Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[linux/fpc-iii.git] / fs / ubifs / debug.c
blob685a83756b2b7df6e93373083324839ff14bac54
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
37 static DEFINE_SPINLOCK(dbg_lock);
39 static const char *get_key_fmt(int fmt)
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
49 static const char *get_key_hash(int hash)
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
61 static const char *get_key_type(int type)
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
79 static const char *get_dent_type(int type)
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
104 char *p = buffer;
105 int type = key_type(c, key);
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
140 const char *dbg_ntype(int type)
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
172 static const char *dbg_gtype(int type)
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
186 const char *dbg_cstate(int cmt_state)
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
206 const char *dbg_jhead(int jhead)
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
220 static void dump_ch(const struct ubifs_ch *ch)
222 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic));
223 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc));
224 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 printk(KERN_ERR "\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len));
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
241 printk(KERN_ERR "Dump in-memory inode:");
242 printk(KERN_ERR "\tinode %lu\n", inode->i_ino);
243 printk(KERN_ERR "\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink);
246 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid);
247 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid);
248 printk(KERN_ERR "\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 printk(KERN_ERR "\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 printk(KERN_ERR "\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size);
259 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt);
260 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names);
261 printk(KERN_ERR "\tdirty %u\n", ui->dirty);
262 printk(KERN_ERR "\txattr %u\n", ui->xattr);
263 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr);
264 printk(KERN_ERR "\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 printk(KERN_ERR "\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 printk(KERN_ERR "\tflags %d\n", ui->flags);
269 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type);
270 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row);
272 printk(KERN_ERR "\tdata_len %d\n", ui->data_len);
274 if (!S_ISDIR(inode->i_mode))
275 return;
277 printk(KERN_ERR "List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286 break;
289 printk(KERN_ERR "\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
298 kfree(pdent);
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
308 if (dbg_is_tst_rcvry(c))
309 return;
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 (void *)node, UBIFS_CH_SZ, 1);
316 return;
319 spin_lock(&dbg_lock);
320 dump_ch(node);
322 switch (ch->node_type) {
323 case UBIFS_PAD_NODE:
325 const struct ubifs_pad_node *pad = node;
327 printk(KERN_ERR "\tpad_len %u\n",
328 le32_to_cpu(pad->pad_len));
329 break;
331 case UBIFS_SB_NODE:
333 const struct ubifs_sb_node *sup = node;
334 unsigned int sup_flags = le32_to_cpu(sup->flags);
336 printk(KERN_ERR "\tkey_hash %d (%s)\n",
337 (int)sup->key_hash, get_key_hash(sup->key_hash));
338 printk(KERN_ERR "\tkey_fmt %d (%s)\n",
339 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
340 printk(KERN_ERR "\tflags %#x\n", sup_flags);
341 printk(KERN_ERR "\t big_lpt %u\n",
342 !!(sup_flags & UBIFS_FLG_BIGLPT));
343 printk(KERN_ERR "\t space_fixup %u\n",
344 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
345 printk(KERN_ERR "\tmin_io_size %u\n",
346 le32_to_cpu(sup->min_io_size));
347 printk(KERN_ERR "\tleb_size %u\n",
348 le32_to_cpu(sup->leb_size));
349 printk(KERN_ERR "\tleb_cnt %u\n",
350 le32_to_cpu(sup->leb_cnt));
351 printk(KERN_ERR "\tmax_leb_cnt %u\n",
352 le32_to_cpu(sup->max_leb_cnt));
353 printk(KERN_ERR "\tmax_bud_bytes %llu\n",
354 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
355 printk(KERN_ERR "\tlog_lebs %u\n",
356 le32_to_cpu(sup->log_lebs));
357 printk(KERN_ERR "\tlpt_lebs %u\n",
358 le32_to_cpu(sup->lpt_lebs));
359 printk(KERN_ERR "\torph_lebs %u\n",
360 le32_to_cpu(sup->orph_lebs));
361 printk(KERN_ERR "\tjhead_cnt %u\n",
362 le32_to_cpu(sup->jhead_cnt));
363 printk(KERN_ERR "\tfanout %u\n",
364 le32_to_cpu(sup->fanout));
365 printk(KERN_ERR "\tlsave_cnt %u\n",
366 le32_to_cpu(sup->lsave_cnt));
367 printk(KERN_ERR "\tdefault_compr %u\n",
368 (int)le16_to_cpu(sup->default_compr));
369 printk(KERN_ERR "\trp_size %llu\n",
370 (unsigned long long)le64_to_cpu(sup->rp_size));
371 printk(KERN_ERR "\trp_uid %u\n",
372 le32_to_cpu(sup->rp_uid));
373 printk(KERN_ERR "\trp_gid %u\n",
374 le32_to_cpu(sup->rp_gid));
375 printk(KERN_ERR "\tfmt_version %u\n",
376 le32_to_cpu(sup->fmt_version));
377 printk(KERN_ERR "\ttime_gran %u\n",
378 le32_to_cpu(sup->time_gran));
379 printk(KERN_ERR "\tUUID %pUB\n",
380 sup->uuid);
381 break;
383 case UBIFS_MST_NODE:
385 const struct ubifs_mst_node *mst = node;
387 printk(KERN_ERR "\thighest_inum %llu\n",
388 (unsigned long long)le64_to_cpu(mst->highest_inum));
389 printk(KERN_ERR "\tcommit number %llu\n",
390 (unsigned long long)le64_to_cpu(mst->cmt_no));
391 printk(KERN_ERR "\tflags %#x\n",
392 le32_to_cpu(mst->flags));
393 printk(KERN_ERR "\tlog_lnum %u\n",
394 le32_to_cpu(mst->log_lnum));
395 printk(KERN_ERR "\troot_lnum %u\n",
396 le32_to_cpu(mst->root_lnum));
397 printk(KERN_ERR "\troot_offs %u\n",
398 le32_to_cpu(mst->root_offs));
399 printk(KERN_ERR "\troot_len %u\n",
400 le32_to_cpu(mst->root_len));
401 printk(KERN_ERR "\tgc_lnum %u\n",
402 le32_to_cpu(mst->gc_lnum));
403 printk(KERN_ERR "\tihead_lnum %u\n",
404 le32_to_cpu(mst->ihead_lnum));
405 printk(KERN_ERR "\tihead_offs %u\n",
406 le32_to_cpu(mst->ihead_offs));
407 printk(KERN_ERR "\tindex_size %llu\n",
408 (unsigned long long)le64_to_cpu(mst->index_size));
409 printk(KERN_ERR "\tlpt_lnum %u\n",
410 le32_to_cpu(mst->lpt_lnum));
411 printk(KERN_ERR "\tlpt_offs %u\n",
412 le32_to_cpu(mst->lpt_offs));
413 printk(KERN_ERR "\tnhead_lnum %u\n",
414 le32_to_cpu(mst->nhead_lnum));
415 printk(KERN_ERR "\tnhead_offs %u\n",
416 le32_to_cpu(mst->nhead_offs));
417 printk(KERN_ERR "\tltab_lnum %u\n",
418 le32_to_cpu(mst->ltab_lnum));
419 printk(KERN_ERR "\tltab_offs %u\n",
420 le32_to_cpu(mst->ltab_offs));
421 printk(KERN_ERR "\tlsave_lnum %u\n",
422 le32_to_cpu(mst->lsave_lnum));
423 printk(KERN_ERR "\tlsave_offs %u\n",
424 le32_to_cpu(mst->lsave_offs));
425 printk(KERN_ERR "\tlscan_lnum %u\n",
426 le32_to_cpu(mst->lscan_lnum));
427 printk(KERN_ERR "\tleb_cnt %u\n",
428 le32_to_cpu(mst->leb_cnt));
429 printk(KERN_ERR "\tempty_lebs %u\n",
430 le32_to_cpu(mst->empty_lebs));
431 printk(KERN_ERR "\tidx_lebs %u\n",
432 le32_to_cpu(mst->idx_lebs));
433 printk(KERN_ERR "\ttotal_free %llu\n",
434 (unsigned long long)le64_to_cpu(mst->total_free));
435 printk(KERN_ERR "\ttotal_dirty %llu\n",
436 (unsigned long long)le64_to_cpu(mst->total_dirty));
437 printk(KERN_ERR "\ttotal_used %llu\n",
438 (unsigned long long)le64_to_cpu(mst->total_used));
439 printk(KERN_ERR "\ttotal_dead %llu\n",
440 (unsigned long long)le64_to_cpu(mst->total_dead));
441 printk(KERN_ERR "\ttotal_dark %llu\n",
442 (unsigned long long)le64_to_cpu(mst->total_dark));
443 break;
445 case UBIFS_REF_NODE:
447 const struct ubifs_ref_node *ref = node;
449 printk(KERN_ERR "\tlnum %u\n",
450 le32_to_cpu(ref->lnum));
451 printk(KERN_ERR "\toffs %u\n",
452 le32_to_cpu(ref->offs));
453 printk(KERN_ERR "\tjhead %u\n",
454 le32_to_cpu(ref->jhead));
455 break;
457 case UBIFS_INO_NODE:
459 const struct ubifs_ino_node *ino = node;
461 key_read(c, &ino->key, &key);
462 printk(KERN_ERR "\tkey %s\n",
463 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
464 printk(KERN_ERR "\tcreat_sqnum %llu\n",
465 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
466 printk(KERN_ERR "\tsize %llu\n",
467 (unsigned long long)le64_to_cpu(ino->size));
468 printk(KERN_ERR "\tnlink %u\n",
469 le32_to_cpu(ino->nlink));
470 printk(KERN_ERR "\tatime %lld.%u\n",
471 (long long)le64_to_cpu(ino->atime_sec),
472 le32_to_cpu(ino->atime_nsec));
473 printk(KERN_ERR "\tmtime %lld.%u\n",
474 (long long)le64_to_cpu(ino->mtime_sec),
475 le32_to_cpu(ino->mtime_nsec));
476 printk(KERN_ERR "\tctime %lld.%u\n",
477 (long long)le64_to_cpu(ino->ctime_sec),
478 le32_to_cpu(ino->ctime_nsec));
479 printk(KERN_ERR "\tuid %u\n",
480 le32_to_cpu(ino->uid));
481 printk(KERN_ERR "\tgid %u\n",
482 le32_to_cpu(ino->gid));
483 printk(KERN_ERR "\tmode %u\n",
484 le32_to_cpu(ino->mode));
485 printk(KERN_ERR "\tflags %#x\n",
486 le32_to_cpu(ino->flags));
487 printk(KERN_ERR "\txattr_cnt %u\n",
488 le32_to_cpu(ino->xattr_cnt));
489 printk(KERN_ERR "\txattr_size %u\n",
490 le32_to_cpu(ino->xattr_size));
491 printk(KERN_ERR "\txattr_names %u\n",
