2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
109 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
110 unsigned long nr_segs
, loff_t pos
);
111 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
112 unsigned long nr_segs
, loff_t pos
);
113 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
115 static int sock_close(struct inode
*inode
, struct file
*file
);
116 static unsigned int sock_poll(struct file
*file
,
117 struct poll_table_struct
*wait
);
118 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
120 static long compat_sock_ioctl(struct file
*file
,
121 unsigned int cmd
, unsigned long arg
);
123 static int sock_fasync(int fd
, struct file
*filp
, int on
);
124 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
125 int offset
, size_t size
, loff_t
*ppos
, int more
);
126 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
127 struct pipe_inode_info
*pipe
, size_t len
,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops
= {
136 .owner
= THIS_MODULE
,
138 .aio_read
= sock_aio_read
,
139 .aio_write
= sock_aio_write
,
141 .unlocked_ioctl
= sock_ioctl
,
143 .compat_ioctl
= compat_sock_ioctl
,
146 .open
= sock_no_open
, /* special open code to disallow open via /proc */
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use
);
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
219 err
= get_user(len
, ulen
);
227 if (audit_sockaddr(klen
, kaddr
))
229 if (copy_to_user(uaddr
, kaddr
, len
))
233 * "fromlen shall refer to the value before truncation.."
236 return __put_user(klen
, ulen
);
239 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
241 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
243 struct socket_alloc
*ei
;
244 struct socket_wq
*wq
;
246 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
249 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
251 kmem_cache_free(sock_inode_cachep
, ei
);
254 init_waitqueue_head(&wq
->wait
);
255 wq
->fasync_list
= NULL
;
256 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
258 ei
->socket
.state
= SS_UNCONNECTED
;
259 ei
->socket
.flags
= 0;
260 ei
->socket
.ops
= NULL
;
261 ei
->socket
.sk
= NULL
;
262 ei
->socket
.file
= NULL
;
264 return &ei
->vfs_inode
;
267 static void sock_destroy_inode(struct inode
*inode
)
269 struct socket_alloc
*ei
;
270 struct socket_wq
*wq
;
272 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
273 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
275 kmem_cache_free(sock_inode_cachep
, ei
);
278 static void init_once(void *foo
)
280 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
282 inode_init_once(&ei
->vfs_inode
);
285 static int init_inodecache(void)
287 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc
),
290 (SLAB_HWCACHE_ALIGN
|
291 SLAB_RECLAIM_ACCOUNT
|
294 if (sock_inode_cachep
== NULL
)
299 static const struct super_operations sockfs_ops
= {
300 .alloc_inode
= sock_alloc_inode
,
301 .destroy_inode
= sock_destroy_inode
,
302 .statfs
= simple_statfs
,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
310 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
311 dentry
->d_inode
->i_ino
);
314 static const struct dentry_operations sockfs_dentry_operations
= {
315 .d_dname
= sockfs_dname
,
318 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
319 int flags
, const char *dev_name
, void *data
)
321 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
322 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
325 static struct vfsmount
*sock_mnt __read_mostly
;
327 static struct file_system_type sock_fs_type
= {
329 .mount
= sockfs_mount
,
330 .kill_sb
= kill_anon_super
,
334 * Obtains the first available file descriptor and sets it up for use.
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
350 static int sock_alloc_file(struct socket
*sock
, struct file
**f
, int flags
)
352 struct qstr name
= { .name
= "" };
357 fd
= get_unused_fd_flags(flags
);
358 if (unlikely(fd
< 0))
361 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
362 if (unlikely(!path
.dentry
)) {
366 path
.mnt
= mntget(sock_mnt
);
368 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
369 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
371 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
373 if (unlikely(!file
)) {
374 /* drop dentry, keep inode */
375 ihold(path
.dentry
->d_inode
);
382 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
384 file
->private_data
= sock
;
390 int sock_map_fd(struct socket
*sock
, int flags
)
392 struct file
*newfile
;
393 int fd
= sock_alloc_file(sock
, &newfile
, flags
);
396 fd_install(fd
, newfile
);
400 EXPORT_SYMBOL(sock_map_fd
);
402 static struct socket
*sock_from_file(struct file
*file
, int *err
)
404 if (file
->f_op
== &socket_file_ops
)
405 return file
->private_data
; /* set in sock_map_fd */
412 * sockfd_lookup - Go from a file number to its socket slot
414 * @err: pointer to an error code return
416 * The file handle passed in is locked and the socket it is bound
417 * too is returned. If an error occurs the err pointer is overwritten
418 * with a negative errno code and NULL is returned. The function checks
419 * for both invalid handles and passing a handle which is not a socket.
421 * On a success the socket object pointer is returned.
424 struct socket
*sockfd_lookup(int fd
, int *err
)
435 sock
= sock_from_file(file
, err
);
440 EXPORT_SYMBOL(sockfd_lookup
);
442 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
448 file
= fget_light(fd
, fput_needed
);
450 sock
= sock_from_file(file
, err
);
453 fput_light(file
, *fput_needed
);
459 * sock_alloc - allocate a socket
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
466 static struct socket
*sock_alloc(void)
471 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
475 sock
= SOCKET_I(inode
);
477 kmemcheck_annotate_bitfield(sock
, type
);
478 inode
->i_ino
= get_next_ino();
479 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
480 inode
->i_uid
= current_fsuid();
481 inode
->i_gid
= current_fsgid();
483 percpu_add(sockets_in_use
, 1);
488 * In theory you can't get an open on this inode, but /proc provides
489 * a back door. Remember to keep it shut otherwise you'll let the
490 * creepy crawlies in.
