAX 8
260 #define IRONLAKE_DAC_P2_SLOW 10
261 #define IRONLAKE_DAC_P2_FAST 5
263 /* LVDS single-channel 120Mhz refclk */
264 #define IRONLAKE_LVDS_S_N_MIN 1
265 #define IRONLAKE_LVDS_S_N_MAX 3
266 #define IRONLAKE_LVDS_S_M_MIN 79
267 #define IRONLAKE_LVDS_S_M_MAX 118
268 #define IRONLAKE_LVDS_S_P_MIN 28
269 #define IRONLAKE_LVDS_S_P_MAX 112
270 #define IRONLAKE_LVDS_S_P1_MIN 2
271 #define IRONLAKE_LVDS_S_P1_MAX 8
272 #define IRONLAKE_LVDS_S_P2_SLOW 14
273 #define IRONLAKE_LVDS_S_P2_FAST 14
275 /* LVDS dual-channel 120Mhz refclk */
276 #define IRONLAKE_LVDS_D_N_MIN 1
277 #define IRONLAKE_LVDS_D_N_MAX 3
278 #define IRONLAKE_LVDS_D_M_MIN 79
279 #define IRONLAKE_LVDS_D_M_MAX 127
280 #define IRONLAKE_LVDS_D_P_MIN 14
281 #define IRONLAKE_LVDS_D_P_MAX 56
282 #define IRONLAKE_LVDS_D_P1_MIN 2
283 #define IRONLAKE_LVDS_D_P1_MAX 8
284 #define IRONLAKE_LVDS_D_P2_SLOW 7
285 #define IRONLAKE_LVDS_D_P2_FAST 7
287 /* LVDS single-channel 100Mhz refclk */
288 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
289 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
290 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
291 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
292 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
293 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
294 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
295 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
296 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
297 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
299 /* LVDS dual-channel 100Mhz refclk */
300 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
301 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
302 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
303 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
304 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
305 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
306 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
307 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
308 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
309 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
312 #define IRONLAKE_DP_N_MIN 1
313 #define IRONLAKE_DP_N_MAX 2
314 #define IRONLAKE_DP_M_MIN 81
315 #define IRONLAKE_DP_M_MAX 90
316 #define IRONLAKE_DP_P_MIN 10
317 #define IRONLAKE_DP_P_MAX 20
318 #define IRONLAKE_DP_P2_FAST 10
319 #define IRONLAKE_DP_P2_SLOW 10
320 #define IRONLAKE_DP_P2_LIMIT 0
321 #define IRONLAKE_DP_P1_MIN 1
322 #define IRONLAKE_DP_P1_MAX 2
325 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
326 int target
, int refclk
, intel_clock_t
*best_clock
);
328 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
329 int target
, int refclk
, intel_clock_t
*best_clock
);
332 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
333 int target
, int refclk
, intel_clock_t
*best_clock
);
335 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
336 int target
, int refclk
, intel_clock_t
*best_clock
);
338 static const intel_limit_t intel_limits_i8xx_dvo
= {
339 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
340 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
341 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
342 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
343 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
344 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
345 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
346 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
347 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
348 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
349 .find_pll
= intel_find_best_PLL
,
352 static const intel_limit_t intel_limits_i8xx_lvds
= {
353 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
354 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
355 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
356 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
357 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
358 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
359 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
360 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
361 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
362 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
363 .find_pll
= intel_find_best_PLL
,
366 static const intel_limit_t intel_limits_i9xx_sdvo
= {
367 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
368 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
369 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
370 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
371 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
372 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
373 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
374 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
375 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
376 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
377 .find_pll
= intel_find_best_PLL
,
380 static const intel_limit_t intel_limits_i9xx_lvds
= {
381 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
382 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
383 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
384 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
385 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
386 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
387 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
388 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
389 /* The single-channel range is 25-112Mhz, and dual-channel
390 * is 80-224Mhz. Prefer single channel as much as possible.
392 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
393 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
394 .find_pll
= intel_find_best_PLL
,
397 /* below parameter and function is for G4X Chipset Family*/
398 static const intel_limit_t intel_limits_g4x_sdvo
= {
399 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
400 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
401 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
402 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
403 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
404 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
405 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
406 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
407 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
408 .p2_slow
= G4X_P2_SDVO_SLOW
,
409 .p2_fast
= G4X_P2_SDVO_FAST
411 .find_pll
= intel_g4x_find_best_PLL
,
414 static const intel_limit_t intel_limits_g4x_hdmi
= {
415 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
416 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
417 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
418 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
419 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
420 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
421 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
422 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
423 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
424 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
425 .p2_fast
= G4X_P2_HDMI_DAC_FAST
427 .find_pll
= intel_g4x_find_best_PLL
,
430 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
431 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
432 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
433 .vco
= { .min
= G4X_VCO_MIN
,
434 .max
= G4X_VCO_MAX
},
435 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
436 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
437 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
438 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
439 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
440 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
441 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
442 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
443 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
444 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
445 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
446 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
447 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
448 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
449 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451 .find_pll
= intel_g4x_find_best_PLL
,
454 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
455 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
456 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
457 .vco
= { .min
= G4X_VCO_MIN
,
458 .max
= G4X_VCO_MAX
},
459 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
460 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
461 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
462 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
463 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
464 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
465 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
466 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
467 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
468 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
469 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
470 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
471 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
472 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
473 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
475 .find_pll
= intel_g4x_find_best_PLL
,
478 static const intel_limit_t intel_limits_g4x_display_port
= {
479 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
480 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
481 .vco
= { .min
= G4X_VCO_MIN
,
483 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
484 .max
= G4X_N_DISPLAY_PORT_MAX
},
485 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
486 .max
= G4X_M_DISPLAY_PORT_MAX
},
487 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
488 .max
= G4X_M1_DISPLAY_PORT_MAX
},
489 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
490 .max
= G4X_M2_DISPLAY_PORT_MAX
},
491 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
492 .max
= G4X_P_DISPLAY_PORT_MAX
},
493 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
494 .max
= G4X_P1_DISPLAY_PORT_MAX
},
495 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
496 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
497 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
498 .find_pll
= intel_find_pll_g4x_dp
,
501 static const intel_limit_t intel_limits_pineview_sdvo
= {
502 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
503 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
504 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
505 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
506 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
507 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
508 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
509 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
510 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
511 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
512 .find_pll
= intel_find_best_PLL
,
515 static const intel_limit_t intel_limits_pineview_lvds
= {
516 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
517 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
518 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
519 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
520 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
521 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
522 .p
= { .min
= PINEVIEW_P_LVDS_MIN
, .max
= PINEVIEW_P_LVDS_MAX
},
523 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
524 /* Pineview only supports single-channel mode. */
525 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
526 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
527 .find_pll
= intel_find_best_PLL
,
530 static const intel_limit_t intel_limits_ironlake_dac
= {
531 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
532 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
533 .n
= { .min
= IRONLAKE_DAC_N_MIN
, .max
= IRONLAKE_DAC_N_MAX
},
534 .m
= { .min
= IRONLAKE_DAC_M_MIN
, .max
= IRONLAKE_DAC_M_MAX
},
535 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
536 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
537 .p
= { .min
= IRONLAKE_DAC_P_MIN
, .max
= IRONLAKE_DAC_P_MAX
},
538 .p1
= { .min
= IRONLAKE_DAC_P1_MIN
, .max
= IRONLAKE_DAC_P1_MAX
},
539 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
540 .p2_slow
= IRONLAKE_DAC_P2_SLOW
,
541 .p2_fast
= IRONLAKE_DAC_P2_FAST
},
542 .find_pll
= intel_g4x_find_best_PLL
,
545 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
546 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
547 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
548 .n
= { .min
= IRONLAKE_LVDS_S_N_MIN
, .max
= IRONLAKE_LVDS_S_N_MAX
},
549 .m
= { .min
= IRONLAKE_LVDS_S_M_MIN
, .max
= IRONLAKE_LVDS_S_M_MAX
},
550 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
551 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
552 .p
= { .min
= IRONLAKE_LVDS_S_P_MIN
, .max
= IRONLAKE_LVDS_S_P_MAX
},
553 .p1
= { .min
= IRONLAKE_LVDS_S_P1_MIN
, .max
= IRONLAKE_LVDS_S_P1_MAX
},
554 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
555 .p2_slow
= IRONLAKE_LVDS_S_P2_SLOW
,
556 .p2_fast
= IRONLAKE_LVDS_S_P2_FAST
},
557 .find_pll
= intel_g4x_find_best_PLL
,
560 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
561 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
562 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
563 .n
= { .min
= IRONLAKE_LVDS_D_N_MIN
, .max
= IRONLAKE_LVDS_D_N_MAX
},
564 .m
= { .min
= IRONLAKE_LVDS_D_M_MIN
, .max
= IRONLAKE_LVDS_D_M_MAX
},
565 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
566 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
567 .p
= { .min
= IRONLAKE_LVDS_D_P_MIN
, .max
= IRONLAKE_LVDS_D_P_MAX
},
568 .p1
= { .min
= IRONLAKE_LVDS_D_P1_MIN
, .max
= IRONLAKE_LVDS_D_P1_MAX
},
569 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
570 .p2_slow
= IRONLAKE_LVDS_D_P2_SLOW
,
571 .p2_fast
= IRONLAKE_LVDS_D_P2_FAST
},
572 .find_pll
= intel_g4x_find_best_PLL
,
575 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
576 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
577 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
578 .n
= { .min
= IRONLAKE_LVDS_S_SSC_N_MIN
, .max
= IRONLAKE_LVDS_S_SSC_N_MAX
},
579 .m
= { .min
= IRONLAKE_LVDS_S_SSC_M_MIN
, .max
= IRONLAKE_LVDS_S_SSC_M_MAX
},
580 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
581 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
582 .p
= { .min
= IRONLAKE_LVDS_S_SSC_P_MIN
, .max
= IRONLAKE_LVDS_S_SSC_P_MAX
},
583 .p1
= { .min
= IRONLAKE_LVDS_S_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_S_SSC_P1_MAX
},
584 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
585 .p2_slow
= IRONLAKE_LVDS_S_SSC_P2_SLOW
,
586 .p2_fast
= IRONLAKE_LVDS_S_SSC_P2_FAST
},
587 .find_pll
= intel_g4x_find_best_PLL
,
590 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
591 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
592 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
593 .n
= { .min
= IRONLAKE_LVDS_D_SSC_N_MIN
, .max
= IRONLAKE_LVDS_D_SSC_N_MAX
},
594 .m
= { .min
= IRONLAKE_LVDS_D_SSC_M_MIN
, .max
= IRONLAKE_LVDS_D_SSC_M_MAX
},
595 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
596 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
597 .p
= { .min
= IRONLAKE_LVDS_D_SSC_P_MIN
, .max
= IRONLAKE_LVDS_D_SSC_P_MAX
},
598 .p1
= { .min
= IRONLAKE_LVDS_D_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_D_SSC_P1_MAX
},
599 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
600 .p2_slow
= IRONLAKE_LVDS_D_SSC_P2_SLOW
,
601 .p2_fast
= IRONLAKE_LVDS_D_SSC_P2_FAST
},
602 .find_pll
= intel_g4x_find_best_PLL
,
605 static const intel_limit_t intel_limits_ironlake_display_port
= {
606 .dot
= { .min
= IRONLAKE_DOT_MIN
,
607 .max
= IRONLAKE_DOT_MAX
},
608 .vco
= { .min
= IRONLAKE_VCO_MIN
,
609 .max
= IRONLAKE_VCO_MAX
},
610 .n
= { .min
= IRONLAKE_DP_N_MIN
,
611 .max
= IRONLAKE_DP_N_MAX
},
612 .m
= { .min
= IRONLAKE_DP_M_MIN
,
613 .max
= IRONLAKE_DP_M_MAX
},
614 .m1
= { .min
= IRONLAKE_M1_MIN
,
615 .max
= IRONLAKE_M1_MAX
},
616 .m2
= { .min
= IRONLAKE_M2_MIN
,
617 .max
= IRONLAKE_M2_MAX
},
618 .p
= { .min
= IRONLAKE_DP_P_MIN
,
619 .max
= IRONLAKE_DP_P_MAX
},
620 .p1
= { .min
= IRONLAKE_DP_P1_MIN
,
621 .max
= IRONLAKE_DP_P1_MAX
},
622 .p2
= { .dot_limit
= IRONLAKE_DP_P2_LIMIT
,
623 .p2_slow
= IRONLAKE_DP_P2_SLOW
,
624 .p2_fast
= IRONLAKE_DP_P2_FAST
},
625 .find_pll
= intel_find_pll_ironlake_dp
,
628 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
)
630 struct drm_device
*dev
= crtc
->dev
;
631 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
632 const intel_limit_t
*limit
;
635 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
636 if (dev_priv
->lvds_use_ssc
&& dev_priv
->lvds_ssc_freq
== 100)
639 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
640 LVDS_CLKB_POWER_UP
) {
641 /* LVDS dual channel */
643 limit
= &intel_limits_ironlake_dual_lvds_100m
;
645 limit
= &intel_limits_ironlake_dual_lvds
;
648 limit
= &intel_limits_ironlake_single_lvds_100m
;
650 limit
= &intel_limits_ironlake_single_lvds
;
652 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
654 limit
= &intel_limits_ironlake_display_port
;
656 limit
= &intel_limits_ironlake_dac
;
661 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
663 struct drm_device
*dev
= crtc
->dev
;
664 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
665 const intel_limit_t
*limit
;
667 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
668 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
670 /* LVDS with dual channel */
671 limit
= &intel_limits_g4x_dual_channel_lvds
;
673 /* LVDS with dual channel */
674 limit
= &intel_limits_g4x_single_channel_lvds
;
675 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
676 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
677 limit
= &intel_limits_g4x_hdmi
;
678 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
679 limit
= &intel_limits_g4x_sdvo
;
680 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
681 limit
= &intel_limits_g4x_display_port
;
682 } else /* The option is for other outputs */
683 limit
= &intel_limits_i9xx_sdvo
;
688 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
690 struct drm_device
*dev
= crtc
->dev
;
691 const intel_limit_t
*limit
;
693 if (HAS_PCH_SPLIT(dev
))
694 limit
= intel_ironlake_limit(crtc
);
695 else if (IS_G4X(dev
)) {
696 limit
= intel_g4x_limit(crtc
);
697 } else if (IS_I9XX(dev
) && !IS_PINEVIEW(dev
)) {
698 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
699 limit
= &intel_limits_i9xx_lvds
;
701 limit
= &intel_limits_i9xx_sdvo
;
702 } else if (IS_PINEVIEW(dev
)) {
703 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
704 limit
= &intel_limits_pineview_lvds
;
706 limit
= &intel_limits_pineview_sdvo
;
708 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
709 limit
= &intel_limits_i8xx_lvds
;
711 limit
= &intel_limits_i8xx_dvo
;
716 /* m1 is reserved as 0 in Pineview, n is a ring counter */
717 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
719 clock
->m
= clock
->m2
+ 2;
720 clock
->p
= clock
->p1
* clock
->p2
;
721 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
722 clock
->dot
= clock
->vco
/ clock
->p
;
725 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
727 if (IS_PINEVIEW(dev
)) {
728 pineview_clock(refclk
, clock
);
731 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
732 clock
->p
= clock
->p1
* clock
->p2
;
733 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
734 clock
->dot
= clock
->vco
/ clock
->p
;
738 * Returns whether any output on the specified pipe is of the specified type
740 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
)
742 struct drm_device
*dev
= crtc
->dev
;
743 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
744 struct drm_connector
*l_entry
;
746 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
747 if (l_entry
->encoder
&&
748 l_entry
->encoder
->crtc
== crtc
) {
749 struct intel_output
*intel_output
= to_intel_output(l_entry
);
750 if (intel_output
->type
== type
)
757 struct drm_connector
*
758 intel_pipe_get_output (struct drm_crtc
*crtc
)
760 struct drm_device
*dev
= crtc
->dev
;
761 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
762 struct drm_connector
*l_entry
, *ret
= NULL
;
764 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
765 if (l_entry
->encoder
&&
766 l_entry
->encoder
->crtc
== crtc
) {
774 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
776 * Returns whether the given set of divisors are valid for a given refclk with
777 * the given connectors.