492 le32_to_cpu(ino->xattr_names));
493 printk(KERN_ERR "\tcompr_type %#x\n",
494 (int)le16_to_cpu(ino->compr_type));
495 printk(KERN_ERR "\tdata len %u\n",
496 le32_to_cpu(ino->data_len));
497 break;
499 case UBIFS_DENT_NODE:
500 case UBIFS_XENT_NODE:
502 const struct ubifs_dent_node *dent = node;
503 int nlen = le16_to_cpu(dent->nlen);
505 key_read(c, &dent->key, &key);
506 printk(KERN_ERR "\tkey %s\n",
507 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
508 printk(KERN_ERR "\tinum %llu\n",
509 (unsigned long long)le64_to_cpu(dent->inum));
510 printk(KERN_ERR "\ttype %d\n", (int)dent->type);
511 printk(KERN_ERR "\tnlen %d\n", nlen);
512 printk(KERN_ERR "\tname ");
514 if (nlen > UBIFS_MAX_NLEN)
515 printk(KERN_ERR "(bad name length, not printing, "
516 "bad or corrupted node)");
517 else {
518 for (i = 0; i < nlen && dent->name[i]; i++)
519 printk(KERN_CONT "%c", dent->name[i]);
521 printk(KERN_CONT "\n");
523 break;
525 case UBIFS_DATA_NODE:
527 const struct ubifs_data_node *dn = node;
528 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
530 key_read(c, &dn->key, &key);
531 printk(KERN_ERR "\tkey %s\n",
532 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
533 printk(KERN_ERR "\tsize %u\n",
534 le32_to_cpu(dn->size));
535 printk(KERN_ERR "\tcompr_typ %d\n",
536 (int)le16_to_cpu(dn->compr_type));
537 printk(KERN_ERR "\tdata size %d\n",
538 dlen);
539 printk(KERN_ERR "\tdata:\n");
540 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
541 (void *)&dn->data, dlen, 0);
542 break;
544 case UBIFS_TRUN_NODE:
546 const struct ubifs_trun_node *trun = node;
548 printk(KERN_ERR "\tinum %u\n",
549 le32_to_cpu(trun->inum));
550 printk(KERN_ERR "\told_size %llu\n",
551 (unsigned long long)le64_to_cpu(trun->old_size));
552 printk(KERN_ERR "\tnew_size %llu\n",
553 (unsigned long long)le64_to_cpu(trun->new_size));
554 break;
556 case UBIFS_IDX_NODE:
558 const struct ubifs_idx_node *idx = node;
560 n = le16_to_cpu(idx->child_cnt);
561 printk(KERN_ERR "\tchild_cnt %d\n", n);
562 printk(KERN_ERR "\tlevel %d\n",
563 (int)le16_to_cpu(idx->level));
564 printk(KERN_ERR "\tBranches:\n");
566 for (i = 0; i < n && i < c->fanout - 1; i++) {
567 const struct ubifs_branch *br;
569 br = ubifs_idx_branch(c, idx, i);
570 key_read(c, &br->key, &key);
571 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
572 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
573 le32_to_cpu(br->len),
574 dbg_snprintf_key(c, &key, key_buf,
575 DBG_KEY_BUF_LEN));
577 break;
579 case UBIFS_CS_NODE:
580 break;
581 case UBIFS_ORPH_NODE:
583 const struct ubifs_orph_node *orph = node;
585 printk(KERN_ERR "\tcommit number %llu\n",
586 (unsigned long long)
587 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
588 printk(KERN_ERR "\tlast node flag %llu\n",
589 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
590 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
591 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
592 for (i = 0; i < n; i++)
593 printk(KERN_ERR "\t ino %llu\n",
594 (unsigned long long)le64_to_cpu(orph->inos[i]));
595 break;
597 default:
598 printk(KERN_ERR "node type %d was not recognized\n",
599 (int)ch->node_type);
601 spin_unlock(&dbg_lock);
604 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
606 spin_lock(&dbg_lock);
607 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
608 req->new_ino, req->dirtied_ino);
609 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n",
610 req->new_ino_d, req->dirtied_ino_d);
611 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n",
612 req->new_page, req->dirtied_page);
613 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n",
614 req->new_dent, req->mod_dent);
615 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth);
616 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n",
617 req->data_growth, req->dd_growth);
618 spin_unlock(&dbg_lock);
621 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
623 spin_lock(&dbg_lock);
624 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
625 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
626 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
627 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
628 lst->total_dirty);
629 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
630 "total_dead %lld\n", lst->total_used, lst->total_dark,
631 lst->total_dead);
632 spin_unlock(&dbg_lock);
635 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
637 int i;
638 struct rb_node *rb;
639 struct ubifs_bud *bud;
640 struct ubifs_gced_idx_leb *idx_gc;
641 long long available, outstanding, free;
643 spin_lock(&c->space_lock);
644 spin_lock(&dbg_lock);
645 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
646 "total budget sum %lld\n", current->pid,
647 bi->data_growth + bi->dd_growth,
648 bi->data_growth + bi->dd_growth + bi->idx_growth);
649 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
650 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
651 bi->idx_growth);
652 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
653 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
654 bi->uncommitted_idx);
655 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
656 bi->page_budget, bi->inode_budget, bi->dent_budget);
657 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
658 bi->nospace, bi->nospace_rp);
659 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
660 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
662 if (bi != &c->bi)
664 * If we are dumping saved budgeting data, do not print
665 * additional information which is about the current state, not
666 * the old one which corresponded to the saved budgeting data.
668 goto out_unlock;
670 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
671 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
672 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
673 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
674 atomic_long_read(&c->dirty_zn_cnt),
675 atomic_long_read(&c->clean_zn_cnt));
676 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
677 c->gc_lnum, c->ihead_lnum);
679 /* If we are in R/O mode, journal heads do not exist */
680 if (c->jheads)
681 for (i = 0; i < c->jhead_cnt; i++)
682 printk(KERN_ERR "\tjhead %s\t LEB %d\n",
683 dbg_jhead(c->jheads[i].wbuf.jhead),
684 c->jheads[i].wbuf.lnum);
685 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
686 bud = rb_entry(rb, struct ubifs_bud, rb);
687 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
689 list_for_each_entry(bud, &c->old_buds, list)
690 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
691 list_for_each_entry(idx_gc, &c->idx_gc, list)
692 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
693 idx_gc->lnum, idx_gc->unmap);
694 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
696 /* Print budgeting predictions */
697 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
698 outstanding = c->bi.data_growth + c->bi.dd_growth;
699 free = ubifs_get_free_space_nolock(c);
700 printk(KERN_ERR "Budgeting predictions:\n");
701 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
702 available, outstanding, free);
703 out_unlock:
704 spin_unlock(&dbg_lock);
705 spin_unlock(&c->space_lock);
708 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
710 int i, spc, dark = 0, dead = 0;
711 struct rb_node *rb;
712 struct ubifs_bud *bud;
714 spc = lp->free + lp->dirty;
715 if (spc < c->dead_wm)
716 dead = spc;
717 else
718 dark = ubifs_calc_dark(c, spc);
720 if (lp->flags & LPROPS_INDEX)
721 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
722 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
723 lp->dirty, c->leb_size - spc, spc, lp->flags);
724 else
725 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
726 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
727 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
728 c->leb_size - spc, spc, dark, dead,
729 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
731 if (lp->flags & LPROPS_TAKEN) {
732 if (lp->flags & LPROPS_INDEX)
733 printk(KERN_CONT "index, taken");
734 else
735 printk(KERN_CONT "taken");
736 } else {
737 const char *s;
739 if (lp->flags & LPROPS_INDEX) {
740 switch (lp->flags & LPROPS_CAT_MASK) {
741 case LPROPS_DIRTY_IDX:
742 s = "dirty index";
743 break;
744 case LPROPS_FRDI_IDX:
745 s = "freeable index";
746 break;
747 default:
748 s = "index";
750 } else {
751 switch (lp->flags & LPROPS_CAT_MASK) {
752 case LPROPS_UNCAT:
753 s = "not categorized";
754 break;
755 case LPROPS_DIRTY:
756 s = "dirty";
757 break;
758 case LPROPS_FREE:
759 s = "free";
760 break;
761 case LPROPS_EMPTY:
762 s = "empty";
763 break;
764 case LPROPS_FREEABLE:
765 s = "freeable";
766 break;
767 default:
768 s = NULL;
769 break;
772 printk(KERN_CONT "%s", s);
775 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
776 bud = rb_entry(rb, struct ubifs_bud, rb);
777 if (bud->lnum == lp->lnum) {
778 int head = 0;
779 for (i = 0; i < c->jhead_cnt; i++) {
781 * Note, if we are in R/O mode or in the middle
782 * of mounting/re-mounting, the write-buffers do
783 * not exist.