493 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
498 const struct file_operations bad_sock_fops
= {
499 .owner
= THIS_MODULE
,
500 .open
= sock_no_open
,
501 .llseek
= noop_llseek
,
505 * sock_release - close a socket
506 * @sock: socket to close
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
513 void sock_release(struct socket
*sock
)
516 struct module
*owner
= sock
->ops
->owner
;
518 sock
->ops
->release(sock
);
523 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
524 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
526 percpu_sub(sockets_in_use
, 1);
528 iput(SOCK_INODE(sock
));
533 EXPORT_SYMBOL(sock_release
);
535 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
538 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
539 *tx_flags
|= SKBTX_HW_TSTAMP
;
540 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
541 *tx_flags
|= SKBTX_SW_TSTAMP
;
544 EXPORT_SYMBOL(sock_tx_timestamp
);
546 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
547 struct msghdr
*msg
, size_t size
)
549 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
551 sock_update_classid(sock
->sk
);
558 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
561 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
562 struct msghdr
*msg
, size_t size
)
564 int err
= security_socket_sendmsg(sock
, msg
, size
);
566 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
569 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
572 struct sock_iocb siocb
;
575 init_sync_kiocb(&iocb
, NULL
);
576 iocb
.private = &siocb
;
577 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
578 if (-EIOCBQUEUED
== ret
)
579 ret
= wait_on_sync_kiocb(&iocb
);
582 EXPORT_SYMBOL(sock_sendmsg
);
584 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
587 struct sock_iocb siocb
;
590 init_sync_kiocb(&iocb
, NULL
);
591 iocb
.private = &siocb
;
592 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
593 if (-EIOCBQUEUED
== ret
)
594 ret
= wait_on_sync_kiocb(&iocb
);
598 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
599 struct kvec
*vec
, size_t num
, size_t size
)
601 mm_segment_t oldfs
= get_fs();
606 * the following is safe, since for compiler definitions of kvec and
607 * iovec are identical, yielding the same in-core layout and alignment
609 msg
->msg_iov
= (struct iovec
*)vec
;
610 msg
->msg_iovlen
= num
;
611 result
= sock_sendmsg(sock
, msg
, size
);
615 EXPORT_SYMBOL(kernel_sendmsg
);
617 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
620 *ts
= ktime_to_timespec(kt
);
628 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
630 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
633 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
634 struct timespec ts
[3];
636 struct skb_shared_hwtstamps
*shhwtstamps
=
639 /* Race occurred between timestamp enabling and packet
640 receiving. Fill in the current time for now. */
641 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
642 __net_timestamp(skb
);
644 if (need_software_tstamp
) {
645 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
647 skb_get_timestamp(skb
, &tv
);
648 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
651 skb_get_timestampns(skb
, &ts
[0]);
652 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
653 sizeof(ts
[0]), &ts
[0]);
658 memset(ts
, 0, sizeof(ts
));
659 if (skb
->tstamp
.tv64
&&
660 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
661 skb_get_timestampns(skb
, ts
+ 0);
665 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
666 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
668 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
669 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
673 put_cmsg(msg
, SOL_SOCKET
,
674 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
678 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
681 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
682 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
683 sizeof(__u32
), &skb
->dropcount
);
686 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
689 sock_recv_timestamp(msg
, sk
, skb
);
690 sock_recv_drops(msg
, sk
, skb
);
692 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
694 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
695 struct msghdr
*msg
, size_t size
, int flags
)
697 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
699 sock_update_classid(sock
->sk
);
707 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
710 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
711 struct msghdr
*msg
, size_t size
, int flags
)
713 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
715 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
718 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
719 size_t size
, int flags
)
722 struct sock_iocb siocb
;
725 init_sync_kiocb(&iocb
, NULL
);
726 iocb
.private = &siocb
;
727 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
728 if (-EIOCBQUEUED
== ret
)
729 ret
= wait_on_sync_kiocb(&iocb
);
732 EXPORT_SYMBOL(sock_recvmsg
);
734 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
735 size_t size
, int flags
)
738 struct sock_iocb siocb
;
741 init_sync_kiocb(&iocb
, NULL
);
742 iocb
.private = &siocb
;
743 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
744 if (-EIOCBQUEUED
== ret
)
745 ret
= wait_on_sync_kiocb(&iocb
);
750 * kernel_recvmsg - Receive a message from a socket (kernel space)
751 * @sock: The socket to receive the message from
752 * @msg: Received message
753 * @vec: Input s/g array for message data
754 * @num: Size of input s/g array
755 * @size: Number of bytes to read
756 * @flags: Message flags (MSG_DONTWAIT, etc...)
758 * On return the msg structure contains the scatter/gather array passed in the
759 * vec argument. The array is modified so that it consists of the unfilled
760 * portion of the original array.
762 * The returned value is the total number of bytes received, or an error.
764 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
765 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
767 mm_segment_t oldfs
= get_fs();
772 * the following is safe, since for compiler definitions of kvec and
773 * iovec are identical, yielding the same in-core layout and alignment
775 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
776 result
= sock_recvmsg(sock
, msg
, size
, flags
);
780 EXPORT_SYMBOL(kernel_recvmsg
);
782 static void sock_aio_dtor(struct kiocb
*iocb
)
784 kfree(iocb
->private);
787 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
788 int offset
, size_t size
, loff_t
*ppos
, int more
)
793 sock
= file
->private_data
;
795 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
796 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
799 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
802 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
803 struct pipe_inode_info
*pipe
, size_t len
,
806 struct socket
*sock
= file
->private_data
;
808 if (unlikely(!sock
->ops
->splice_read
))
811 sock_update_classid(sock
->sk
);
813 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
816 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
817 struct sock_iocb
*siocb
)
819 if (!is_sync_kiocb(iocb
)) {
820 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
823 iocb
->ki_dtor
= sock_aio_dtor
;
827 iocb
->private = siocb
;
831 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
832 struct file
*file
, const struct iovec
*iov
,
833 unsigned long nr_segs
)
835 struct socket
*sock
= file
->private_data
;
839 for (i
= 0; i
< nr_segs
; i
++)
840 size
+= iov
[i
].iov_len
;
842 msg
->msg_name
= NULL
;
843 msg
->msg_namelen
= 0;
844 msg
->msg_control
= NULL
;
845 msg
->msg_controllen
= 0;
846 msg
->msg_iov
= (struct iovec
*)iov
;
847 msg
->msg_iovlen
= nr_segs
;
848 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
850 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
853 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
854 unsigned long nr_segs
, loff_t pos
)
856 struct sock_iocb siocb
, *x
;
861 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
865 x
= alloc_sock_iocb(iocb
, &siocb
);
868 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
871 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
872 struct file
*file
, const struct iovec
*iov
,
873 unsigned long nr_segs
)
875 struct socket
*sock
= file
->private_data
;
879 for (i
= 0; i
< nr_segs
; i
++)
880 size
+= iov
[i
].iov_len
;
882 msg
->msg_name
= NULL
;
883 msg
->msg_namelen
= 0;
884 msg
->msg_control
= NULL
;
885 msg
->msg_controllen
= 0;
886 msg
->msg_iov
= (struct iovec
*)iov
;
887 msg
->msg_iovlen
= nr_segs
;
888 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
889 if (sock
->type
== SOCK_SEQPACKET
)
890 msg
->msg_flags
|= MSG_EOR
;
892 return __sock_sendmsg(iocb
, sock
, msg
, size
);
895 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
896 unsigned long nr_segs
, loff_t pos
)
898 struct sock_iocb siocb
, *x
;
903 x
= alloc_sock_iocb(iocb
, &siocb
);
907 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
911 * Atomic setting of ioctl hooks to avoid race
912 * with module unload.
915 static DEFINE_MUTEX(br_ioctl_mutex
);
916 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
918 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
920 mutex_lock(&br_ioctl_mutex
);
921 br_ioctl_hook
= hook
;
922 mutex_unlock(&br_ioctl_mutex
);
924 EXPORT_SYMBOL(brioctl_set
);
926 static DEFINE_MUTEX(vlan_ioctl_mutex
);
927 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
929 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
931 mutex_lock(&vlan_ioctl_mutex
);
932 vlan_ioctl_hook
= hook
;
933 mutex_unlock(&vlan_ioctl_mutex
);
935 EXPORT_SYMBOL(vlan_ioctl_set
);
937 static DEFINE_MUTEX(dlci_ioctl_mutex
);
938 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
940 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
942 mutex_lock(&dlci_ioctl_mutex
);
943 dlci_ioctl_hook
= hook
;
944 mutex_unlock(&dlci_ioctl_mutex
);
946 EXPORT_SYMBOL(dlci_ioctl_set
);
948 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
949 unsigned int cmd
, unsigned long arg
)
952 void __user
*argp
= (void __user
*)arg
;
954 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
957 * If this ioctl is unknown try to hand it down
960 if (err
== -ENOIOCTLCMD
)
961 err
= dev_ioctl(net
, cmd
, argp
);
967 * With an ioctl, arg may well be a user mode pointer, but we don't know
968 * what to do with it - that's up to the protocol still.