780 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
782 const intel_limit_t
*limit
= intel_limit (crtc
);
783 struct drm_device
*dev
= crtc
->dev
;
785 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
786 INTELPllInvalid ("p1 out of range\n");
787 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
788 INTELPllInvalid ("p out of range\n");
789 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
790 INTELPllInvalid ("m2 out of range\n");
791 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
792 INTELPllInvalid ("m1 out of range\n");
793 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
794 INTELPllInvalid ("m1 <= m2\n");
795 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
796 INTELPllInvalid ("m out of range\n");
797 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
798 INTELPllInvalid ("n out of range\n");
799 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
800 INTELPllInvalid ("vco out of range\n");
801 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
802 * connector, etc., rather than just a single range.
804 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
805 INTELPllInvalid ("dot out of range\n");
811 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
812 int target
, int refclk
, intel_clock_t
*best_clock
)
815 struct drm_device
*dev
= crtc
->dev
;
816 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
820 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
821 (I915_READ(LVDS
)) != 0) {
823 * For LVDS, if the panel is on, just rely on its current
824 * settings for dual-channel. We haven't figured out how to
825 * reliably set up different single/dual channel state, if we
828 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
830 clock
.p2
= limit
->p2
.p2_fast
;
832 clock
.p2
= limit
->p2
.p2_slow
;
834 if (target
< limit
->p2
.dot_limit
)
835 clock
.p2
= limit
->p2
.p2_slow
;
837 clock
.p2
= limit
->p2
.p2_fast
;
840 memset (best_clock
, 0, sizeof (*best_clock
));
842 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
844 for (clock
.m2
= limit
->m2
.min
;
845 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
846 /* m1 is always 0 in Pineview */
847 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
849 for (clock
.n
= limit
->n
.min
;
850 clock
.n
<= limit
->n
.max
; clock
.n
++) {
851 for (clock
.p1
= limit
->p1
.min
;
852 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
855 intel_clock(dev
, refclk
, &clock
);
857 if (!intel_PLL_is_valid(crtc
, &clock
))
860 this_err
= abs(clock
.dot
- target
);
861 if (this_err
< err
) {
870 return (err
!= target
);
874 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
875 int target
, int refclk
, intel_clock_t
*best_clock
)
877 struct drm_device
*dev
= crtc
->dev
;
878 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
882 /* approximately equals target * 0.00488 */
883 int err_most
= (target
>> 8) + (target
>> 10);
886 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
889 if (HAS_PCH_SPLIT(dev
))
893 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
895 clock
.p2
= limit
->p2
.p2_fast
;
897 clock
.p2
= limit
->p2
.p2_slow
;
899 if (target
< limit
->p2
.dot_limit
)
900 clock
.p2
= limit
->p2
.p2_slow
;
902 clock
.p2
= limit
->p2
.p2_fast
;
905 memset(best_clock
, 0, sizeof(*best_clock
));
906 max_n
= limit
->n
.max
;
907 /* based on hardware requriment prefer smaller n to precision */
908 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
909 /* based on hardware requirment prefere larger m1,m2 */
910 for (clock
.m1
= limit
->m1
.max
;
911 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
912 for (clock
.m2
= limit
->m2
.max
;
913 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
914 for (clock
.p1
= limit
->p1
.max
;
915 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
918 intel_clock(dev
, refclk
, &clock
);
919 if (!intel_PLL_is_valid(crtc
, &clock
))
921 this_err
= abs(clock
.dot
- target
) ;
922 if (this_err
< err_most
) {
936 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
937 int target
, int refclk
, intel_clock_t
*best_clock
)
939 struct drm_device
*dev
= crtc
->dev
;
942 /* return directly when it is eDP */
946 if (target
< 200000) {
959 intel_clock(dev
, refclk
, &clock
);
960 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
964 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
966 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
967 int target
, int refclk
, intel_clock_t
*best_clock
)
970 if (target
< 200000) {
983 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
984 clock
.p
= (clock
.p1
* clock
.p2
);
985 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
987 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
992 intel_wait_for_vblank(struct drm_device
*dev
)
994 /* Wait for 20ms, i.e. one cycle at 50hz. */
998 /* Parameters have changed, update FBC info */
999 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1001 struct drm_device
*dev
= crtc
->dev
;
1002 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1003 struct drm_framebuffer
*fb
= crtc
->fb
;
1004 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1005 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
1006 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1008 u32 fbc_ctl
, fbc_ctl2
;
1010 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1012 if (fb
->pitch
< dev_priv
->cfb_pitch
)
1013 dev_priv
->cfb_pitch
= fb
->pitch
;
1015 /* FBC_CTL wants 64B units */
1016 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1017 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1018 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1019 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1021 /* Clear old tags */
1022 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1023 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1026 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
1027 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1028 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
1029 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1030 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1033 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1035 fbc_ctl
|= FBC_C3_IDLE
; /* 945 needs special SR handling */
1036 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1037 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1038 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1039 fbc_ctl
|= dev_priv
->cfb_fence
;
1040 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1042 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1043 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1046 void i8xx_disable_fbc(struct drm_device
*dev
)
1048 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1051 if (!I915_HAS_FBC(dev
))
1054 /* Disable compression */
1055 fbc_ctl
= I915_READ(FBC_CONTROL
);
1056 fbc_ctl
&= ~FBC_CTL_EN
;
1057 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1059 /* Wait for compressing bit to clear */
1060 while (I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
)
1063 intel_wait_for_vblank(dev
);
1065 DRM_DEBUG_KMS("disabled FBC\n");
1068 static bool i8xx_fbc_enabled(struct drm_crtc
*crtc
)
1070 struct drm_device
*dev
= crtc
->dev
;
1071 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1073 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1076 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1078 struct drm_device
*dev
= crtc
->dev
;
1079 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1080 struct drm_framebuffer
*fb
= crtc
->fb
;
1081 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1082 struct drm_i915_gem_object
*obj_priv
= intel_fb
->obj
->driver_private
;
1083 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1084 int plane
= (intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
:
1086 unsigned long stall_watermark
= 200;
1089 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1090 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1091 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1093 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1094 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1095 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1096 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1098 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1101 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1102 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1103 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1104 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1105 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1108 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1110 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1113 void g4x_disable_fbc(struct drm_device
*dev
)
1115 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1118 /* Disable compression */
1119 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1120 dpfc_ctl
&= ~DPFC_CTL_EN
;
1121 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1122 intel_wait_for_vblank(dev
);
1124 DRM_DEBUG_KMS("disabled FBC\n");
1127 static bool g4x_fbc_enabled(struct drm_crtc
*crtc
)
1129 struct drm_device
*dev
= crtc
->dev
;
1130 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1132 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1136 * intel_update_fbc - enable/disable FBC as needed
1137 * @crtc: CRTC to point the compressor at
1138 * @mode: mode in use
1140 * Set up the framebuffer compression hardware at mode set time. We
1141 * enable it if possible:
1142 * - plane A only (on pre-965)
1143 * - no pixel mulitply/line duplication
1144 * - no alpha buffer discard
1146 * - framebuffer <= 2048 in width, 1536 in height
1148 * We can't assume that any compression will take place (worst case),
1149 * so the compressed buffer has to be the same size as the uncompressed
1150 * one. It also must reside (along with the line length buffer) in
1153 * We need to enable/disable FBC on a global basis.
1155 static void intel_update_fbc(struct drm_crtc
*crtc
,
1156 struct drm_display_mode
*mode
)
1158 struct drm_device
*dev
= crtc
->dev
;
1159 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1160 struct drm_framebuffer
*fb
= crtc
->fb
;
1161 struct intel_framebuffer
*intel_fb
;
1162 struct drm_i915_gem_object
*obj_priv
;
1163 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1164 int plane
= intel_crtc
->plane
;
1166 if (!i915_powersave
)
1169 if (!dev_priv
->display
.fbc_enabled
||
1170 !dev_priv
->display
.enable_fbc
||
1171 !dev_priv
->display
.disable_fbc
)
1177 intel_fb
= to_intel_framebuffer(fb
);
1178 obj_priv
= intel_fb
->obj
->driver_private
;
1181 * If FBC is already on, we just have to verify that we can
1182 * keep it that way...
1183 * Need to disable if:
1184 * - changing FBC params (stride, fence, mode)
1185 * - new fb is too large to fit in compressed buffer
1186 * - going to an unsupported config (interlace, pixel multiply, etc.)
1188 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1189 DRM_DEBUG_KMS("framebuffer too large, disabling "
1191 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1194 if ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ||
1195 (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1196 DRM_DEBUG_KMS("mode incompatible with compression, "
1198 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1201 if ((mode
->hdisplay
> 2048) ||
1202 (mode
->vdisplay
> 1536)) {
1203 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1204 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1207 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && plane
!= 0) {
1208 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1209 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1212 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1213 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1214 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1218 if (dev_priv
->display
.fbc_enabled(crtc
)) {
1219 /* We can re-enable it in this case, but need to update pitch */
1220 if (fb
->pitch
> dev_priv
->cfb_pitch
)
1221 dev_priv
->display
.disable_fbc(dev
);
1222 if (obj_priv
->fence_reg
!= dev_priv
->cfb_fence
)
1223 dev_priv
->display
.disable_fbc(dev
);
1224 if (plane
!= dev_priv
->cfb_plane
)
1225 dev_priv
->display
.disable_fbc(dev
);
1228 if (!dev_priv
->display
.fbc_enabled(crtc
)) {
1229 /* Now try to turn it back on if possible */
1230 dev_priv
->display
.enable_fbc(crtc
, 500);
1236 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1237 /* Multiple disables should be harmless */
1238 if (dev_priv
->display
.fbc_enabled(crtc
))
1239 dev_priv
->display
.disable_fbc(dev
);
1243 intel_pin_and_fence_fb_obj(struct drm_device
*dev
, struct drm_gem_object
*obj
)
1245 struct drm_i915_gem_object
*obj_priv
= obj
->driver_private
;
1249 switch (obj_priv
->tiling_mode
) {
1250 case I915_TILING_NONE
:
1251 alignment
= 64 * 1024;
1254 /* pin() will align the object as required by fence */
1258 /* FIXME: Is this true? */
1259 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1265 ret
= i915_gem_object_pin(obj
, alignment
);
1269 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1270 * fence, whereas 965+ only requires a fence if using
1271 * framebuffer compression. For simplicity, we always install
1272 * a fence as the cost is not that onerous.
