powernow-k6: correctly initialize default parameters
[linux/fpc-iii.git] / net / socket.c
blob3faa358d377f7f6de8e1cbcea271271e5d454b41
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 BUG_ON(klen > sizeof(struct sockaddr_storage));
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0)
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
236 return __put_user(klen, ulen);
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 static struct inode *sock_alloc_inode(struct super_block *sb)
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
264 return &ei->vfs_inode;
267 static void sock_destroy_inode(struct inode *inode)
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
278 static void init_once(void *foo)
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
282 inode_init_once(&ei->vfs_inode);
285 static int init_inodecache(void)
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
325 static struct vfsmount *sock_mnt __read_mostly;
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
334 * Obtains the first available file descriptor and sets it up for use.
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
350 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
352 struct qstr name = { .name = "" };
353 struct path path;
354 struct file *file;
355 int fd;
357 fd = get_unused_fd_flags(flags);
358 if (unlikely(fd < 0))
359 return fd;
361 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
362 if (unlikely(!path.dentry)) {
363 put_unused_fd(fd);
364 return -ENOMEM;
366 path.mnt = mntget(sock_mnt);
368 d_instantiate(path.dentry, SOCK_INODE(sock));
369 SOCK_INODE(sock)->i_fop = &socket_file_ops;
371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 &socket_file_ops);
373 if (unlikely(!file)) {
374 /* drop dentry, keep inode */
375 ihold(path.dentry->d_inode);
376 path_put(&path);
377 put_unused_fd(fd);
378 return -ENFILE;
381 sock->file = file;
382 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
383 file->f_pos = 0;
384 file->private_data = sock;
386 *f = file;
387 return fd;
390 int sock_map_fd(struct socket *sock, int flags)
392 struct file *newfile;
393 int fd = sock_alloc_file(sock, &newfile, flags);
395 if (likely(fd >= 0))
396 fd_install(fd, newfile);
398 return fd;
400 EXPORT_SYMBOL(sock_map_fd);
402 static struct socket *sock_from_file(struct file *file, int *err)
404 if (file->f_op == &socket_file_ops)
405 return file->private_data; /* set in sock_map_fd */
407 *err = -ENOTSOCK;
408 return NULL;
412 * sockfd_lookup - Go from a file number to its socket slot
413 * @fd: file handle
414 * @err: pointer to an error code return
416 * The file handle passed in is locked and the socket it is bound
417 * too is returned. If an error occurs the err pointer is overwritten
418 * with a negative errno code and NULL is returned. The function checks
419 * for both invalid handles and passing a handle which is not a socket.
421 * On a success the socket object pointer is returned.
424 struct socket *sockfd_lookup(int fd, int *err)
426 struct file *file;
427 struct socket *sock;
429 file = fget(fd);
430 if (!file) {
431 *err = -EBADF;
432 return NULL;
435 sock = sock_from_file(file, err);
436 if (!sock)
437 fput(file);
438 return sock;
440 EXPORT_SYMBOL(sockfd_lookup);
442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
444 struct file *file;
445 struct socket *sock;
447 *err = -EBADF;
448 file = fget_light(fd, fput_needed);
449 if (file) {
450 sock = sock_from_file(file, err);
451 if (sock)
452 return sock;
453 fput_light(file, *fput_needed);
455 return NULL;
459 * sock_alloc - allocate a socket
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
463 * NULL is returned.
466 static struct socket *sock_alloc(void)
468 struct inode *inode;
469 struct socket *sock;
471 inode = new_inode_pseudo(sock_mnt->mnt_sb);
472 if (!inode)
473 return NULL;
475 sock = SOCKET_I(inode);
477 kmemcheck_annotate_bitfield(sock, type);
478 inode->i_ino = get_next_ino();
479 inode->i_mode = S_IFSOCK | S_IRWXUGO;
480 inode->i_uid = current_fsuid();
481 inode->i_gid = current_fsgid();
483 percpu_add(sockets_in_use, 1);
484 return sock;
488 * In theory you can't get an open on this inode, but /proc provides
489 * a back door. Remember to keep it shut otherwise you'll let the
490 * creepy crawlies in.
493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
495 return -ENXIO;
498 const struct file_operations bad_sock_fops = {
499 .owner = THIS_MODULE,
500 .open = sock_no_open,
501 .llseek = noop_llseek,
505 * sock_release - close a socket
506 * @sock: socket to close
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
513 void sock_release(struct socket *sock)
515 if (sock->ops) {
516 struct module *owner = sock->ops->owner;
518 sock->ops->release(sock);
519 sock->ops = NULL;
520 module_put(owner);
523 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
524 printk(KERN_ERR "sock_release: fasync list not empty!\n");
526 percpu_sub(sockets_in_use, 1);
527 if (!sock->file) {
528 iput(SOCK_INODE(sock));
529 return;
531 sock->file = NULL;
533 EXPORT_SYMBOL(sock_release);
535 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
537 *tx_flags = 0;
538 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
539 *tx_flags |= SKBTX_HW_TSTAMP;
540 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
541 *tx_flags |= SKBTX_SW_TSTAMP;
542 return 0;
544 EXPORT_SYMBOL(sock_tx_timestamp);
546 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
547 struct msghdr *msg, size_t size)
549 struct sock_iocb *si = kiocb_to_siocb(iocb);
551 sock_update_classid(sock->sk);
553 si->sock = sock;
554 si->scm = NULL;
555 si->msg = msg;
556 si->size = size;
558 return sock->ops->sendmsg(iocb, sock, msg, size);
561 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
562 struct msghdr *msg, size_t size)
564 int err = security_socket_sendmsg(sock, msg, size);
566 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 struct kiocb iocb;
572 struct sock_iocb siocb;
573 int ret;
575 init_sync_kiocb(&iocb, NULL);
576 iocb.private = &siocb;
577 ret = __sock_sendmsg(&iocb, sock, msg, size);
578 if (-EIOCBQUEUED == ret)
579 ret = wait_on_sync_kiocb(&iocb);
580 return ret;
582 EXPORT_SYMBOL(sock_sendmsg);
584 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
586 struct kiocb iocb;
587 struct sock_iocb siocb;
588 int ret;
590 init_sync_kiocb(&iocb, NULL);
591 iocb.private = &siocb;
592 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
593 if (-EIOCBQUEUED == ret)
594 ret = wait_on_sync_kiocb(&iocb);
595 return ret;
598 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
599 struct kvec *vec, size_t num, size_t size)
601 mm_segment_t oldfs = get_fs();
602 int result;
604 set_fs(KERNEL_DS);
606 * the following is safe, since for compiler definitions of kvec and
607 * iovec are identical, yielding the same in-core layout and alignment
609 msg->msg_iov = (struct iovec *)vec;
610 msg->msg_iovlen = num;
611 result = sock_sendmsg(sock, msg, size);
612 set_fs(oldfs);
613 return result;
615 EXPORT_SYMBOL(kernel_sendmsg);
617 static int ktime2ts(ktime_t kt, struct timespec *ts)
619 if (kt.tv64) {
620 *ts = ktime_to_timespec(kt);
621 return 1;
622 } else {
623 return 0;
628 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
630 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
631 struct sk_buff *skb)
633 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
634 struct timespec ts[3];
635 int empty = 1;
636 struct skb_shared_hwtstamps *shhwtstamps =
637 skb_hwtstamps(skb);
639 /* Race occurred between timestamp enabling and packet
640 receiving. Fill in the current time for now. */
641 if (need_software_tstamp && skb->tstamp.tv64 == 0)
642 __net_timestamp(skb);
644 if (need_software_tstamp) {
645 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
646 struct timeval tv;
647 skb_get_timestamp(skb, &tv);
648 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
649 sizeof(tv), &tv);
650 } else {
651 skb_get_timestampns(skb, &ts[0]);
652 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
653 sizeof(ts[0]), &ts[0]);
658 memset(ts, 0, sizeof(ts));
659 if (skb->tstamp.tv64 &&
660 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
661 skb_get_timestampns(skb, ts + 0);
662 empty = 0;
664 if (shhwtstamps) {
665 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
666 ktime2ts(shhwtstamps->syststamp, ts + 1))
667 empty = 0;
668 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
669 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
670 empty = 0;
672 if (!empty)
673 put_cmsg(msg, SOL_SOCKET,
674 SCM_TIMESTAMPING, sizeof(ts), &ts);
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
681 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
682 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
683 sizeof(__u32), &skb->dropcount);
686 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
687 struct sk_buff *skb)
689 sock_recv_timestamp(msg, sk, skb);
690 sock_recv_drops(msg, sk, skb);
692 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
694 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
695 struct msghdr *msg, size_t size, int flags)
697 struct sock_iocb *si = kiocb_to_siocb(iocb);
699 sock_update_classid(sock->sk);
701 si->sock = sock;
702 si->scm = NULL;
703 si->msg = msg;
704 si->size = size;
705 si->flags = flags;
707 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
710 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
711 struct msghdr *msg, size_t size, int flags)
713 int err = security_socket_recvmsg(sock, msg, size, flags);
715 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
718 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
719 size_t size, int flags)
721 struct kiocb iocb;
722 struct sock_iocb siocb;
723 int ret;
725 init_sync_kiocb(&iocb, NULL);
726 iocb.private = &siocb;
727 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
728 if (-EIOCBQUEUED == ret)
729 ret = wait_on_sync_kiocb(&iocb);
730 return ret;
732 EXPORT_SYMBOL(sock_recvmsg);
734 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
735 size_t size, int flags)
737 struct kiocb iocb;
738 struct sock_iocb siocb;
739 int ret;
741 init_sync_kiocb(&iocb, NULL);
742 iocb.private = &siocb;
743 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
744 if (-EIOCBQUEUED == ret)
745 ret = wait_on_sync_kiocb(&iocb);
746 return ret;
750 * kernel_recvmsg - Receive a message from a socket (kernel space)
751 * @sock: The socket to receive the message from
752 * @msg: Received message
753 * @vec: Input s/g array for message data
754 * @num: Size of input s/g array
755 * @size: Number of bytes to read
756 * @flags: Message flags (MSG_DONTWAIT, etc...)
