Merge tag 'acpi-4.15-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux/fpc-iii.git] / block / blk-mq-sched.c
blobc117bd8fd1f6126849472300b3c294e65825a2f7
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return false;
76 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
77 struct request_queue *q = hctx->queue;
79 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
80 atomic_dec(&q->shared_hctx_restart);
81 } else
82 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
84 return blk_mq_run_hw_queue(hctx, true);
88 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
89 * its queue by itself in its completion handler, so we don't need to
90 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
92 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
94 struct request_queue *q = hctx->queue;
95 struct elevator_queue *e = q->elevator;
96 LIST_HEAD(rq_list);
98 do {
99 struct request *rq;
101 if (e->type->ops.mq.has_work &&
102 !e->type->ops.mq.has_work(hctx))
103 break;
105 if (!blk_mq_get_dispatch_budget(hctx))
106 break;
108 rq = e->type->ops.mq.dispatch_request(hctx);
109 if (!rq) {
110 blk_mq_put_dispatch_budget(hctx);
111 break;
115 * Now this rq owns the budget which has to be released
116 * if this rq won't be queued to driver via .queue_rq()
117 * in blk_mq_dispatch_rq_list().
119 list_add(&rq->queuelist, &rq_list);
120 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
123 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124 struct blk_mq_ctx *ctx)
126 unsigned idx = ctx->index_hw;
128 if (++idx == hctx->nr_ctx)
129 idx = 0;
131 return hctx->ctxs[idx];
135 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
136 * its queue by itself in its completion handler, so we don't need to
137 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
139 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
141 struct request_queue *q = hctx->queue;
142 LIST_HEAD(rq_list);
143 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
145 do {
146 struct request *rq;
148 if (!sbitmap_any_bit_set(&hctx->ctx_map))
149 break;
151 if (!blk_mq_get_dispatch_budget(hctx))
152 break;
154 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
155 if (!rq) {
156 blk_mq_put_dispatch_budget(hctx);
157 break;
161 * Now this rq owns the budget which has to be released
162 * if this rq won't be queued to driver via .queue_rq()
163 * in blk_mq_dispatch_rq_list().
165 list_add(&rq->queuelist, &rq_list);
167 /* round robin for fair dispatch */
168 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
170 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
172 WRITE_ONCE(hctx->dispatch_from, ctx);
175 /* return true if hw queue need to be run again */
176 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
178 struct request_queue *q = hctx->queue;
179 struct elevator_queue *e = q->elevator;
180 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
181 LIST_HEAD(rq_list);
183 /* RCU or SRCU read lock is needed before checking quiesced flag */
184 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
185 return;
187 hctx->run++;
190 * If we have previous entries on our dispatch list, grab them first for
191 * more fair dispatch.
193 if (!list_empty_careful(&hctx->dispatch)) {
194 spin_lock(&hctx->lock);
195 if (!list_empty(&hctx->dispatch))
196 list_splice_init(&hctx->dispatch, &rq_list);
197 spin_unlock(&hctx->lock);
201 * Only ask the scheduler for requests, if we didn't have residual
202 * requests from the dispatch list. This is to avoid the case where
203 * we only ever dispatch a fraction of the requests available because
204 * of low device queue depth. Once we pull requests out of the IO
205 * scheduler, we can no longer merge or sort them. So it's best to
206 * leave them there for as long as we can. Mark the hw queue as
207 * needing a restart in that case.
209 * We want to dispatch from the scheduler if there was nothing
210 * on the dispatch list or we were able to dispatch from the
211 * dispatch list.
213 if (!list_empty(&rq_list)) {
214 blk_mq_sched_mark_restart_hctx(hctx);
215 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
216 if (has_sched_dispatch)
217 blk_mq_do_dispatch_sched(hctx);
218 else
219 blk_mq_do_dispatch_ctx(hctx);
221 } else if (has_sched_dispatch) {
222 blk_mq_do_dispatch_sched(hctx);
223 } else if (q->mq_ops->get_budget) {
225 * If we need to get budget before queuing request, we
226 * dequeue request one by one from sw queue for avoiding
227 * to mess up I/O merge when dispatch runs out of resource.
229 * TODO: get more budgets, and dequeue more requests in
230 * one time.
232 blk_mq_do_dispatch_ctx(hctx);
233 } else {
234 blk_mq_flush_busy_ctxs(hctx, &rq_list);
235 blk_mq_dispatch_rq_list(q, &rq_list, false);
239 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
240 struct request **merged_request)
242 struct request *rq;
244 switch (elv_merge(q, &rq, bio)) {
245 case ELEVATOR_BACK_MERGE:
246 if (!blk_mq_sched_allow_merge(q, rq, bio))
247 return false;
248 if (!bio_attempt_back_merge(q, rq, bio))
249 return false;
250 *merged_request = attempt_back_merge(q, rq);
251 if (!*merged_request)
252 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
253 return true;
254 case ELEVATOR_FRONT_MERGE:
255 if (!blk_mq_sched_allow_merge(q, rq, bio))
256 return false;
257 if (!bio_attempt_front_merge(q, rq, bio))
258 return false;
259 *merged_request = attempt_front_merge(q, rq);
260 if (!*merged_request)
261 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
262 return true;
263 default:
264 return false;
267 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
270 * Reverse check our software queue for entries that we could potentially
271 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
272 * too much time checking for merges.