1274 if (obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1275 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1276 ret
= i915_gem_object_get_fence_reg(obj
);
1278 i915_gem_object_unpin(obj
);
1287 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1288 struct drm_framebuffer
*old_fb
)
1290 struct drm_device
*dev
= crtc
->dev
;
1291 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1292 struct drm_i915_master_private
*master_priv
;
1293 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1294 struct intel_framebuffer
*intel_fb
;
1295 struct drm_i915_gem_object
*obj_priv
;
1296 struct drm_gem_object
*obj
;
1297 int pipe
= intel_crtc
->pipe
;
1298 int plane
= intel_crtc
->plane
;
1299 unsigned long Start
, Offset
;
1300 int dspbase
= (plane
== 0 ? DSPAADDR
: DSPBADDR
);
1301 int dspsurf
= (plane
== 0 ? DSPASURF
: DSPBSURF
);
1302 int dspstride
= (plane
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
1303 int dsptileoff
= (plane
== 0 ? DSPATILEOFF
: DSPBTILEOFF
);
1304 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1310 DRM_DEBUG_KMS("No FB bound\n");
1319 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1323 intel_fb
= to_intel_framebuffer(crtc
->fb
);
1324 obj
= intel_fb
->obj
;
1325 obj_priv
= obj
->driver_private
;
1327 mutex_lock(&dev
->struct_mutex
);
1328 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
1330 mutex_unlock(&dev
->struct_mutex
);
1334 ret
= i915_gem_object_set_to_display_plane(obj
);
1336 i915_gem_object_unpin(obj
);
1337 mutex_unlock(&dev
->struct_mutex
);
1341 dspcntr
= I915_READ(dspcntr_reg
);
1342 /* Mask out pixel format bits in case we change it */
1343 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1344 switch (crtc
->fb
->bits_per_pixel
) {
1346 dspcntr
|= DISPPLANE_8BPP
;
1349 if (crtc
->fb
->depth
== 15)
1350 dspcntr
|= DISPPLANE_15_16BPP
;
1352 dspcntr
|= DISPPLANE_16BPP
;
1356 if (crtc
->fb
->depth
== 30)
1357 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
1359 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1362 DRM_ERROR("Unknown color depth\n");
1363 i915_gem_object_unpin(obj
);
1364 mutex_unlock(&dev
->struct_mutex
);
1367 if (IS_I965G(dev
)) {
1368 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1369 dspcntr
|= DISPPLANE_TILED
;
1371 dspcntr
&= ~DISPPLANE_TILED
;
1374 if (HAS_PCH_SPLIT(dev
))
1376 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1378 I915_WRITE(dspcntr_reg
, dspcntr
);
1380 Start
= obj_priv
->gtt_offset
;
1381 Offset
= y
* crtc
->fb
->pitch
+ x
* (crtc
->fb
->bits_per_pixel
/ 8);
1383 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start
, Offset
, x
, y
);
1384 I915_WRITE(dspstride
, crtc
->fb
->pitch
);
1385 if (IS_I965G(dev
)) {
1386 I915_WRITE(dspbase
, Offset
);
1388 I915_WRITE(dspsurf
, Start
);
1390 I915_WRITE(dsptileoff
, (y
<< 16) | x
);
1392 I915_WRITE(dspbase
, Start
+ Offset
);
1396 if ((IS_I965G(dev
) || plane
== 0))
1397 intel_update_fbc(crtc
, &crtc
->mode
);
1399 intel_wait_for_vblank(dev
);
1402 intel_fb
= to_intel_framebuffer(old_fb
);
1403 obj_priv
= intel_fb
->obj
->driver_private
;
1404 i915_gem_object_unpin(intel_fb
->obj
);
1406 intel_increase_pllclock(crtc
, true);
1408 mutex_unlock(&dev
->struct_mutex
);
1410 if (!dev
->primary
->master
)
1413 master_priv
= dev
->primary
->master
->driver_priv
;
1414 if (!master_priv
->sarea_priv
)
1418 master_priv
->sarea_priv
->pipeB_x
= x
;
1419 master_priv
->sarea_priv
->pipeB_y
= y
;
1421 master_priv
->sarea_priv
->pipeA_x
= x
;
1422 master_priv
->sarea_priv
->pipeA_y
= y
;
1428 /* Disable the VGA plane that we never use */
1429 static void i915_disable_vga (struct drm_device
*dev
)
1431 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1435 if (HAS_PCH_SPLIT(dev
))
1436 vga_reg
= CPU_VGACNTRL
;
1440 if (I915_READ(vga_reg
) & VGA_DISP_DISABLE
)
1443 I915_WRITE8(VGA_SR_INDEX
, 1);
1444 sr1
= I915_READ8(VGA_SR_DATA
);
1445 I915_WRITE8(VGA_SR_DATA
, sr1
| (1 << 5));
1448 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
1451 static void ironlake_disable_pll_edp (struct drm_crtc
*crtc
)
1453 struct drm_device
*dev
= crtc
->dev
;
1454 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1457 DRM_DEBUG_KMS("\n");
1458 dpa_ctl
= I915_READ(DP_A
);
1459 dpa_ctl
&= ~DP_PLL_ENABLE
;
1460 I915_WRITE(DP_A
, dpa_ctl
);
1463 static void ironlake_enable_pll_edp (struct drm_crtc
*crtc
)
1465 struct drm_device
*dev
= crtc
->dev
;
1466 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1469 dpa_ctl
= I915_READ(DP_A
);
1470 dpa_ctl
|= DP_PLL_ENABLE
;
1471 I915_WRITE(DP_A
, dpa_ctl
);
1476 static void ironlake_set_pll_edp (struct drm_crtc
*crtc
, int clock
)
1478 struct drm_device
*dev
= crtc
->dev
;
1479 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1482 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
1483 dpa_ctl
= I915_READ(DP_A
);
1484 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1486 if (clock
< 200000) {
1488 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1489 /* workaround for 160Mhz:
1490 1) program 0x4600c bits 15:0 = 0x8124
1491 2) program 0x46010 bit 0 = 1
1492 3) program 0x46034 bit 24 = 1
1493 4) program 0x64000 bit 14 = 1
1495 temp
= I915_READ(0x4600c);
1497 I915_WRITE(0x4600c, temp
| 0x8124);
1499 temp
= I915_READ(0x46010);
1500 I915_WRITE(0x46010, temp
| 1);
1502 temp
= I915_READ(0x46034);
1503 I915_WRITE(0x46034, temp
| (1 << 24));
1505 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1507 I915_WRITE(DP_A
, dpa_ctl
);
1512 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1514 struct drm_device
*dev
= crtc
->dev
;
1515 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1516 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1517 int pipe
= intel_crtc
->pipe
;
1518 int plane
= intel_crtc
->plane
;
1519 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
1520 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1521 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1522 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1523 int fdi_tx_reg
= (pipe
== 0) ? FDI_TXA_CTL
: FDI_TXB_CTL
;
1524 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
1525 int fdi_rx_iir_reg
= (pipe
== 0) ? FDI_RXA_IIR
: FDI_RXB_IIR
;
1526 int fdi_rx_imr_reg
= (pipe
== 0) ? FDI_RXA_IMR
: FDI_RXB_IMR
;
1527 int transconf_reg
= (pipe
== 0) ? TRANSACONF
: TRANSBCONF
;
1528 int pf_ctl_reg
= (pipe
== 0) ? PFA_CTL_1
: PFB_CTL_1
;
1529 int pf_win_size
= (pipe
== 0) ? PFA_WIN_SZ
: PFB_WIN_SZ
;
1530 int pf_win_pos
= (pipe
== 0) ? PFA_WIN_POS
: PFB_WIN_POS
;
1531 int cpu_htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
1532 int cpu_hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
1533 int cpu_hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
1534 int cpu_vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
1535 int cpu_vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
1536 int cpu_vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
1537 int trans_htot_reg
= (pipe
== 0) ? TRANS_HTOTAL_A
: TRANS_HTOTAL_B
;
1538 int trans_hblank_reg
= (pipe
== 0) ? TRANS_HBLANK_A
: TRANS_HBLANK_B
;
1539 int trans_hsync_reg
= (pipe
== 0) ? TRANS_HSYNC_A
: TRANS_HSYNC_B
;
1540 int trans_vtot_reg
= (pipe
== 0) ? TRANS_VTOTAL_A
: TRANS_VTOTAL_B
;
1541 int trans_vblank_reg
= (pipe
== 0) ? TRANS_VBLANK_A
: TRANS_VBLANK_B
;
1542 int trans_vsync_reg
= (pipe
== 0) ? TRANS_VSYNC_A
: TRANS_VSYNC_B
;
1544 int tries
= 5, j
, n
;
1547 temp
= I915_READ(pipeconf_reg
);
1548 pipe_bpc
= temp
& PIPE_BPC_MASK
;
1550 /* XXX: When our outputs are all unaware of DPMS modes other than off
1551 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1554 case DRM_MODE_DPMS_ON
:
1555 case DRM_MODE_DPMS_STANDBY
:
1556 case DRM_MODE_DPMS_SUSPEND
:
1557 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe
);
1559 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1560 temp
= I915_READ(PCH_LVDS
);
1561 if ((temp
& LVDS_PORT_EN
) == 0) {
1562 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
1563 POSTING_READ(PCH_LVDS
);
1568 /* enable eDP PLL */
1569 ironlake_enable_pll_edp(crtc
);
1571 /* enable PCH DPLL */
1572 temp
= I915_READ(pch_dpll_reg
);
1573 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1574 I915_WRITE(pch_dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1575 I915_READ(pch_dpll_reg
);
1578 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1579 temp
= I915_READ(fdi_rx_reg
);
1581 * make the BPC in FDI Rx be consistent with that in
1584 temp
&= ~(0x7 << 16);
1585 temp
|= (pipe_bpc
<< 11);
1586 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
|
1588 FDI_DP_PORT_WIDTH_X4
); /* default 4 lanes */
1589 I915_READ(fdi_rx_reg
);
1592 /* Enable CPU FDI TX PLL, always on for Ironlake */
1593 temp
= I915_READ(fdi_tx_reg
);
1594 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1595 I915_WRITE(fdi_tx_reg
, temp
| FDI_TX_PLL_ENABLE
);
1596 I915_READ(fdi_tx_reg
);
1601 /* Enable panel fitting for LVDS */
1602 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1603 temp
= I915_READ(pf_ctl_reg
);
1604 I915_WRITE(pf_ctl_reg
, temp
| PF_ENABLE
| PF_FILTER_MED_3x3
);
1606 /* currently full aspect */
1607 I915_WRITE(pf_win_pos
, 0);
1609 I915_WRITE(pf_win_size
,
1610 (dev_priv
->panel_fixed_mode
->hdisplay
<< 16) |
1611 (dev_priv
->panel_fixed_mode
->vdisplay
));
1614 /* Enable CPU pipe */
1615 temp
= I915_READ(pipeconf_reg
);
1616 if ((temp
& PIPEACONF_ENABLE
) == 0) {
1617 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1618 I915_READ(pipeconf_reg
);
1622 /* configure and enable CPU plane */
1623 temp
= I915_READ(dspcntr_reg
);
1624 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1625 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1626 /* Flush the plane changes */
1627 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1631 /* enable CPU FDI TX and PCH FDI RX */
1632 temp
= I915_READ(fdi_tx_reg
);
1633 temp
|= FDI_TX_ENABLE
;
1634 temp
|= FDI_DP_PORT_WIDTH_X4
; /* default */
1635 temp
&= ~FDI_LINK_TRAIN_NONE
;
1636 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1637 I915_WRITE(fdi_tx_reg
, temp
);
1638 I915_READ(fdi_tx_reg
);
1640 temp
= I915_READ(fdi_rx_reg
);
1641 temp
&= ~FDI_LINK_TRAIN_NONE
;
1642 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1643 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_ENABLE
);
1644 I915_READ(fdi_rx_reg
);
1649 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1651 temp
= I915_READ(fdi_rx_imr_reg
);
1652 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1653 temp
&= ~FDI_RX_BIT_LOCK
;
1654 I915_WRITE(fdi_rx_imr_reg
, temp
);
1655 I915_READ(fdi_rx_imr_reg
);
1658 temp
= I915_READ(fdi_rx_iir_reg
);
1659 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1661 if ((temp
& FDI_RX_BIT_LOCK
) == 0) {
1662 for (j
= 0; j
< tries
; j
++) {
1663 temp
= I915_READ(fdi_rx_iir_reg
);
1664 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1666 if (temp
& FDI_RX_BIT_LOCK
)
1671 I915_WRITE(fdi_rx_iir_reg
,
1672 temp
| FDI_RX_BIT_LOCK
);
1674 DRM_DEBUG_KMS("train 1 fail\n");
1676 I915_WRITE(fdi_rx_iir_reg
,
1677 temp
| FDI_RX_BIT_LOCK
);
1678 DRM_DEBUG_KMS("train 1 ok 2!\n");
1680 temp
= I915_READ(fdi_tx_reg
);
1681 temp
&= ~FDI_LINK_TRAIN_NONE
;
1682 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1683 I915_WRITE(fdi_tx_reg
, temp
);
1685 temp
= I915_READ(fdi_rx_reg
);
1686 temp
&= ~FDI_LINK_TRAIN_NONE
;
1687 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1688 I915_WRITE(fdi_rx_reg
, temp
);
1692 temp
= I915_READ(fdi_rx_iir_reg
);
1693 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1695 if ((temp
& FDI_RX_SYMBOL_LOCK
) == 0) {
1696 for (j
= 0; j
< tries
; j
++) {
1697 temp
= I915_READ(fdi_rx_iir_reg
);
1698 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1700 if (temp
& FDI_RX_SYMBOL_LOCK
)
1705 I915_WRITE(fdi_rx_iir_reg
,
1706 temp
| FDI_RX_SYMBOL_LOCK
);
1707 DRM_DEBUG_KMS("train 2 ok 1!\n");
1709 DRM_DEBUG_KMS("train 2 fail\n");
1711 I915_WRITE(fdi_rx_iir_reg
,
1712 temp
| FDI_RX_SYMBOL_LOCK
);
1713 DRM_DEBUG_KMS("train 2 ok 2!\n");
1715 DRM_DEBUG_KMS("train done\n");
1717 /* set transcoder timing */
1718 I915_WRITE(trans_htot_reg
, I915_READ(cpu_htot_reg
));
1719 I915_WRITE(trans_hblank_reg
, I915_READ(cpu_hblank_reg
));
1720 I915_WRITE(trans_hsync_reg
, I915_READ(cpu_hsync_reg
));
1722 I915_WRITE(trans_vtot_reg
, I915_READ(cpu_vtot_reg
));
1723 I915_WRITE(trans_vblank_reg
, I915_READ(cpu_vblank_reg
));
1724 I915_WRITE(trans_vsync_reg
, I915_READ(cpu_vsync_reg
));
1726 /* enable PCH transcoder */
1727 temp
= I915_READ(transconf_reg
);
1729 * make the BPC in transcoder be consistent with
1730 * that in pipeconf reg.
1732 temp
&= ~PIPE_BPC_MASK
;
1734 I915_WRITE(transconf_reg
, temp
| TRANS_ENABLE
);
1735 I915_READ(transconf_reg
);
1737 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) == 0)
1742 temp
= I915_READ(fdi_tx_reg
);
1743 temp
&= ~FDI_LINK_TRAIN_NONE
;
1744 I915_WRITE(fdi_tx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1745 FDI_TX_ENHANCE_FRAME_ENABLE
);
1746 I915_READ(fdi_tx_reg
);
1748 temp
= I915_READ(fdi_rx_reg
);
1749 temp
&= ~FDI_LINK_TRAIN_NONE
;
1750 I915_WRITE(fdi_rx_reg
, temp
| FDI_LINK_TRAIN_NONE
|
1751 FDI_RX_ENHANCE_FRAME_ENABLE
);
1752 I915_READ(fdi_rx_reg
);
1754 /* wait one idle pattern time */
1759 intel_crtc_load_lut(crtc
);
1762 case DRM_MODE_DPMS_OFF
:
1763 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe
);
1765 drm_vblank_off(dev
, pipe
);
1766 /* Disable display plane */
1767 temp
= I915_READ(dspcntr_reg
);
1768 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
1769 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
1770 /* Flush the plane changes */
1771 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1772 I915_READ(dspbase_reg
);
1775 i915_disable_vga(dev
);
1777 /* disable cpu pipe, disable after all planes disabled */
1778 temp
= I915_READ(pipeconf_reg
);
1779 if ((temp
& PIPEACONF_ENABLE
) != 0) {
1780 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
1781 I915_READ(pipeconf_reg
);
1783 /* wait for cpu pipe off, pipe state */
1784 while ((I915_READ(pipeconf_reg
) & I965_PIPECONF_ACTIVE
) != 0) {
1790 DRM_DEBUG_KMS("pipe %d off delay\n",
1796 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe
);
1801 temp
= I915_READ(pf_ctl_reg
);
1802 if ((temp
& PF_ENABLE
) != 0) {
1803 I915_WRITE(pf_ctl_reg
, temp
& ~PF_ENABLE
);
1804 I915_READ(pf_ctl_reg
);
1806 I915_WRITE(pf_win_size
, 0);
1808 /* disable CPU FDI tx and PCH FDI rx */
1809 temp
= I915_READ(fdi_tx_reg
);
1810 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_ENABLE
);
1811 I915_READ(fdi_tx_reg
);
1813 temp
= I915_READ(fdi_rx_reg
);
1814 /* BPC in FDI rx is consistent with that in pipeconf */
1815 temp
&= ~(0x07 << 16);
1816 temp
|= (pipe_bpc
<< 11);
1817 I915_WRITE(fdi_rx_reg
, temp
& ~FDI_RX_ENABLE
);
1818 I915_READ(fdi_rx_reg
);
1822 /* still set train pattern 1 */
1823 temp
= I915_READ(fdi_tx_reg
);
1824 temp
&= ~FDI_LINK_TRAIN_NONE
;
1825 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1826 I915_WRITE(fdi_tx_reg
, temp
);
1828 temp
= I915_READ(fdi_rx_reg
);
1829 temp
&= ~FDI_LINK_TRAIN_NONE
;
1830 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1831 I915_WRITE(fdi_rx_reg
, temp
);
1835 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
1836 temp
= I915_READ(PCH_LVDS
);
1837 I915_WRITE(PCH_LVDS
, temp
& ~LVDS_PORT_EN
);
1838 I915_READ(PCH_LVDS
);
1842 /* disable PCH transcoder */
1843 temp
= I915_READ(transconf_reg
);
1844 if ((temp
& TRANS_ENABLE
) != 0) {
1845 I915_WRITE(transconf_reg
, temp
& ~TRANS_ENABLE
);
1846 I915_READ(transconf_reg
);
1848 /* wait for PCH transcoder off, transcoder state */
1849 while ((I915_READ(transconf_reg
) & TRANS_STATE_ENABLE
) != 0) {
1855 DRM_DEBUG_KMS("transcoder %d off "
1861 temp
= I915_READ(transconf_reg
);
1862 /* BPC in transcoder is consistent with that in pipeconf */
1863 temp
&= ~PIPE_BPC_MASK
;
1865 I915_WRITE(transconf_reg
, temp
);
1866 I915_READ(transconf_reg
);
1869 /* disable PCH DPLL */
1870 temp
= I915_READ(pch_dpll_reg
);
1871 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
1872 I915_WRITE(pch_dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
1873 I915_READ(pch_dpll_reg
);
1877 ironlake_disable_pll_edp(crtc
);
1880 temp
= I915_READ(fdi_rx_reg
);
1881 temp
&= ~FDI_SEL_PCDCLK
;
1882 I915_WRITE(fdi_rx_reg
, temp
);
1883 I915_READ(fdi_rx_reg
);
1885 temp
= I915_READ(fdi_rx_reg
);
1886 temp
&= ~FDI_RX_PLL_ENABLE
;
1887 I915_WRITE(fdi_rx_reg
, temp
);
1888 I915_READ(fdi_rx_reg
);
1890 /* Disable CPU FDI TX PLL */
1891 temp
= I915_READ(fdi_tx_reg
);
1892 if ((temp
& FDI_TX_PLL_ENABLE
) != 0) {
1893 I915_WRITE(fdi_tx_reg
, temp
& ~FDI_TX_PLL_ENABLE
);
1894 I915_READ(fdi_tx_reg
);
1898 /* Wait for the clocks to turn off. */
1904 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
1906 struct intel_overlay
*overlay
;
1909 if (!enable
&& intel_crtc
->overlay
) {
1910 overlay
= intel_crtc
->overlay
;
1911 mutex_lock(&overlay
->dev
->struct_mutex
);
1913 ret
= intel_overlay_switch_off(overlay
);
1917 ret
= intel_overlay_recover_from_interrupt(overlay
, 0);
1919 /* overlay doesn't react anymore. Usually
1920 * results in a black screen and an unkillable
1923 overlay
->hw_wedged
= HW_WEDGED
;
1927 mutex_unlock(&overlay
->dev
->struct_mutex
);
1929 /* Let userspace switch the overlay on again. In most cases userspace
1930 * has to recompute where to put it anyway. */
1935 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
1937 struct drm_device
*dev
= crtc
->dev
;
1938 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1939 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1940 int pipe
= intel_crtc
->pipe
;
1941 int plane
= intel_crtc
->plane
;
1942 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
1943 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
1944 int dspbase_reg
= (plane
== 0) ? DSPAADDR
: DSPBADDR
;
1945 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
1948 /* XXX: When our outputs are all unaware of DPMS modes other than off
1949 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1952 case DRM_MODE_DPMS_ON
:
1953 case DRM_MODE_DPMS_STANDBY
:
1954 case DRM_MODE_DPMS_SUSPEND
:
1955 intel_update_watermarks(dev
);
1957 /* Enable the DPLL */
1958 temp
= I915_READ(dpll_reg
);
1959 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
1960 I915_WRITE(dpll_reg
, temp
);
1961 I915_READ(dpll_reg
);
1962 /* Wait for the clocks to stabilize. */
1964 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1965 I915_READ(dpll_reg
);
1966 /* Wait for the clocks to stabilize. */
1968 I915_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
1969 I915_READ(dpll_reg
);
1970 /* Wait for the clocks to stabilize. */
1974 /* Enable the pipe */
1975 temp
= I915_READ(pipeconf_reg
);
1976 if ((temp
& PIPEACONF_ENABLE
) == 0)
1977 I915_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
1979 /* Enable the plane */
1980 temp
= I915_READ(dspcntr_reg
);
1981 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
1982 I915_WRITE(dspcntr_reg
, temp
| DISPLAY_PLANE_ENABLE
);
1983 /* Flush the plane changes */
1984 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
1987 intel_crtc_load_lut(crtc
);
1989 if ((IS_I965G(dev
) || plane
== 0))
1990 intel_update_fbc(crtc
, &crtc
->mode
);
1992 /* Give the overlay scaler a chance to enable if it's on this pipe */
1993 intel_crtc_dpms_overlay(intel_crtc
, true);
1995 case DRM_MODE_DPMS_OFF
:
1996 intel_update_watermarks(dev
);
1998 /* Give the overlay scaler a chance to disable if it's on this pipe */
1999 intel_crtc_dpms_overlay(intel_crtc
, false);
2000 drm_vblank_off(dev
, pipe
);
2002 if (dev_priv
->cfb_plane
== plane
&&
2003 dev_priv
->display
.disable_fbc
)
2004 dev_priv
->display
.disable_fbc(dev
);
2006 /* Disable the VGA plane that we never use */
2007 i915_disable_vga(dev
);
2009 /* Disable display plane */
2010 temp
= I915_READ(dspcntr_reg
);
2011 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
2012 I915_WRITE(dspcntr_reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2013 /* Flush the plane changes */
2014 I915_WRITE(dspbase_reg
, I915_READ(dspbase_reg
));
2015 I915_READ(dspbase_reg
);
2018 if (!IS_I9XX(dev
)) {
2019 /* Wait for vblank for the disable to take effect */
2020 intel_wait_for_vblank(dev
);
2023 /* Next, disable display pipes */
2024 temp
= I915_READ(pipeconf_reg
);
2025 if ((temp
& PIPEACONF_ENABLE
) != 0) {
2026 I915_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
2027 I915_READ(pipeconf_reg
);
2030 /* Wait for vblank for the disable to take effect. */
2031 intel_wait_for_vblank(dev
);
2033 temp
= I915_READ(dpll_reg
);
2034 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
2035 I915_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
2036 I915_READ(dpll_reg
);
2039 /* Wait for the clocks to turn off. */
2046 * Sets the power management mode of the pipe and plane.