971 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
975 void __user
*argp
= (void __user
*)arg
;
979 sock
= file
->private_data
;
982 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
983 err
= dev_ioctl(net
, cmd
, argp
);
985 #ifdef CONFIG_WEXT_CORE
986 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
987 err
= dev_ioctl(net
, cmd
, argp
);
994 if (get_user(pid
, (int __user
*)argp
))
996 err
= f_setown(sock
->file
, pid
, 1);
1000 err
= put_user(f_getown(sock
->file
),
1001 (int __user
*)argp
);
1009 request_module("bridge");
1011 mutex_lock(&br_ioctl_mutex
);
1013 err
= br_ioctl_hook(net
, cmd
, argp
);
1014 mutex_unlock(&br_ioctl_mutex
);
1019 if (!vlan_ioctl_hook
)
1020 request_module("8021q");
1022 mutex_lock(&vlan_ioctl_mutex
);
1023 if (vlan_ioctl_hook
)
1024 err
= vlan_ioctl_hook(net
, argp
);
1025 mutex_unlock(&vlan_ioctl_mutex
);
1030 if (!dlci_ioctl_hook
)
1031 request_module("dlci");
1033 mutex_lock(&dlci_ioctl_mutex
);
1034 if (dlci_ioctl_hook
)
1035 err
= dlci_ioctl_hook(cmd
, argp
);
1036 mutex_unlock(&dlci_ioctl_mutex
);
1039 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1045 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1048 struct socket
*sock
= NULL
;
1050 err
= security_socket_create(family
, type
, protocol
, 1);
1054 sock
= sock_alloc();
1061 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1073 EXPORT_SYMBOL(sock_create_lite
);
1075 /* No kernel lock held - perfect */
1076 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1078 struct socket
*sock
;
1081 * We can't return errors to poll, so it's either yes or no.
1083 sock
= file
->private_data
;
1084 return sock
->ops
->poll(file
, sock
, wait
);
1087 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1089 struct socket
*sock
= file
->private_data
;
1091 return sock
->ops
->mmap(file
, sock
, vma
);
1094 static int sock_close(struct inode
*inode
, struct file
*filp
)
1097 * It was possible the inode is NULL we were
1098 * closing an unfinished socket.
1102 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1105 sock_release(SOCKET_I(inode
));
1110 * Update the socket async list
1112 * Fasync_list locking strategy.
1114 * 1. fasync_list is modified only under process context socket lock
1115 * i.e. under semaphore.
1116 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1117 * or under socket lock
1120 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1122 struct socket
*sock
= filp
->private_data
;
1123 struct sock
*sk
= sock
->sk
;
1124 struct socket_wq
*wq
;
1130 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1131 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1133 if (!wq
->fasync_list
)
1134 sock_reset_flag(sk
, SOCK_FASYNC
);
1136 sock_set_flag(sk
, SOCK_FASYNC
);
1142 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1144 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1146 struct socket_wq
*wq
;
1151 wq
= rcu_dereference(sock
->wq
);
1152 if (!wq
|| !wq
->fasync_list
) {
1157 case SOCK_WAKE_WAITD
:
1158 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1161 case SOCK_WAKE_SPACE
:
1162 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1167 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1170 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1175 EXPORT_SYMBOL(sock_wake_async
);
1177 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1178 struct socket
**res
, int kern
)
1181 struct socket
*sock
;
1182 const struct net_proto_family
*pf
;
1185 * Check protocol is in range
1187 if (family
< 0 || family
>= NPROTO
)
1188 return -EAFNOSUPPORT
;
1189 if (type
< 0 || type
>= SOCK_MAX
)
1194 This uglymoron is moved from INET layer to here to avoid
1195 deadlock in module load.
1197 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1201 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1207 err
= security_socket_create(family
, type
, protocol
, kern
);
1212 * Allocate the socket and allow the family to set things up. if
1213 * the protocol is 0, the family is instructed to select an appropriate
1216 sock
= sock_alloc();
1218 if (net_ratelimit())
1219 printk(KERN_WARNING
"socket: no more sockets\n");
1220 return -ENFILE
; /* Not exactly a match, but its the
1221 closest posix thing */
1226 #ifdef CONFIG_MODULES
1227 /* Attempt to load a protocol module if the find failed.
1229 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1230 * requested real, full-featured networking support upon configuration.
1231 * Otherwise module support will break!
1233 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1234 request_module("net-pf-%d", family
);
1238 pf
= rcu_dereference(net_families
[family
]);
1239 err
= -EAFNOSUPPORT
;
1244 * We will call the ->create function, that possibly is in a loadable
1245 * module, so we have to bump that loadable module refcnt first.
1247 if (!try_module_get(pf
->owner
))
1250 /* Now protected by module ref count */
1253 err
= pf
->create(net
, sock
, protocol
, kern
);
1255 goto out_module_put
;
1258 * Now to bump the refcnt of the [loadable] module that owns this
1259 * socket at sock_release time we decrement its refcnt.
1261 if (!try_module_get(sock
->ops
->owner
))
1262 goto out_module_busy
;
1265 * Now that we're done with the ->create function, the [loadable]
1266 * module can have its refcnt decremented
1268 module_put(pf
->owner
);
1269 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1271 goto out_sock_release
;
1277 err
= -EAFNOSUPPORT
;
1280 module_put(pf
->owner
);
1287 goto out_sock_release
;
1289 EXPORT_SYMBOL(__sock_create
);
1291 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1293 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1295 EXPORT_SYMBOL(sock_create
);
1297 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1299 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1301 EXPORT_SYMBOL(sock_create_kern
);
1303 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1306 struct socket
*sock
;
1309 /* Check the SOCK_* constants for consistency. */
1310 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1311 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1312 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1313 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1315 flags
= type
& ~SOCK_TYPE_MASK
;
1316 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1318 type
&= SOCK_TYPE_MASK
;
1320 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1321 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1323 retval
= sock_create(family
, type
, protocol
, &sock
);
1327 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1332 /* It may be already another descriptor 8) Not kernel problem. */
1341 * Create a pair of connected sockets.
1344 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1345 int __user
*, usockvec
)
1347 struct socket
*sock1
, *sock2
;
1349 struct file
*newfile1
, *newfile2
;
1352 flags
= type
& ~SOCK_TYPE_MASK
;
1353 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1355 type
&= SOCK_TYPE_MASK
;
1357 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1358 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1361 * Obtain the first socket and check if the underlying protocol
1362 * supports the socketpair call.