785 if (c->jheads &&
786 lp->lnum == c->jheads[i].wbuf.lnum) {
787 printk(KERN_CONT ", jhead %s",
788 dbg_jhead(i));
789 head = 1;
792 if (!head)
793 printk(KERN_CONT ", bud of jhead %s",
794 dbg_jhead(bud->jhead));
797 if (lp->lnum == c->gc_lnum)
798 printk(KERN_CONT ", GC LEB");
799 printk(KERN_CONT ")\n");
802 void ubifs_dump_lprops(struct ubifs_info *c)
804 int lnum, err;
805 struct ubifs_lprops lp;
806 struct ubifs_lp_stats lst;
808 printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
809 current->pid);
810 ubifs_get_lp_stats(c, &lst);
811 ubifs_dump_lstats(&lst);
813 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
814 err = ubifs_read_one_lp(c, lnum, &lp);
815 if (err)
816 ubifs_err("cannot read lprops for LEB %d", lnum);
818 ubifs_dump_lprop(c, &lp);
820 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
821 current->pid);
824 void ubifs_dump_lpt_info(struct ubifs_info *c)
826 int i;
828 spin_lock(&dbg_lock);
829 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
830 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz);
831 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz);
832 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz);
833 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz);
834 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz);
835 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt);
836 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght);
837 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt);
838 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt);
839 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
840 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
841 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt);
842 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits);
843 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
844 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
845 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
846 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits);
847 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits);
848 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
849 printk(KERN_ERR "\tLPT head is at %d:%d\n",
850 c->nhead_lnum, c->nhead_offs);
851 printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
852 c->ltab_lnum, c->ltab_offs);
853 if (c->big_lpt)
854 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
855 c->lsave_lnum, c->lsave_offs);
856 for (i = 0; i < c->lpt_lebs; i++)
857 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
858 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
859 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
860 spin_unlock(&dbg_lock);
863 void ubifs_dump_sleb(const struct ubifs_info *c,
864 const struct ubifs_scan_leb *sleb, int offs)
866 struct ubifs_scan_node *snod;
868 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
869 current->pid, sleb->lnum, offs);
871 list_for_each_entry(snod, &sleb->nodes, list) {
872 cond_resched();
873 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
874 snod->offs, snod->len);
875 ubifs_dump_node(c, snod->node);
879 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
881 struct ubifs_scan_leb *sleb;
882 struct ubifs_scan_node *snod;
883 void *buf;
885 if (dbg_is_tst_rcvry(c))
886 return;
888 printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
889 current->pid, lnum);
891 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
892 if (!buf) {
893 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
894 return;
897 sleb = ubifs_scan(c, lnum, 0, buf, 0);
898 if (IS_ERR(sleb)) {
899 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
900 goto out;
903 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
904 sleb->nodes_cnt, sleb->endpt);
906 list_for_each_entry(snod, &sleb->nodes, list) {
907 cond_resched();
908 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
909 snod->offs, snod->len);
910 ubifs_dump_node(c, snod->node);
913 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
914 current->pid, lnum);
915 ubifs_scan_destroy(sleb);
917 out:
918 vfree(buf);
919 return;
922 void ubifs_dump_znode(const struct ubifs_info *c,
923 const struct ubifs_znode *znode)
925 int n;
926 const struct ubifs_zbranch *zbr;
927 char key_buf[DBG_KEY_BUF_LEN];
929 spin_lock(&dbg_lock);
930 if (znode->parent)
931 zbr = &znode->parent->zbranch[znode->iip];
932 else
933 zbr = &c->zroot;
935 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
936 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
937 zbr->len, znode->parent, znode->iip, znode->level,
938 znode->child_cnt, znode->flags);
940 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
941 spin_unlock(&dbg_lock);
942 return;
945 printk(KERN_ERR "zbranches:\n");
946 for (n = 0; n < znode->child_cnt; n++) {
947 zbr = &znode->zbranch[n];
948 if (znode->level > 0)
949 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
950 "%s\n", n, zbr->znode, zbr->lnum,
951 zbr->offs, zbr->len,
952 dbg_snprintf_key(c, &zbr->key,
953 key_buf,
954 DBG_KEY_BUF_LEN));
955 else
956 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
957 "%s\n", n, zbr->znode, zbr->lnum,
958 zbr->offs, zbr->len,
959 dbg_snprintf_key(c, &zbr->key,
960 key_buf,
961 DBG_KEY_BUF_LEN));
963 spin_unlock(&dbg_lock);
966 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
968 int i;
970 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
971 current->pid, cat, heap->cnt);
972 for (i = 0; i < heap->cnt; i++) {
973 struct ubifs_lprops *lprops = heap->arr[i];
975 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
976 "flags %d\n", i, lprops->lnum, lprops->hpos,
977 lprops->free, lprops->dirty, lprops->flags);
979 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
982 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
983 struct ubifs_nnode *parent, int iip)
985 int i;
987 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
988 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
989 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
990 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
991 pnode->flags, iip, pnode->level, pnode->num);
992 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
993 struct ubifs_lprops *lp = &pnode->lprops[i];
995 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
996 i, lp->free, lp->dirty, lp->flags, lp->lnum);
1000 void ubifs_dump_tnc(struct ubifs_info *c)
1002 struct ubifs_znode *znode;
1003 int level;
1005 printk(KERN_ERR "\n");
1006 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008 level = znode->level;
1009 printk(KERN_ERR "== Level %d ==\n", level);
1010 while (znode) {
1011 if (level != znode->level) {
1012 level = znode->level;
1013 printk(KERN_ERR "== Level %d ==\n", level);
1015 ubifs_dump_znode(c, znode);
1016 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1018 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1021 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022 void *priv)
1024 ubifs_dump_znode(c, znode);
1025 return 0;
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1035 void ubifs_dump_index(struct ubifs_info *c)
1037 dbg_walk_index(c, NULL, dump_znode, NULL);
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1047 void dbg_save_space_info(struct ubifs_info *c)
1049 struct ubifs_debug_info *d = c->dbg;
1050 int freeable_cnt;
1052 spin_lock(&c->space_lock);
1053 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1058 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059 * affects the free space calculations, and UBIFS might not know about
1060 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061 * only when we read their lprops, and we do this only lazily, upon the
1062 * need. So at any given point of time @c->freeable_cnt might be not
1063 * exactly accurate.
1065 * Just one example about the issue we hit when we did not zero
1066 * @c->freeable_cnt.
1067 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068 * amount of free space in @d->saved_free
1069 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070 * information from flash, where we cache LEBs from various
1071 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1074 * -> 'ubifs_add_to_cat()').
1075 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076 * becomes %1.
1077 * 4. We calculate the amount of free space when the re-mount is
1078 * finished in 'dbg_check_space_info()' and it does not match
1079 * @d->saved_free.
1081 freeable_cnt = c->freeable_cnt;
1082 c->freeable_cnt = 0;
1083 d->saved_free = ubifs_get_free_space_nolock(c);
1084 c->freeable_cnt = freeable_cnt;
1085 spin_unlock(&c->space_lock);
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1097 int dbg_check_space_info(struct ubifs_info *c)
1099 struct ubifs_debug_info *d = c->dbg;
1100 struct ubifs_lp_stats lst;
1101 long long free;
1102 int freeable_cnt;
1104 spin_lock(&c->space_lock);
1105 freeable_cnt = c->freeable_cnt;
1106 c->freeable_cnt = 0;
1107 free = ubifs_get_free_space_nolock(c);
1108 c->freeable_cnt = freeable_cnt;
1109 spin_unlock(&c->space_lock);
1111 if (free != d->saved_free) {
1112 ubifs_err("free space changed from %lld to %lld",
1113 d->saved_free, free);
1114 goto out;
1117 return 0;
1119 out:
1120 ubifs_msg("saved lprops statistics dump");
1121 ubifs_dump_lstats(&d->saved_lst);
1122 ubifs_msg("saved budgeting info dump");
1123 ubifs_dump_budg(c, &d->saved_bi);
1124 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125 ubifs_msg("current lprops statistics dump");
1126 ubifs_get_lp_stats(c, &lst);
1127 ubifs_dump_lstats(&lst);
1128 ubifs_msg("current budgeting info dump");
1129 ubifs_dump_budg(c, &c->bi);
1130 dump_stack();
1131 return -EINVAL;
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1144 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1146 int err = 0;
1147 struct ubifs_inode *ui = ubifs_inode(inode);
1149 if (!dbg_is_chk_gen(c))
1150 return 0;
1151 if (!S_ISREG(inode->i_mode))
1152 return 0;
1154 mutex_lock(&ui->ui_mutex);
1155 spin_lock(&ui->ui_lock);
1156 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158 "is clean", ui->ui_size, ui->synced_i_size);