2048 * This code should probably grow support for turning the cursor off and back
2049 * on appropriately at the same time as we're turning the pipe off/on.
2051 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2053 struct drm_device
*dev
= crtc
->dev
;
2054 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2055 struct drm_i915_master_private
*master_priv
;
2056 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2057 int pipe
= intel_crtc
->pipe
;
2060 dev_priv
->display
.dpms(crtc
, mode
);
2062 intel_crtc
->dpms_mode
= mode
;
2064 if (!dev
->primary
->master
)
2067 master_priv
= dev
->primary
->master
->driver_priv
;
2068 if (!master_priv
->sarea_priv
)
2071 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
2075 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2076 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2079 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2080 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2083 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
2088 static void intel_crtc_prepare (struct drm_crtc
*crtc
)
2090 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2091 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
2094 static void intel_crtc_commit (struct drm_crtc
*crtc
)
2096 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2097 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
2100 void intel_encoder_prepare (struct drm_encoder
*encoder
)
2102 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2103 /* lvds has its own version of prepare see intel_lvds_prepare */
2104 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
2107 void intel_encoder_commit (struct drm_encoder
*encoder
)
2109 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2110 /* lvds has its own version of commit see intel_lvds_commit */
2111 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
2114 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
2115 struct drm_display_mode
*mode
,
2116 struct drm_display_mode
*adjusted_mode
)
2118 struct drm_device
*dev
= crtc
->dev
;
2119 if (HAS_PCH_SPLIT(dev
)) {
2120 /* FDI link clock is fixed at 2.7G */
2121 if (mode
->clock
* 3 > 27000 * 4)
2122 return MODE_CLOCK_HIGH
;
2127 static int i945_get_display_clock_speed(struct drm_device
*dev
)
2132 static int i915_get_display_clock_speed(struct drm_device
*dev
)
2137 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
2142 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
2146 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
2148 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
2151 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
2152 case GC_DISPLAY_CLOCK_333_MHZ
:
2155 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2161 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2166 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2169 /* Assume that the hardware is in the high speed state. This
2170 * should be the default.
2172 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2173 case GC_CLOCK_133_200
:
2174 case GC_CLOCK_100_200
:
2176 case GC_CLOCK_166_250
:
2178 case GC_CLOCK_100_133
:
2182 /* Shouldn't happen */
2186 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2192 * Return the pipe currently connected to the panel fitter,
2193 * or -1 if the panel fitter is not present or not in use
2195 int intel_panel_fitter_pipe (struct drm_device
*dev
)
2197 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2200 /* i830 doesn't have a panel fitter */
2204 pfit_control
= I915_READ(PFIT_CONTROL
);
2206 /* See if the panel fitter is in use */
2207 if ((pfit_control
& PFIT_ENABLE
) == 0)
2210 /* 965 can place panel fitter on either pipe */
2212 return (pfit_control
>> 29) & 0x3;
2214 /* older chips can only use pipe 1 */
2227 fdi_reduce_ratio(u32
*num
, u32
*den
)
2229 while (*num
> 0xffffff || *den
> 0xffffff) {
2235 #define DATA_N 0x800000
2236 #define LINK_N 0x80000
2239 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
2240 int link_clock
, struct fdi_m_n
*m_n
)
2244 m_n
->tu
= 64; /* default size */
2246 temp
= (u64
) DATA_N
* pixel_clock
;
2247 temp
= div_u64(temp
, link_clock
);
2248 m_n
->gmch_m
= div_u64(temp
* bits_per_pixel
, nlanes
);
2249 m_n
->gmch_m
>>= 3; /* convert to bytes_per_pixel */
2250 m_n
->gmch_n
= DATA_N
;
2251 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2253 temp
= (u64
) LINK_N
* pixel_clock
;
2254 m_n
->link_m
= div_u64(temp
, link_clock
);
2255 m_n
->link_n
= LINK_N
;
2256 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2260 struct intel_watermark_params
{
2261 unsigned long fifo_size
;
2262 unsigned long max_wm
;
2263 unsigned long default_wm
;
2264 unsigned long guard_size
;
2265 unsigned long cacheline_size
;
2268 /* Pineview has different values for various configs */
2269 static struct intel_watermark_params pineview_display_wm
= {
2270 PINEVIEW_DISPLAY_FIFO
,
2274 PINEVIEW_FIFO_LINE_SIZE
2276 static struct intel_watermark_params pineview_display_hplloff_wm
= {
2277 PINEVIEW_DISPLAY_FIFO
,
2279 PINEVIEW_DFT_HPLLOFF_WM
,
2281 PINEVIEW_FIFO_LINE_SIZE
2283 static struct intel_watermark_params pineview_cursor_wm
= {
2284 PINEVIEW_CURSOR_FIFO
,
2285 PINEVIEW_CURSOR_MAX_WM
,
2286 PINEVIEW_CURSOR_DFT_WM
,
2287 PINEVIEW_CURSOR_GUARD_WM
,
2288 PINEVIEW_FIFO_LINE_SIZE
,
2290 static struct intel_watermark_params pineview_cursor_hplloff_wm
= {
2291 PINEVIEW_CURSOR_FIFO
,
2292 PINEVIEW_CURSOR_MAX_WM
,
2293 PINEVIEW_CURSOR_DFT_WM
,
2294 PINEVIEW_CURSOR_GUARD_WM
,
2295 PINEVIEW_FIFO_LINE_SIZE
2297 static struct intel_watermark_params g4x_wm_info
= {
2304 static struct intel_watermark_params i945_wm_info
= {
2311 static struct intel_watermark_params i915_wm_info
= {
2318 static struct intel_watermark_params i855_wm_info
= {
2325 static struct intel_watermark_params i830_wm_info
= {
2334 * intel_calculate_wm - calculate watermark level
2335 * @clock_in_khz: pixel clock
2336 * @wm: chip FIFO params
2337 * @pixel_size: display pixel size
2338 * @latency_ns: memory latency for the platform
2340 * Calculate the watermark level (the level at which the display plane will
2341 * start fetching from memory again). Each chip has a different display
2342 * FIFO size and allocation, so the caller needs to figure that out and pass
2343 * in the correct intel_watermark_params structure.
2345 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2346 * on the pixel size. When it reaches the watermark level, it'll start
2347 * fetching FIFO line sized based chunks from memory until the FIFO fills
2348 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2349 * will occur, and a display engine hang could result.
2351 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2352 struct intel_watermark_params
*wm
,
2354 unsigned long latency_ns
)
2356 long entries_required
, wm_size
;
2359 * Note: we need to make sure we don't overflow for various clock &
2361 * clocks go from a few thousand to several hundred thousand.
2362 * latency is usually a few thousand
2364 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2366 entries_required
/= wm
->cacheline_size
;
2368 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required
);
2370 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2372 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
2374 /* Don't promote wm_size to unsigned... */
2375 if (wm_size
> (long)wm
->max_wm
)
2376 wm_size
= wm
->max_wm
;
2378 wm_size
= wm
->default_wm
;
2382 struct cxsr_latency
{
2384 unsigned long fsb_freq
;
2385 unsigned long mem_freq
;
2386 unsigned long display_sr
;
2387 unsigned long display_hpll_disable
;
2388 unsigned long cursor_sr
;
2389 unsigned long cursor_hpll_disable
;
2392 static struct cxsr_latency cxsr_latency_table
[] = {
2393 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2394 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2395 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2397 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2398 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2399 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2401 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2402 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2403 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2405 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2406 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2407 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2409 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2410 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2411 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2413 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2414 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2415 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2418 static struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
, int fsb
,
2422 struct cxsr_latency
*latency
;
2424 if (fsb
== 0 || mem
== 0)
2427 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2428 latency
= &cxsr_latency_table
[i
];
2429 if (is_desktop
== latency
->is_desktop
&&
2430 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2434 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2439 static void pineview_disable_cxsr(struct drm_device
*dev
)
2441 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2444 /* deactivate cxsr */
2445 reg
= I915_READ(DSPFW3
);
2446 reg
&= ~(PINEVIEW_SELF_REFRESH_EN
);
2447 I915_WRITE(DSPFW3
, reg
);
2448 DRM_INFO("Big FIFO is disabled\n");
2451 static void pineview_enable_cxsr(struct drm_device
*dev
, unsigned long clock
,
2454 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2457 struct cxsr_latency
*latency
;
2459 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->fsb_freq
,
2460 dev_priv
->mem_freq
);
2462 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2463 pineview_disable_cxsr(dev
);
2468 wm
= intel_calculate_wm(clock
, &pineview_display_wm
, pixel_size
,
2469 latency
->display_sr
);
2470 reg
= I915_READ(DSPFW1
);
2473 I915_WRITE(DSPFW1
, reg
);
2474 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
2477 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
, pixel_size
,
2478 latency
->cursor_sr
);
2479 reg
= I915_READ(DSPFW3
);
2480 reg
&= ~(0x3f << 24);
2481 reg
|= (wm
& 0x3f) << 24;
2482 I915_WRITE(DSPFW3
, reg
);
2484 /* Display HPLL off SR */
2485 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
2486 latency
->display_hpll_disable
, I915_FIFO_LINE_SIZE
);
2487 reg
= I915_READ(DSPFW3
);
2490 I915_WRITE(DSPFW3
, reg
);
2492 /* cursor HPLL off SR */
2493 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
, pixel_size
,
2494 latency
->cursor_hpll_disable
);
2495 reg
= I915_READ(DSPFW3
);
2496 reg
&= ~(0x3f << 16);
2497 reg
|= (wm
& 0x3f) << 16;
2498 I915_WRITE(DSPFW3
, reg
);
2499 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
2502 reg
= I915_READ(DSPFW3
);
2503 reg
|= PINEVIEW_SELF_REFRESH_EN
;
2504 I915_WRITE(DSPFW3
, reg
);
2506 DRM_INFO("Big FIFO is enabled\n");
2512 * Latency for FIFO fetches is dependent on several factors:
2513 * - memory configuration (speed, channels)
2515 * - current MCH state
2516 * It can be fairly high in some situations, so here we assume a fairly
2517 * pessimal value. It's a tradeoff between extra memory fetches (if we
2518 * set this value too high, the FIFO will fetch frequently to stay full)
2519 * and power consumption (set it too low to save power and we might see
2520 * FIFO underruns and display "flicker").
2522 * A value of 5us seems to be a good balance; safe for very low end
2523 * platforms but not overly aggressive on lower latency configs.