1365 err
= sock_create(family
, type
, protocol
, &sock1
);
1369 err
= sock_create(family
, type
, protocol
, &sock2
);
1373 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1375 goto out_release_both
;
1377 fd1
= sock_alloc_file(sock1
, &newfile1
, flags
);
1378 if (unlikely(fd1
< 0)) {
1380 goto out_release_both
;
1383 fd2
= sock_alloc_file(sock2
, &newfile2
, flags
);
1384 if (unlikely(fd2
< 0)) {
1388 sock_release(sock2
);
1392 audit_fd_pair(fd1
, fd2
);
1393 fd_install(fd1
, newfile1
);
1394 fd_install(fd2
, newfile2
);
1395 /* fd1 and fd2 may be already another descriptors.
1396 * Not kernel problem.
1399 err
= put_user(fd1
, &usockvec
[0]);
1401 err
= put_user(fd2
, &usockvec
[1]);
1410 sock_release(sock2
);
1412 sock_release(sock1
);
1418 * Bind a name to a socket. Nothing much to do here since it's
1419 * the protocol's responsibility to handle the local address.
1421 * We move the socket address to kernel space before we call
1422 * the protocol layer (having also checked the address is ok).
1425 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1427 struct socket
*sock
;
1428 struct sockaddr_storage address
;
1429 int err
, fput_needed
;
1431 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1433 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1435 err
= security_socket_bind(sock
,
1436 (struct sockaddr
*)&address
,
1439 err
= sock
->ops
->bind(sock
,
1443 fput_light(sock
->file
, fput_needed
);
1449 * Perform a listen. Basically, we allow the protocol to do anything
1450 * necessary for a listen, and if that works, we mark the socket as
1451 * ready for listening.
1454 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1456 struct socket
*sock
;
1457 int err
, fput_needed
;
1460 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1462 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1463 if ((unsigned)backlog
> somaxconn
)
1464 backlog
= somaxconn
;
1466 err
= security_socket_listen(sock
, backlog
);
1468 err
= sock
->ops
->listen(sock
, backlog
);
1470 fput_light(sock
->file
, fput_needed
);
1476 * For accept, we attempt to create a new socket, set up the link
1477 * with the client, wake up the client, then return the new
1478 * connected fd. We collect the address of the connector in kernel
1479 * space and move it to user at the very end. This is unclean because
1480 * we open the socket then return an error.
1482 * 1003.1g adds the ability to recvmsg() to query connection pending
1483 * status to recvmsg. We need to add that support in a way thats
1484 * clean when we restucture accept also.
1487 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1488 int __user
*, upeer_addrlen
, int, flags
)
1490 struct socket
*sock
, *newsock
;
1491 struct file
*newfile
;
1492 int err
, len
, newfd
, fput_needed
;
1493 struct sockaddr_storage address
;
1495 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1498 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1499 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1501 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1506 newsock
= sock_alloc();
1510 newsock
->type
= sock
->type
;
1511 newsock
->ops
= sock
->ops
;
1514 * We don't need try_module_get here, as the listening socket (sock)
1515 * has the protocol module (sock->ops->owner) held.
1517 __module_get(newsock
->ops
->owner
);
1519 newfd
= sock_alloc_file(newsock
, &newfile
, flags
);
1520 if (unlikely(newfd
< 0)) {
1522 sock_release(newsock
);
1526 err
= security_socket_accept(sock
, newsock
);
1530 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1534 if (upeer_sockaddr
) {
1535 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1537 err
= -ECONNABORTED
;
1540 err
= move_addr_to_user((struct sockaddr
*)&address
,
1541 len
, upeer_sockaddr
, upeer_addrlen
);
1546 /* File flags are not inherited via accept() unlike another OSes. */
1548 fd_install(newfd
, newfile
);
1552 fput_light(sock
->file
, fput_needed
);
1557 put_unused_fd(newfd
);
1561 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1562 int __user
*, upeer_addrlen
)
1564 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1568 * Attempt to connect to a socket with the server address. The address
1569 * is in user space so we verify it is OK and move it to kernel space.
1571 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1574 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1575 * other SEQPACKET protocols that take time to connect() as it doesn't
1576 * include the -EINPROGRESS status for such sockets.
1579 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1582 struct socket
*sock
;
1583 struct sockaddr_storage address
;
1584 int err
, fput_needed
;
1586 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1589 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1594 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1598 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1599 sock
->file
->f_flags
);
1601 fput_light(sock
->file
, fput_needed
);
1607 * Get the local address ('name') of a socket object. Move the obtained
1608 * name to user space.
1611 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1612 int __user
*, usockaddr_len
)
1614 struct socket
*sock
;
1615 struct sockaddr_storage address
;
1616 int len
, err
, fput_needed
;
1618 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1622 err
= security_socket_getsockname(sock
);
1626 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1629 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1632 fput_light(sock
->file
, fput_needed
);
1638 * Get the remote address ('name') of a socket object. Move the obtained
1639 * name to user space.
1642 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1643 int __user
*, usockaddr_len
)
1645 struct socket
*sock
;
1646 struct sockaddr_storage address
;
1647 int len
, err
, fput_needed
;
1649 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1651 err
= security_socket_getpeername(sock
);
1653 fput_light(sock
->file
, fput_needed
);
1658 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1661 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1663 fput_light(sock
->file
, fput_needed
);
1669 * Send a datagram to a given address. We move the address into kernel
1670 * space and check the user space data area is readable before invoking
1674 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1675 unsigned, flags
, struct sockaddr __user
*, addr
,
1678 struct socket
*sock
;
1679 struct sockaddr_storage address
;
1687 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1691 iov
.iov_base
= buff
;
1693 msg
.msg_name
= NULL
;
1696 msg
.msg_control
= NULL
;
1697 msg
.msg_controllen
= 0;
1698 msg
.msg_namelen
= 0;
1700 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1703 msg
.msg_name
= (struct sockaddr
*)&address
;
1704 msg
.msg_namelen
= addr_len
;
1706 if (sock
->file
->f_flags
& O_NONBLOCK
)
1707 flags
|= MSG_DONTWAIT
;
1708 msg
.msg_flags
= flags
;
1709 err
= sock_sendmsg(sock
, &msg
, len
);
1712 fput_light(sock
->file
, fput_needed
);
1718 * Send a datagram down a socket.
1721 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1724 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1728 * Receive a frame from the socket and optionally record the address of the
1729 * sender. We verify the buffers are writable and if needed move the
1730 * sender address from kernel to user space.
1733 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1734 unsigned, flags
, struct sockaddr __user
*, addr
,
1735 int __user
*, addr_len
)
1737 struct socket
*sock
;
1740 struct sockaddr_storage address
;
1746 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1750 msg
.msg_control
= NULL
;
1751 msg
.msg_controllen
= 0;
1755 iov
.iov_base
= ubuf
;
1756 /* Save some cycles and don't copy the address if not needed */
1757 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1758 /* We assume all kernel code knows the size of sockaddr_storage */
1759 msg
.msg_namelen
= 0;
1760 if (sock
->file
->f_flags
& O_NONBLOCK
)
1761 flags
|= MSG_DONTWAIT
;
1762 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1764 if (err
>= 0 && addr
!= NULL
) {
1765 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1766 msg
.msg_namelen
, addr
, addr_len
);
1771 fput_light(sock
->file
, fput_needed
);
1777 * Receive a datagram from a socket.