758 * On return the msg structure contains the scatter/gather array passed in the
759 * vec argument. The array is modified so that it consists of the unfilled
760 * portion of the original array.
762 * The returned value is the total number of bytes received, or an error.
764 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
765 struct kvec *vec, size_t num, size_t size, int flags)
767 mm_segment_t oldfs = get_fs();
768 int result;
770 set_fs(KERNEL_DS);
772 * the following is safe, since for compiler definitions of kvec and
773 * iovec are identical, yielding the same in-core layout and alignment
775 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
776 result = sock_recvmsg(sock, msg, size, flags);
777 set_fs(oldfs);
778 return result;
780 EXPORT_SYMBOL(kernel_recvmsg);
782 static void sock_aio_dtor(struct kiocb *iocb)
784 kfree(iocb->private);
787 static ssize_t sock_sendpage(struct file *file, struct page *page,
788 int offset, size_t size, loff_t *ppos, int more)
790 struct socket *sock;
791 int flags;
793 sock = file->private_data;
795 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
796 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
797 flags |= more;
799 return kernel_sendpage(sock, page, offset, size, flags);
802 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
803 struct pipe_inode_info *pipe, size_t len,
804 unsigned int flags)
806 struct socket *sock = file->private_data;
808 if (unlikely(!sock->ops->splice_read))
809 return -EINVAL;
811 sock_update_classid(sock->sk);
813 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
816 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
817 struct sock_iocb *siocb)
819 if (!is_sync_kiocb(iocb)) {
820 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
821 if (!siocb)
822 return NULL;
823 iocb->ki_dtor = sock_aio_dtor;
826 siocb->kiocb = iocb;
827 iocb->private = siocb;
828 return siocb;
831 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
832 struct file *file, const struct iovec *iov,
833 unsigned long nr_segs)
835 struct socket *sock = file->private_data;
836 size_t size = 0;
837 int i;
839 for (i = 0; i < nr_segs; i++)
840 size += iov[i].iov_len;
842 msg->msg_name = NULL;
843 msg->msg_namelen = 0;
844 msg->msg_control = NULL;
845 msg->msg_controllen = 0;
846 msg->msg_iov = (struct iovec *)iov;
847 msg->msg_iovlen = nr_segs;
848 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
850 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
853 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
854 unsigned long nr_segs, loff_t pos)
856 struct sock_iocb siocb, *x;
858 if (pos != 0)
859 return -ESPIPE;
861 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
862 return 0;
865 x = alloc_sock_iocb(iocb, &siocb);
866 if (!x)
867 return -ENOMEM;
868 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
871 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
872 struct file *file, const struct iovec *iov,
873 unsigned long nr_segs)
875 struct socket *sock = file->private_data;
876 size_t size = 0;
877 int i;
879 for (i = 0; i < nr_segs; i++)
880 size += iov[i].iov_len;
882 msg->msg_name = NULL;
883 msg->msg_namelen = 0;
884 msg->msg_control = NULL;
885 msg->msg_controllen = 0;
886 msg->msg_iov = (struct iovec *)iov;
887 msg->msg_iovlen = nr_segs;
888 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
889 if (sock->type == SOCK_SEQPACKET)
890 msg->msg_flags |= MSG_EOR;
892 return __sock_sendmsg(iocb, sock, msg, size);
895 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
896 unsigned long nr_segs, loff_t pos)
898 struct sock_iocb siocb, *x;
900 if (pos != 0)
901 return -ESPIPE;
903 x = alloc_sock_iocb(iocb, &siocb);
904 if (!x)
905 return -ENOMEM;
907 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
911 * Atomic setting of ioctl hooks to avoid race
912 * with module unload.
915 static DEFINE_MUTEX(br_ioctl_mutex);
916 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
918 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
920 mutex_lock(&br_ioctl_mutex);
921 br_ioctl_hook = hook;
922 mutex_unlock(&br_ioctl_mutex);
924 EXPORT_SYMBOL(brioctl_set);
926 static DEFINE_MUTEX(vlan_ioctl_mutex);
927 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
929 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
931 mutex_lock(&vlan_ioctl_mutex);
932 vlan_ioctl_hook = hook;
933 mutex_unlock(&vlan_ioctl_mutex);
935 EXPORT_SYMBOL(vlan_ioctl_set);
937 static DEFINE_MUTEX(dlci_ioctl_mutex);
938 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
940 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
942 mutex_lock(&dlci_ioctl_mutex);
943 dlci_ioctl_hook = hook;
944 mutex_unlock(&dlci_ioctl_mutex);
946 EXPORT_SYMBOL(dlci_ioctl_set);
948 static long sock_do_ioctl(struct net *net, struct socket *sock,
949 unsigned int cmd, unsigned long arg)
951 int err;
952 void __user *argp = (void __user *)arg;
954 err = sock->ops->ioctl(sock, cmd, arg);
957 * If this ioctl is unknown try to hand it down
958 * to the NIC driver.
960 if (err == -ENOIOCTLCMD)
961 err = dev_ioctl(net, cmd, argp);
963 return err;
967 * With an ioctl, arg may well be a user mode pointer, but we don't know
968 * what to do with it - that's up to the protocol still.
971 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
973 struct socket *sock;
974 struct sock *sk;
975 void __user *argp = (void __user *)arg;
976 int pid, err;
977 struct net *net;
979 sock = file->private_data;
980 sk = sock->sk;
981 net = sock_net(sk);
982 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
983 err = dev_ioctl(net, cmd, argp);
984 } else
985 #ifdef CONFIG_WEXT_CORE
986 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
987 err = dev_ioctl(net, cmd, argp);
988 } else
989 #endif
990 switch (cmd) {
991 case FIOSETOWN:
992 case SIOCSPGRP:
993 err = -EFAULT;
994 if (get_user(pid, (int __user *)argp))
995 break;
996 err = f_setown(sock->file, pid, 1);
997 break;
998 case FIOGETOWN:
999 case SIOCGPGRP:
1000 err = put_user(f_getown(sock->file),
1001 (int __user *)argp);
1002 break;
1003 case SIOCGIFBR:
1004 case SIOCSIFBR:
1005 case SIOCBRADDBR:
1006 case SIOCBRDELBR:
1007 err = -ENOPKG;
1008 if (!br_ioctl_hook)
1009 request_module("bridge");
1011 mutex_lock(&br_ioctl_mutex);
1012 if (br_ioctl_hook)
1013 err = br_ioctl_hook(net, cmd, argp);
1014 mutex_unlock(&br_ioctl_mutex);
1015 break;
1016 case SIOCGIFVLAN:
1017 case SIOCSIFVLAN:
1018 err = -ENOPKG;
1019 if (!vlan_ioctl_hook)
1020 request_module("8021q");
1022 mutex_lock(&vlan_ioctl_mutex);
1023 if (vlan_ioctl_hook)
1024 err = vlan_ioctl_hook(net, argp);
1025 mutex_unlock(&vlan_ioctl_mutex);
1026 break;
1027 case SIOCADDDLCI:
1028 case SIOCDELDLCI:
1029 err = -ENOPKG;
1030 if (!dlci_ioctl_hook)
1031 request_module("dlci");
1033 mutex_lock(&dlci_ioctl_mutex);
1034 if (dlci_ioctl_hook)
1035 err = dlci_ioctl_hook(cmd, argp);
1036 mutex_unlock(&dlci_ioctl_mutex);
1037 break;
1038 default:
1039 err = sock_do_ioctl(net, sock, cmd, arg);
1040 break;
1042 return err;
1045 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1047 int err;
1048 struct socket *sock = NULL;
1050 err = security_socket_create(family, type, protocol, 1);
1051 if (err)
1052 goto out;
1054 sock = sock_alloc();
1055 if (!sock) {
1056 err = -ENOMEM;
1057 goto out;
1060 sock->type = type;
1061 err = security_socket_post_create(sock, family, type, protocol, 1);
1062 if (err)
1063 goto out_release;
1065 out:
1066 *res = sock;
1067 return err;
1068 out_release:
1069 sock_release(sock);
1070 sock = NULL;
1071 goto out;
1073 EXPORT_SYMBOL(sock_create_lite);
1075 /* No kernel lock held - perfect */
1076 static unsigned int sock_poll(struct file *file, poll_table *wait)
1078 struct socket *sock;
1081 * We can't return errors to poll, so it's either yes or no.
1083 sock = file->private_data;
1084 return sock->ops->poll(file, sock, wait);
1087 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1089 struct socket *sock = file->private_data;
1091 return sock->ops->mmap(file, sock, vma);
1094 static int sock_close(struct inode *inode, struct file *filp)
1097 * It was possible the inode is NULL we were
1098 * closing an unfinished socket.
1101 if (!inode) {
1102 printk(KERN_DEBUG "sock_close: NULL inode\n");
1103 return 0;
1105 sock_release(SOCKET_I(inode));
1106 return 0;
1110 * Update the socket async list
1112 * Fasync_list locking strategy.
1114 * 1. fasync_list is modified only under process context socket lock
1115 * i.e. under semaphore.