2525 static const int latency_ns
= 5000;
2527 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2529 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2530 uint32_t dsparb
= I915_READ(DSPARB
);
2534 size
= dsparb
& 0x7f;
2536 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) -
2539 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2540 plane
? "B" : "A", size
);
2545 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2547 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2548 uint32_t dsparb
= I915_READ(DSPARB
);
2552 size
= dsparb
& 0x1ff;
2554 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) -
2556 size
>>= 1; /* Convert to cachelines */
2558 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2559 plane
? "B" : "A", size
);
2564 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
2566 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2567 uint32_t dsparb
= I915_READ(DSPARB
);
2570 size
= dsparb
& 0x7f;
2571 size
>>= 2; /* Convert to cachelines */
2573 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2580 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
2582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2583 uint32_t dsparb
= I915_READ(DSPARB
);
2586 size
= dsparb
& 0x7f;
2587 size
>>= 1; /* Convert to cachelines */
2589 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2590 plane
? "B" : "A", size
);
2595 static void g4x_update_wm(struct drm_device
*dev
, int planea_clock
,
2596 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2598 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2599 int total_size
, cacheline_size
;
2600 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
, cursor_sr
;
2601 struct intel_watermark_params planea_params
, planeb_params
;
2602 unsigned long line_time_us
;
2603 int sr_clock
, sr_entries
= 0, entries_required
;
2605 /* Create copies of the base settings for each pipe */
2606 planea_params
= planeb_params
= g4x_wm_info
;
2608 /* Grab a couple of global values before we overwrite them */
2609 total_size
= planea_params
.fifo_size
;
2610 cacheline_size
= planea_params
.cacheline_size
;
2613 * Note: we need to make sure we don't overflow for various clock &
2615 * clocks go from a few thousand to several hundred thousand.
2616 * latency is usually a few thousand
2618 entries_required
= ((planea_clock
/ 1000) * pixel_size
* latency_ns
) /
2620 entries_required
/= G4X_FIFO_LINE_SIZE
;
2621 planea_wm
= entries_required
+ planea_params
.guard_size
;
2623 entries_required
= ((planeb_clock
/ 1000) * pixel_size
* latency_ns
) /
2625 entries_required
/= G4X_FIFO_LINE_SIZE
;
2626 planeb_wm
= entries_required
+ planeb_params
.guard_size
;
2628 cursora_wm
= cursorb_wm
= 16;
2631 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2633 /* Calc sr entries for one plane configs */
2634 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2635 /* self-refresh has much higher latency */
2636 static const int sr_latency_ns
= 12000;
2638 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2639 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2641 /* Use ns/us then divide to preserve precision */
2642 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2643 pixel_size
* sr_hdisplay
) / 1000;
2644 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2645 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2646 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2648 /* Turn off self refresh if both pipes are enabled */
2649 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2653 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2654 planea_wm
, planeb_wm
, sr_entries
);
2659 I915_WRITE(DSPFW1
, (sr_entries
<< DSPFW_SR_SHIFT
) |
2660 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
2661 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) | planea_wm
);
2662 I915_WRITE(DSPFW2
, (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
2663 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
2664 /* HPLL off in SR has some issues on G4x... disable it */
2665 I915_WRITE(DSPFW3
, (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
2666 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
2669 static void i965_update_wm(struct drm_device
*dev
, int planea_clock
,
2670 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2672 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2673 unsigned long line_time_us
;
2674 int sr_clock
, sr_entries
, srwm
= 1;
2676 /* Calc sr entries for one plane configs */
2677 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
2678 /* self-refresh has much higher latency */
2679 static const int sr_latency_ns
= 12000;
2681 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2682 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2684 /* Use ns/us then divide to preserve precision */
2685 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2686 pixel_size
* sr_hdisplay
) / 1000;
2687 sr_entries
= roundup(sr_entries
/ I915_FIFO_LINE_SIZE
, 1);
2688 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
2689 srwm
= I945_FIFO_SIZE
- sr_entries
;
2693 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
2695 /* Turn off self refresh if both pipes are enabled */
2696 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2700 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2703 /* 965 has limitations... */
2704 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) | (8 << 16) | (8 << 8) |
2706 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
2709 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
2710 int planeb_clock
, int sr_hdisplay
, int pixel_size
)
2712 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2715 int total_size
, cacheline_size
, cwm
, srwm
= 1;
2716 int planea_wm
, planeb_wm
;
2717 struct intel_watermark_params planea_params
, planeb_params
;
2718 unsigned long line_time_us
;
2719 int sr_clock
, sr_entries
= 0;
2721 /* Create copies of the base settings for each pipe */
2722 if (IS_I965GM(dev
) || IS_I945GM(dev
))
2723 planea_params
= planeb_params
= i945_wm_info
;
2724 else if (IS_I9XX(dev
))
2725 planea_params
= planeb_params
= i915_wm_info
;
2727 planea_params
= planeb_params
= i855_wm_info
;
2729 /* Grab a couple of global values before we overwrite them */
2730 total_size
= planea_params
.fifo_size
;
2731 cacheline_size
= planea_params
.cacheline_size
;
2733 /* Update per-plane FIFO sizes */
2734 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2735 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
2737 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
2738 pixel_size
, latency_ns
);
2739 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
2740 pixel_size
, latency_ns
);
2741 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
2744 * Overlay gets an aggressive default since video jitter is bad.
2748 /* Calc sr entries for one plane configs */
2749 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
2750 (!planea_clock
|| !planeb_clock
)) {
2751 /* self-refresh has much higher latency */
2752 static const int sr_latency_ns
= 6000;
2754 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
2755 line_time_us
= ((sr_hdisplay
* 1000) / sr_clock
);
2757 /* Use ns/us then divide to preserve precision */
2758 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1) *
2759 pixel_size
* sr_hdisplay
) / 1000;
2760 sr_entries
= roundup(sr_entries
/ cacheline_size
, 1);
2761 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries
);
2762 srwm
= total_size
- sr_entries
;
2766 if (IS_I945G(dev
) || IS_I945GM(dev
))
2767 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
2768 else if (IS_I915GM(dev
)) {
2769 /* 915M has a smaller SRWM field */
2770 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
2771 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
2774 /* Turn off self refresh if both pipes are enabled */
2775 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
2776 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
2778 } else if (IS_I915GM(dev
)) {
2779 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
2783 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2784 planea_wm
, planeb_wm
, cwm
, srwm
);
2786 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
2787 fwater_hi
= (cwm
& 0x1f);
2789 /* Set request length to 8 cachelines per fetch */
2790 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
2791 fwater_hi
= fwater_hi
| (1 << 8);
2793 I915_WRITE(FW_BLC
, fwater_lo
);
2794 I915_WRITE(FW_BLC2
, fwater_hi
);
2797 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
2798 int unused2
, int pixel_size
)
2800 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2801 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
2804 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
2806 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
2807 pixel_size
, latency_ns
);
2808 fwater_lo
|= (3<<8) | planea_wm
;
2810 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
2812 I915_WRITE(FW_BLC
, fwater_lo
);
2816 * intel_update_watermarks - update FIFO watermark values based on current modes
2818 * Calculate watermark values for the various WM regs based on current mode
2819 * and plane configuration.
2821 * There are several cases to deal with here:
2822 * - normal (i.e. non-self-refresh)
2823 * - self-refresh (SR) mode
2824 * - lines are large relative to FIFO size (buffer can hold up to 2)
2825 * - lines are small relative to FIFO size (buffer can hold more than 2
2826 * lines), so need to account for TLB latency
2828 * The normal calculation is:
2829 * watermark = dotclock * bytes per pixel * latency
2830 * where latency is platform & configuration dependent (we assume pessimal
2833 * The SR calculation is:
2834 * watermark = (trunc(latency/line time)+1) * surface width *
2837 * line time = htotal / dotclock
2838 * and latency is assumed to be high, as above.
2840 * The final value programmed to the register should always be rounded up,
2841 * and include an extra 2 entries to account for clock crossings.
2843 * We don't use the sprite, so we can ignore that. And on Crestline we have
2844 * to set the non-SR watermarks to 8.
2846 static void intel_update_watermarks(struct drm_device
*dev
)
2848 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2849 struct drm_crtc
*crtc
;
2850 struct intel_crtc
*intel_crtc
;
2851 int sr_hdisplay
= 0;
2852 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
2853 int enabled
= 0, pixel_size
= 0;
2855 if (!dev_priv
->display
.update_wm
)
2858 /* Get the clock config from both planes */
2859 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2860 intel_crtc
= to_intel_crtc(crtc
);
2861 if (crtc
->enabled
) {
2863 if (intel_crtc
->plane
== 0) {
2864 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2865 intel_crtc
->pipe
, crtc
->mode
.clock
);
2866 planea_clock
= crtc
->mode
.clock
;
2868 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2869 intel_crtc
->pipe
, crtc
->mode
.clock
);
2870 planeb_clock
= crtc
->mode
.clock
;
2872 sr_hdisplay
= crtc
->mode
.hdisplay
;
2873 sr_clock
= crtc
->mode
.clock
;
2875 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
2877 pixel_size
= 4; /* by default */
2884 /* Single plane configs can enable self refresh */
2885 if (enabled
== 1 && IS_PINEVIEW(dev
))
2886 pineview_enable_cxsr(dev
, sr_clock
, pixel_size
);
2887 else if (IS_PINEVIEW(dev
))
2888 pineview_disable_cxsr(dev
);
2890 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
2891 sr_hdisplay
, pixel_size
);
2894 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
2895 struct drm_display_mode
*mode
,
2896 struct drm_display_mode
*adjusted_mode
,
2898 struct drm_framebuffer
*old_fb
)
2900 struct drm_device
*dev
= crtc
->dev
;
2901 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2902 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2903 int pipe
= intel_crtc
->pipe
;
2904 int plane
= intel_crtc
->plane
;
2905 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
2906 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
2907 int dpll_md_reg
= (intel_crtc
->pipe
== 0) ? DPLL_A_MD
: DPLL_B_MD
;
2908 int dspcntr_reg
= (plane
== 0) ? DSPACNTR
: DSPBCNTR
;
2909 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
2910 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
2911 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
2912 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
2913 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
2914 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
2915 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
2916 int dspsize_reg
= (plane
== 0) ? DSPASIZE
: DSPBSIZE
;
2917 int dsppos_reg
= (plane
== 0) ? DSPAPOS
: DSPBPOS
;
2918 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
2919 int refclk
, num_outputs
= 0;
2920 intel_clock_t clock
, reduced_clock
;
2921 u32 dpll
= 0, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
2922 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
2923 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
2924 bool is_edp
= false;
2925 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2926 struct drm_connector
*connector
;
2927 const intel_limit_t
*limit
;
2929 struct fdi_m_n m_n
= {0};
2930 int data_m1_reg
= (pipe
== 0) ? PIPEA_DATA_M1
: PIPEB_DATA_M1
;
2931 int data_n1_reg
= (pipe
== 0) ? PIPEA_DATA_N1
: PIPEB_DATA_N1
;
2932 int link_m1_reg
= (pipe
== 0) ? PIPEA_LINK_M1
: PIPEB_LINK_M1
;
2933 int link_n1_reg
= (pipe
== 0) ? PIPEA_LINK_N1
: PIPEB_LINK_N1
;
2934 int pch_fp_reg
= (pipe
== 0) ? PCH_FPA0
: PCH_FPB0
;
2935 int pch_dpll_reg
= (pipe
== 0) ? PCH_DPLL_A
: PCH_DPLL_B
;
2936 int fdi_rx_reg
= (pipe
== 0) ? FDI_RXA_CTL
: FDI_RXB_CTL
;
2937 int lvds_reg
= LVDS
;
2939 int sdvo_pixel_multiply
;
2942 drm_vblank_pre_modeset(dev
, pipe
);
2944 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
2945 struct intel_output
*intel_output
= to_intel_output(connector
);
2947 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
2950 switch (intel_output
->type
) {
2951 case INTEL_OUTPUT_LVDS
:
2954 case INTEL_OUTPUT_SDVO
:
2955 case INTEL_OUTPUT_HDMI
:
2957 if (intel_output
->needs_tv_clock
)
2960 case INTEL_OUTPUT_DVO
:
2963 case INTEL_OUTPUT_TVOUT
:
2966 case INTEL_OUTPUT_ANALOG
:
2969 case INTEL_OUTPUT_DISPLAYPORT
:
2972 case INTEL_OUTPUT_EDP
:
2980 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2) {
2981 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
2982 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2984 } else if (IS_I9XX(dev
)) {
2986 if (HAS_PCH_SPLIT(dev
))
2987 refclk
= 120000; /* 120Mhz refclk */
2994 * Returns a set of divisors for the desired target clock with the given
2995 * refclk, or FALSE. The returned values represent the clock equation:
2996 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2998 limit
= intel_limit(crtc
);
2999 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
3001 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3002 drm_vblank_post_modeset(dev
, pipe
);
3006 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
3007 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
3008 dev_priv
->lvds_downclock
,
3011 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
3013 * If the different P is found, it means that we can't
3014 * switch the display clock by using the FP0/FP1.
3015 * In such case we will disable the LVDS downclock
3018 DRM_DEBUG_KMS("Different P is found for "
3019 "LVDS clock/downclock\n");
3020 has_reduced_clock
= 0;
3023 /* SDVO TV has fixed PLL values depend on its clock range,
3024 this mirrors vbios setting. */
3025 if (is_sdvo
&& is_tv
) {
3026 if (adjusted_mode
->clock
>= 100000
3027 && adjusted_mode
->clock
< 140500) {
3033 } else if (adjusted_mode
->clock
>= 140500
3034 && adjusted_mode
->clock
<= 200000) {
3044 if (HAS_PCH_SPLIT(dev
)) {
3045 int lane
, link_bw
, bpp
;
3046 /* eDP doesn't require FDI link, so just set DP M/N
3047 according to current link config */
3049 struct drm_connector
*edp
;
3050 target_clock
= mode
->clock
;
3051 edp
= intel_pipe_get_output(crtc
);
3052 intel_edp_link_config(to_intel_output(edp
),
3055 /* DP over FDI requires target mode clock
3056 instead of link clock */
3058 target_clock
= mode
->clock
;
3060 target_clock
= adjusted_mode
->clock
;
3065 /* determine panel color depth */
3066 temp
= I915_READ(pipeconf_reg
);
3067 temp
&= ~PIPE_BPC_MASK
;
3069 int lvds_reg
= I915_READ(PCH_LVDS
);
3070 /* the BPC will be 6 if it is 18-bit LVDS panel */
3071 if ((lvds_reg
& LVDS_A3_POWER_MASK
) == LVDS_A3_POWER_UP
)
3075 } else if (is_edp
) {
3076 switch (dev_priv
->edp_bpp
/3) {
3092 I915_WRITE(pipeconf_reg
, temp
);
3093 I915_READ(pipeconf_reg
);
3095 switch (temp
& PIPE_BPC_MASK
) {
3109 DRM_ERROR("unknown pipe bpc value\n");
3113 ironlake_compute_m_n(bpp
, lane
, target_clock
, link_bw
, &m_n
);
3116 /* Ironlake: try to setup display ref clock before DPLL
3117 * enabling. This is only under driver's control after
3118 * PCH B stepping, previous chipset stepping should be
3119 * ignoring this setting.