1780 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1783 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1787 * Set a socket option. Because we don't know the option lengths we have
1788 * to pass the user mode parameter for the protocols to sort out.
1791 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1792 char __user
*, optval
, int, optlen
)
1794 int err
, fput_needed
;
1795 struct socket
*sock
;
1800 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1802 err
= security_socket_setsockopt(sock
, level
, optname
);
1806 if (level
== SOL_SOCKET
)
1808 sock_setsockopt(sock
, level
, optname
, optval
,
1812 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1815 fput_light(sock
->file
, fput_needed
);
1821 * Get a socket option. Because we don't know the option lengths we have
1822 * to pass a user mode parameter for the protocols to sort out.
1825 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1826 char __user
*, optval
, int __user
*, optlen
)
1828 int err
, fput_needed
;
1829 struct socket
*sock
;
1831 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1833 err
= security_socket_getsockopt(sock
, level
, optname
);
1837 if (level
== SOL_SOCKET
)
1839 sock_getsockopt(sock
, level
, optname
, optval
,
1843 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1846 fput_light(sock
->file
, fput_needed
);
1852 * Shutdown a socket.
1855 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1857 int err
, fput_needed
;
1858 struct socket
*sock
;
1860 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1862 err
= security_socket_shutdown(sock
, how
);
1864 err
= sock
->ops
->shutdown(sock
, how
);
1865 fput_light(sock
->file
, fput_needed
);
1870 /* A couple of helpful macros for getting the address of the 32/64 bit
1871 * fields which are the same type (int / unsigned) on our platforms.
1873 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1874 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1875 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1877 struct used_address
{
1878 struct sockaddr_storage name
;
1879 unsigned int name_len
;
1882 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1883 struct msghdr __user
*umsg
)
1885 if (copy_from_user(kmsg
, umsg
, sizeof(struct msghdr
)))
1888 if (kmsg
->msg_namelen
< 0)
1891 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1892 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1896 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1897 struct msghdr
*msg_sys
, unsigned flags
,
1898 struct used_address
*used_address
)
1900 struct compat_msghdr __user
*msg_compat
=
1901 (struct compat_msghdr __user
*)msg
;
1902 struct sockaddr_storage address
;
1903 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1904 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1905 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1906 /* 20 is size of ipv6_pktinfo */
1907 unsigned char *ctl_buf
= ctl
;
1908 int err
, ctl_len
, iov_size
, total_len
;
1911 if (MSG_CMSG_COMPAT
& flags
) {
1912 if (get_compat_msghdr(msg_sys
, msg_compat
))
1915 err
= copy_msghdr_from_user(msg_sys
, msg
);
1920 /* do not move before msg_sys is valid */
1922 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
1925 /* Check whether to allocate the iovec area */
1927 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
1928 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
1929 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1934 /* This will also move the address data into kernel space */
1935 if (MSG_CMSG_COMPAT
& flags
) {
1936 err
= verify_compat_iovec(msg_sys
, iov
,
1937 (struct sockaddr
*)&address
,
1940 err
= verify_iovec(msg_sys
, iov
,
1941 (struct sockaddr
*)&address
,
1949 if (msg_sys
->msg_controllen
> INT_MAX
)
1951 ctl_len
= msg_sys
->msg_controllen
;
1952 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1954 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1958 ctl_buf
= msg_sys
->msg_control
;
1959 ctl_len
= msg_sys
->msg_controllen
;
1960 } else if (ctl_len
) {
1961 if (ctl_len
> sizeof(ctl
)) {
1962 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1963 if (ctl_buf
== NULL
)
1968 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1969 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1970 * checking falls down on this.
1972 if (copy_from_user(ctl_buf
,
1973 (void __user __force
*)msg_sys
->msg_control
,
1976 msg_sys
->msg_control
= ctl_buf
;
1978 msg_sys
->msg_flags
= flags
;
1980 if (sock
->file
->f_flags
& O_NONBLOCK
)
1981 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1983 * If this is sendmmsg() and current destination address is same as
1984 * previously succeeded address, omit asking LSM's decision.
1985 * used_address->name_len is initialized to UINT_MAX so that the first
1986 * destination address never matches.
1988 if (used_address
&& msg_sys
->msg_name
&&
1989 used_address
->name_len
== msg_sys
->msg_namelen
&&
1990 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1991 used_address
->name_len
)) {
1992 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
1995 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
1997 * If this is sendmmsg() and sending to current destination address was
1998 * successful, remember it.
2000 if (used_address
&& err
>= 0) {
2001 used_address
->name_len
= msg_sys
->msg_namelen
;
2002 if (msg_sys
->msg_name
)
2003 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2004 used_address
->name_len
);
2009 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2011 if (iov
!= iovstack
)
2012 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2018 * BSD sendmsg interface
2021 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2023 int fput_needed
, err
;
2024 struct msghdr msg_sys
;
2025 struct socket
*sock
;
2027 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2031 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2033 fput_light(sock
->file
, fput_needed
);
2038 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2040 if (flags
& MSG_CMSG_COMPAT
)
2042 return __sys_sendmsg(fd
, msg
, flags
);
2046 * Linux sendmmsg interface
2049 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2052 int fput_needed
, err
, datagrams
;
2053 struct socket
*sock
;
2054 struct mmsghdr __user
*entry
;
2055 struct compat_mmsghdr __user
*compat_entry
;
2056 struct msghdr msg_sys
;
2057 struct used_address used_address
;
2059 if (vlen
> UIO_MAXIOV
)
2064 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2068 used_address
.name_len
= UINT_MAX
;
2070 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2073 while (datagrams
< vlen
) {
2074 if (MSG_CMSG_COMPAT
& flags
) {
2075 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2076 &msg_sys
, flags
, &used_address
);
2079 err
= __put_user(err
, &compat_entry
->msg_len
);
2082 err
= ___sys_sendmsg(sock
,
2083 (struct msghdr __user
*)entry
,
2084 &msg_sys
, flags
, &used_address
);
2087 err
= put_user(err
, &entry
->msg_len
);
2096 fput_light(sock
->file
, fput_needed
);
2098 /* We only return an error if no datagrams were able to be sent */
2105 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2106 unsigned int, vlen
, unsigned int, flags
)
2108 if (flags
& MSG_CMSG_COMPAT
)
2110 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2113 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2114 struct msghdr
*msg_sys
, unsigned flags
, int nosec
)
2116 struct compat_msghdr __user
*msg_compat
=
2117 (struct compat_msghdr __user
*)msg
;
2118 struct iovec iovstack
[UIO_FASTIOV
];
2119 struct iovec
*iov
= iovstack
;
2120 unsigned long cmsg_ptr
;
2121 int err
, iov_size
, total_len
, len
;
2123 /* kernel mode address */
2124 struct sockaddr_storage addr
;
2126 /* user mode address pointers */
2127 struct sockaddr __user
*uaddr
;
2128 int __user
*uaddr_len
;
2130 if (MSG_CMSG_COMPAT
& flags
) {
2131 if (get_compat_msghdr(msg_sys
, msg_compat
))
2134 err
= copy_msghdr_from_user(msg_sys
, msg
);
2140 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2143 /* Check whether to allocate the iovec area */
2145 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
2146 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2147 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2152 /* Save the user-mode address (verify_iovec will change the