1116 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1117 * or under socket lock
1120 static int sock_fasync(int fd, struct file *filp, int on)
1122 struct socket *sock = filp->private_data;
1123 struct sock *sk = sock->sk;
1124 struct socket_wq *wq;
1126 if (sk == NULL)
1127 return -EINVAL;
1129 lock_sock(sk);
1130 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1131 fasync_helper(fd, filp, on, &wq->fasync_list);
1133 if (!wq->fasync_list)
1134 sock_reset_flag(sk, SOCK_FASYNC);
1135 else
1136 sock_set_flag(sk, SOCK_FASYNC);
1138 release_sock(sk);
1139 return 0;
1142 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1144 int sock_wake_async(struct socket *sock, int how, int band)
1146 struct socket_wq *wq;
1148 if (!sock)
1149 return -1;
1150 rcu_read_lock();
1151 wq = rcu_dereference(sock->wq);
1152 if (!wq || !wq->fasync_list) {
1153 rcu_read_unlock();
1154 return -1;
1156 switch (how) {
1157 case SOCK_WAKE_WAITD:
1158 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1159 break;
1160 goto call_kill;
1161 case SOCK_WAKE_SPACE:
1162 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1163 break;
1164 /* fall through */
1165 case SOCK_WAKE_IO:
1166 call_kill:
1167 kill_fasync(&wq->fasync_list, SIGIO, band);
1168 break;
1169 case SOCK_WAKE_URG:
1170 kill_fasync(&wq->fasync_list, SIGURG, band);
1172 rcu_read_unlock();
1173 return 0;
1175 EXPORT_SYMBOL(sock_wake_async);
1177 int __sock_create(struct net *net, int family, int type, int protocol,
1178 struct socket **res, int kern)
1180 int err;
1181 struct socket *sock;
1182 const struct net_proto_family *pf;
1185 * Check protocol is in range
1187 if (family < 0 || family >= NPROTO)
1188 return -EAFNOSUPPORT;
1189 if (type < 0 || type >= SOCK_MAX)
1190 return -EINVAL;
1192 /* Compatibility.
1194 This uglymoron is moved from INET layer to here to avoid
1195 deadlock in module load.
1197 if (family == PF_INET && type == SOCK_PACKET) {
1198 static int warned;
1199 if (!warned) {
1200 warned = 1;
1201 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1202 current->comm);
1204 family = PF_PACKET;
1207 err = security_socket_create(family, type, protocol, kern);
1208 if (err)
1209 return err;
1212 * Allocate the socket and allow the family to set things up. if
1213 * the protocol is 0, the family is instructed to select an appropriate
1214 * default.
1216 sock = sock_alloc();
1217 if (!sock) {
1218 if (net_ratelimit())
1219 printk(KERN_WARNING "socket: no more sockets\n");
1220 return -ENFILE; /* Not exactly a match, but its the
1221 closest posix thing */
1224 sock->type = type;
1226 #ifdef CONFIG_MODULES
1227 /* Attempt to load a protocol module if the find failed.
1229 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1230 * requested real, full-featured networking support upon configuration.
1231 * Otherwise module support will break!
1233 if (rcu_access_pointer(net_families[family]) == NULL)
1234 request_module("net-pf-%d", family);
1235 #endif
1237 rcu_read_lock();
1238 pf = rcu_dereference(net_families[family]);
1239 err = -EAFNOSUPPORT;
1240 if (!pf)
1241 goto out_release;
1244 * We will call the ->create function, that possibly is in a loadable
1245 * module, so we have to bump that loadable module refcnt first.
1247 if (!try_module_get(pf->owner))
1248 goto out_release;
1250 /* Now protected by module ref count */
1251 rcu_read_unlock();
1253 err = pf->create(net, sock, protocol, kern);
1254 if (err < 0)
1255 goto out_module_put;
1258 * Now to bump the refcnt of the [loadable] module that owns this
1259 * socket at sock_release time we decrement its refcnt.
1261 if (!try_module_get(sock->ops->owner))
1262 goto out_module_busy;
1265 * Now that we're done with the ->create function, the [loadable]
1266 * module can have its refcnt decremented
1268 module_put(pf->owner);
1269 err = security_socket_post_create(sock, family, type, protocol, kern);
1270 if (err)
1271 goto out_sock_release;
1272 *res = sock;
1274 return 0;
1276 out_module_busy:
1277 err = -EAFNOSUPPORT;
1278 out_module_put:
1279 sock->ops = NULL;
1280 module_put(pf->owner);
1281 out_sock_release:
1282 sock_release(sock);
1283 return err;
1285 out_release:
1286 rcu_read_unlock();
1287 goto out_sock_release;
1289 EXPORT_SYMBOL(__sock_create);
1291 int sock_create(int family, int type, int protocol, struct socket **res)
1293 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1295 EXPORT_SYMBOL(sock_create);
1297 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1299 return __sock_create(&init_net, family, type, protocol, res, 1);
1301 EXPORT_SYMBOL(sock_create_kern);
1303 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1305 int retval;
1306 struct socket *sock;
1307 int flags;
1309 /* Check the SOCK_* constants for consistency. */
1310 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1311 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1312 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1313 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1315 flags = type & ~SOCK_TYPE_MASK;
1316 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1317 return -EINVAL;
1318 type &= SOCK_TYPE_MASK;
1320 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1321 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1323 retval = sock_create(family, type, protocol, &sock);
1324 if (retval < 0)
1325 goto out;
1327 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1328 if (retval < 0)
1329 goto out_release;
1331 out:
1332 /* It may be already another descriptor 8) Not kernel problem. */
1333 return retval;
1335 out_release:
1336 sock_release(sock);
1337 return retval;
1341 * Create a pair of connected sockets.
1344 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1345 int __user *, usockvec)
1347 struct socket *sock1, *sock2;
1348 int fd1, fd2, err;
1349 struct file *newfile1, *newfile2;
1350 int flags;
1352 flags = type & ~SOCK_TYPE_MASK;
1353 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1354 return -EINVAL;
1355 type &= SOCK_TYPE_MASK;
1357 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1358 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1361 * Obtain the first socket and check if the underlying protocol
1362 * supports the socketpair call.
1365 err = sock_create(family, type, protocol, &sock1);
1366 if (err < 0)
1367 goto out;
1369 err = sock_create(family, type, protocol, &sock2);
1370 if (err < 0)
1371 goto out_release_1;
1373 err = sock1->ops->socketpair(sock1, sock2);
1374 if (err < 0)
1375 goto out_release_both;
1377 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1378 if (unlikely(fd1 < 0)) {
1379 err = fd1;
1380 goto out_release_both;
1383 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1384 if (unlikely(fd2 < 0)) {
1385 err = fd2;
1386 fput(newfile1);
1387 put_unused_fd(fd1);
1388 sock_release(sock2);
1389 goto out;
1392 audit_fd_pair(fd1, fd2);
1393 fd_install(fd1, newfile1);
1394 fd_install(fd2, newfile2);
1395 /* fd1 and fd2 may be already another descriptors.
1396 * Not kernel problem.
1399 err = put_user(fd1, &usockvec[0]);
1400 if (!err)
1401 err = put_user(fd2, &usockvec[1]);
1402 if (!err)
1403 return 0;
1405 sys_close(fd2);
1406 sys_close(fd1);
1407 return err;
1409 out_release_both:
1410 sock_release(sock2);
1411 out_release_1:
1412 sock_release(sock1);
1413 out:
1414 return err;
1418 * Bind a name to a socket. Nothing much to do here since it's
1419 * the protocol's responsibility to handle the local address.
1421 * We move the socket address to kernel space before we call
1422 * the protocol layer (having also checked the address is ok).
1425 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1427 struct socket *sock;
1428 struct sockaddr_storage address;
1429 int err, fput_needed;
1431 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1432 if (sock) {
1433 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1434 if (err >= 0) {
1435 err = security_socket_bind(sock,
1436 (struct sockaddr *)&address,
1437 addrlen);
1438 if (!err)
1439 err = sock->ops->bind(sock,
1440 (struct sockaddr *)
1441 &address, addrlen);
1443 fput_light(sock->file, fput_needed);
1445 return err;
1449 * Perform a listen. Basically, we allow the protocol to do anything
1450 * necessary for a listen, and if that works, we mark the socket as
1451 * ready for listening.
1454 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1456 struct socket *sock;
1457 int err, fput_needed;
1458 int somaxconn;
1460 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1461 if (sock) {
1462 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1463 if ((unsigned)backlog > somaxconn)
1464 backlog = somaxconn;
1466 err = security_socket_listen(sock, backlog);
1467 if (!err)
1468 err = sock->ops->listen(sock, backlog);
1470 fput_light(sock->file, fput_needed);
1472 return err;
1476 * For accept, we attempt to create a new socket, set up the link
1477 * with the client, wake up the client, then return the new
1478 * connected fd. We collect the address of the connector in kernel
1479 * space and move it to user at the very end. This is unclean because
1480 * we open the socket then return an error.
1482 * 1003.1g adds the ability to recvmsg() to query connection pending
1483 * status to recvmsg. We need to add that support in a way thats
1484 * clean when we restucture accept also.
1487 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1488 int __user *, upeer_addrlen, int, flags)
1490 struct socket *sock, *newsock;
1491 struct file *newfile;
1492 int err, len, newfd, fput_needed;
1493 struct sockaddr_storage address;
1495 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1496 return -EINVAL;
1498 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1499 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1501 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1502 if (!sock)
1503 goto out;
1505 err = -ENFILE;
1506 newsock = sock_alloc();
1507 if (!newsock)
1508 goto out_put;
1510 newsock->type = sock->type;
1511 newsock->ops = sock->ops;
1514 * We don't need try_module_get here, as the listening socket (sock)
1515 * has the protocol module (sock->ops->owner) held.