3121 if (HAS_PCH_SPLIT(dev
)) {
3122 temp
= I915_READ(PCH_DREF_CONTROL
);
3123 /* Always enable nonspread source */
3124 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
3125 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
3126 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3127 POSTING_READ(PCH_DREF_CONTROL
);
3129 temp
&= ~DREF_SSC_SOURCE_MASK
;
3130 temp
|= DREF_SSC_SOURCE_ENABLE
;
3131 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3132 POSTING_READ(PCH_DREF_CONTROL
);
3137 if (dev_priv
->lvds_use_ssc
) {
3138 temp
|= DREF_SSC1_ENABLE
;
3139 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3140 POSTING_READ(PCH_DREF_CONTROL
);
3144 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
3145 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
3146 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3147 POSTING_READ(PCH_DREF_CONTROL
);
3149 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
3150 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3151 POSTING_READ(PCH_DREF_CONTROL
);
3156 if (IS_PINEVIEW(dev
)) {
3157 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
3158 if (has_reduced_clock
)
3159 fp2
= (1 << reduced_clock
.n
) << 16 |
3160 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
3162 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
3163 if (has_reduced_clock
)
3164 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
3168 if (!HAS_PCH_SPLIT(dev
))
3169 dpll
= DPLL_VGA_MODE_DIS
;
3173 dpll
|= DPLLB_MODE_LVDS
;
3175 dpll
|= DPLLB_MODE_DAC_SERIAL
;
3177 dpll
|= DPLL_DVO_HIGH_SPEED
;
3178 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3179 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
3180 dpll
|= (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
3181 else if (HAS_PCH_SPLIT(dev
))
3182 dpll
|= (sdvo_pixel_multiply
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
3185 dpll
|= DPLL_DVO_HIGH_SPEED
;
3187 /* compute bitmask from p1 value */
3188 if (IS_PINEVIEW(dev
))
3189 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
3191 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3193 if (HAS_PCH_SPLIT(dev
))
3194 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3195 if (IS_G4X(dev
) && has_reduced_clock
)
3196 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3200 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
3203 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
3206 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
3209 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
3212 if (IS_I965G(dev
) && !HAS_PCH_SPLIT(dev
))
3213 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
3216 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3219 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
3221 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3223 dpll
|= PLL_P2_DIVIDE_BY_4
;
3227 if (is_sdvo
&& is_tv
)
3228 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
3230 /* XXX: just matching BIOS for now */
3231 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3233 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_outputs
< 2)
3234 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
3236 dpll
|= PLL_REF_INPUT_DREFCLK
;
3238 /* setup pipeconf */
3239 pipeconf
= I915_READ(pipeconf_reg
);
3241 /* Set up the display plane register */
3242 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3244 /* Ironlake's plane is forced to pipe, bit 24 is to
3245 enable color space conversion */
3246 if (!HAS_PCH_SPLIT(dev
)) {
3248 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
3250 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3253 if (pipe
== 0 && !IS_I965G(dev
)) {
3254 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3257 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3261 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
3262 pipeconf
|= PIPEACONF_DOUBLE_WIDE
;
3264 pipeconf
&= ~PIPEACONF_DOUBLE_WIDE
;
3267 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3268 pipeconf
|= PIPEACONF_ENABLE
;
3269 dpll
|= DPLL_VCO_ENABLE
;
3272 /* Disable the panel fitter if it was on our pipe */
3273 if (!HAS_PCH_SPLIT(dev
) && intel_panel_fitter_pipe(dev
) == pipe
)
3274 I915_WRITE(PFIT_CONTROL
, 0);
3276 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
3277 drm_mode_debug_printmodeline(mode
);
3279 /* assign to Ironlake registers */
3280 if (HAS_PCH_SPLIT(dev
)) {
3281 fp_reg
= pch_fp_reg
;
3282 dpll_reg
= pch_dpll_reg
;
3286 ironlake_disable_pll_edp(crtc
);
3287 } else if ((dpll
& DPLL_VCO_ENABLE
)) {
3288 I915_WRITE(fp_reg
, fp
);
3289 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
3290 I915_READ(dpll_reg
);
3294 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3295 * This is an exception to the general rule that mode_set doesn't turn
3301 if (HAS_PCH_SPLIT(dev
))
3302 lvds_reg
= PCH_LVDS
;
3304 lvds
= I915_READ(lvds_reg
);
3305 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
| LVDS_PIPEB_SELECT
;
3306 /* set the corresponsding LVDS_BORDER bit */
3307 lvds
|= dev_priv
->lvds_border_bits
;
3308 /* Set the B0-B3 data pairs corresponding to whether we're going to
3309 * set the DPLLs for dual-channel mode or not.
3312 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
3314 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
3316 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3317 * appropriately here, but we need to look more thoroughly into how
3318 * panels behave in the two modes.
3320 /* set the dithering flag */
3321 if (IS_I965G(dev
)) {
3322 if (dev_priv
->lvds_dither
) {
3323 if (HAS_PCH_SPLIT(dev
))
3324 pipeconf
|= PIPE_ENABLE_DITHER
;
3326 lvds
|= LVDS_ENABLE_DITHER
;
3328 if (HAS_PCH_SPLIT(dev
))
3329 pipeconf
&= ~PIPE_ENABLE_DITHER
;
3331 lvds
&= ~LVDS_ENABLE_DITHER
;
3334 I915_WRITE(lvds_reg
, lvds
);
3335 I915_READ(lvds_reg
);
3338 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
3341 I915_WRITE(fp_reg
, fp
);
3342 I915_WRITE(dpll_reg
, dpll
);
3343 I915_READ(dpll_reg
);
3344 /* Wait for the clocks to stabilize. */
3347 if (IS_I965G(dev
) && !HAS_PCH_SPLIT(dev
)) {
3349 sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
3350 I915_WRITE(dpll_md_reg
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) |
3351 ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
3353 I915_WRITE(dpll_md_reg
, 0);
3355 /* write it again -- the BIOS does, after all */
3356 I915_WRITE(dpll_reg
, dpll
);
3358 I915_READ(dpll_reg
);
3359 /* Wait for the clocks to stabilize. */
3363 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
3364 I915_WRITE(fp_reg
+ 4, fp2
);
3365 intel_crtc
->lowfreq_avail
= true;
3366 if (HAS_PIPE_CXSR(dev
)) {
3367 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3368 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
3371 I915_WRITE(fp_reg
+ 4, fp
);
3372 intel_crtc
->lowfreq_avail
= false;
3373 if (HAS_PIPE_CXSR(dev
)) {
3374 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3375 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
3379 I915_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
3380 ((adjusted_mode
->crtc_htotal
- 1) << 16));
3381 I915_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
3382 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
3383 I915_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
3384 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
3385 I915_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
3386 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
3387 I915_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
3388 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
3389 I915_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
3390 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
3391 /* pipesrc and dspsize control the size that is scaled from, which should
3392 * always be the user's requested size.
3394 if (!HAS_PCH_SPLIT(dev
)) {
3395 I915_WRITE(dspsize_reg
, ((mode
->vdisplay
- 1) << 16) |
3396 (mode
->hdisplay
- 1));
3397 I915_WRITE(dsppos_reg
, 0);
3399 I915_WRITE(pipesrc_reg
, ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
3401 if (HAS_PCH_SPLIT(dev
)) {
3402 I915_WRITE(data_m1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
3403 I915_WRITE(data_n1_reg
, TU_SIZE(m_n
.tu
) | m_n
.gmch_n
);
3404 I915_WRITE(link_m1_reg
, m_n
.link_m
);
3405 I915_WRITE(link_n1_reg
, m_n
.link_n
);
3408 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
3410 /* enable FDI RX PLL too */
3411 temp
= I915_READ(fdi_rx_reg
);
3412 I915_WRITE(fdi_rx_reg
, temp
| FDI_RX_PLL_ENABLE
);
3417 I915_WRITE(pipeconf_reg
, pipeconf
);
3418 I915_READ(pipeconf_reg
);
3420 intel_wait_for_vblank(dev
);
3422 if (IS_IRONLAKE(dev
)) {
3423 /* enable address swizzle for tiling buffer */
3424 temp
= I915_READ(DISP_ARB_CTL
);
3425 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
3428 I915_WRITE(dspcntr_reg
, dspcntr
);
3430 /* Flush the plane changes */
3431 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
3433 if ((IS_I965G(dev
) || plane
== 0))
3434 intel_update_fbc(crtc
, &crtc
->mode
);
3436 intel_update_watermarks(dev
);
3438 drm_vblank_post_modeset(dev
, pipe
);
3443 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3444 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
3446 struct drm_device
*dev
= crtc
->dev
;
3447 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3448 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3449 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
3452 /* The clocks have to be on to load the palette. */
3456 /* use legacy palette for Ironlake */
3457 if (HAS_PCH_SPLIT(dev
))
3458 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
3461 for (i
= 0; i
< 256; i
++) {
3462 I915_WRITE(palreg
+ 4 * i
,
3463 (intel_crtc
->lut_r
[i
] << 16) |
3464 (intel_crtc
->lut_g
[i
] << 8) |
3465 intel_crtc
->lut_b
[i
]);
3469 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
3470 struct drm_file
*file_priv
,
3472 uint32_t width
, uint32_t height
)
3474 struct drm_device
*dev
= crtc
->dev
;
3475 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3476 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3477 struct drm_gem_object
*bo
;
3478 struct drm_i915_gem_object
*obj_priv
;
3479 int pipe
= intel_crtc
->pipe
;
3480 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
3481 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
3482 uint32_t temp
= I915_READ(control
);
3486 DRM_DEBUG_KMS("\n");
3488 /* if we want to turn off the cursor ignore width and height */
3490 DRM_DEBUG_KMS("cursor off\n");
3491 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3492 temp
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
3493 temp
|= CURSOR_MODE_DISABLE
;
3495 temp
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
3499 mutex_lock(&dev
->struct_mutex
);
3503 /* Currently we only support 64x64 cursors */
3504 if (width
!= 64 || height
!= 64) {
3505 DRM_ERROR("we currently only support 64x64 cursors\n");
3509 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
3513 obj_priv
= bo
->driver_private
;
3515 if (bo
->size
< width
* height
* 4) {
3516 DRM_ERROR("buffer is to small\n");
3521 /* we only need to pin inside GTT if cursor is non-phy */
3522 mutex_lock(&dev
->struct_mutex
);
3523 if (!dev_priv
->info
->cursor_needs_physical
) {
3524 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
3526 DRM_ERROR("failed to pin cursor bo\n");
3529 addr
= obj_priv
->gtt_offset
;
3531 ret
= i915_gem_attach_phys_object(dev
, bo
, (pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
);
3533 DRM_ERROR("failed to attach phys object\n");
3536 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
3540 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
3542 /* Hooray for CUR*CNTR differences */
3543 if (IS_MOBILE(dev
) || IS_I9XX(dev
)) {
3544 temp
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
3545 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
3546 temp
|= (pipe
<< 28); /* Connect to correct pipe */
3548 temp
&= ~(CURSOR_FORMAT_MASK
);
3549 temp
|= CURSOR_ENABLE
;
3550 temp
|= CURSOR_FORMAT_ARGB
| CURSOR_GAMMA_ENABLE
;
3554 I915_WRITE(control
, temp
);
3555 I915_WRITE(base
, addr
);
3557 if (intel_crtc
->cursor_bo
) {
3558 if (dev_priv
->info
->cursor_needs_physical
) {
3559 if (intel_crtc
->cursor_bo
!= bo
)
3560 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
3562 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
3563 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
3566 mutex_unlock(&dev
->struct_mutex
);
3568 intel_crtc
->cursor_addr
= addr
;
3569 intel_crtc
->cursor_bo
= bo
;
3573 mutex_unlock(&dev
->struct_mutex
);
3575 drm_gem_object_unreference_unlocked(bo
);
3579 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
3581 struct drm_device
*dev
= crtc
->dev
;
3582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3583 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3584 struct intel_framebuffer
*intel_fb
;
3585 int pipe
= intel_crtc
->pipe
;
3590 intel_fb
= to_intel_framebuffer(crtc
->fb
);
3591 intel_mark_busy(dev
, intel_fb
->obj
);
3595 temp
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
3599 temp
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
3603 temp
|= x
<< CURSOR_X_SHIFT
;
3604 temp
|= y
<< CURSOR_Y_SHIFT
;
3606 adder
= intel_crtc
->cursor_addr
;
3607 I915_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
3608 I915_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
3613 /** Sets the color ramps on behalf of RandR */
3614 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
3615 u16 blue
, int regno
)
3617 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3619 intel_crtc
->lut_r
[regno
] = red
>> 8;
3620 intel_crtc
->lut_g
[regno
] = green
>> 8;
3621 intel_crtc
->lut_b
[regno
] = blue
>> 8;
3624 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3625 u16
*blue
, int regno
)
3627 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3629 *red
= intel_crtc
->lut_r
[regno
] << 8;
3630 *green
= intel_crtc
->lut_g
[regno
] << 8;
3631 *blue
= intel_crtc
->lut_b
[regno
] << 8;
3634 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
3635 u16
*blue
, uint32_t size
)
3637 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3643 for (i
= 0; i
< 256; i
++) {
3644 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
3645 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
3646 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
3649 intel_crtc_load_lut(crtc
);
3653 * Get a pipe with a simple mode set on it for doing load-based monitor
3656 * It will be up to the load-detect code to adjust the pipe as appropriate for
3657 * its requirements. The pipe will be connected to no other outputs.
3659 * Currently this code will only succeed if there is a pipe with no outputs
3660 * configured for it. In the future, it could choose to temporarily disable
3661 * some outputs to free up a pipe for its use.
3663 * \return crtc, or NULL if no pipes are available.
3666 /* VESA 640x480x72Hz mode to set on the pipe */
3667 static struct drm_display_mode load_detect_mode
= {
3668 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
3669 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
3672 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_output
*intel_output
,
3673 struct drm_display_mode
*mode
,
3676 struct intel_crtc
*intel_crtc
;
3677 struct drm_crtc
*possible_crtc
;
3678 struct drm_crtc
*supported_crtc
=NULL
;
3679 struct drm_encoder
*encoder
= &intel_output
->enc
;
3680 struct drm_crtc
*crtc
= NULL
;
3681 struct drm_device
*dev
= encoder
->dev
;
3682 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3683 struct drm_crtc_helper_funcs
*crtc_funcs
;
3687 * Algorithm gets a little messy:
3688 * - if the connector already has an assigned crtc, use it (but make
3689 * sure it's on first)
3690 * - try to find the first unused crtc that can drive this connector,
3691 * and use that if we find one
3692 * - if there are no unused crtcs available, try to use the first
3693 * one we found that supports the connector
3696 /* See if we already have a CRTC for this connector */
3697 if (encoder
->crtc
) {
3698 crtc
= encoder
->crtc
;
3699 /* Make sure the crtc and connector are running */
3700 intel_crtc
= to_intel_crtc(crtc
);
3701 *dpms_mode
= intel_crtc
->dpms_mode
;
3702 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3703 crtc_funcs
= crtc
->helper_private
;
3704 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3705 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3710 /* Find an unused one (if possible) */
3711 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
3713 if (!(encoder
->possible_crtcs
& (1 << i
)))
3715 if (!possible_crtc
->enabled
) {
3716 crtc
= possible_crtc
;
3719 if (!supported_crtc
)
3720 supported_crtc
= possible_crtc
;
3724 * If we didn't find an unused CRTC, don't use any.