2153 * kernel msghdr to use the kernel address space)
2155 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2156 uaddr_len
= COMPAT_NAMELEN(msg
);
2157 if (MSG_CMSG_COMPAT
& flags
)
2158 err
= verify_compat_iovec(msg_sys
, iov
,
2159 (struct sockaddr
*)&addr
,
2162 err
= verify_iovec(msg_sys
, iov
,
2163 (struct sockaddr
*)&addr
,
2169 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2170 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2172 /* We assume all kernel code knows the size of sockaddr_storage */
2173 msg_sys
->msg_namelen
= 0;
2175 if (sock
->file
->f_flags
& O_NONBLOCK
)
2176 flags
|= MSG_DONTWAIT
;
2177 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2183 if (uaddr
!= NULL
) {
2184 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2185 msg_sys
->msg_namelen
, uaddr
,
2190 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2194 if (MSG_CMSG_COMPAT
& flags
)
2195 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2196 &msg_compat
->msg_controllen
);
2198 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2199 &msg
->msg_controllen
);
2205 if (iov
!= iovstack
)
2206 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2212 * BSD recvmsg interface
2215 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2217 int fput_needed
, err
;
2218 struct msghdr msg_sys
;
2219 struct socket
*sock
;
2221 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2225 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2227 fput_light(sock
->file
, fput_needed
);
2232 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2233 unsigned int, flags
)
2235 if (flags
& MSG_CMSG_COMPAT
)
2237 return __sys_recvmsg(fd
, msg
, flags
);
2241 * Linux recvmmsg interface
2244 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2245 unsigned int flags
, struct timespec
*timeout
)
2247 int fput_needed
, err
, datagrams
;
2248 struct socket
*sock
;
2249 struct mmsghdr __user
*entry
;
2250 struct compat_mmsghdr __user
*compat_entry
;
2251 struct msghdr msg_sys
;
2252 struct timespec end_time
;
2255 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2261 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2265 err
= sock_error(sock
->sk
);
2270 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2272 while (datagrams
< vlen
) {
2274 * No need to ask LSM for more than the first datagram.
2276 if (MSG_CMSG_COMPAT
& flags
) {
2277 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2278 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2282 err
= __put_user(err
, &compat_entry
->msg_len
);
2285 err
= ___sys_recvmsg(sock
,
2286 (struct msghdr __user
*)entry
,
2287 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2291 err
= put_user(err
, &entry
->msg_len
);
2299 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2300 if (flags
& MSG_WAITFORONE
)
2301 flags
|= MSG_DONTWAIT
;
2304 ktime_get_ts(timeout
);
2305 *timeout
= timespec_sub(end_time
, *timeout
);
2306 if (timeout
->tv_sec
< 0) {
2307 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2311 /* Timeout, return less than vlen datagrams */
2312 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2316 /* Out of band data, return right away */
2317 if (msg_sys
.msg_flags
& MSG_OOB
)
2322 fput_light(sock
->file
, fput_needed
);
2327 if (datagrams
!= 0) {
2329 * We may return less entries than requested (vlen) if the
2330 * sock is non block and there aren't enough datagrams...
2332 if (err
!= -EAGAIN
) {
2334 * ... or if recvmsg returns an error after we
2335 * received some datagrams, where we record the
2336 * error to return on the next call or if the
2337 * app asks about it using getsockopt(SO_ERROR).
2339 sock
->sk
->sk_err
= -err
;
2348 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2349 unsigned int, vlen
, unsigned int, flags
,
2350 struct timespec __user
*, timeout
)
2353 struct timespec timeout_sys
;
2355 if (flags
& MSG_CMSG_COMPAT
)
2359 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2361 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2364 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2366 if (datagrams
> 0 &&
2367 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2368 datagrams
= -EFAULT
;
2373 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2374 /* Argument list sizes for sys_socketcall */
2375 #define AL(x) ((x) * sizeof(unsigned long))
2376 static const unsigned char nargs
[21] = {
2377 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2378 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2379 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2386 * System call vectors.
2388 * Argument checking cleaned up. Saved 20% in size.
2389 * This function doesn't need to set the kernel lock because
2390 * it is set by the callees.
2393 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2396 unsigned long a0
, a1
;
2400 if (call
< 1 || call
> SYS_SENDMMSG
)
2404 if (len
> sizeof(a
))
2407 /* copy_from_user should be SMP safe. */
2408 if (copy_from_user(a
, args
, len
))
2411 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2418 err
= sys_socket(a0
, a1
, a
[2]);
2421 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2424 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2427 err
= sys_listen(a0
, a1
);
2430 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2431 (int __user
*)a
[2], 0);
2433 case SYS_GETSOCKNAME
:
2435 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2436 (int __user
*)a
[2]);
2438 case SYS_GETPEERNAME
:
2440 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2441 (int __user
*)a
[2]);
2443 case SYS_SOCKETPAIR
:
2444 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2447 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2450 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2451 (struct sockaddr __user
*)a
[4], a
[5]);
2454 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2457 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2458 (struct sockaddr __user
*)a
[4],
2459 (int __user
*)a
[5]);
2462 err
= sys_shutdown(a0
, a1
);
2464 case SYS_SETSOCKOPT
:
2465 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2467 case SYS_GETSOCKOPT
:
2469 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2470 (int __user
*)a
[4]);
2473 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2476 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2479 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2482 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2483 (struct timespec __user
*)a
[4]);
2486 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2487 (int __user
*)a
[2], a
[3]);
2496 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2499 * sock_register - add a socket protocol handler
2500 * @ops: description of protocol
2502 * This function is called by a protocol handler that wants to
2503 * advertise its address family, and have it linked into the
2504 * socket interface. The value ops->family coresponds to the
2505 * socket system call protocol family.
2507 int sock_register(const struct net_proto_family
*ops
)
2511 if (ops
->family
>= NPROTO
) {
2512 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2517 spin_lock(&net_family_lock
);
2518 if (rcu_dereference_protected(net_families
[ops
->family
],
2519 lockdep_is_held(&net_family_lock
)))
2522 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2525 spin_unlock(&net_family_lock
);
2527 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2530 EXPORT_SYMBOL(sock_register
);
2533 * sock_unregister - remove a protocol handler
2534 * @family: protocol family to remove
2536 * This function is called by a protocol handler that wants to
2537 * remove its address family, and have it unlinked from the
2538 * new socket creation.
2540 * If protocol handler is a module, then it can use module reference
2541 * counts to protect against new references. If protocol handler is not
2542 * a module then it needs to provide its own protection in
2543 * the ops->create routine.
2545 void sock_unregister(int family
)
2547 BUG_ON(family
< 0 || family
>= NPROTO
);
2549 spin_lock(&net_family_lock
);
2550 RCU_INIT_POINTER(net_families
[family
], NULL
);
2551 spin_unlock(&net_family_lock
);
2555 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2557 EXPORT_SYMBOL(sock_unregister
);
2559 static int __init
sock_init(void)
2564 * Initialize sock SLAB cache.