1517 __module_get(newsock->ops->owner);
1519 newfd = sock_alloc_file(newsock, &newfile, flags);
1520 if (unlikely(newfd < 0)) {
1521 err = newfd;
1522 sock_release(newsock);
1523 goto out_put;
1526 err = security_socket_accept(sock, newsock);
1527 if (err)
1528 goto out_fd;
1530 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1531 if (err < 0)
1532 goto out_fd;
1534 if (upeer_sockaddr) {
1535 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1536 &len, 2) < 0) {
1537 err = -ECONNABORTED;
1538 goto out_fd;
1540 err = move_addr_to_user((struct sockaddr *)&address,
1541 len, upeer_sockaddr, upeer_addrlen);
1542 if (err < 0)
1543 goto out_fd;
1546 /* File flags are not inherited via accept() unlike another OSes. */
1548 fd_install(newfd, newfile);
1549 err = newfd;
1551 out_put:
1552 fput_light(sock->file, fput_needed);
1553 out:
1554 return err;
1555 out_fd:
1556 fput(newfile);
1557 put_unused_fd(newfd);
1558 goto out_put;
1561 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1562 int __user *, upeer_addrlen)
1564 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1568 * Attempt to connect to a socket with the server address. The address
1569 * is in user space so we verify it is OK and move it to kernel space.
1571 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1572 * break bindings
1574 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1575 * other SEQPACKET protocols that take time to connect() as it doesn't
1576 * include the -EINPROGRESS status for such sockets.
1579 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1580 int, addrlen)
1582 struct socket *sock;
1583 struct sockaddr_storage address;
1584 int err, fput_needed;
1586 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 if (!sock)
1588 goto out;
1589 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1590 if (err < 0)
1591 goto out_put;
1593 err =
1594 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1595 if (err)
1596 goto out_put;
1598 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1599 sock->file->f_flags);
1600 out_put:
1601 fput_light(sock->file, fput_needed);
1602 out:
1603 return err;
1607 * Get the local address ('name') of a socket object. Move the obtained
1608 * name to user space.
1611 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1612 int __user *, usockaddr_len)
1614 struct socket *sock;
1615 struct sockaddr_storage address;
1616 int len, err, fput_needed;
1618 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1619 if (!sock)
1620 goto out;
1622 err = security_socket_getsockname(sock);
1623 if (err)
1624 goto out_put;
1626 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1627 if (err)
1628 goto out_put;
1629 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1631 out_put:
1632 fput_light(sock->file, fput_needed);
1633 out:
1634 return err;
1638 * Get the remote address ('name') of a socket object. Move the obtained
1639 * name to user space.
1642 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1643 int __user *, usockaddr_len)
1645 struct socket *sock;
1646 struct sockaddr_storage address;
1647 int len, err, fput_needed;
1649 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1650 if (sock != NULL) {
1651 err = security_socket_getpeername(sock);
1652 if (err) {
1653 fput_light(sock->file, fput_needed);
1654 return err;
1657 err =
1658 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1660 if (!err)
1661 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1662 usockaddr_len);
1663 fput_light(sock->file, fput_needed);
1665 return err;
1669 * Send a datagram to a given address. We move the address into kernel
1670 * space and check the user space data area is readable before invoking
1671 * the protocol.
1674 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1675 unsigned, flags, struct sockaddr __user *, addr,
1676 int, addr_len)
1678 struct socket *sock;
1679 struct sockaddr_storage address;
1680 int err;
1681 struct msghdr msg;
1682 struct iovec iov;
1683 int fput_needed;
1685 if (len > INT_MAX)
1686 len = INT_MAX;
1687 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1688 if (!sock)
1689 goto out;
1691 iov.iov_base = buff;
1692 iov.iov_len = len;
1693 msg.msg_name = NULL;
1694 msg.msg_iov = &iov;
1695 msg.msg_iovlen = 1;
1696 msg.msg_control = NULL;
1697 msg.msg_controllen = 0;
1698 msg.msg_namelen = 0;
1699 if (addr) {
1700 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1701 if (err < 0)
1702 goto out_put;
1703 msg.msg_name = (struct sockaddr *)&address;
1704 msg.msg_namelen = addr_len;
1706 if (sock->file->f_flags & O_NONBLOCK)
1707 flags |= MSG_DONTWAIT;
1708 msg.msg_flags = flags;
1709 err = sock_sendmsg(sock, &msg, len);
1711 out_put:
1712 fput_light(sock->file, fput_needed);
1713 out:
1714 return err;
1718 * Send a datagram down a socket.
1721 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1722 unsigned, flags)
1724 return sys_sendto(fd, buff, len, flags, NULL, 0);
1728 * Receive a frame from the socket and optionally record the address of the
1729 * sender. We verify the buffers are writable and if needed move the
1730 * sender address from kernel to user space.
1733 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1734 unsigned, flags, struct sockaddr __user *, addr,
1735 int __user *, addr_len)
1737 struct socket *sock;
1738 struct iovec iov;
1739 struct msghdr msg;
1740 struct sockaddr_storage address;
1741 int err, err2;
1742 int fput_needed;
1744 if (size > INT_MAX)
1745 size = INT_MAX;
1746 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1747 if (!sock)
1748 goto out;
1750 msg.msg_control = NULL;
1751 msg.msg_controllen = 0;
1752 msg.msg_iovlen = 1;
1753 msg.msg_iov = &iov;
1754 iov.iov_len = size;
1755 iov.iov_base = ubuf;
1756 /* Save some cycles and don't copy the address if not needed */
1757 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1758 /* We assume all kernel code knows the size of sockaddr_storage */
1759 msg.msg_namelen = 0;
1760 if (sock->file->f_flags & O_NONBLOCK)
1761 flags |= MSG_DONTWAIT;
1762 err = sock_recvmsg(sock, &msg, size, flags);
1764 if (err >= 0 && addr != NULL) {
1765 err2 = move_addr_to_user((struct sockaddr *)&address,
1766 msg.msg_namelen, addr, addr_len);
1767 if (err2 < 0)
1768 err = err2;
1771 fput_light(sock->file, fput_needed);
1772 out:
1773 return err;
1777 * Receive a datagram from a socket.
1780 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1781 unsigned flags)
1783 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1787 * Set a socket option. Because we don't know the option lengths we have
1788 * to pass the user mode parameter for the protocols to sort out.
1791 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1792 char __user *, optval, int, optlen)
1794 int err, fput_needed;
1795 struct socket *sock;
1797 if (optlen < 0)
1798 return -EINVAL;
1800 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1801 if (sock != NULL) {
1802 err = security_socket_setsockopt(sock, level, optname);
1803 if (err)
1804 goto out_put;
1806 if (level == SOL_SOCKET)
1807 err =
1808 sock_setsockopt(sock, level, optname, optval,
1809 optlen);
1810 else
1811 err =
1812 sock->ops->setsockopt(sock, level, optname, optval,
1813 optlen);
1814 out_put:
1815 fput_light(sock->file, fput_needed);
1817 return err;
1821 * Get a socket option. Because we don't know the option lengths we have
1822 * to pass a user mode parameter for the protocols to sort out.
1825 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1826 char __user *, optval, int __user *, optlen)
1828 int err, fput_needed;
1829 struct socket *sock;
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (sock != NULL) {
1833 err = security_socket_getsockopt(sock, level, optname);
1834 if (err)
1835 goto out_put;
1837 if (level == SOL_SOCKET)
1838 err =
1839 sock_getsockopt(sock, level, optname, optval,
1840 optlen);
1841 else
1842 err =
1843 sock->ops->getsockopt(sock, level, optname, optval,
1844 optlen);
1845 out_put:
1846 fput_light(sock->file, fput_needed);
1848 return err;
1852 * Shutdown a socket.
1855 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1857 int err, fput_needed;
1858 struct socket *sock;
1860 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1861 if (sock != NULL) {
1862 err = security_socket_shutdown(sock, how);
1863 if (!err)
1864 err = sock->ops->shutdown(sock, how);
1865 fput_light(sock->file, fput_needed);
1867 return err;
1870 /* A couple of helpful macros for getting the address of the 32/64 bit
1871 * fields which are the same type (int / unsigned) on our platforms.
1873 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1874 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1875 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1877 struct used_address {
1878 struct sockaddr_storage name;
1879 unsigned int name_len;
1882 static int copy_msghdr_from_user(struct msghdr *kmsg,
1883 struct msghdr __user *umsg)
1885 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1886 return -EFAULT;
1888 if (kmsg->msg_namelen < 0)
1889 return -EINVAL;
1891 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1892 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1893 return 0;
1896 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1897 struct msghdr *msg_sys, unsigned flags,
1898 struct used_address *used_address)
1900 struct compat_msghdr __user *msg_compat =
1901 (struct compat_msghdr __user *)msg;
1902 struct sockaddr_storage address;
1903 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1904 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1905 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1906 /* 20 is size of ipv6_pktinfo */
1907 unsigned char *ctl_buf = ctl;
1908 int err, ctl_len, iov_size, total_len;
1910 err = -EFAULT;
1911 if (MSG_CMSG_COMPAT & flags) {
1912 if (get_compat_msghdr(msg_sys, msg_compat))
1913 return -EFAULT;
1914 } else {
1915 err = copy_msghdr_from_user(msg_sys, msg);
1916 if (err)
1917 return err;
1920 /* do not move before msg_sys is valid */
1921 err = -EMSGSIZE;
1922 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1923 goto out;
1925 /* Check whether to allocate the iovec area */
1926 err = -ENOMEM;
1927 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1928 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1929 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 if (!iov)
1931 goto out;
1934 /* This will also move the address data into kernel space */
1935 if (MSG_CMSG_COMPAT & flags) {
1936 err = verify_compat_iovec(msg_sys, iov,
1937 (struct sockaddr *)&address,
1938 VERIFY_READ);
1939 } else
1940 err = verify_iovec(msg_sys, iov,
1941 (struct sockaddr *)&address,
1942 VERIFY_READ);
1943 if (err < 0)
1944 goto out_freeiov;
1945 total_len = err;
1947 err = -ENOBUFS;
1949 if (msg_sys->msg_controllen > INT_MAX)
1950 goto out_freeiov;
1951 ctl_len = msg_sys->msg_controllen;
1952 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1953 err =
1954 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1955 sizeof(ctl));
1956 if (err)
1957 goto out_freeiov;
1958 ctl_buf = msg_sys->msg_control;
1959 ctl_len = msg_sys->msg_controllen;
1960 } else if (ctl_len) {
1961 if (ctl_len > sizeof(ctl)) {
1962 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1963 if (ctl_buf == NULL)
1964 goto out_freeiov;
1966 err = -EFAULT;
1968 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1969 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1970 * checking falls down on this.