3730 encoder
->crtc
= crtc
;
3731 intel_output
->base
.encoder
= encoder
;
3732 intel_output
->load_detect_temp
= true;
3734 intel_crtc
= to_intel_crtc(crtc
);
3735 *dpms_mode
= intel_crtc
->dpms_mode
;
3737 if (!crtc
->enabled
) {
3739 mode
= &load_detect_mode
;
3740 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
3742 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
3743 crtc_funcs
= crtc
->helper_private
;
3744 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
3747 /* Add this connector to the crtc */
3748 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
3749 encoder_funcs
->commit(encoder
);
3751 /* let the connector get through one full cycle before testing */
3752 intel_wait_for_vblank(dev
);
3757 void intel_release_load_detect_pipe(struct intel_output
*intel_output
, int dpms_mode
)
3759 struct drm_encoder
*encoder
= &intel_output
->enc
;
3760 struct drm_device
*dev
= encoder
->dev
;
3761 struct drm_crtc
*crtc
= encoder
->crtc
;
3762 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3763 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3765 if (intel_output
->load_detect_temp
) {
3766 encoder
->crtc
= NULL
;
3767 intel_output
->base
.encoder
= NULL
;
3768 intel_output
->load_detect_temp
= false;
3769 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
3770 drm_helper_disable_unused_functions(dev
);
3773 /* Switch crtc and output back off if necessary */
3774 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
3775 if (encoder
->crtc
== crtc
)
3776 encoder_funcs
->dpms(encoder
, dpms_mode
);
3777 crtc_funcs
->dpms(crtc
, dpms_mode
);
3781 /* Returns the clock of the currently programmed mode of the given pipe. */
3782 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
3784 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3785 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3786 int pipe
= intel_crtc
->pipe
;
3787 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
3789 intel_clock_t clock
;
3791 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
3792 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
3794 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
3796 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
3797 if (IS_PINEVIEW(dev
)) {
3798 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
3799 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3801 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
3802 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
3806 if (IS_PINEVIEW(dev
))
3807 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
3808 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
3810 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
3811 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3813 switch (dpll
& DPLL_MODE_MASK
) {
3814 case DPLLB_MODE_DAC_SERIAL
:
3815 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
3818 case DPLLB_MODE_LVDS
:
3819 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
3823 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3824 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
3828 /* XXX: Handle the 100Mhz refclk */
3829 intel_clock(dev
, 96000, &clock
);
3831 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
3834 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
3835 DPLL_FPA01_P1_POST_DIV_SHIFT
);
3838 if ((dpll
& PLL_REF_INPUT_MASK
) ==
3839 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
3840 /* XXX: might not be 66MHz */
3841 intel_clock(dev
, 66000, &clock
);
3843 intel_clock(dev
, 48000, &clock
);
3845 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
3848 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
3849 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
3851 if (dpll
& PLL_P2_DIVIDE_BY_4
)
3856 intel_clock(dev
, 48000, &clock
);
3860 /* XXX: It would be nice to validate the clocks, but we can't reuse
3861 * i830PllIsValid() because it relies on the xf86_config connector
3862 * configuration being accurate, which it isn't necessarily.
3868 /** Returns the currently programmed mode of the given pipe. */
3869 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
3870 struct drm_crtc
*crtc
)
3872 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3873 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3874 int pipe
= intel_crtc
->pipe
;
3875 struct drm_display_mode
*mode
;
3876 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
3877 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
3878 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
3879 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
3881 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
3885 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
3886 mode
->hdisplay
= (htot
& 0xffff) + 1;
3887 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
3888 mode
->hsync_start
= (hsync
& 0xffff) + 1;
3889 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
3890 mode
->vdisplay
= (vtot
& 0xffff) + 1;
3891 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
3892 mode
->vsync_start
= (vsync
& 0xffff) + 1;
3893 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
3895 drm_mode_set_name(mode
);
3896 drm_mode_set_crtcinfo(mode
, 0);
3901 #define GPU_IDLE_TIMEOUT 500 /* ms */
3903 /* When this timer fires, we've been idle for awhile */
3904 static void intel_gpu_idle_timer(unsigned long arg
)
3906 struct drm_device
*dev
= (struct drm_device
*)arg
;
3907 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3909 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3911 dev_priv
->busy
= false;
3913 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3916 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3918 static void intel_crtc_idle_timer(unsigned long arg
)
3920 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
3921 struct drm_crtc
*crtc
= &intel_crtc
->base
;
3922 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
3924 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3926 intel_crtc
->busy
= false;
3928 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
3931 static void intel_increase_pllclock(struct drm_crtc
*crtc
, bool schedule
)
3933 struct drm_device
*dev
= crtc
->dev
;
3934 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3935 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3936 int pipe
= intel_crtc
->pipe
;
3937 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3938 int dpll
= I915_READ(dpll_reg
);
3940 if (HAS_PCH_SPLIT(dev
))
3943 if (!dev_priv
->lvds_downclock_avail
)
3946 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
3947 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3949 /* Unlock panel regs */
3950 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3952 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
3953 I915_WRITE(dpll_reg
, dpll
);
3954 dpll
= I915_READ(dpll_reg
);
3955 intel_wait_for_vblank(dev
);
3956 dpll
= I915_READ(dpll_reg
);
3957 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
3958 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3960 /* ...and lock them again */
3961 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
3964 /* Schedule downclock */
3966 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
3967 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
3970 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
3972 struct drm_device
*dev
= crtc
->dev
;
3973 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
3974 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3975 int pipe
= intel_crtc
->pipe
;
3976 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
3977 int dpll
= I915_READ(dpll_reg
);
3979 if (HAS_PCH_SPLIT(dev
))
3982 if (!dev_priv
->lvds_downclock_avail
)
3986 * Since this is called by a timer, we should never get here in
3989 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
3990 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3992 /* Unlock panel regs */
3993 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) | (0xabcd << 16));
3995 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
3996 I915_WRITE(dpll_reg
, dpll
);
3997 dpll
= I915_READ(dpll_reg
);
3998 intel_wait_for_vblank(dev
);
3999 dpll
= I915_READ(dpll_reg
);
4000 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
4001 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4003 /* ...and lock them again */
4004 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4010 * intel_idle_update - adjust clocks for idleness
4011 * @work: work struct
4013 * Either the GPU or display (or both) went idle. Check the busy status
4014 * here and adjust the CRTC and GPU clocks as necessary.
4016 static void intel_idle_update(struct work_struct
*work
)
4018 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
4020 struct drm_device
*dev
= dev_priv
->dev
;
4021 struct drm_crtc
*crtc
;
4022 struct intel_crtc
*intel_crtc
;
4024 if (!i915_powersave
)
4027 mutex_lock(&dev
->struct_mutex
);
4029 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4030 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4031 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4034 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4035 /* Skip inactive CRTCs */
4039 intel_crtc
= to_intel_crtc(crtc
);
4040 if (!intel_crtc
->busy
)
4041 intel_decrease_pllclock(crtc
);
4044 mutex_unlock(&dev
->struct_mutex
);
4048 * intel_mark_busy - mark the GPU and possibly the display busy
4050 * @obj: object we're operating on
4052 * Callers can use this function to indicate that the GPU is busy processing
4053 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4054 * buffer), we'll also mark the display as busy, so we know to increase its
4057 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
4059 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4060 struct drm_crtc
*crtc
= NULL
;
4061 struct intel_framebuffer
*intel_fb
;
4062 struct intel_crtc
*intel_crtc
;
4064 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
4067 if (!dev_priv
->busy
) {
4068 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4071 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4072 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4073 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4074 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4076 dev_priv
->busy
= true;
4078 mod_timer(&dev_priv
->idle_timer
, jiffies
+
4079 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
4081 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4085 intel_crtc
= to_intel_crtc(crtc
);
4086 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4087 if (intel_fb
->obj
== obj
) {
4088 if (!intel_crtc
->busy
) {
4089 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4092 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4093 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4094 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4095 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4097 /* Non-busy -> busy, upclock */
4098 intel_increase_pllclock(crtc
, true);
4099 intel_crtc
->busy
= true;
4101 /* Busy -> busy, put off timer */
4102 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4103 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4109 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
4111 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4113 drm_crtc_cleanup(crtc
);
4117 struct intel_unpin_work
{
4118 struct work_struct work
;
4119 struct drm_device
*dev
;
4120 struct drm_gem_object
*old_fb_obj
;
4121 struct drm_gem_object
*pending_flip_obj
;
4122 struct drm_pending_vblank_event
*event
;
4126 static void intel_unpin_work_fn(struct work_struct
*__work
)
4128 struct intel_unpin_work
*work
=
4129 container_of(__work
, struct intel_unpin_work
, work
);
4131 mutex_lock(&work
->dev
->struct_mutex
);
4132 i915_gem_object_unpin(work
->old_fb_obj
);
4133 drm_gem_object_unreference(work
->pending_flip_obj
);
4134 drm_gem_object_unreference(work
->old_fb_obj
);
4135 mutex_unlock(&work
->dev
->struct_mutex
);
4139 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
4141 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4142 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
4143 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4144 struct intel_unpin_work
*work
;
4145 struct drm_i915_gem_object
*obj_priv
;
4146 struct drm_pending_vblank_event
*e
;
4148 unsigned long flags
;
4150 /* Ignore early vblank irqs */
4151 if (intel_crtc
== NULL
)
4154 spin_lock_irqsave(&dev
->event_lock
, flags
);
4155 work
= intel_crtc
->unpin_work
;
4156 if (work
== NULL
|| !work
->pending
) {
4157 if (work
&& !work
->pending
) {
4158 obj_priv
= work
->pending_flip_obj
->driver_private
;
4159 DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4161 atomic_read(&obj_priv
->pending_flip
));
4163 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4167 intel_crtc
->unpin_work
= NULL
;
4168 drm_vblank_put(dev
, intel_crtc
->pipe
);
4172 do_gettimeofday(&now
);
4173 e
->event
.sequence
= drm_vblank_count(dev
, intel_crtc
->pipe
);
4174 e
->event
.tv_sec
= now
.tv_sec
;
4175 e
->event
.tv_usec
= now
.tv_usec
;
4176 list_add_tail(&e
->base
.link
,
4177 &e
->base
.file_priv
->event_list
);
4178 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
4181 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4183 obj_priv
= work
->pending_flip_obj
->driver_private
;
4185 /* Initial scanout buffer will have a 0 pending flip count */
4186 if ((atomic_read(&obj_priv
->pending_flip
) == 0) ||
4187 atomic_dec_and_test(&obj_priv
->pending_flip
))
4188 DRM_WAKEUP(&dev_priv
->pending_flip_queue
);
4189 schedule_work(&work
->work
);
4192 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
4194 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4195 struct intel_crtc
*intel_crtc
=
4196 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
4197 unsigned long flags
;
4199 spin_lock_irqsave(&dev
->event_lock
, flags
);
4200 if (intel_crtc
->unpin_work
) {
4201 intel_crtc
->unpin_work
->pending
= 1;
4203 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4205 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4208 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
4209 struct drm_framebuffer
*fb
,
4210 struct drm_pending_vblank_event
*event
)
4212 struct drm_device
*dev
= crtc
->dev
;
4213 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4214 struct intel_framebuffer
*intel_fb
;
4215 struct drm_i915_gem_object
*obj_priv
;
4216 struct drm_gem_object
*obj
;
4217 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4218 struct intel_unpin_work
*work
;
4219 unsigned long flags
;
4220 int pipesrc_reg
= (intel_crtc
->pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
4224 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
4228 mutex_lock(&dev
->struct_mutex
);
4230 work
->event
= event
;
4231 work
->dev
= crtc
->dev
;
4232 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4233 work
->old_fb_obj
= intel_fb
->obj
;
4234 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
4236 /* We borrow the event spin lock for protecting unpin_work */
4237 spin_lock_irqsave(&dev
->event_lock
, flags
);
4238 if (intel_crtc
->unpin_work
) {
4239 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4240 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4242 mutex_unlock(&dev
->struct_mutex
);
4245 intel_crtc
->unpin_work
= work
;
4246 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4248 intel_fb
= to_intel_framebuffer(fb
);
4249 obj
= intel_fb
->obj
;
4251 ret
= intel_pin_and_fence_fb_obj(dev
, obj
);
4253 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4254 obj
->driver_private
);
4256 intel_crtc
->unpin_work
= NULL
;
4257 mutex_unlock(&dev
->struct_mutex
);
4261 /* Reference the objects for the scheduled work. */
4262 drm_gem_object_reference(work
->old_fb_obj
);
4263 drm_gem_object_reference(obj
);
4266 i915_gem_object_flush_write_domain(obj
);
4267 drm_vblank_get(dev
, intel_crtc
->pipe
);
4268 obj_priv
= obj
->driver_private
;
4269 atomic_inc(&obj_priv
->pending_flip
);
4270 work
->pending_flip_obj
= obj
;
4273 OUT_RING(MI_DISPLAY_FLIP
|
4274 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
4275 OUT_RING(fb
->pitch
);
4276 if (IS_I965G(dev
)) {
4277 OUT_RING(obj_priv
->gtt_offset
| obj_priv
->tiling_mode
);
4278 pipesrc
= I915_READ(pipesrc_reg
);
4279 OUT_RING(pipesrc
& 0x0fff0fff);
4281 OUT_RING(obj_priv
->gtt_offset
);
4286 mutex_unlock(&dev
->struct_mutex
);
4291 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
4292 .dpms
= intel_crtc_dpms
,
4293 .mode_fixup
= intel_crtc_mode_fixup
,
4294 .mode_set
= intel_crtc_mode_set
,
4295 .mode_set_base
= intel_pipe_set_base
,
4296 .prepare
= intel_crtc_prepare
,
4297 .commit
= intel_crtc_commit
,
4298 .load_lut
= intel_crtc_load_lut
,
4301 static const struct drm_crtc_funcs intel_crtc_funcs
= {
4302 .cursor_set
= intel_crtc_cursor_set
,
4303 .cursor_move
= intel_crtc_cursor_move
,
4304 .gamma_set
= intel_crtc_gamma_set
,
4305 .set_config
= drm_crtc_helper_set_config
,
4306 .destroy
= intel_crtc_destroy
,
4307 .page_flip
= intel_crtc_page_flip
,
4311 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
4313 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4314 struct intel_crtc
*intel_crtc
;
4317 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
4318 if (intel_crtc
== NULL
)
4321 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
4323 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
4324 intel_crtc
->pipe
= pipe
;
4325 intel_crtc
->plane
= pipe
;
4326 for (i
= 0; i
< 256; i
++) {
4327 intel_crtc
->lut_r
[i
] = i
;
4328 intel_crtc
->lut_g
[i
] = i
;
4329 intel_crtc
->lut_b
[i
] = i
;