2570 * Initialize skbuff SLAB cache
2575 * Initialize the protocols module.
2580 err
= register_filesystem(&sock_fs_type
);
2583 sock_mnt
= kern_mount(&sock_fs_type
);
2584 if (IS_ERR(sock_mnt
)) {
2585 err
= PTR_ERR(sock_mnt
);
2589 /* The real protocol initialization is performed in later initcalls.
2592 #ifdef CONFIG_NETFILTER
2596 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2597 skb_timestamping_init();
2604 unregister_filesystem(&sock_fs_type
);
2609 core_initcall(sock_init
); /* early initcall */
2611 #ifdef CONFIG_PROC_FS
2612 void socket_seq_show(struct seq_file
*seq
)
2617 for_each_possible_cpu(cpu
)
2618 counter
+= per_cpu(sockets_in_use
, cpu
);
2620 /* It can be negative, by the way. 8) */
2624 seq_printf(seq
, "sockets: used %d\n", counter
);
2626 #endif /* CONFIG_PROC_FS */
2628 #ifdef CONFIG_COMPAT
2629 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2630 unsigned int cmd
, struct compat_timeval __user
*up
)
2632 mm_segment_t old_fs
= get_fs();
2637 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2640 err
= put_user(ktv
.tv_sec
, &up
->tv_sec
);
2641 err
|= __put_user(ktv
.tv_usec
, &up
->tv_usec
);
2646 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2647 unsigned int cmd
, struct compat_timespec __user
*up
)
2649 mm_segment_t old_fs
= get_fs();
2650 struct timespec kts
;
2654 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2657 err
= put_user(kts
.tv_sec
, &up
->tv_sec
);
2658 err
|= __put_user(kts
.tv_nsec
, &up
->tv_nsec
);
2663 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2665 struct ifreq __user
*uifr
;
2668 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2669 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2672 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2676 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2682 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2684 struct compat_ifconf ifc32
;
2686 struct ifconf __user
*uifc
;
2687 struct compat_ifreq __user
*ifr32
;
2688 struct ifreq __user
*ifr
;
2692 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2695 memset(&ifc
, 0, sizeof(ifc
));
2696 if (ifc32
.ifcbuf
== 0) {
2700 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2702 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2703 sizeof(struct ifreq
);
2704 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2706 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2707 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2708 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2709 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2715 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2718 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2722 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2726 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2728 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2729 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2730 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2736 if (ifc32
.ifcbuf
== 0) {
2737 /* Translate from 64-bit structure multiple to
2741 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2746 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2752 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2754 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2755 bool convert_in
= false, convert_out
= false;
2756 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2757 struct ethtool_rxnfc __user
*rxnfc
;
2758 struct ifreq __user
*ifr
;
2759 u32 rule_cnt
= 0, actual_rule_cnt
;
2764 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2767 compat_rxnfc
= compat_ptr(data
);
2769 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2772 /* Most ethtool structures are defined without padding.
2773 * Unfortunately struct ethtool_rxnfc is an exception.
2778 case ETHTOOL_GRXCLSRLALL
:
2779 /* Buffer size is variable */
2780 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2782 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2784 buf_size
+= rule_cnt
* sizeof(u32
);
2786 case ETHTOOL_GRXRINGS
:
2787 case ETHTOOL_GRXCLSRLCNT
:
2788 case ETHTOOL_GRXCLSRULE
:
2791 case ETHTOOL_SRXCLSRLDEL
:
2792 case ETHTOOL_SRXCLSRLINS
:
2793 buf_size
+= sizeof(struct ethtool_rxnfc
);
2798 ifr
= compat_alloc_user_space(buf_size
);
2799 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2801 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2804 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2805 &ifr
->ifr_ifru
.ifru_data
))
2809 /* We expect there to be holes between fs.m_ext and
2810 * fs.ring_cookie and at the end of fs, but nowhere else.
2812 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2813 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2814 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2815 sizeof(rxnfc
->fs
.m_ext
));
2817 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2818 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2819 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2820 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2822 if (copy_in_user(rxnfc
, compat_rxnfc
,
2823 (void *)(&rxnfc
->fs
.m_ext
+ 1) -
2825 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2826 &compat_rxnfc
->fs
.ring_cookie
,
2827 (void *)(&rxnfc
->fs
.location
+ 1) -
2828 (void *)&rxnfc
->fs
.ring_cookie
) ||
2829 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2830 sizeof(rxnfc
->rule_cnt
)))
2834 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2839 if (copy_in_user(compat_rxnfc
, rxnfc
,
2840 (const void *)(&rxnfc
->fs
.m_ext
+ 1) -
2841 (const void *)rxnfc
) ||
2842 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2843 &rxnfc
->fs
.ring_cookie
,
2844 (const void *)(&rxnfc
->fs
.location
+ 1) -
2845 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2846 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2847 sizeof(rxnfc
->rule_cnt
)))
2850 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2851 /* As an optimisation, we only copy the actual
2852 * number of rules that the underlying
2853 * function returned. Since Mallory might
2854 * change the rule count in user memory, we
2855 * check that it is less than the rule count
2856 * originally given (as the user buffer size),
2857 * which has been range-checked.
2859 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2861 if (actual_rule_cnt
< rule_cnt
)
2862 rule_cnt
= actual_rule_cnt
;
2863 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2864 &rxnfc
->rule_locs
[0],
2865 rule_cnt
* sizeof(u32
)))
2873 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2876 compat_uptr_t uptr32
;
2877 struct ifreq __user
*uifr
;
2879 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2880 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2883 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2886 uptr
= compat_ptr(uptr32
);
2888 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2891 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2894 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2895 struct compat_ifreq __user
*ifr32
)
2898 struct ifreq __user
*uifr
;
2899 mm_segment_t old_fs
;
2905 case SIOCBONDENSLAVE
:
2906 case SIOCBONDRELEASE
:
2907 case SIOCBONDSETHWADDR
:
2908 case SIOCBONDCHANGEACTIVE
:
2909 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2914 err
= dev_ioctl(net
, cmd
,
2915 (struct ifreq __user __force
*) &kifr
);
2919 case SIOCBONDSLAVEINFOQUERY
:
2920 case SIOCBONDINFOQUERY
:
2921 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2922 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2925 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2928 datap
= compat_ptr(data
);
2929 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2932 return dev_ioctl(net
, cmd
, uifr
);
2938 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2939 struct compat_ifreq __user
*u_ifreq32
)
2941 struct ifreq __user
*u_ifreq64
;
2942 char tmp_buf
[IFNAMSIZ
];
2943 void __user
*data64
;
2946 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2949 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2951 data64
= compat_ptr(data32
);
2953 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2955 /* Don't check these user accesses, just let that get trapped
2956 * in the ioctl handler instead.