1972 if (copy_from_user(ctl_buf,
1973 (void __user __force *)msg_sys->msg_control,
1974 ctl_len))
1975 goto out_freectl;
1976 msg_sys->msg_control = ctl_buf;
1978 msg_sys->msg_flags = flags;
1980 if (sock->file->f_flags & O_NONBLOCK)
1981 msg_sys->msg_flags |= MSG_DONTWAIT;
1983 * If this is sendmmsg() and current destination address is same as
1984 * previously succeeded address, omit asking LSM's decision.
1985 * used_address->name_len is initialized to UINT_MAX so that the first
1986 * destination address never matches.
1988 if (used_address && msg_sys->msg_name &&
1989 used_address->name_len == msg_sys->msg_namelen &&
1990 !memcmp(&used_address->name, msg_sys->msg_name,
1991 used_address->name_len)) {
1992 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1993 goto out_freectl;
1995 err = sock_sendmsg(sock, msg_sys, total_len);
1997 * If this is sendmmsg() and sending to current destination address was
1998 * successful, remember it.
2000 if (used_address && err >= 0) {
2001 used_address->name_len = msg_sys->msg_namelen;
2002 if (msg_sys->msg_name)
2003 memcpy(&used_address->name, msg_sys->msg_name,
2004 used_address->name_len);
2007 out_freectl:
2008 if (ctl_buf != ctl)
2009 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2010 out_freeiov:
2011 if (iov != iovstack)
2012 sock_kfree_s(sock->sk, iov, iov_size);
2013 out:
2014 return err;
2018 * BSD sendmsg interface
2021 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2023 int fput_needed, err;
2024 struct msghdr msg_sys;
2025 struct socket *sock;
2027 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2028 if (!sock)
2029 goto out;
2031 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2033 fput_light(sock->file, fput_needed);
2034 out:
2035 return err;
2038 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2040 if (flags & MSG_CMSG_COMPAT)
2041 return -EINVAL;
2042 return __sys_sendmsg(fd, msg, flags);
2046 * Linux sendmmsg interface
2049 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2050 unsigned int flags)
2052 int fput_needed, err, datagrams;
2053 struct socket *sock;
2054 struct mmsghdr __user *entry;
2055 struct compat_mmsghdr __user *compat_entry;
2056 struct msghdr msg_sys;
2057 struct used_address used_address;
2059 if (vlen > UIO_MAXIOV)
2060 vlen = UIO_MAXIOV;
2062 datagrams = 0;
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 return err;
2068 used_address.name_len = UINT_MAX;
2069 entry = mmsg;
2070 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2071 err = 0;
2073 while (datagrams < vlen) {
2074 if (MSG_CMSG_COMPAT & flags) {
2075 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2076 &msg_sys, flags, &used_address);
2077 if (err < 0)
2078 break;
2079 err = __put_user(err, &compat_entry->msg_len);
2080 ++compat_entry;
2081 } else {
2082 err = ___sys_sendmsg(sock,
2083 (struct msghdr __user *)entry,
2084 &msg_sys, flags, &used_address);
2085 if (err < 0)
2086 break;
2087 err = put_user(err, &entry->msg_len);
2088 ++entry;
2091 if (err)
2092 break;
2093 ++datagrams;
2096 fput_light(sock->file, fput_needed);
2098 /* We only return an error if no datagrams were able to be sent */
2099 if (datagrams != 0)
2100 return datagrams;
2102 return err;
2105 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2106 unsigned int, vlen, unsigned int, flags)
2108 if (flags & MSG_CMSG_COMPAT)
2109 return -EINVAL;
2110 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2113 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2114 struct msghdr *msg_sys, unsigned flags, int nosec)
2116 struct compat_msghdr __user *msg_compat =
2117 (struct compat_msghdr __user *)msg;
2118 struct iovec iovstack[UIO_FASTIOV];
2119 struct iovec *iov = iovstack;
2120 unsigned long cmsg_ptr;
2121 int err, iov_size, total_len, len;
2123 /* kernel mode address */
2124 struct sockaddr_storage addr;
2126 /* user mode address pointers */
2127 struct sockaddr __user *uaddr;
2128 int __user *uaddr_len;
2130 if (MSG_CMSG_COMPAT & flags) {
2131 if (get_compat_msghdr(msg_sys, msg_compat))
2132 return -EFAULT;
2133 } else {
2134 err = copy_msghdr_from_user(msg_sys, msg);
2135 if (err)
2136 return err;
2139 err = -EMSGSIZE;
2140 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2141 goto out;
2143 /* Check whether to allocate the iovec area */
2144 err = -ENOMEM;
2145 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2146 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2147 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2148 if (!iov)
2149 goto out;
2152 /* Save the user-mode address (verify_iovec will change the
2153 * kernel msghdr to use the kernel address space)
2155 uaddr = (__force void __user *)msg_sys->msg_name;
2156 uaddr_len = COMPAT_NAMELEN(msg);
2157 if (MSG_CMSG_COMPAT & flags)
2158 err = verify_compat_iovec(msg_sys, iov,
2159 (struct sockaddr *)&addr,
2160 VERIFY_WRITE);
2161 else
2162 err = verify_iovec(msg_sys, iov,
2163 (struct sockaddr *)&addr,
2164 VERIFY_WRITE);
2165 if (err < 0)
2166 goto out_freeiov;
2167 total_len = err;
2169 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2170 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2172 /* We assume all kernel code knows the size of sockaddr_storage */
2173 msg_sys->msg_namelen = 0;
2175 if (sock->file->f_flags & O_NONBLOCK)
2176 flags |= MSG_DONTWAIT;
2177 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2178 total_len, flags);
2179 if (err < 0)
2180 goto out_freeiov;
2181 len = err;
2183 if (uaddr != NULL) {
2184 err = move_addr_to_user((struct sockaddr *)&addr,
2185 msg_sys->msg_namelen, uaddr,
2186 uaddr_len);
2187 if (err < 0)
2188 goto out_freeiov;
2190 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2191 COMPAT_FLAGS(msg));
2192 if (err)
2193 goto out_freeiov;
2194 if (MSG_CMSG_COMPAT & flags)
2195 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2196 &msg_compat->msg_controllen);
2197 else
2198 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2199 &msg->msg_controllen);
2200 if (err)
2201 goto out_freeiov;
2202 err = len;
2204 out_freeiov:
2205 if (iov != iovstack)
2206 sock_kfree_s(sock->sk, iov, iov_size);
2207 out:
2208 return err;
2212 * BSD recvmsg interface
2215 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2217 int fput_needed, err;
2218 struct msghdr msg_sys;
2219 struct socket *sock;
2221 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2222 if (!sock)
2223 goto out;
2225 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2227 fput_light(sock->file, fput_needed);
2228 out:
2229 return err;
2232 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2233 unsigned int, flags)
2235 if (flags & MSG_CMSG_COMPAT)
2236 return -EINVAL;
2237 return __sys_recvmsg(fd, msg, flags);
2241 * Linux recvmmsg interface
2244 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2245 unsigned int flags, struct timespec *timeout)
2247 int fput_needed, err, datagrams;
2248 struct socket *sock;
2249 struct mmsghdr __user *entry;
2250 struct compat_mmsghdr __user *compat_entry;
2251 struct msghdr msg_sys;
2252 struct timespec end_time;
2254 if (timeout &&
2255 poll_select_set_timeout(&end_time, timeout->tv_sec,
2256 timeout->tv_nsec))
2257 return -EINVAL;
2259 datagrams = 0;
2261 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2262 if (!sock)
2263 return err;
2265 err = sock_error(sock->sk);
2266 if (err)
2267 goto out_put;
2269 entry = mmsg;
2270 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2272 while (datagrams < vlen) {
2274 * No need to ask LSM for more than the first datagram.
2276 if (MSG_CMSG_COMPAT & flags) {
2277 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2278 &msg_sys, flags & ~MSG_WAITFORONE,
2279 datagrams);
2280 if (err < 0)
2281 break;
2282 err = __put_user(err, &compat_entry->msg_len);
2283 ++compat_entry;
2284 } else {
2285 err = ___sys_recvmsg(sock,
2286 (struct msghdr __user *)entry,
2287 &msg_sys, flags & ~MSG_WAITFORONE,
2288 datagrams);
2289 if (err < 0)
2290 break;
2291 err = put_user(err, &entry->msg_len);
2292 ++entry;
2295 if (err)
2296 break;
2297 ++datagrams;
2299 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2300 if (flags & MSG_WAITFORONE)
2301 flags |= MSG_DONTWAIT;
2303 if (timeout) {
2304 ktime_get_ts(timeout);
2305 *timeout = timespec_sub(end_time, *timeout);
2306 if (timeout->tv_sec < 0) {
2307 timeout->tv_sec = timeout->tv_nsec = 0;
2308 break;
2311 /* Timeout, return less than vlen datagrams */
2312 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2313 break;
2316 /* Out of band data, return right away */
2317 if (msg_sys.msg_flags & MSG_OOB)
2318 break;
2321 out_put:
2322 fput_light(sock->file, fput_needed);
2324 if (err == 0)
2325 return datagrams;
2327 if (datagrams != 0) {
2329 * We may return less entries than requested (vlen) if the
2330 * sock is non block and there aren't enough datagrams...