1159 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160 inode->i_mode, i_size_read(inode));
1161 dump_stack();
1162 err = -EINVAL;
1164 spin_unlock(&ui->ui_lock);
1165 mutex_unlock(&ui->ui_mutex);
1166 return err;
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1182 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1184 unsigned int nlink = 2;
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent, *pdent = NULL;
1187 struct qstr nm = { .name = NULL };
1188 loff_t size = UBIFS_INO_NODE_SZ;
1190 if (!dbg_is_chk_gen(c))
1191 return 0;
1193 if (!S_ISDIR(dir->i_mode))
1194 return 0;
1196 lowest_dent_key(c, &key, dir->i_ino);
1197 while (1) {
1198 int err;
1200 dent = ubifs_tnc_next_ent(c, &key, &nm);
1201 if (IS_ERR(dent)) {
1202 err = PTR_ERR(dent);
1203 if (err == -ENOENT)
1204 break;
1205 return err;
1208 nm.name = dent->name;
1209 nm.len = le16_to_cpu(dent->nlen);
1210 size += CALC_DENT_SIZE(nm.len);
1211 if (dent->type == UBIFS_ITYPE_DIR)
1212 nlink += 1;
1213 kfree(pdent);
1214 pdent = dent;
1215 key_read(c, &dent->key, &key);
1217 kfree(pdent);
1219 if (i_size_read(dir) != size) {
1220 ubifs_err("directory inode %lu has size %llu, "
1221 "but calculated size is %llu", dir->i_ino,
1222 (unsigned long long)i_size_read(dir),
1223 (unsigned long long)size);
1224 ubifs_dump_inode(c, dir);
1225 dump_stack();
1226 return -EINVAL;
1228 if (dir->i_nlink != nlink) {
1229 ubifs_err("directory inode %lu has nlink %u, but calculated "
1230 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231 ubifs_dump_inode(c, dir);
1232 dump_stack();
1233 return -EINVAL;
1236 return 0;
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1252 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253 struct ubifs_zbranch *zbr2)
1255 int err, nlen1, nlen2, cmp;
1256 struct ubifs_dent_node *dent1, *dent2;
1257 union ubifs_key key;
1258 char key_buf[DBG_KEY_BUF_LEN];
1260 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262 if (!dent1)
1263 return -ENOMEM;
1264 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265 if (!dent2) {
1266 err = -ENOMEM;
1267 goto out_free;
1270 err = ubifs_tnc_read_node(c, zbr1, dent1);
1271 if (err)
1272 goto out_free;
1273 err = ubifs_validate_entry(c, dent1);
1274 if (err)
1275 goto out_free;
1277 err = ubifs_tnc_read_node(c, zbr2, dent2);
1278 if (err)
1279 goto out_free;
1280 err = ubifs_validate_entry(c, dent2);
1281 if (err)
1282 goto out_free;
1284 /* Make sure node keys are the same as in zbranch */
1285 err = 1;
1286 key_read(c, &dent1->key, &key);
1287 if (keys_cmp(c, &zbr1->key, &key)) {
1288 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290 DBG_KEY_BUF_LEN));
1291 ubifs_err("but it should have key %s according to tnc",
1292 dbg_snprintf_key(c, &zbr1->key, key_buf,
1293 DBG_KEY_BUF_LEN));
1294 ubifs_dump_node(c, dent1);
1295 goto out_free;
1298 key_read(c, &dent2->key, &key);
1299 if (keys_cmp(c, &zbr2->key, &key)) {
1300 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302 DBG_KEY_BUF_LEN));
1303 ubifs_err("but it should have key %s according to tnc",
1304 dbg_snprintf_key(c, &zbr2->key, key_buf,
1305 DBG_KEY_BUF_LEN));
1306 ubifs_dump_node(c, dent2);
1307 goto out_free;
1310 nlen1 = le16_to_cpu(dent1->nlen);
1311 nlen2 = le16_to_cpu(dent2->nlen);
1313 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315 err = 0;
1316 goto out_free;
1318 if (cmp == 0 && nlen1 == nlen2)
1319 ubifs_err("2 xent/dent nodes with the same name");
1320 else
1321 ubifs_err("bad order of colliding key %s",
1322 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1324 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325 ubifs_dump_node(c, dent1);
1326 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327 ubifs_dump_node(c, dent2);
1329 out_free:
1330 kfree(dent2);
1331 kfree(dent1);
1332 return err;
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1345 struct ubifs_znode *znode = zbr->znode;
1346 struct ubifs_znode *zp = znode->parent;
1347 int n, err, cmp;
1349 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350 err = 1;
1351 goto out;
1353 if (znode->level < 0) {
1354 err = 2;
1355 goto out;
1357 if (znode->iip < 0 || znode->iip >= c->fanout) {
1358 err = 3;
1359 goto out;
1362 if (zbr->len == 0)
1363 /* Only dirty zbranch may have no on-flash nodes */
1364 if (!ubifs_zn_dirty(znode)) {
1365 err = 4;
1366 goto out;
1369 if (ubifs_zn_dirty(znode)) {
1371 * If znode is dirty, its parent has to be dirty as well. The
1372 * order of the operation is important, so we have to have
1373 * memory barriers.
1375 smp_mb();
1376 if (zp && !ubifs_zn_dirty(zp)) {
1378 * The dirty flag is atomic and is cleared outside the
1379 * TNC mutex, so znode's dirty flag may now have
1380 * been cleared. The child is always cleared before the
1381 * parent, so we just need to check again.
1383 smp_mb();
1384 if (ubifs_zn_dirty(znode)) {
1385 err = 5;
1386 goto out;
1391 if (zp) {
1392 const union ubifs_key *min, *max;
1394 if (znode->level != zp->level - 1) {
1395 err = 6;
1396 goto out;
1399 /* Make sure the 'parent' pointer in our znode is correct */
1400 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401 if (!err) {
1402 /* This zbranch does not exist in the parent */
1403 err = 7;
1404 goto out;
1407 if (znode->iip >= zp->child_cnt) {
1408 err = 8;
1409 goto out;
1412 if (znode->iip != n) {
1413 /* This may happen only in case of collisions */
1414 if (keys_cmp(c, &zp->zbranch[n].key,
1415 &zp->zbranch[znode->iip].key)) {
1416 err = 9;
1417 goto out;
1419 n = znode->iip;
1423 * Make sure that the first key in our znode is greater than or
1424 * equal to the key in the pointing zbranch.
1426 min = &zbr->key;
1427 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428 if (cmp == 1) {
1429 err = 10;
1430 goto out;
1433 if (n + 1 < zp->child_cnt) {
1434 max = &zp->zbranch[n + 1].key;
1437 * Make sure the last key in our znode is less or
1438 * equivalent than the key in the zbranch which goes
1439 * after our pointing zbranch.
1441 cmp = keys_cmp(c, max,
1442 &znode->zbranch[znode->child_cnt - 1].key);
1443 if (cmp == -1) {
1444 err = 11;
1445 goto out;
1448 } else {
1449 /* This may only be root znode */
1450 if (zbr != &c->zroot) {
1451 err = 12;
1452 goto out;
1457 * Make sure that next key is greater or equivalent then the previous
1458 * one.
1460 for (n = 1; n < znode->child_cnt; n++) {
1461 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462 &znode->zbranch[n].key);
1463 if (cmp > 0) {
1464 err = 13;
1465 goto out;
1467 if (cmp == 0) {
1468 /* This can only be keys with colliding hash */
1469 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470 err = 14;
1471 goto out;
1474 if (znode->level != 0 || c->replaying)
1475 continue;
1478 * Colliding keys should follow binary order of
1479 * corresponding xentry/dentry names.
1481 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482 &znode->zbranch[n]);
1483 if (err < 0)
1484 return err;
1485 if (err) {
1486 err = 15;
1487 goto out;
1492 for (n = 0; n < znode->child_cnt; n++) {
1493 if (!znode->zbranch[n].znode &&
1494 (znode->zbranch[n].lnum == 0 ||
1495 znode->zbranch[n].len == 0)) {
1496 err = 16;
1497 goto out;
1500 if (znode->zbranch[n].lnum != 0 &&
1501 znode->zbranch[n].len == 0) {
1502 err = 17;
1503 goto out;
1506 if (znode->zbranch[n].lnum == 0 &&
1507 znode->zbranch[n].len != 0) {
1508 err = 18;
1509 goto out;
1512 if (znode->zbranch[n].lnum == 0 &&
1513 znode->zbranch[n].offs != 0) {
1514 err = 19;
1515 goto out;
1518 if (znode->level != 0 && znode->zbranch[n].znode)
1519 if (znode->zbranch[n].znode->parent != znode) {
1520 err = 20;
1521 goto out;
1525 return 0;
1527 out:
1528 ubifs_err("failed, error %d", err);
1529 ubifs_msg("dump of the znode");
1530 ubifs_dump_znode(c, znode);
1531 if (zp) {
1532 ubifs_msg("dump of the parent znode");
1533 ubifs_dump_znode(c, zp);
1535 dump_stack();
1536 return -EINVAL;
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1547 int dbg_check_tnc(struct ubifs_info *c, int extra)
1549 struct ubifs_znode *znode;
1550 long clean_cnt = 0, dirty_cnt = 0;
1551 int err, last;
1553 if (!dbg_is_chk_index(c))
1554 return 0;
1556 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557 if (!c->zroot.znode)
1558 return 0;
1560 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561 while (1) {
1562 struct ubifs_znode *prev;
1563 struct ubifs_zbranch *zbr;
1565 if (!znode->parent)
1566 zbr = &c->zroot;
1567 else
1568 zbr = &znode->parent->zbranch[znode->iip];
1570 err = dbg_check_znode(c, zbr);
1571 if (err)
1572 return err;
1574 if (extra) {
1575 if (ubifs_zn_dirty(znode))
1576 dirty_cnt += 1;
1577 else
1578 clean_cnt += 1;
1581 prev = znode;
1582 znode = ubifs_tnc_postorder_next(znode);
1583 if (!znode)
1584 break;
1587 * If the last key of this znode is equivalent to the first key
1588 * of the next znode (collision), then check order of the keys.
1590 last = prev->child_cnt - 1;
1591 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592 !keys_cmp(c, &prev->zbranch[last].key,
1593 &znode->zbranch[0].key)) {
1594 err = dbg_check_key_order(c, &prev->zbranch[last],
1595 &znode->zbranch[0]);
1596 if (err < 0)
1597 return err;
1598 if (err) {
1599 ubifs_msg("first znode");
1600 ubifs_dump_znode(c, prev);
1601 ubifs_msg("second znode");
1602 ubifs_dump_znode(c, znode);
1603 return -EINVAL;
1608 if (extra) {
1609 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611 atomic_long_read(&c->clean_zn_cnt),
1612 clean_cnt);
1613 return -EINVAL;
1615 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617 atomic_long_read(&c->dirty_zn_cnt),
1618 dirty_cnt);
1619 return -EINVAL;
1623 return 0;
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642 dbg_znode_callback znode_cb, void *priv)
1644 int err;
1645 struct ubifs_zbranch *zbr;
1646 struct ubifs_znode *znode, *child;
1648 mutex_lock(&c->tnc_mutex);
1649 /* If the root indexing node is not in TNC - pull it */
1650 if (!c->zroot.znode) {
1651 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652 if (IS_ERR(c->zroot.znode)) {
1653 err = PTR_ERR(c->zroot.znode);
1654 c->zroot.znode = NULL;
1655 goto out_unlock;
1660 * We are going to traverse the indexing tree in the postorder manner.