274 static bool blk_mq_attempt_merge(struct request_queue *q,
275 struct blk_mq_ctx *ctx, struct bio *bio)
277 struct request *rq;
278 int checked = 8;
280 lockdep_assert_held(&ctx->lock);
282 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
283 bool merged = false;
285 if (!checked--)
286 break;
288 if (!blk_rq_merge_ok(rq, bio))
289 continue;
291 switch (blk_try_merge(rq, bio)) {
292 case ELEVATOR_BACK_MERGE:
293 if (blk_mq_sched_allow_merge(q, rq, bio))
294 merged = bio_attempt_back_merge(q, rq, bio);
295 break;
296 case ELEVATOR_FRONT_MERGE:
297 if (blk_mq_sched_allow_merge(q, rq, bio))
298 merged = bio_attempt_front_merge(q, rq, bio);
299 break;
300 case ELEVATOR_DISCARD_MERGE:
301 merged = bio_attempt_discard_merge(q, rq, bio);
302 break;
303 default:
304 continue;
307 if (merged)
308 ctx->rq_merged++;
309 return merged;
312 return false;
315 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
317 struct elevator_queue *e = q->elevator;
318 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
319 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320 bool ret = false;
322 if (e && e->type->ops.mq.bio_merge) {
323 blk_mq_put_ctx(ctx);
324 return e->type->ops.mq.bio_merge(hctx, bio);
327 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
328 /* default per sw-queue merge */
329 spin_lock(&ctx->lock);
330 ret = blk_mq_attempt_merge(q, ctx, bio);
331 spin_unlock(&ctx->lock);
334 blk_mq_put_ctx(ctx);
335 return ret;
338 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
340 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
342 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
344 void blk_mq_sched_request_inserted(struct request *rq)
346 trace_block_rq_insert(rq->q, rq);
348 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
350 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
351 bool has_sched,
352 struct request *rq)
354 /* dispatch flush rq directly */
355 if (rq->rq_flags & RQF_FLUSH_SEQ) {
356 spin_lock(&hctx->lock);
357 list_add(&rq->queuelist, &hctx->dispatch);
358 spin_unlock(&hctx->lock);
359 return true;
362 if (has_sched)
363 rq->rq_flags |= RQF_SORTED;
365 return false;
369 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
370 * @pos: loop cursor.
371 * @skip: the list element that will not be examined. Iteration starts at
372 * @skip->next.
373 * @head: head of the list to examine. This list must have at least one
374 * element, namely @skip.
375 * @member: name of the list_head structure within typeof(*pos).
377 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
378 for ((pos) = (skip); \
379 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
380 (pos)->member.next, typeof(*pos), member) : \
381 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
382 (pos) != (skip); )
385 * Called after a driver tag has been freed to check whether a hctx needs to
386 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
387 * queues in a round-robin fashion if the tag set of @hctx is shared with other
388 * hardware queues.
390 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
392 struct blk_mq_tags *const tags = hctx->tags;
393 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
394 struct request_queue *const queue = hctx->queue, *q;
395 struct blk_mq_hw_ctx *hctx2;
396 unsigned int i, j;
398 if (set->flags & BLK_MQ_F_TAG_SHARED) {
400 * If this is 0, then we know that no hardware queues
401 * have RESTART marked. We're done.