2332 if (err != -EAGAIN) {
2334 * ... or if recvmsg returns an error after we
2335 * received some datagrams, where we record the
2336 * error to return on the next call or if the
2337 * app asks about it using getsockopt(SO_ERROR).
2339 sock->sk->sk_err = -err;
2342 return datagrams;
2345 return err;
2348 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2349 unsigned int, vlen, unsigned int, flags,
2350 struct timespec __user *, timeout)
2352 int datagrams;
2353 struct timespec timeout_sys;
2355 if (flags & MSG_CMSG_COMPAT)
2356 return -EINVAL;
2358 if (!timeout)
2359 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2361 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2362 return -EFAULT;
2364 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2366 if (datagrams > 0 &&
2367 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2368 datagrams = -EFAULT;
2370 return datagrams;
2373 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2374 /* Argument list sizes for sys_socketcall */
2375 #define AL(x) ((x) * sizeof(unsigned long))
2376 static const unsigned char nargs[21] = {
2377 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2378 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2379 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2380 AL(4), AL(5), AL(4)
2383 #undef AL
2386 * System call vectors.
2388 * Argument checking cleaned up. Saved 20% in size.
2389 * This function doesn't need to set the kernel lock because
2390 * it is set by the callees.
2393 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2395 unsigned long a[6];
2396 unsigned long a0, a1;
2397 int err;
2398 unsigned int len;
2400 if (call < 1 || call > SYS_SENDMMSG)
2401 return -EINVAL;
2403 len = nargs[call];
2404 if (len > sizeof(a))
2405 return -EINVAL;
2407 /* copy_from_user should be SMP safe. */
2408 if (copy_from_user(a, args, len))
2409 return -EFAULT;
2411 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2413 a0 = a[0];
2414 a1 = a[1];
2416 switch (call) {
2417 case SYS_SOCKET:
2418 err = sys_socket(a0, a1, a[2]);
2419 break;
2420 case SYS_BIND:
2421 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2422 break;
2423 case SYS_CONNECT:
2424 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2425 break;
2426 case SYS_LISTEN:
2427 err = sys_listen(a0, a1);
2428 break;
2429 case SYS_ACCEPT:
2430 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2431 (int __user *)a[2], 0);
2432 break;
2433 case SYS_GETSOCKNAME:
2434 err =
2435 sys_getsockname(a0, (struct sockaddr __user *)a1,
2436 (int __user *)a[2]);
2437 break;
2438 case SYS_GETPEERNAME:
2439 err =
2440 sys_getpeername(a0, (struct sockaddr __user *)a1,
2441 (int __user *)a[2]);
2442 break;
2443 case SYS_SOCKETPAIR:
2444 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2445 break;
2446 case SYS_SEND:
2447 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2448 break;
2449 case SYS_SENDTO:
2450 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2451 (struct sockaddr __user *)a[4], a[5]);
2452 break;
2453 case SYS_RECV:
2454 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2455 break;
2456 case SYS_RECVFROM:
2457 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2458 (struct sockaddr __user *)a[4],
2459 (int __user *)a[5]);
2460 break;
2461 case SYS_SHUTDOWN:
2462 err = sys_shutdown(a0, a1);
2463 break;
2464 case SYS_SETSOCKOPT:
2465 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2466 break;
2467 case SYS_GETSOCKOPT:
2468 err =
2469 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2470 (int __user *)a[4]);
2471 break;
2472 case SYS_SENDMSG:
2473 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2474 break;
2475 case SYS_SENDMMSG:
2476 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2477 break;
2478 case SYS_RECVMSG:
2479 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2480 break;
2481 case SYS_RECVMMSG:
2482 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2483 (struct timespec __user *)a[4]);
2484 break;
2485 case SYS_ACCEPT4:
2486 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2487 (int __user *)a[2], a[3]);
2488 break;
2489 default:
2490 err = -EINVAL;
2491 break;
2493 return err;
2496 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2499 * sock_register - add a socket protocol handler
2500 * @ops: description of protocol
2502 * This function is called by a protocol handler that wants to
2503 * advertise its address family, and have it linked into the
2504 * socket interface. The value ops->family coresponds to the
2505 * socket system call protocol family.
2507 int sock_register(const struct net_proto_family *ops)
2509 int err;
2511 if (ops->family >= NPROTO) {
2512 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2513 NPROTO);
2514 return -ENOBUFS;
2517 spin_lock(&net_family_lock);
2518 if (rcu_dereference_protected(net_families[ops->family],
2519 lockdep_is_held(&net_family_lock)))
2520 err = -EEXIST;
2521 else {
2522 rcu_assign_pointer(net_families[ops->family], ops);
2523 err = 0;
2525 spin_unlock(&net_family_lock);
2527 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2528 return err;
2530 EXPORT_SYMBOL(sock_register);
2533 * sock_unregister - remove a protocol handler
2534 * @family: protocol family to remove
2536 * This function is called by a protocol handler that wants to
2537 * remove its address family, and have it unlinked from the
2538 * new socket creation.
2540 * If protocol handler is a module, then it can use module reference
2541 * counts to protect against new references. If protocol handler is not
2542 * a module then it needs to provide its own protection in
2543 * the ops->create routine.
2545 void sock_unregister(int family)
2547 BUG_ON(family < 0 || family >= NPROTO);
2549 spin_lock(&net_family_lock);
2550 RCU_INIT_POINTER(net_families[family], NULL);
2551 spin_unlock(&net_family_lock);
2553 synchronize_rcu();
2555 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2557 EXPORT_SYMBOL(sock_unregister);
2559 static int __init sock_init(void)
2561 int err;
2564 * Initialize sock SLAB cache.
2567 sk_init();
2570 * Initialize skbuff SLAB cache
2572 skb_init();
2575 * Initialize the protocols module.
2578 init_inodecache();
2580 err = register_filesystem(&sock_fs_type);
2581 if (err)
2582 goto out_fs;
2583 sock_mnt = kern_mount(&sock_fs_type);
2584 if (IS_ERR(sock_mnt)) {
2585 err = PTR_ERR(sock_mnt);
2586 goto out_mount;
2589 /* The real protocol initialization is performed in later initcalls.
2592 #ifdef CONFIG_NETFILTER
2593 netfilter_init();
2594 #endif
2596 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2597 skb_timestamping_init();
2598 #endif
2600 out:
2601 return err;
2603 out_mount:
2604 unregister_filesystem(&sock_fs_type);
2605 out_fs:
2606 goto out;
2609 core_initcall(sock_init); /* early initcall */
2611 #ifdef CONFIG_PROC_FS
2612 void socket_seq_show(struct seq_file *seq)
2614 int cpu;
2615 int counter = 0;
2617 for_each_possible_cpu(cpu)
2618 counter += per_cpu(sockets_in_use, cpu);
2620 /* It can be negative, by the way. 8) */
2621 if (counter < 0)
2622 counter = 0;
2624 seq_printf(seq, "sockets: used %d\n", counter);
2626 #endif /* CONFIG_PROC_FS */
2628 #ifdef CONFIG_COMPAT
2629 static int do_siocgstamp(struct net *net, struct socket *sock,
2630 unsigned int cmd, struct compat_timeval __user *up)
2632 mm_segment_t old_fs = get_fs();
2633 struct timeval ktv;
2634 int err;
2636 set_fs(KERNEL_DS);
2637 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2638 set_fs(old_fs);
2639 if (!err) {
2640 err = put_user(ktv.tv_sec, &up->tv_sec);
2641 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2643 return err;
2646 static int do_siocgstampns(struct net *net, struct socket *sock,
2647 unsigned int cmd, struct compat_timespec __user *up)
2649 mm_segment_t old_fs = get_fs();
2650 struct timespec kts;
2651 int err;
2653 set_fs(KERNEL_DS);
2654 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2655 set_fs(old_fs);
2656 if (!err) {
2657 err = put_user(kts.tv_sec, &up->tv_sec);
2658 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2660 return err;
2663 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2665 struct ifreq __user *uifr;
2666 int err;
2668 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2669 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2670 return -EFAULT;
2672 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2673 if (err)
2674 return err;
2676 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2677 return -EFAULT;
2679 return 0;
2682 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2684 struct compat_ifconf ifc32;
2685 struct ifconf ifc;
2686 struct ifconf __user *uifc;
2687 struct compat_ifreq __user *ifr32;
2688 struct ifreq __user *ifr;
2689 unsigned int i, j;
2690 int err;
2692 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2693 return -EFAULT;
2695 memset(&ifc, 0, sizeof(ifc));
2696 if (ifc32.ifcbuf == 0) {
2697 ifc32.ifc_len = 0;
2698 ifc.ifc_len = 0;
2699 ifc.ifc_req = NULL;
2700 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2701 } else {
2702 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2703 sizeof(struct ifreq);
2704 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2705 ifc.ifc_len = len;
2706 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2707 ifr32 = compat_ptr(ifc32.ifcbuf);
2708 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2709 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711 ifr++;
2712 ifr32++;
2715 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2716 return -EFAULT;
2718 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2719 if (err)
2720 return err;
2722 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2723 return -EFAULT;
2725 ifr = ifc.ifc_req;
2726 ifr32 = compat_ptr(ifc32.ifcbuf);
2727 for (i = 0, j = 0;
2728 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2729 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2730 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2731 return -EFAULT;
2732 ifr32++;
2733 ifr++;
2736 if (ifc32.ifcbuf == 0) {
2737 /* Translate from 64-bit structure multiple to
2738 * a 32-bit one.