1661 * Go down and find the leftmost indexing node where we are going to
1662 * start from.
1664 znode = c->zroot.znode;
1665 while (znode->level > 0) {
1666 zbr = &znode->zbranch[0];
1667 child = zbr->znode;
1668 if (!child) {
1669 child = ubifs_load_znode(c, zbr, znode, 0);
1670 if (IS_ERR(child)) {
1671 err = PTR_ERR(child);
1672 goto out_unlock;
1674 zbr->znode = child;
1677 znode = child;
1680 /* Iterate over all indexing nodes */
1681 while (1) {
1682 int idx;
1684 cond_resched();
1686 if (znode_cb) {
1687 err = znode_cb(c, znode, priv);
1688 if (err) {
1689 ubifs_err("znode checking function returned "
1690 "error %d", err);
1691 ubifs_dump_znode(c, znode);
1692 goto out_dump;
1695 if (leaf_cb && znode->level == 0) {
1696 for (idx = 0; idx < znode->child_cnt; idx++) {
1697 zbr = &znode->zbranch[idx];
1698 err = leaf_cb(c, zbr, priv);
1699 if (err) {
1700 ubifs_err("leaf checking function "
1701 "returned error %d, for leaf "
1702 "at LEB %d:%d",
1703 err, zbr->lnum, zbr->offs);
1704 goto out_dump;
1709 if (!znode->parent)
1710 break;
1712 idx = znode->iip + 1;
1713 znode = znode->parent;
1714 if (idx < znode->child_cnt) {
1715 /* Switch to the next index in the parent */
1716 zbr = &znode->zbranch[idx];
1717 child = zbr->znode;
1718 if (!child) {
1719 child = ubifs_load_znode(c, zbr, znode, idx);
1720 if (IS_ERR(child)) {
1721 err = PTR_ERR(child);
1722 goto out_unlock;
1724 zbr->znode = child;
1726 znode = child;
1727 } else
1729 * This is the last child, switch to the parent and
1730 * continue.
1732 continue;
1734 /* Go to the lowest leftmost znode in the new sub-tree */
1735 while (znode->level > 0) {
1736 zbr = &znode->zbranch[0];
1737 child = zbr->znode;
1738 if (!child) {
1739 child = ubifs_load_znode(c, zbr, znode, 0);
1740 if (IS_ERR(child)) {
1741 err = PTR_ERR(child);
1742 goto out_unlock;
1744 zbr->znode = child;
1746 znode = child;
1750 mutex_unlock(&c->tnc_mutex);
1751 return 0;
1753 out_dump:
1754 if (znode->parent)
1755 zbr = &znode->parent->zbranch[znode->iip];
1756 else
1757 zbr = &c->zroot;
1758 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759 ubifs_dump_znode(c, znode);
1760 out_unlock:
1761 mutex_unlock(&c->tnc_mutex);
1762 return err;
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1777 long long *idx_size = priv;
1778 int add;
1780 add = ubifs_idx_node_sz(c, znode->child_cnt);
1781 add = ALIGN(add, 8);
1782 *idx_size += add;
1783 return 0;
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1797 int err;
1798 long long calc = 0;
1800 if (!dbg_is_chk_index(c))
1801 return 0;
1803 err = dbg_walk_index(c, NULL, add_size, &calc);
1804 if (err) {
1805 ubifs_err("error %d while walking the index", err);
1806 return err;
1809 if (calc != idx_size) {
1810 ubifs_err("index size check failed: calculated size is %lld, "
1811 "should be %lld", calc, idx_size);
1812 dump_stack();
1813 return -EINVAL;
1816 return 0;
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 * while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 * inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 * inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1839 struct fsck_inode {
1840 struct rb_node rb;
1841 ino_t inum;
1842 umode_t mode;
1843 unsigned int nlink;
1844 unsigned int xattr_cnt;
1845 int references;
1846 int calc_cnt;
1847 long long size;
1848 unsigned int xattr_sz;
1849 long long calc_sz;
1850 long long calc_xcnt;
1851 long long calc_xsz;
1852 unsigned int xattr_nms;
1853 long long calc_xnms;
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1860 struct fsck_data {
1861 struct rb_root inodes;
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1874 static struct fsck_inode *add_inode(struct ubifs_info *c,
1875 struct fsck_data *fsckd,
1876 struct ubifs_ino_node *ino)
1878 struct rb_node **p, *parent = NULL;
1879 struct fsck_inode *fscki;
1880 ino_t inum = key_inum_flash(c, &ino->key);
1881 struct inode *inode;
1882 struct ubifs_inode *ui;
1884 p = &fsckd->inodes.rb_node;
1885 while (*p) {
1886 parent = *p;
1887 fscki = rb_entry(parent, struct fsck_inode, rb);
1888 if (inum < fscki->inum)
1889 p = &(*p)->rb_left;
1890 else if (inum > fscki->inum)
1891 p = &(*p)->rb_right;
1892 else
1893 return fscki;
1896 if (inum > c->highest_inum) {
1897 ubifs_err("too high inode number, max. is %lu",
1898 (unsigned long)c->highest_inum);
1899 return ERR_PTR(-EINVAL);
1902 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903 if (!fscki)
1904 return ERR_PTR(-ENOMEM);
1906 inode = ilookup(c->vfs_sb, inum);
1908 fscki->inum = inum;
1910 * If the inode is present in the VFS inode cache, use it instead of
1911 * the on-flash inode which might be out-of-date. E.g., the size might
1912 * be out-of-date. If we do not do this, the following may happen, for
1913 * example:
1914 * 1. A power cut happens
1915 * 2. We mount the file-system R/O, the replay process fixes up the
1916 * inode size in the VFS cache, but on on-flash.
1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1918 * size.
1920 if (!inode) {
1921 fscki->nlink = le32_to_cpu(ino->nlink);
1922 fscki->size = le64_to_cpu(ino->size);
1923 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926 fscki->mode = le32_to_cpu(ino->mode);
1927 } else {
1928 ui = ubifs_inode(inode);
1929 fscki->nlink = inode->i_nlink;
1930 fscki->size = inode->i_size;
1931 fscki->xattr_cnt = ui->xattr_cnt;
1932 fscki->xattr_sz = ui->xattr_size;
1933 fscki->xattr_nms = ui->xattr_names;
1934 fscki->mode = inode->i_mode;
1935 iput(inode);
1938 if (S_ISDIR(fscki->mode)) {
1939 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940 fscki->calc_cnt = 2;
1943 rb_link_node(&fscki->rb, parent, p);
1944 rb_insert_color(&fscki->rb, &fsckd->inodes);
1946 return fscki;
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1960 struct rb_node *p;
1961 struct fsck_inode *fscki;
1963 p = fsckd->inodes.rb_node;
1964 while (p) {
1965 fscki = rb_entry(p, struct fsck_inode, rb);
1966 if (inum < fscki->inum)
1967 p = p->rb_left;
1968 else if (inum > fscki->inum)
1969 p = p->rb_right;
1970 else
1971 return fscki;
1973 return NULL;
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988 struct fsck_data *fsckd, ino_t inum)
1990 int n, err;
1991 union ubifs_key key;
1992 struct ubifs_znode *znode;
1993 struct ubifs_zbranch *zbr;
1994 struct ubifs_ino_node *ino;
1995 struct fsck_inode *fscki;
1997 fscki = search_inode(fsckd, inum);
1998 if (fscki)
1999 return fscki;
2001 ino_key_init(c, &key, inum);
2002 err = ubifs_lookup_level0(c, &key, &znode, &n);
2003 if (!err) {
2004 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005 return ERR_PTR(-ENOENT);
2006 } else if (err < 0) {
2007 ubifs_err("error %d while looking up inode %lu",
2008 err, (unsigned long)inum);
2009 return ERR_PTR(err);
2012 zbr = &znode->zbranch[n];
2013 if (zbr->len < UBIFS_INO_NODE_SZ) {
2014 ubifs_err("bad node %lu node length %d",
2015 (unsigned long)inum, zbr->len);
2016 return ERR_PTR(-EINVAL);
2019 ino = kmalloc(zbr->len, GFP_NOFS);
2020 if (!ino)
2021 return ERR_PTR(-ENOMEM);
2023 err = ubifs_tnc_read_node(c, zbr, ino);
2024 if (err) {
2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026 zbr->lnum, zbr->offs, err);
2027 kfree(ino);
2028 return ERR_PTR(err);
2031 fscki = add_inode(c, fsckd, ino);
2032 kfree(ino);
2033 if (IS_ERR(fscki)) {
2034 ubifs_err("error %ld while adding inode %lu node",
2035 PTR_ERR(fscki), (unsigned long)inum);
2036 return fscki;
2039 return fscki;
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059 void *priv)
2061 ino_t inum;
2062 void *node;
2063 struct ubifs_ch *ch;
2064 int err, type = key_type(c, &zbr->key);
2065 struct fsck_inode *fscki;
2067 if (zbr->len < UBIFS_CH_SZ) {
2068 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069 zbr->len, zbr->lnum, zbr->offs);
2070 return -EINVAL;
2073 node = kmalloc(zbr->len, GFP_NOFS);
2074 if (!node)
2075 return -ENOMEM;
2077 err = ubifs_tnc_read_node(c, zbr, node);
2078 if (err) {
2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080 zbr->lnum, zbr->offs, err);
2081 goto out_free;
2084 /* If this is an inode node, add it to RB-tree of inodes */
2085 if (type == UBIFS_INO_KEY) {
2086 fscki = add_inode(c, priv, node);
2087 if (IS_ERR(fscki)) {
2088 err = PTR_ERR(fscki);
2089 ubifs_err("error %d while adding inode node", err);
2090 goto out_dump;
2092 goto out;
2095 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096 type != UBIFS_DATA_KEY) {
2097 ubifs_err("unexpected node type %d at LEB %d:%d",
2098 type, zbr->lnum, zbr->offs);
2099 err = -EINVAL;
2100 goto out_free;
2103 ch = node;
2104 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105 ubifs_err("too high sequence number, max. is %llu",
2106 c->max_sqnum);
2107 err = -EINVAL;
2108 goto out_dump;
2111 if (type == UBIFS_DATA_KEY) {
2112 long long blk_offs;
2113 struct ubifs_data_node *dn = node;
2116 * Search the inode node this data node belongs to and insert
2117 * it to the RB-tree of inodes.