4332 /* Swap pipes & planes for FBC on pre-965 */
4333 intel_crtc
->pipe
= pipe
;
4334 intel_crtc
->plane
= pipe
;
4335 if (IS_MOBILE(dev
) && (IS_I9XX(dev
) && !IS_I965G(dev
))) {
4336 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4337 intel_crtc
->plane
= ((pipe
== 0) ? 1 : 0);
4340 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
4341 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
4342 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
4343 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
4345 intel_crtc
->cursor_addr
= 0;
4346 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
4347 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
4349 intel_crtc
->busy
= false;
4351 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
4352 (unsigned long)intel_crtc
);
4355 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
4356 struct drm_file
*file_priv
)
4358 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4359 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
4360 struct drm_mode_object
*drmmode_obj
;
4361 struct intel_crtc
*crtc
;
4364 DRM_ERROR("called with no initialization\n");
4368 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
4369 DRM_MODE_OBJECT_CRTC
);
4372 DRM_ERROR("no such CRTC id\n");
4376 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
4377 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
4382 struct drm_crtc
*intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
4384 struct drm_crtc
*crtc
= NULL
;
4386 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4387 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4388 if (intel_crtc
->pipe
== pipe
)
4394 static int intel_connector_clones(struct drm_device
*dev
, int type_mask
)
4397 struct drm_connector
*connector
;
4400 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4401 struct intel_output
*intel_output
= to_intel_output(connector
);
4402 if (type_mask
& intel_output
->clone_mask
)
4403 index_mask
|= (1 << entry
);
4410 static void intel_setup_outputs(struct drm_device
*dev
)
4412 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4413 struct drm_connector
*connector
;
4415 intel_crt_init(dev
);
4417 /* Set up integrated LVDS */
4418 if (IS_MOBILE(dev
) && !IS_I830(dev
))
4419 intel_lvds_init(dev
);
4421 if (HAS_PCH_SPLIT(dev
)) {
4424 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
4425 intel_dp_init(dev
, DP_A
);
4427 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
4429 /* found = intel_sdvo_init(dev, HDMIB); */
4432 intel_hdmi_init(dev
, HDMIB
);
4433 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
4434 intel_dp_init(dev
, PCH_DP_B
);
4437 if (I915_READ(HDMIC
) & PORT_DETECTED
)
4438 intel_hdmi_init(dev
, HDMIC
);
4440 if (I915_READ(HDMID
) & PORT_DETECTED
)
4441 intel_hdmi_init(dev
, HDMID
);
4443 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
4444 intel_dp_init(dev
, PCH_DP_C
);
4446 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
4447 intel_dp_init(dev
, PCH_DP_D
);
4449 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
4452 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4453 DRM_DEBUG_KMS("probing SDVOB\n");
4454 found
= intel_sdvo_init(dev
, SDVOB
);
4455 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
4456 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4457 intel_hdmi_init(dev
, SDVOB
);
4460 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
4461 DRM_DEBUG_KMS("probing DP_B\n");
4462 intel_dp_init(dev
, DP_B
);
4466 /* Before G4X SDVOC doesn't have its own detect register */
4468 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
4469 DRM_DEBUG_KMS("probing SDVOC\n");
4470 found
= intel_sdvo_init(dev
, SDVOC
);
4473 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
4475 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
4476 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4477 intel_hdmi_init(dev
, SDVOC
);
4479 if (SUPPORTS_INTEGRATED_DP(dev
)) {
4480 DRM_DEBUG_KMS("probing DP_C\n");
4481 intel_dp_init(dev
, DP_C
);
4485 if (SUPPORTS_INTEGRATED_DP(dev
) &&
4486 (I915_READ(DP_D
) & DP_DETECTED
)) {
4487 DRM_DEBUG_KMS("probing DP_D\n");
4488 intel_dp_init(dev
, DP_D
);
4490 } else if (IS_GEN2(dev
))
4491 intel_dvo_init(dev
);
4493 if (SUPPORTS_TV(dev
))
4496 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
4497 struct intel_output
*intel_output
= to_intel_output(connector
);
4498 struct drm_encoder
*encoder
= &intel_output
->enc
;
4500 encoder
->possible_crtcs
= intel_output
->crtc_mask
;
4501 encoder
->possible_clones
= intel_connector_clones(dev
,
4502 intel_output
->clone_mask
);
4506 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
4508 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4509 struct drm_device
*dev
= fb
->dev
;
4512 intelfb_remove(dev
, fb
);
4514 drm_framebuffer_cleanup(fb
);
4515 drm_gem_object_unreference_unlocked(intel_fb
->obj
);
4520 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
4521 struct drm_file
*file_priv
,
4522 unsigned int *handle
)
4524 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
4525 struct drm_gem_object
*object
= intel_fb
->obj
;
4527 return drm_gem_handle_create(file_priv
, object
, handle
);
4530 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
4531 .destroy
= intel_user_framebuffer_destroy
,
4532 .create_handle
= intel_user_framebuffer_create_handle
,
4535 int intel_framebuffer_create(struct drm_device
*dev
,
4536 struct drm_mode_fb_cmd
*mode_cmd
,
4537 struct drm_framebuffer
**fb
,
4538 struct drm_gem_object
*obj
)
4540 struct intel_framebuffer
*intel_fb
;
4543 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
4547 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
4549 DRM_ERROR("framebuffer init failed %d\n", ret
);
4553 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
4555 intel_fb
->obj
= obj
;
4557 *fb
= &intel_fb
->base
;
4563 static struct drm_framebuffer
*
4564 intel_user_framebuffer_create(struct drm_device
*dev
,
4565 struct drm_file
*filp
,
4566 struct drm_mode_fb_cmd
*mode_cmd
)
4568 struct drm_gem_object
*obj
;
4569 struct drm_framebuffer
*fb
;
4572 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
4576 ret
= intel_framebuffer_create(dev
, mode_cmd
, &fb
, obj
);
4578 drm_gem_object_unreference_unlocked(obj
);
4585 static const struct drm_mode_config_funcs intel_mode_funcs
= {
4586 .fb_create
= intel_user_framebuffer_create
,
4587 .fb_changed
= intelfb_probe
,
4590 static struct drm_gem_object
*
4591 intel_alloc_power_context(struct drm_device
*dev
)
4593 struct drm_gem_object
*pwrctx
;
4596 pwrctx
= drm_gem_object_alloc(dev
, 4096);
4598 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4602 mutex_lock(&dev
->struct_mutex
);
4603 ret
= i915_gem_object_pin(pwrctx
, 4096);
4605 DRM_ERROR("failed to pin power context: %d\n", ret
);
4609 ret
= i915_gem_object_set_to_gtt_domain(pwrctx
, 1);
4611 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
4614 mutex_unlock(&dev
->struct_mutex
);
4619 i915_gem_object_unpin(pwrctx
);
4621 drm_gem_object_unreference(pwrctx
);
4622 mutex_unlock(&dev
->struct_mutex
);
4626 void ironlake_enable_drps(struct drm_device
*dev
)
4628 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4629 u32 rgvmodectl
= I915_READ(MEMMODECTL
), rgvswctl
;
4630 u8 fmax
, fmin
, fstart
, vstart
;
4633 /* 100ms RC evaluation intervals */
4634 I915_WRITE(RCUPEI
, 100000);
4635 I915_WRITE(RCDNEI
, 100000);
4637 /* Set max/min thresholds to 90ms and 80ms respectively */
4638 I915_WRITE(RCBMAXAVG
, 90000);
4639 I915_WRITE(RCBMINAVG
, 80000);
4641 I915_WRITE(MEMIHYST
, 1);
4643 /* Set up min, max, and cur for interrupt handling */
4644 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
4645 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
4646 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
4647 MEMMODE_FSTART_SHIFT
;
4648 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
4651 dev_priv
->max_delay
= fstart
; /* can't go to fmax w/o IPS */
4652 dev_priv
->min_delay
= fmin
;
4653 dev_priv
->cur_delay
= fstart
;
4655 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
4658 * Interrupts will be enabled in ironlake_irq_postinstall
4661 I915_WRITE(VIDSTART
, vstart
);
4662 POSTING_READ(VIDSTART
);
4664 rgvmodectl
|= MEMMODE_SWMODE_EN
;
4665 I915_WRITE(MEMMODECTL
, rgvmodectl
);
4667 while (I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) {
4669 DRM_ERROR("stuck trying to change perf mode\n");
4676 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4677 (fstart
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4678 I915_WRITE(MEMSWCTL
, rgvswctl
);
4679 POSTING_READ(MEMSWCTL
);
4681 rgvswctl
|= MEMCTL_CMD_STS
;
4682 I915_WRITE(MEMSWCTL
, rgvswctl
);
4685 void ironlake_disable_drps(struct drm_device
*dev
)
4687 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4691 /* Ack interrupts, disable EFC interrupt */
4692 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
4693 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
4694 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
4695 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
4696 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
4698 /* Go back to the starting frequency */
4699 fstart
= (I915_READ(MEMMODECTL
) & MEMMODE_FSTART_MASK
) >>
4700 MEMMODE_FSTART_SHIFT
;
4701 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4702 (fstart
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4703 I915_WRITE(MEMSWCTL
, rgvswctl
);
4705 rgvswctl
|= MEMCTL_CMD_STS
;
4706 I915_WRITE(MEMSWCTL
, rgvswctl
);
4711 void intel_init_clock_gating(struct drm_device
*dev
)
4713 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4716 * Disable clock gating reported to work incorrectly according to the
4717 * specs, but enable as much else as we can.
4719 if (HAS_PCH_SPLIT(dev
)) {
4721 } else if (IS_G4X(dev
)) {
4722 uint32_t dspclk_gate
;
4723 I915_WRITE(RENCLK_GATE_D1
, 0);
4724 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
4725 GS_UNIT_CLOCK_GATE_DISABLE
|
4726 CL_UNIT_CLOCK_GATE_DISABLE
);
4727 I915_WRITE(RAMCLK_GATE_D
, 0);
4728 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
4729 OVRUNIT_CLOCK_GATE_DISABLE
|
4730 OVCUNIT_CLOCK_GATE_DISABLE
;
4732 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
4733 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
4734 } else if (IS_I965GM(dev
)) {
4735 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
4736 I915_WRITE(RENCLK_GATE_D2
, 0);
4737 I915_WRITE(DSPCLK_GATE_D
, 0);
4738 I915_WRITE(RAMCLK_GATE_D
, 0);
4739 I915_WRITE16(DEUC
, 0);
4740 } else if (IS_I965G(dev
)) {
4741 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
4742 I965_RCC_CLOCK_GATE_DISABLE
|
4743 I965_RCPB_CLOCK_GATE_DISABLE
|
4744 I965_ISC_CLOCK_GATE_DISABLE
|
4745 I965_FBC_CLOCK_GATE_DISABLE
);
4746 I915_WRITE(RENCLK_GATE_D2
, 0);
4747 } else if (IS_I9XX(dev
)) {
4748 u32 dstate
= I915_READ(D_STATE
);
4750 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
4751 DSTATE_DOT_CLOCK_GATING
;
4752 I915_WRITE(D_STATE
, dstate
);
4753 } else if (IS_I85X(dev
) || IS_I865G(dev
)) {
4754 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
4755 } else if (IS_I830(dev
)) {
4756 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
4760 * GPU can automatically power down the render unit if given a page
4763 if (I915_HAS_RC6(dev
) && drm_core_check_feature(dev
, DRIVER_MODESET
)) {
4764 struct drm_i915_gem_object
*obj_priv
= NULL
;
4766 if (dev_priv
->pwrctx
) {
4767 obj_priv
= dev_priv
->pwrctx
->driver_private
;
4769 struct drm_gem_object
*pwrctx
;
4771 pwrctx
= intel_alloc_power_context(dev
);
4773 dev_priv
->pwrctx
= pwrctx
;
4774 obj_priv
= pwrctx
->driver_private
;
4779 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
| PWRCTX_EN
);
4780 I915_WRITE(MCHBAR_RENDER_STANDBY
,
4781 I915_READ(MCHBAR_RENDER_STANDBY
) & ~RCX_SW_EXIT
);
4786 /* Set up chip specific display functions */
4787 static void intel_init_display(struct drm_device
*dev
)
4789 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4791 /* We always want a DPMS function */
4792 if (HAS_PCH_SPLIT(dev
))
4793 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
4795 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
4797 /* Only mobile has FBC, leave pointers NULL for other chips */
4798 if (IS_MOBILE(dev
)) {
4800 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
4801 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
4802 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
4803 } else if (IS_I965GM(dev
) || IS_I945GM(dev
) || IS_I915GM(dev
)) {
4804 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
4805 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
4806 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
4808 /* 855GM needs testing */
4811 /* Returns the core display clock speed */
4812 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
4813 dev_priv
->display
.get_display_clock_speed
=
4814 i945_get_display_clock_speed
;
4815 else if (IS_I915G(dev
))
4816 dev_priv
->display
.get_display_clock_speed
=
4817 i915_get_display_clock_speed
;
4818 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
4819 dev_priv
->display
.get_display_clock_speed
=
4820 i9xx_misc_get_display_clock_speed
;
4821 else if (IS_I915GM(dev
))
4822 dev_priv
->display
.get_display_clock_speed
=
4823 i915gm_get_display_clock_speed
;
4824 else if (IS_I865G(dev
))
4825 dev_priv
->display
.get_display_clock_speed
=
4826 i865_get_display_clock_speed
;
4827 else if (IS_I85X(dev
))
4828 dev_priv
->display
.get_display_clock_speed
=
4829 i855_get_display_clock_speed
;
4831 dev_priv
->display
.get_display_clock_speed
=
4832 i830_get_display_clock_speed
;
4834 /* For FIFO watermark updates */
4835 if (HAS_PCH_SPLIT(dev
))
4836 dev_priv
->display
.update_wm
= NULL
;
4837 else if (IS_G4X(dev
))
4838 dev_priv
->display
.update_wm
= g4x_update_wm
;
4839 else if (IS_I965G(dev
))
4840 dev_priv
->display
.update_wm
= i965_update_wm
;
4841 else if (IS_I9XX(dev
) || IS_MOBILE(dev
)) {
4842 dev_priv
->display
.update_wm
= i9xx_update_wm
;
4843 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
4846 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
4847 else if (IS_845G(dev
))
4848 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
4850 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
4851 dev_priv
->display
.update_wm
= i830_update_wm
;
4855 void intel_modeset_init(struct drm_device
*dev
)
4857 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4861 drm_mode_config_init(dev
);
4863 dev
->mode_config
.min_width
= 0;
4864 dev
->mode_config
.min_height
= 0;
4866 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
4868 intel_init_display(dev
);
4870 if (IS_I965G(dev
)) {
4871 dev
->mode_config
.max_width
= 8192;
4872 dev
->mode_config
.max_height
= 8192;
4873 } else if (IS_I9XX(dev
)) {
4874 dev
->mode_config
.max_width
= 4096;
4875 dev
->mode_config
.max_height
= 4096;
4877 dev
->mode_config
.max_width
= 2048;
4878 dev
->mode_config
.max_height
= 2048;
4881 /* set memory base */
4883 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
4885 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
4887 if (IS_MOBILE(dev
) || IS_I9XX(dev
))
4891 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4892 num_pipe
, num_pipe
> 1 ? "s" : "");
4894 for (i
= 0; i
< num_pipe
; i
++) {
4895 intel_crtc_init(dev
, i
);
4898 intel_setup_outputs(dev
);
4900 intel_init_clock_gating(dev
);
4902 if (IS_IRONLAKE_M(dev
))
4903 ironlake_enable_drps(dev
);
4905 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
4906 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
4907 (unsigned long)dev
);
4909 intel_setup_overlay(dev
);
4911 if (IS_PINEVIEW(dev
) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
4913 dev_priv
->mem_freq
))
4914 DRM_INFO("failed to find known CxSR latency "
4915 "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4916 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
4919 void intel_modeset_cleanup(struct drm_device
*dev
)
4921 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4922 struct drm_crtc
*crtc
;
4923 struct intel_crtc
*intel_crtc
;
4925 mutex_lock(&dev
->struct_mutex
);
4927 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4928 /* Skip inactive CRTCs */
4932 intel_crtc
= to_intel_crtc(crtc
);
4933 intel_increase_pllclock(crtc
, false);
4934 del_timer_sync(&intel_crtc
->idle_timer
);
4937 del_timer_sync(&dev_priv
->idle_timer
);
4939 if (dev_priv
->display
.disable_fbc
)
4940 dev_priv
->display
.disable_fbc(dev
);
4942 if (dev_priv
->pwrctx
) {
4943 struct drm_i915_gem_object
*obj_priv
;
4945 obj_priv
= dev_priv
->pwrctx
->driver_private
;
4946 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
&~ PWRCTX_EN
);
4948 i915_gem_object_unpin(dev_priv
->pwrctx
);
4949 drm_gem_object_unreference(dev_priv
->pwrctx
);
4952 if (IS_IRONLAKE_M(dev
))
4953 ironlake_disable_drps(dev
);
4955 mutex_unlock(&dev
->struct_mutex
);
4957 drm_mode_config_cleanup(dev
);
4961 /* current intel driver doesn't take advantage of encoders
4962 always give back the encoder for the connector
4964 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
4966 struct intel_output
*intel_output
= to_intel_output(connector
);
4968 return &intel_output
->enc
;
4972 * set vga decode state - true == enable VGA decode
4974 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
4976 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4979 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
4981 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
4983 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
4984 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);