2740 i = ifc.ifc_len;
2741 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2742 ifc32.ifc_len = i;
2743 } else {
2744 ifc32.ifc_len = i;
2746 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2747 return -EFAULT;
2749 return 0;
2752 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2754 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2755 bool convert_in = false, convert_out = false;
2756 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2757 struct ethtool_rxnfc __user *rxnfc;
2758 struct ifreq __user *ifr;
2759 u32 rule_cnt = 0, actual_rule_cnt;
2760 u32 ethcmd;
2761 u32 data;
2762 int ret;
2764 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2765 return -EFAULT;
2767 compat_rxnfc = compat_ptr(data);
2769 if (get_user(ethcmd, &compat_rxnfc->cmd))
2770 return -EFAULT;
2772 /* Most ethtool structures are defined without padding.
2773 * Unfortunately struct ethtool_rxnfc is an exception.
2775 switch (ethcmd) {
2776 default:
2777 break;
2778 case ETHTOOL_GRXCLSRLALL:
2779 /* Buffer size is variable */
2780 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2781 return -EFAULT;
2782 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2783 return -ENOMEM;
2784 buf_size += rule_cnt * sizeof(u32);
2785 /* fall through */
2786 case ETHTOOL_GRXRINGS:
2787 case ETHTOOL_GRXCLSRLCNT:
2788 case ETHTOOL_GRXCLSRULE:
2789 convert_out = true;
2790 /* fall through */
2791 case ETHTOOL_SRXCLSRLDEL:
2792 case ETHTOOL_SRXCLSRLINS:
2793 buf_size += sizeof(struct ethtool_rxnfc);
2794 convert_in = true;
2795 break;
2798 ifr = compat_alloc_user_space(buf_size);
2799 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2801 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2802 return -EFAULT;
2804 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2805 &ifr->ifr_ifru.ifru_data))
2806 return -EFAULT;
2808 if (convert_in) {
2809 /* We expect there to be holes between fs.m_ext and
2810 * fs.ring_cookie and at the end of fs, but nowhere else.
2812 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2813 sizeof(compat_rxnfc->fs.m_ext) !=
2814 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2815 sizeof(rxnfc->fs.m_ext));
2816 BUILD_BUG_ON(
2817 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2818 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2819 offsetof(struct ethtool_rxnfc, fs.location) -
2820 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2822 if (copy_in_user(rxnfc, compat_rxnfc,
2823 (void *)(&rxnfc->fs.m_ext + 1) -
2824 (void *)rxnfc) ||
2825 copy_in_user(&rxnfc->fs.ring_cookie,
2826 &compat_rxnfc->fs.ring_cookie,
2827 (void *)(&rxnfc->fs.location + 1) -
2828 (void *)&rxnfc->fs.ring_cookie) ||
2829 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2830 sizeof(rxnfc->rule_cnt)))
2831 return -EFAULT;
2834 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2835 if (ret)
2836 return ret;
2838 if (convert_out) {
2839 if (copy_in_user(compat_rxnfc, rxnfc,
2840 (const void *)(&rxnfc->fs.m_ext + 1) -
2841 (const void *)rxnfc) ||
2842 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2843 &rxnfc->fs.ring_cookie,
2844 (const void *)(&rxnfc->fs.location + 1) -
2845 (const void *)&rxnfc->fs.ring_cookie) ||
2846 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2847 sizeof(rxnfc->rule_cnt)))
2848 return -EFAULT;
2850 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2851 /* As an optimisation, we only copy the actual
2852 * number of rules that the underlying
2853 * function returned. Since Mallory might
2854 * change the rule count in user memory, we
2855 * check that it is less than the rule count
2856 * originally given (as the user buffer size),
2857 * which has been range-checked.
2859 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2860 return -EFAULT;
2861 if (actual_rule_cnt < rule_cnt)
2862 rule_cnt = actual_rule_cnt;
2863 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2864 &rxnfc->rule_locs[0],
2865 rule_cnt * sizeof(u32)))
2866 return -EFAULT;
2870 return 0;
2873 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2875 void __user *uptr;
2876 compat_uptr_t uptr32;
2877 struct ifreq __user *uifr;
2879 uifr = compat_alloc_user_space(sizeof(*uifr));
2880 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2881 return -EFAULT;
2883 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2884 return -EFAULT;
2886 uptr = compat_ptr(uptr32);
2888 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2889 return -EFAULT;
2891 return dev_ioctl(net, SIOCWANDEV, uifr);
2894 static int bond_ioctl(struct net *net, unsigned int cmd,
2895 struct compat_ifreq __user *ifr32)
2897 struct ifreq kifr;
2898 struct ifreq __user *uifr;
2899 mm_segment_t old_fs;
2900 int err;
2901 u32 data;
2902 void __user *datap;
2904 switch (cmd) {
2905 case SIOCBONDENSLAVE:
2906 case SIOCBONDRELEASE:
2907 case SIOCBONDSETHWADDR:
2908 case SIOCBONDCHANGEACTIVE:
2909 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2910 return -EFAULT;
2912 old_fs = get_fs();
2913 set_fs(KERNEL_DS);
2914 err = dev_ioctl(net, cmd,
2915 (struct ifreq __user __force *) &kifr);
2916 set_fs(old_fs);
2918 return err;
2919 case SIOCBONDSLAVEINFOQUERY:
2920 case SIOCBONDINFOQUERY:
2921 uifr = compat_alloc_user_space(sizeof(*uifr));
2922 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2923 return -EFAULT;
2925 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2926 return -EFAULT;
2928 datap = compat_ptr(data);
2929 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2930 return -EFAULT;
2932 return dev_ioctl(net, cmd, uifr);
2933 default:
2934 return -EINVAL;
2938 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2939 struct compat_ifreq __user *u_ifreq32)
2941 struct ifreq __user *u_ifreq64;
2942 char tmp_buf[IFNAMSIZ];
2943 void __user *data64;
2944 u32 data32;
2946 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2947 IFNAMSIZ))
2948 return -EFAULT;
2949 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2950 return -EFAULT;
2951 data64 = compat_ptr(data32);
2953 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2955 /* Don't check these user accesses, just let that get trapped
2956 * in the ioctl handler instead.
2958 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2959 IFNAMSIZ))
2960 return -EFAULT;
2961 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2962 return -EFAULT;
2964 return dev_ioctl(net, cmd, u_ifreq64);
2967 static int dev_ifsioc(struct net *net, struct socket *sock,
2968 unsigned int cmd, struct compat_ifreq __user *uifr32)
2970 struct ifreq __user *uifr;
2971 int err;
2973 uifr = compat_alloc_user_space(sizeof(*uifr));
2974 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2975 return -EFAULT;
2977 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2979 if (!err) {
2980 switch (cmd) {
2981 case SIOCGIFFLAGS:
2982 case SIOCGIFMETRIC:
2983 case SIOCGIFMTU:
2984 case SIOCGIFMEM:
2985 case SIOCGIFHWADDR:
2986 case SIOCGIFINDEX:
2987 case SIOCGIFADDR:
2988 case SIOCGIFBRDADDR:
2989 case SIOCGIFDSTADDR:
2990 case SIOCGIFNETMASK:
2991 case SIOCGIFPFLAGS:
2992 case SIOCGIFTXQLEN:
2993 case SIOCGMIIPHY:
2994 case SIOCGMIIREG:
2995 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2996 err = -EFAULT;
2997 break;
3000 return err;
3003 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3004 struct compat_ifreq __user *uifr32)
3006 struct ifreq ifr;
3007 struct compat_ifmap __user *uifmap32;
3008 mm_segment_t old_fs;
3009 int err;
3011 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3012 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3013 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3014 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3015 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3016 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3017 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3018 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3019 if (err)
3020 return -EFAULT;
3022 old_fs = get_fs();
3023 set_fs(KERNEL_DS);
3024 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3025 set_fs(old_fs);
3027 if (cmd == SIOCGIFMAP && !err) {
3028 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3029 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3030 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3031 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3032 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3033 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3034 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3035 if (err)
3036 err = -EFAULT;
3038 return err;
3041 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3043 void __user *uptr;
3044 compat_uptr_t uptr32;
3045 struct ifreq __user *uifr;
3047 uifr = compat_alloc_user_space(sizeof(*uifr));
3048 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3049 return -EFAULT;
3051 if (get_user(uptr32, &uifr32->ifr_data))
3052 return -EFAULT;
3054 uptr = compat_ptr(uptr32);
3056 if (put_user(uptr, &uifr->ifr_data))
3057 return -EFAULT;
3059 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3062 struct rtentry32 {
3063 u32 rt_pad1;
3064 struct sockaddr rt_dst; /* target address */
3065 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3066 struct sockaddr rt_genmask; /* target network mask (IP) */
3067 unsigned short rt_flags;
3068 short rt_pad2;
3069 u32 rt_pad3;