2119 inum = key_inum_flash(c, &dn->key);
2120 fscki = read_add_inode(c, priv, inum);
2121 if (IS_ERR(fscki)) {
2122 err = PTR_ERR(fscki);
2123 ubifs_err("error %d while processing data node and "
2124 "trying to find inode node %lu",
2125 err, (unsigned long)inum);
2126 goto out_dump;
2129 /* Make sure the data node is within inode size */
2130 blk_offs = key_block_flash(c, &dn->key);
2131 blk_offs <<= UBIFS_BLOCK_SHIFT;
2132 blk_offs += le32_to_cpu(dn->size);
2133 if (blk_offs > fscki->size) {
2134 ubifs_err("data node at LEB %d:%d is not within inode "
2135 "size %lld", zbr->lnum, zbr->offs,
2136 fscki->size);
2137 err = -EINVAL;
2138 goto out_dump;
2140 } else {
2141 int nlen;
2142 struct ubifs_dent_node *dent = node;
2143 struct fsck_inode *fscki1;
2145 err = ubifs_validate_entry(c, dent);
2146 if (err)
2147 goto out_dump;
2150 * Search the inode node this entry refers to and the parent
2151 * inode node and insert them to the RB-tree of inodes.
2153 inum = le64_to_cpu(dent->inum);
2154 fscki = read_add_inode(c, priv, inum);
2155 if (IS_ERR(fscki)) {
2156 err = PTR_ERR(fscki);
2157 ubifs_err("error %d while processing entry node and "
2158 "trying to find inode node %lu",
2159 err, (unsigned long)inum);
2160 goto out_dump;
2163 /* Count how many direntries or xentries refers this inode */
2164 fscki->references += 1;
2166 inum = key_inum_flash(c, &dent->key);
2167 fscki1 = read_add_inode(c, priv, inum);
2168 if (IS_ERR(fscki1)) {
2169 err = PTR_ERR(fscki1);
2170 ubifs_err("error %d while processing entry node and "
2171 "trying to find parent inode node %lu",
2172 err, (unsigned long)inum);
2173 goto out_dump;
2176 nlen = le16_to_cpu(dent->nlen);
2177 if (type == UBIFS_XENT_KEY) {
2178 fscki1->calc_xcnt += 1;
2179 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181 fscki1->calc_xnms += nlen;
2182 } else {
2183 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184 if (dent->type == UBIFS_ITYPE_DIR)
2185 fscki1->calc_cnt += 1;
2189 out:
2190 kfree(node);
2191 return 0;
2193 out_dump:
2194 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195 ubifs_dump_node(c, node);
2196 out_free:
2197 kfree(node);
2198 return err;
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2205 static void free_inodes(struct fsck_data *fsckd)
2207 struct rb_node *this = fsckd->inodes.rb_node;
2208 struct fsck_inode *fscki;
2210 while (this) {
2211 if (this->rb_left)
2212 this = this->rb_left;
2213 else if (this->rb_right)
2214 this = this->rb_right;
2215 else {
2216 fscki = rb_entry(this, struct fsck_inode, rb);
2217 this = rb_parent(this);
2218 if (this) {
2219 if (this->rb_left == &fscki->rb)
2220 this->rb_left = NULL;
2221 else
2222 this->rb_right = NULL;
2224 kfree(fscki);
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2241 int n, err;
2242 union ubifs_key key;
2243 struct ubifs_znode *znode;
2244 struct ubifs_zbranch *zbr;
2245 struct ubifs_ino_node *ino;
2246 struct fsck_inode *fscki;
2247 struct rb_node *this = rb_first(&fsckd->inodes);
2249 while (this) {
2250 fscki = rb_entry(this, struct fsck_inode, rb);
2251 this = rb_next(this);
2253 if (S_ISDIR(fscki->mode)) {
2255 * Directories have to have exactly one reference (they
2256 * cannot have hardlinks), although root inode is an
2257 * exception.
2259 if (fscki->inum != UBIFS_ROOT_INO &&
2260 fscki->references != 1) {
2261 ubifs_err("directory inode %lu has %d "
2262 "direntries which refer it, but "
2263 "should be 1",
2264 (unsigned long)fscki->inum,
2265 fscki->references);
2266 goto out_dump;
2268 if (fscki->inum == UBIFS_ROOT_INO &&
2269 fscki->references != 0) {
2270 ubifs_err("root inode %lu has non-zero (%d) "
2271 "direntries which refer it",
2272 (unsigned long)fscki->inum,
2273 fscki->references);
2274 goto out_dump;
2276 if (fscki->calc_sz != fscki->size) {
2277 ubifs_err("directory inode %lu size is %lld, "
2278 "but calculated size is %lld",
2279 (unsigned long)fscki->inum,
2280 fscki->size, fscki->calc_sz);
2281 goto out_dump;
2283 if (fscki->calc_cnt != fscki->nlink) {
2284 ubifs_err("directory inode %lu nlink is %d, "
2285 "but calculated nlink is %d",
2286 (unsigned long)fscki->inum,
2287 fscki->nlink, fscki->calc_cnt);
2288 goto out_dump;
2290 } else {
2291 if (fscki->references != fscki->nlink) {
2292 ubifs_err("inode %lu nlink is %d, but "
2293 "calculated nlink is %d",
2294 (unsigned long)fscki->inum,
2295 fscki->nlink, fscki->references);
2296 goto out_dump;
2299 if (fscki->xattr_sz != fscki->calc_xsz) {
2300 ubifs_err("inode %lu has xattr size %u, but "
2301 "calculated size is %lld",
2302 (unsigned long)fscki->inum, fscki->xattr_sz,
2303 fscki->calc_xsz);
2304 goto out_dump;
2306 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307 ubifs_err("inode %lu has %u xattrs, but "
2308 "calculated count is %lld",
2309 (unsigned long)fscki->inum,
2310 fscki->xattr_cnt, fscki->calc_xcnt);
2311 goto out_dump;
2313 if (fscki->xattr_nms != fscki->calc_xnms) {
2314 ubifs_err("inode %lu has xattr names' size %u, but "
2315 "calculated names' size is %lld",
2316 (unsigned long)fscki->inum, fscki->xattr_nms,
2317 fscki->calc_xnms);
2318 goto out_dump;
2322 return 0;
2324 out_dump:
2325 /* Read the bad inode and dump it */
2326 ino_key_init(c, &key, fscki->inum);
2327 err = ubifs_lookup_level0(c, &key, &znode, &n);
2328 if (!err) {
2329 ubifs_err("inode %lu not found in index",
2330 (unsigned long)fscki->inum);
2331 return -ENOENT;
2332 } else if (err < 0) {
2333 ubifs_err("error %d while looking up inode %lu",
2334 err, (unsigned long)fscki->inum);
2335 return err;
2338 zbr = &znode->zbranch[n];
2339 ino = kmalloc(zbr->len, GFP_NOFS);
2340 if (!ino)
2341 return -ENOMEM;
2343 err = ubifs_tnc_read_node(c, zbr, ino);
2344 if (err) {
2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346 zbr->lnum, zbr->offs, err);
2347 kfree(ino);
2348 return err;
2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353 ubifs_dump_node(c, ino);
2354 kfree(ino);
2355 return -EINVAL;
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 * inodes).