403 if (!atomic_read(&queue->shared_hctx_restart))
404 return;
406 rcu_read_lock();
407 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
408 tag_set_list) {
409 queue_for_each_hw_ctx(q, hctx2, i)
410 if (hctx2->tags == tags &&
411 blk_mq_sched_restart_hctx(hctx2))
412 goto done;
414 j = hctx->queue_num + 1;
415 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
416 if (j == queue->nr_hw_queues)
417 j = 0;
418 hctx2 = queue->queue_hw_ctx[j];
419 if (hctx2->tags == tags &&
420 blk_mq_sched_restart_hctx(hctx2))
421 break;
423 done:
424 rcu_read_unlock();
425 } else {
426 blk_mq_sched_restart_hctx(hctx);
430 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
431 bool run_queue, bool async, bool can_block)
433 struct request_queue *q = rq->q;
434 struct elevator_queue *e = q->elevator;
435 struct blk_mq_ctx *ctx = rq->mq_ctx;
436 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
438 /* flush rq in flush machinery need to be dispatched directly */
439 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
440 blk_insert_flush(rq);
441 goto run;
444 WARN_ON(e && (rq->tag != -1));
446 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
447 goto run;
449 if (e && e->type->ops.mq.insert_requests) {
450 LIST_HEAD(list);
452 list_add(&rq->queuelist, &list);
453 e->type->ops.mq.insert_requests(hctx, &list, at_head);
454 } else {
455 spin_lock(&ctx->lock);
456 __blk_mq_insert_request(hctx, rq, at_head);
457 spin_unlock(&ctx->lock);
460 run:
461 if (run_queue)
462 blk_mq_run_hw_queue(hctx, async);
465 void blk_mq_sched_insert_requests(struct request_queue *q,
466 struct blk_mq_ctx *ctx,
467 struct list_head *list, bool run_queue_async)
469 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
470 struct elevator_queue *e = hctx->queue->elevator;
472 if (e && e->type->ops.mq.insert_requests)
473 e->type->ops.mq.insert_requests(hctx, list, false);
474 else
475 blk_mq_insert_requests(hctx, ctx, list);
477 blk_mq_run_hw_queue(hctx, run_queue_async);
480 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
481 struct blk_mq_hw_ctx *hctx,
482 unsigned int hctx_idx)
484 if (hctx->sched_tags) {
485 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
486 blk_mq_free_rq_map(hctx->sched_tags);
487 hctx->sched_tags = NULL;
491 static int blk_mq_sched_alloc_tags(struct request_queue *q,
492 struct blk_mq_hw_ctx *hctx,
493 unsigned int hctx_idx)
495 struct blk_mq_tag_set *set = q->tag_set;
496 int ret;
498 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
499 set->reserved_tags);
500 if (!hctx->sched_tags)
501 return -ENOMEM;
503 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
504 if (ret)
505 blk_mq_sched_free_tags(set, hctx, hctx_idx);
507 return ret;
510 static void blk_mq_sched_tags_teardown(struct request_queue *q)
512 struct blk_mq_tag_set *set = q->tag_set;
513 struct blk_mq_hw_ctx *hctx;
514 int i;
516 queue_for_each_hw_ctx(q, hctx, i)
517 blk_mq_sched_free_tags(set, hctx, i);
520 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
521 unsigned int hctx_idx)
523 struct elevator_queue *e = q->elevator;
524 int ret;
526 if (!e)
527 return 0;
529 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
530 if (ret)
531 return ret;
533 if (e->type->ops.mq.init_hctx) {
534 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
535 if (ret) {
536 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
537 return ret;
541 blk_mq_debugfs_register_sched_hctx(q, hctx);
543 return 0;
546 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
547 unsigned int hctx_idx)
549 struct elevator_queue *e = q->elevator;
551 if (!e)
552 return;
554 blk_mq_debugfs_unregister_sched_hctx(hctx);
556 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
557 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
558 hctx->sched_data = NULL;
561 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
564 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
566 struct blk_mq_hw_ctx *hctx;
567 struct elevator_queue *eq;
568 unsigned int i;
569 int ret;
571 if (!e) {
572 q->elevator = NULL;
573 return 0;
577 * Default to double of smaller one between hw queue_depth and 128,
578 * since we don't split into sync/async like the old code did.
579 * Additionally, this is a per-hw queue depth.
581 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
582 BLKDEV_MAX_RQ);
584 queue_for_each_hw_ctx(q, hctx, i) {
585 ret = blk_mq_sched_alloc_tags(q, hctx, i);
586 if (ret)
587 goto err;
590 ret = e->ops.mq.init_sched(q, e);
591 if (ret)
592 goto err;
594 blk_mq_debugfs_register_sched(q);
596 queue_for_each_hw_ctx(q, hctx, i) {
597 if (e->ops.mq.init_hctx) {
598 ret = e->ops.mq.init_hctx(hctx, i);
599 if (ret) {
600 eq = q->elevator;
601 blk_mq_exit_sched(q, eq);
602 kobject_put(&eq->kobj);
603 return ret;
606 blk_mq_debugfs_register_sched_hctx(q, hctx);
609 return 0;
611 err:
612 blk_mq_sched_tags_teardown(q);
613 q->elevator = NULL;
614 return ret;
617 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
619 struct blk_mq_hw_ctx *hctx;
620 unsigned int i;
622 queue_for_each_hw_ctx(q, hctx, i) {
623 blk_mq_debugfs_unregister_sched_hctx(hctx);
624 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
625 e->type->ops.mq.exit_hctx(hctx, i);
626 hctx->sched_data = NULL;
629 blk_mq_debugfs_unregister_sched(q);
630 if (e->type->ops.mq.exit_sched)
631 e->type->ops.mq.exit_sched(e);
632 blk_mq_sched_tags_teardown(q);
633 q->elevator = NULL;
636 int blk_mq_sched_init(struct request_queue *q)
638 int ret;
640 mutex_lock(&q->sysfs_lock);
641 ret = elevator_init(q, NULL);
642 mutex_unlock(&q->sysfs_lock);
644 return ret;