3070 unsigned char rt_tos;
3071 unsigned char rt_class;
3072 short rt_pad4;
3073 short rt_metric; /* +1 for binary compatibility! */
3074 /* char * */ u32 rt_dev; /* forcing the device at add */
3075 u32 rt_mtu; /* per route MTU/Window */
3076 u32 rt_window; /* Window clamping */
3077 unsigned short rt_irtt; /* Initial RTT */
3080 struct in6_rtmsg32 {
3081 struct in6_addr rtmsg_dst;
3082 struct in6_addr rtmsg_src;
3083 struct in6_addr rtmsg_gateway;
3084 u32 rtmsg_type;
3085 u16 rtmsg_dst_len;
3086 u16 rtmsg_src_len;
3087 u32 rtmsg_metric;
3088 u32 rtmsg_info;
3089 u32 rtmsg_flags;
3090 s32 rtmsg_ifindex;
3093 static int routing_ioctl(struct net *net, struct socket *sock,
3094 unsigned int cmd, void __user *argp)
3096 int ret;
3097 void *r = NULL;
3098 struct in6_rtmsg r6;
3099 struct rtentry r4;
3100 char devname[16];
3101 u32 rtdev;
3102 mm_segment_t old_fs = get_fs();
3104 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3105 struct in6_rtmsg32 __user *ur6 = argp;
3106 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3107 3 * sizeof(struct in6_addr));
3108 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3109 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3110 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3111 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3112 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3113 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3114 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3116 r = (void *) &r6;
3117 } else { /* ipv4 */
3118 struct rtentry32 __user *ur4 = argp;
3119 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3120 3 * sizeof(struct sockaddr));
3121 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3122 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3123 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3124 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3125 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3126 ret |= __get_user(rtdev, &(ur4->rt_dev));
3127 if (rtdev) {
3128 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3129 r4.rt_dev = (char __user __force *)devname;
3130 devname[15] = 0;
3131 } else
3132 r4.rt_dev = NULL;
3134 r = (void *) &r4;
3137 if (ret) {
3138 ret = -EFAULT;
3139 goto out;
3142 set_fs(KERNEL_DS);
3143 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3144 set_fs(old_fs);
3146 out:
3147 return ret;
3150 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3151 * for some operations; this forces use of the newer bridge-utils that
3152 * use compatible ioctls
3154 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3156 compat_ulong_t tmp;
3158 if (get_user(tmp, argp))
3159 return -EFAULT;
3160 if (tmp == BRCTL_GET_VERSION)
3161 return BRCTL_VERSION + 1;
3162 return -EINVAL;
3165 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3166 unsigned int cmd, unsigned long arg)
3168 void __user *argp = compat_ptr(arg);
3169 struct sock *sk = sock->sk;
3170 struct net *net = sock_net(sk);
3172 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3173 return siocdevprivate_ioctl(net, cmd, argp);
3175 switch (cmd) {
3176 case SIOCSIFBR:
3177 case SIOCGIFBR:
3178 return old_bridge_ioctl(argp);
3179 case SIOCGIFNAME:
3180 return dev_ifname32(net, argp);
3181 case SIOCGIFCONF:
3182 return dev_ifconf(net, argp);
3183 case SIOCETHTOOL:
3184 return ethtool_ioctl(net, argp);
3185 case SIOCWANDEV:
3186 return compat_siocwandev(net, argp);
3187 case SIOCGIFMAP:
3188 case SIOCSIFMAP:
3189 return compat_sioc_ifmap(net, cmd, argp);
3190 case SIOCBONDENSLAVE:
3191 case SIOCBONDRELEASE:
3192 case SIOCBONDSETHWADDR:
3193 case SIOCBONDSLAVEINFOQUERY:
3194 case SIOCBONDINFOQUERY:
3195 case SIOCBONDCHANGEACTIVE:
3196 return bond_ioctl(net, cmd, argp);
3197 case SIOCADDRT:
3198 case SIOCDELRT:
3199 return routing_ioctl(net, sock, cmd, argp);
3200 case SIOCGSTAMP:
3201 return do_siocgstamp(net, sock, cmd, argp);
3202 case SIOCGSTAMPNS:
3203 return do_siocgstampns(net, sock, cmd, argp);
3204 case SIOCSHWTSTAMP:
3205 return compat_siocshwtstamp(net, argp);
3207 case FIOSETOWN:
3208 case SIOCSPGRP:
3209 case FIOGETOWN:
3210 case SIOCGPGRP:
3211 case SIOCBRADDBR:
3212 case SIOCBRDELBR:
3213 case SIOCGIFVLAN:
3214 case SIOCSIFVLAN:
3215 case SIOCADDDLCI:
3216 case SIOCDELDLCI:
3217 return sock_ioctl(file, cmd, arg);
3219 case SIOCGIFFLAGS:
3220 case SIOCSIFFLAGS:
3221 case SIOCGIFMETRIC:
3222 case SIOCSIFMETRIC:
3223 case SIOCGIFMTU:
3224 case SIOCSIFMTU:
3225 case SIOCGIFMEM:
3226 case SIOCSIFMEM:
3227 case SIOCGIFHWADDR:
3228 case SIOCSIFHWADDR:
3229 case SIOCADDMULTI:
3230 case SIOCDELMULTI:
3231 case SIOCGIFINDEX:
3232 case SIOCGIFADDR:
3233 case SIOCSIFADDR:
3234 case SIOCSIFHWBROADCAST:
3235 case SIOCDIFADDR:
3236 case SIOCGIFBRDADDR:
3237 case SIOCSIFBRDADDR:
3238 case SIOCGIFDSTADDR:
3239 case SIOCSIFDSTADDR:
3240 case SIOCGIFNETMASK:
3241 case SIOCSIFNETMASK:
3242 case SIOCSIFPFLAGS:
3243 case SIOCGIFPFLAGS:
3244 case SIOCGIFTXQLEN:
3245 case SIOCSIFTXQLEN:
3246 case SIOCBRADDIF:
3247 case SIOCBRDELIF:
3248 case SIOCSIFNAME:
3249 case SIOCGMIIPHY:
3250 case SIOCGMIIREG:
3251 case SIOCSMIIREG:
3252 return dev_ifsioc(net, sock, cmd, argp);
3254 case SIOCSARP:
3255 case SIOCGARP:
3256 case SIOCDARP:
3257 case SIOCATMARK:
3258 return sock_do_ioctl(net, sock, cmd, arg);
3261 /* Prevent warning from compat_sys_ioctl, these always
3262 * result in -EINVAL in the native case anyway. */
3263 switch (cmd) {
3264 case SIOCRTMSG:
3265 case SIOCGIFCOUNT:
3266 case SIOCSRARP:
3267 case SIOCGRARP:
3268 case SIOCDRARP:
3269 case SIOCSIFLINK:
3270 case SIOCGIFSLAVE:
3271 case SIOCSIFSLAVE:
3272 return -EINVAL;
3275 return -ENOIOCTLCMD;
3278 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3279 unsigned long arg)
3281 struct socket *sock = file->private_data;
3282 int ret = -ENOIOCTLCMD;
3283 struct sock *sk;
3284 struct net *net;
3286 sk = sock->sk;
3287 net = sock_net(sk);
3289 if (sock->ops->compat_ioctl)
3290 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3292 if (ret == -ENOIOCTLCMD &&
3293 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3294 ret = compat_wext_handle_ioctl(net, cmd, arg);
3296 if (ret == -ENOIOCTLCMD)
3297 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3299 return ret;
3301 #endif
3303 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3305 return sock->ops->bind(sock, addr, addrlen);
3307 EXPORT_SYMBOL(kernel_bind);
3309 int kernel_listen(struct socket *sock, int backlog)
3311 return sock->ops->listen(sock, backlog);
3313 EXPORT_SYMBOL(kernel_listen);
3315 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3317 struct sock *sk = sock->sk;
3318 int err;
3320 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3321 newsock);
3322 if (err < 0)
3323 goto done;
3325 err = sock->ops->accept(sock, *newsock, flags);
3326 if (err < 0) {
3327 sock_release(*newsock);
3328 *newsock = NULL;
3329 goto done;
3332 (*newsock)->ops = sock->ops;
3333 __module_get((*newsock)->ops->owner);
3335 done:
3336 return err;
3338 EXPORT_SYMBOL(kernel_accept);
3340 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3341 int flags)
3343 return sock->ops->connect(sock, addr, addrlen, flags);
3345 EXPORT_SYMBOL(kernel_connect);
3347 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3348 int *addrlen)
3350 return sock->ops->getname(sock, addr, addrlen, 0);
3352 EXPORT_SYMBOL(kernel_getsockname);
3354 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3355 int *addrlen)
3357 return sock->ops->getname(sock, addr, addrlen, 1);
3359 EXPORT_SYMBOL(kernel_getpeername);
3361 int kernel_getsockopt(struct socket *sock, int level, int optname,
3362 char *optval, int *optlen)
3364 mm_segment_t oldfs = get_fs();
3365 char __user *uoptval;
3366 int __user *uoptlen;
3367 int err;
3369 uoptval = (char __user __force *) optval;
3370 uoptlen = (int __user __force *) optlen;
3372 set_fs(KERNEL_DS);
3373 if (level == SOL_SOCKET)
3374 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3375 else
3376 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3377 uoptlen);
3378 set_fs(oldfs);
3379 return err;
3381 EXPORT_SYMBOL(kernel_getsockopt);
3383 int kernel_setsockopt(struct socket *sock, int level, int optname,
3384 char *optval, unsigned int optlen)
3386 mm_segment_t oldfs = get_fs();
3387 char __user *uoptval;
3388 int err;
3390 uoptval = (char __user __force *) optval;
3392 set_fs(KERNEL_DS);
3393 if (level == SOL_SOCKET)
3394 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3395 else
3396 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3397 optlen);
3398 set_fs(oldfs);
3399 return err;
3401 EXPORT_SYMBOL(kernel_setsockopt);
3403 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3404 size_t size, int flags)
3406 sock_update_classid(sock->sk);
3408 if (sock->ops->sendpage)
3409 return sock->ops->sendpage(sock, page, offset, size, flags);
3411 return sock_no_sendpage(sock, page, offset, size, flags);
3413 EXPORT_SYMBOL(kernel_sendpage);
3415 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3417 mm_segment_t oldfs = get_fs();
3418 int err;
3420 set_fs(KERNEL_DS);
3421 err = sock->ops->ioctl(sock, cmd, arg);
3422 set_fs(oldfs);
3424 return err;
3426 EXPORT_SYMBOL(kernel_sock_ioctl);
3428 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3430 return sock->ops->shutdown(sock, how);
3432 EXPORT_SYMBOL(kernel_sock_shutdown);