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2371 int dbg_check_filesystem(struct ubifs_info *c)
2373 int err;
2374 struct fsck_data fsckd;
2376 if (!dbg_is_chk_fs(c))
2377 return 0;
2379 fsckd.inodes = RB_ROOT;
2380 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381 if (err)
2382 goto out_free;
2384 err = check_inodes(c, &fsckd);
2385 if (err)
2386 goto out_free;
2388 free_inodes(&fsckd);
2389 return 0;
2391 out_free:
2392 ubifs_err("file-system check failed with error %d", err);
2393 dump_stack();
2394 free_inodes(&fsckd);
2395 return err;
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2408 struct list_head *cur;
2409 struct ubifs_scan_node *sa, *sb;
2411 if (!dbg_is_chk_gen(c))
2412 return 0;
2414 for (cur = head->next; cur->next != head; cur = cur->next) {
2415 ino_t inuma, inumb;
2416 uint32_t blka, blkb;
2418 cond_resched();
2419 sa = container_of(cur, struct ubifs_scan_node, list);
2420 sb = container_of(cur->next, struct ubifs_scan_node, list);
2422 if (sa->type != UBIFS_DATA_NODE) {
2423 ubifs_err("bad node type %d", sa->type);
2424 ubifs_dump_node(c, sa->node);
2425 return -EINVAL;
2427 if (sb->type != UBIFS_DATA_NODE) {
2428 ubifs_err("bad node type %d", sb->type);
2429 ubifs_dump_node(c, sb->node);
2430 return -EINVAL;
2433 inuma = key_inum(c, &sa->key);
2434 inumb = key_inum(c, &sb->key);
2436 if (inuma < inumb)
2437 continue;
2438 if (inuma > inumb) {
2439 ubifs_err("larger inum %lu goes before inum %lu",
2440 (unsigned long)inuma, (unsigned long)inumb);
2441 goto error_dump;
2444 blka = key_block(c, &sa->key);
2445 blkb = key_block(c, &sb->key);
2447 if (blka > blkb) {
2448 ubifs_err("larger block %u goes before %u", blka, blkb);
2449 goto error_dump;
2451 if (blka == blkb) {
2452 ubifs_err("two data nodes for the same block");
2453 goto error_dump;
2457 return 0;
2459 error_dump:
2460 ubifs_dump_node(c, sa->node);
2461 ubifs_dump_node(c, sb->node);
2462 return -EINVAL;
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2475 struct list_head *cur;
2476 struct ubifs_scan_node *sa, *sb;
2478 if (!dbg_is_chk_gen(c))
2479 return 0;
2481 for (cur = head->next; cur->next != head; cur = cur->next) {
2482 ino_t inuma, inumb;
2483 uint32_t hasha, hashb;
2485 cond_resched();
2486 sa = container_of(cur, struct ubifs_scan_node, list);
2487 sb = container_of(cur->next, struct ubifs_scan_node, list);
2489 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490 sa->type != UBIFS_XENT_NODE) {
2491 ubifs_err("bad node type %d", sa->type);
2492 ubifs_dump_node(c, sa->node);
2493 return -EINVAL;
2495 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496 sa->type != UBIFS_XENT_NODE) {
2497 ubifs_err("bad node type %d", sb->type);
2498 ubifs_dump_node(c, sb->node);
2499 return -EINVAL;
2502 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503 ubifs_err("non-inode node goes before inode node");
2504 goto error_dump;
2507 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508 continue;
2510 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511 /* Inode nodes are sorted in descending size order */
2512 if (sa->len < sb->len) {
2513 ubifs_err("smaller inode node goes first");
2514 goto error_dump;
2516 continue;
2520 * This is either a dentry or xentry, which should be sorted in
2521 * ascending (parent ino, hash) order.
2523 inuma = key_inum(c, &sa->key);
2524 inumb = key_inum(c, &sb->key);
2526 if (inuma < inumb)
2527 continue;
2528 if (inuma > inumb) {
2529 ubifs_err("larger inum %lu goes before inum %lu",
2530 (unsigned long)inuma, (unsigned long)inumb);
2531 goto error_dump;
2534 hasha = key_block(c, &sa->key);
2535 hashb = key_block(c, &sb->key);
2537 if (hasha > hashb) {
2538 ubifs_err("larger hash %u goes before %u",
2539 hasha, hashb);
2540 goto error_dump;
2544 return 0;
2546 error_dump:
2547 ubifs_msg("dumping first node");
2548 ubifs_dump_node(c, sa->node);
2549 ubifs_msg("dumping second node");
2550 ubifs_dump_node(c, sb->node);
2551 return -EINVAL;
2552 return 0;
2555 static inline int chance(unsigned int n, unsigned int out_of)
2557 return !!((random32() % out_of) + 1 <= n);
2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2563 struct ubifs_debug_info *d = c->dbg;
2565 ubifs_assert(dbg_is_tst_rcvry(c));
2567 if (!d->pc_cnt) {
2568 /* First call - decide delay to the power cut */
2569 if (chance(1, 2)) {
2570 unsigned long delay;
2572 if (chance(1, 2)) {
2573 d->pc_delay = 1;
2574 /* Fail withing 1 minute */
2575 delay = random32() % 60000;
2576 d->pc_timeout = jiffies;
2577 d->pc_timeout += msecs_to_jiffies(delay);
2578 ubifs_warn("failing after %lums", delay);
2579 } else {
2580 d->pc_delay = 2;
2581 delay = random32() % 10000;
2582 /* Fail within 10000 operations */
2583 d->pc_cnt_max = delay;
2584 ubifs_warn("failing after %lu calls", delay);
2588 d->pc_cnt += 1;
2591 /* Determine if failure delay has expired */
2592 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593 return 0;
2594 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595 return 0;
2597 if (lnum == UBIFS_SB_LNUM) {
2598 if (write && chance(1, 2))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in super block LEB %d", lnum);
2603 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604 if (chance(19, 20))
2605 return 0;
2606 ubifs_warn("failing in master LEB %d", lnum);
2607 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608 if (write && chance(99, 100))
2609 return 0;
2610 if (chance(399, 400))
2611 return 0;
2612 ubifs_warn("failing in log LEB %d", lnum);
2613 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614 if (write && chance(7, 8))
2615 return 0;
2616 if (chance(19, 20))
2617 return 0;
2618 ubifs_warn("failing in LPT LEB %d", lnum);
2619 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620 if (write && chance(1, 2))
2621 return 0;
2622 if (chance(9, 10))
2623 return 0;
2624 ubifs_warn("failing in orphan LEB %d", lnum);
2625 } else if (lnum == c->ihead_lnum) {
2626 if (chance(99, 100))
2627 return 0;
2628 ubifs_warn("failing in index head LEB %d", lnum);
2629 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630 if (chance(9, 10))
2631 return 0;
2632 ubifs_warn("failing in GC head LEB %d", lnum);
2633 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634 !ubifs_search_bud(c, lnum)) {
2635 if (chance(19, 20))
2636 return 0;
2637 ubifs_warn("failing in non-bud LEB %d", lnum);
2638 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640 if (chance(999, 1000))
2641 return 0;
2642 ubifs_warn("failing in bud LEB %d commit running", lnum);
2643 } else {
2644 if (chance(9999, 10000))
2645 return 0;
2646 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2649 d->pc_happened = 1;
2650 ubifs_warn("========== Power cut emulated ==========");
2651 dump_stack();
2652 return 1;
2655 static void cut_data(const void *buf, unsigned int len)
2657 unsigned int from, to, i, ffs = chance(1, 2);
2658 unsigned char *p = (void *)buf;
2660 from = random32() % (len + 1);
2661 if (chance(1, 2))
2662 to = random32() % (len - from + 1);
2663 else
2664 to = len;
2666 if (from < to)
2667 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668 ffs ? "0xFFs" : "random data");
2670 if (ffs)
2671 for (i = from; i < to; i++)
2672 p[i] = 0xFF;
2673 else
2674 for (i = from; i < to; i++)
2675 p[i] = random32() % 0x100;
2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679 int offs, int len)
2681 int err, failing;
2683 if (c->dbg->pc_happened)
2684 return -EROFS;
2686 failing = power_cut_emulated(c, lnum, 1);
2687 if (failing)
2688 cut_data(buf, len);
2689 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690 if (err)
2691 return err;
2692 if (failing)
2693 return -EROFS;
2694 return 0;
2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698 int len)
2700 int err;
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 1))
2705 return -EROFS;
2706 err = ubi_leb_change(c->ubi, lnum, buf, len);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 1))
2710 return -EROFS;
2711 return 0;
2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2716 int err;
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_unmap(c->ubi, lnum);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2730 int dbg_leb_map(struct ubifs_info *c, int lnum)
2732 int err;
2734 if (c->dbg->pc_happened)
2735 return -EROFS;
2736 if (power_cut_emulated(c, lnum, 0))
2737 return -EROFS;
2738 err = ubi_leb_map(c->ubi, lnum);
2739 if (err)
2740 return err;
2741 if (power_cut_emulated(c, lnum, 0))
2742 return -EROFS;
2743 return 0;
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2750 static struct dentry *dfs_rootdir;
2752 static int dfs_file_open(struct inode *inode, struct file *file)
2754 file->private_data = inode->i_private;
2755 return nonseekable_open(inode, file);
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2770 static int provide_user_output(int val, char __user *u, size_t count,
2771 loff_t *ppos)
2773 char buf[3];
2775 if (val)
2776 buf[0] = '1';
2777 else
2778 buf[0] = '0';
2779 buf[1] = '\n';
2780 buf[2] = 0x00;
2782 return simple_read_from_buffer(u, count, ppos, buf, 2);
2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786 loff_t *ppos)
2788 struct dentry *dent = file->f_path.dentry;
2789 struct ubifs_info *c = file->private_data;
2790 struct ubifs_debug_info *d = c->dbg;
2791 int val;
2793 if (dent == d->dfs_chk_gen)
2794 val = d->chk_gen;
2795 else if (dent == d->dfs_chk_index)
2796 val = d->chk_index;
2797 else if (dent == d->dfs_chk_orph)
2798 val = d->chk_orph;
2799 else if (dent == d->dfs_chk_lprops)
2800 val = d->chk_lprops;
2801 else if (dent == d->dfs_chk_fs)
2802 val = d->chk_fs;
2803 else if (dent == d->dfs_tst_rcvry)
2804 val = d->tst_rcvry;
2805 else
2806 return -EINVAL;
2808 return provide_user_output(val, u, count, ppos);
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2820 static int interpret_user_input(const char __user *u, size_t count)
2822 size_t buf_size;
2823 char buf[8];
2825 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826 if (copy_from_user(buf, u, buf_size))
2827 return -EFAULT;
2829 if (buf[0] == '1')
2830 return 1;
2831 else if (buf[0] == '0')
2832 return 0;
2834 return -EINVAL;
2837 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838 size_t count, loff_t *ppos)
2840 struct ubifs_info *c = file->private_data;
2841 struct ubifs_debug_info *d = c->dbg;
2842 struct dentry *dent = file->f_path.dentry;
2843 int val;
2846 * TODO: this is racy - the file-system might have already been
2847 * unmounted and we'd oops in this case. The plan is to fix it with
2848 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851 * superblocks and fine the one with the same UUID, and take the
2852 * locking right.