2958 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2961 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2964 return dev_ioctl(net
, cmd
, u_ifreq64
);
2967 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2968 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2970 struct ifreq __user
*uifr
;
2973 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2974 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2977 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2988 case SIOCGIFBRDADDR
:
2989 case SIOCGIFDSTADDR
:
2990 case SIOCGIFNETMASK
:
2995 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3003 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3004 struct compat_ifreq __user
*uifr32
)
3007 struct compat_ifmap __user
*uifmap32
;
3008 mm_segment_t old_fs
;
3011 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3012 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3013 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3014 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3015 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3016 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3017 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3018 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3024 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3027 if (cmd
== SIOCGIFMAP
&& !err
) {
3028 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3029 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3030 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3031 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3032 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3033 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3034 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3041 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3044 compat_uptr_t uptr32
;
3045 struct ifreq __user
*uifr
;
3047 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3048 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
3051 if (get_user(uptr32
, &uifr32
->ifr_data
))
3054 uptr
= compat_ptr(uptr32
);
3056 if (put_user(uptr
, &uifr
->ifr_data
))
3059 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
3064 struct sockaddr rt_dst
; /* target address */
3065 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3066 struct sockaddr rt_genmask
; /* target network mask (IP) */
3067 unsigned short rt_flags
;
3070 unsigned char rt_tos
;
3071 unsigned char rt_class
;
3073 short rt_metric
; /* +1 for binary compatibility! */
3074 /* char * */ u32 rt_dev
; /* forcing the device at add */
3075 u32 rt_mtu
; /* per route MTU/Window */
3076 u32 rt_window
; /* Window clamping */
3077 unsigned short rt_irtt
; /* Initial RTT */
3080 struct in6_rtmsg32
{
3081 struct in6_addr rtmsg_dst
;
3082 struct in6_addr rtmsg_src
;
3083 struct in6_addr rtmsg_gateway
;
3093 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3094 unsigned int cmd
, void __user
*argp
)
3098 struct in6_rtmsg r6
;
3102 mm_segment_t old_fs
= get_fs();
3104 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3105 struct in6_rtmsg32 __user
*ur6
= argp
;
3106 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3107 3 * sizeof(struct in6_addr
));
3108 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3109 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3110 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3111 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3112 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3113 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3114 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3118 struct rtentry32 __user
*ur4
= argp
;
3119 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3120 3 * sizeof(struct sockaddr
));
3121 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3122 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3123 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3124 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
3125 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3126 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
3128 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3129 r4
.rt_dev
= (char __user __force
*)devname
;
3143 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3150 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3151 * for some operations; this forces use of the newer bridge-utils that
3152 * use compatible ioctls
3154 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3158 if (get_user(tmp
, argp
))
3160 if (tmp
== BRCTL_GET_VERSION
)
3161 return BRCTL_VERSION
+ 1;
3165 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3166 unsigned int cmd
, unsigned long arg
)
3168 void __user
*argp
= compat_ptr(arg
);
3169 struct sock
*sk
= sock
->sk
;
3170 struct net
*net
= sock_net(sk
);
3172 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3173 return siocdevprivate_ioctl(net
, cmd
, argp
);
3178 return old_bridge_ioctl(argp
);
3180 return dev_ifname32(net
, argp
);
3182 return dev_ifconf(net
, argp
);
3184 return ethtool_ioctl(net
, argp
);
3186 return compat_siocwandev(net
, argp
);
3189 return compat_sioc_ifmap(net
, cmd
, argp
);
3190 case SIOCBONDENSLAVE
:
3191 case SIOCBONDRELEASE
:
3192 case SIOCBONDSETHWADDR
:
3193 case SIOCBONDSLAVEINFOQUERY
:
3194 case SIOCBONDINFOQUERY
:
3195 case SIOCBONDCHANGEACTIVE
:
3196 return bond_ioctl(net
, cmd
, argp
);
3199 return routing_ioctl(net
, sock
, cmd
, argp
);
3201 return do_siocgstamp(net
, sock
, cmd
, argp
);
3203 return do_siocgstampns(net
, sock
, cmd
, argp
);
3205 return compat_siocshwtstamp(net
, argp
);
3217 return sock_ioctl(file
, cmd
, arg
);
3234 case SIOCSIFHWBROADCAST
:
3236 case SIOCGIFBRDADDR
:
3237 case SIOCSIFBRDADDR
:
3238 case SIOCGIFDSTADDR
:
3239 case SIOCSIFDSTADDR
:
3240 case SIOCGIFNETMASK
:
3241 case SIOCSIFNETMASK
:
3252 return dev_ifsioc(net
, sock
, cmd
, argp
);
3258 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3261 /* Prevent warning from compat_sys_ioctl, these always
3262 * result in -EINVAL in the native case anyway. */
3275 return -ENOIOCTLCMD
;
3278 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
3281 struct socket
*sock
= file
->private_data
;
3282 int ret
= -ENOIOCTLCMD
;
3289 if (sock
->ops
->compat_ioctl
)
3290 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3292 if (ret
== -ENOIOCTLCMD
&&
3293 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3294 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3296 if (ret
== -ENOIOCTLCMD
)
3297 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3303 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3305 return sock
->ops
->bind(sock
, addr
, addrlen
);
3307 EXPORT_SYMBOL(kernel_bind
);
3309 int kernel_listen(struct socket
*sock
, int backlog
)
3311 return sock
->ops
->listen(sock
, backlog
);
3313 EXPORT_SYMBOL(kernel_listen
);
3315 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3317 struct sock
*sk
= sock
->sk
;
3320 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3325 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3327 sock_release(*newsock
);
3332 (*newsock
)->ops
= sock
->ops
;
3333 __module_get((*newsock
)->ops
->owner
);
3338 EXPORT_SYMBOL(kernel_accept
);
3340 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3343 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3345 EXPORT_SYMBOL(kernel_connect
);
3347 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3350 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3352 EXPORT_SYMBOL(kernel_getsockname
);
3354 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3357 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3359 EXPORT_SYMBOL(kernel_getpeername
);
3361 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3362 char *optval
, int *optlen
)
3364 mm_segment_t oldfs
= get_fs();
3365 char __user
*uoptval
;
3366 int __user
*uoptlen
;
3369 uoptval
= (char __user __force
*) optval
;
3370 uoptlen
= (int __user __force
*) optlen
;
3373 if (level
== SOL_SOCKET
)
3374 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3376 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3381 EXPORT_SYMBOL(kernel_getsockopt
);
3383 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3384 char *optval
, unsigned int optlen
)
3386 mm_segment_t oldfs
= get_fs();
3387 char __user
*uoptval
;
3390 uoptval
= (char __user __force
*) optval
;
3393 if (level
== SOL_SOCKET
)
3394 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3396 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3401 EXPORT_SYMBOL(kernel_setsockopt
);
3403 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3404 size_t size
, int flags
)
3406 sock_update_classid(sock
->sk
);
3408 if (sock
->ops
->sendpage
)
3409 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3411 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3413 EXPORT_SYMBOL(kernel_sendpage
);
3415 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3417 mm_segment_t oldfs
= get_fs();
3421 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3426 EXPORT_SYMBOL(kernel_sock_ioctl
);
3428 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3430 return sock
->ops
->shutdown(sock
, how
);
3432 EXPORT_SYMBOL(kernel_sock_shutdown
);