2854 * The other way to go suggested by Al Viro is to create a separate
2855 * 'ubifs-debug' file-system instead.
2857 if (file->f_path.dentry == d->dfs_dump_lprops) {
2858 ubifs_dump_lprops(c);
2859 return count;
2861 if (file->f_path.dentry == d->dfs_dump_budg) {
2862 ubifs_dump_budg(c, &c->bi);
2863 return count;
2865 if (file->f_path.dentry == d->dfs_dump_tnc) {
2866 mutex_lock(&c->tnc_mutex);
2867 ubifs_dump_tnc(c);
2868 mutex_unlock(&c->tnc_mutex);
2869 return count;
2872 val = interpret_user_input(u, count);
2873 if (val < 0)
2874 return val;
2876 if (dent == d->dfs_chk_gen)
2877 d->chk_gen = val;
2878 else if (dent == d->dfs_chk_index)
2879 d->chk_index = val;
2880 else if (dent == d->dfs_chk_orph)
2881 d->chk_orph = val;
2882 else if (dent == d->dfs_chk_lprops)
2883 d->chk_lprops = val;
2884 else if (dent == d->dfs_chk_fs)
2885 d->chk_fs = val;
2886 else if (dent == d->dfs_tst_rcvry)
2887 d->tst_rcvry = val;
2888 else
2889 return -EINVAL;
2891 return count;
2894 static const struct file_operations dfs_fops = {
2895 .open = dfs_file_open,
2896 .read = dfs_file_read,
2897 .write = dfs_file_write,
2898 .owner = THIS_MODULE,
2899 .llseek = no_llseek,
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2914 int dbg_debugfs_init_fs(struct ubifs_info *c)
2916 int err, n;
2917 const char *fname;
2918 struct dentry *dent;
2919 struct ubifs_debug_info *d = c->dbg;
2921 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2922 c->vi.ubi_num, c->vi.vol_id);
2923 if (n == UBIFS_DFS_DIR_LEN) {
2924 /* The array size is too small */
2925 fname = UBIFS_DFS_DIR_NAME;
2926 dent = ERR_PTR(-EINVAL);
2927 goto out;
2930 fname = d->dfs_dir_name;
2931 dent = debugfs_create_dir(fname, dfs_rootdir);
2932 if (IS_ERR_OR_NULL(dent))
2933 goto out;
2934 d->dfs_dir = dent;
2936 fname = "dump_lprops";
2937 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2938 if (IS_ERR_OR_NULL(dent))
2939 goto out_remove;
2940 d->dfs_dump_lprops = dent;
2942 fname = "dump_budg";
2943 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2944 if (IS_ERR_OR_NULL(dent))
2945 goto out_remove;
2946 d->dfs_dump_budg = dent;
2948 fname = "dump_tnc";
2949 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2950 if (IS_ERR_OR_NULL(dent))
2951 goto out_remove;
2952 d->dfs_dump_tnc = dent;
2954 fname = "chk_general";
2955 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2956 &dfs_fops);
2957 if (IS_ERR_OR_NULL(dent))
2958 goto out_remove;
2959 d->dfs_chk_gen = dent;
2961 fname = "chk_index";
2962 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2963 &dfs_fops);
2964 if (IS_ERR_OR_NULL(dent))
2965 goto out_remove;
2966 d->dfs_chk_index = dent;
2968 fname = "chk_orphans";
2969 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2970 &dfs_fops);
2971 if (IS_ERR_OR_NULL(dent))
2972 goto out_remove;
2973 d->dfs_chk_orph = dent;
2975 fname = "chk_lprops";
2976 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2977 &dfs_fops);
2978 if (IS_ERR_OR_NULL(dent))
2979 goto out_remove;
2980 d->dfs_chk_lprops = dent;
2982 fname = "chk_fs";
2983 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2984 &dfs_fops);
2985 if (IS_ERR_OR_NULL(dent))
2986 goto out_remove;
2987 d->dfs_chk_fs = dent;
2989 fname = "tst_recovery";
2990 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2991 &dfs_fops);
2992 if (IS_ERR_OR_NULL(dent))
2993 goto out_remove;
2994 d->dfs_tst_rcvry = dent;
2996 return 0;
2998 out_remove:
2999 debugfs_remove_recursive(d->dfs_dir);
3000 out:
3001 err = dent ? PTR_ERR(dent) : -ENODEV;
3002 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3003 fname, err);
3004 return err;
3008 * dbg_debugfs_exit_fs - remove all debugfs files.
3009 * @c: UBIFS file-system description object
3011 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3013 debugfs_remove_recursive(c->dbg->dfs_dir);
3016 struct ubifs_global_debug_info ubifs_dbg;
3018 static struct dentry *dfs_chk_gen;
3019 static struct dentry *dfs_chk_index;
3020 static struct dentry *dfs_chk_orph;
3021 static struct dentry *dfs_chk_lprops;
3022 static struct dentry *dfs_chk_fs;
3023 static struct dentry *dfs_tst_rcvry;
3025 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3026 size_t count, loff_t *ppos)
3028 struct dentry *dent = file->f_path.dentry;
3029 int val;
3031 if (dent == dfs_chk_gen)
3032 val = ubifs_dbg.chk_gen;
3033 else if (dent == dfs_chk_index)
3034 val = ubifs_dbg.chk_index;
3035 else if (dent == dfs_chk_orph)
3036 val = ubifs_dbg.chk_orph;
3037 else if (dent == dfs_chk_lprops)
3038 val = ubifs_dbg.chk_lprops;
3039 else if (dent == dfs_chk_fs)
3040 val = ubifs_dbg.chk_fs;
3041 else if (dent == dfs_tst_rcvry)
3042 val = ubifs_dbg.tst_rcvry;
3043 else
3044 return -EINVAL;
3046 return provide_user_output(val, u, count, ppos);
3049 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3050 size_t count, loff_t *ppos)
3052 struct dentry *dent = file->f_path.dentry;
3053 int val;
3055 val = interpret_user_input(u, count);
3056 if (val < 0)
3057 return val;
3059 if (dent == dfs_chk_gen)
3060 ubifs_dbg.chk_gen = val;
3061 else if (dent == dfs_chk_index)
3062 ubifs_dbg.chk_index = val;
3063 else if (dent == dfs_chk_orph)
3064 ubifs_dbg.chk_orph = val;
3065 else if (dent == dfs_chk_lprops)
3066 ubifs_dbg.chk_lprops = val;
3067 else if (dent == dfs_chk_fs)
3068 ubifs_dbg.chk_fs = val;
3069 else if (dent == dfs_tst_rcvry)
3070 ubifs_dbg.tst_rcvry = val;
3071 else
3072 return -EINVAL;
3074 return count;
3077 static const struct file_operations dfs_global_fops = {
3078 .read = dfs_global_file_read,
3079 .write = dfs_global_file_write,
3080 .owner = THIS_MODULE,
3081 .llseek = no_llseek,
3085 * dbg_debugfs_init - initialize debugfs file-system.
3087 * UBIFS uses debugfs file-system to expose various debugging knobs to
3088 * user-space. This function creates "ubifs" directory in the debugfs
3089 * file-system. Returns zero in case of success and a negative error code in
3090 * case of failure.
3092 int dbg_debugfs_init(void)
3094 int err;
3095 const char *fname;
3096 struct dentry *dent;
3098 fname = "ubifs";
3099 dent = debugfs_create_dir(fname, NULL);
3100 if (IS_ERR_OR_NULL(dent))
3101 goto out;
3102 dfs_rootdir = dent;
3104 fname = "chk_general";
3105 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3106 &dfs_global_fops);
3107 if (IS_ERR_OR_NULL(dent))
3108 goto out_remove;
3109 dfs_chk_gen = dent;
3111 fname = "chk_index";
3112 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113 &dfs_global_fops);
3114 if (IS_ERR_OR_NULL(dent))
3115 goto out_remove;
3116 dfs_chk_index = dent;
3118 fname = "chk_orphans";
3119 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120 &dfs_global_fops);
3121 if (IS_ERR_OR_NULL(dent))
3122 goto out_remove;
3123 dfs_chk_orph = dent;
3125 fname = "chk_lprops";
3126 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127 &dfs_global_fops);
3128 if (IS_ERR_OR_NULL(dent))
3129 goto out_remove;
3130 dfs_chk_lprops = dent;
3132 fname = "chk_fs";
3133 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134 &dfs_global_fops);
3135 if (IS_ERR_OR_NULL(dent))
3136 goto out_remove;
3137 dfs_chk_fs = dent;
3139 fname = "tst_recovery";
3140 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141 &dfs_global_fops);
3142 if (IS_ERR_OR_NULL(dent))
3143 goto out_remove;
3144 dfs_tst_rcvry = dent;
3146 return 0;
3148 out_remove:
3149 debugfs_remove_recursive(dfs_rootdir);
3150 out:
3151 err = dent ? PTR_ERR(dent) : -ENODEV;
3152 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3153 fname, err);
3154 return err;
3158 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3160 void dbg_debugfs_exit(void)
3162 debugfs_remove_recursive(dfs_rootdir);
3166 * ubifs_debugging_init - initialize UBIFS debugging.
3167 * @c: UBIFS file-system description object
3169 * This function initializes debugging-related data for the file system.
3170 * Returns zero in case of success and a negative error code in case of
3171 * failure.
3173 int ubifs_debugging_init(struct ubifs_info *c)
3175 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3176 if (!c->dbg)
3177 return -ENOMEM;
3179 return 0;
3183 * ubifs_debugging_exit - free debugging data.
3184 * @c: UBIFS file-system description object
3186 void ubifs_debugging_exit(struct ubifs_info *c)
3188 kfree(c->dbg);