2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
98 if (test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
) &&
99 !test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
)) {
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
106 if (rq
->part
== mi
->part
)
108 if (mi
->part
->partno
)
113 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
114 unsigned int inflight
[2])
116 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
118 inflight
[0] = inflight
[1] = 0;
119 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
122 void blk_freeze_queue_start(struct request_queue
*q
)
126 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
127 if (freeze_depth
== 1) {
128 percpu_ref_kill(&q
->q_usage_counter
);
130 blk_mq_run_hw_queues(q
, false);
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
135 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
137 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
142 unsigned long timeout
)
144 return wait_event_timeout(q
->mq_freeze_wq
,
145 percpu_ref_is_zero(&q
->q_usage_counter
),
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
154 void blk_freeze_queue(struct request_queue
*q
)
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
163 blk_freeze_queue_start(q
);
164 blk_mq_freeze_queue_wait(q
);
167 void blk_mq_freeze_queue(struct request_queue
*q
)
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
175 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
177 void blk_mq_unfreeze_queue(struct request_queue
*q
)
181 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
182 WARN_ON_ONCE(freeze_depth
< 0);
184 percpu_ref_reinit(&q
->q_usage_counter
);
185 wake_up_all(&q
->mq_freeze_wq
);
188 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
194 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
198 spin_lock_irqsave(q
->queue_lock
, flags
);
199 queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
200 spin_unlock_irqrestore(q
->queue_lock
, flags
);
202 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * Note: this function does not prevent that the struct request end_io()
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
213 void blk_mq_quiesce_queue(struct request_queue
*q
)
215 struct blk_mq_hw_ctx
*hctx
;
219 blk_mq_quiesce_queue_nowait(q
);
221 queue_for_each_hw_ctx(q
, hctx
, i
) {
222 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
223 synchronize_srcu(hctx
->queue_rq_srcu
);
230 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
239 void blk_mq_unquiesce_queue(struct request_queue
*q
)
243 spin_lock_irqsave(q
->queue_lock
, flags
);
244 queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
245 spin_unlock_irqrestore(q
->queue_lock
, flags
);
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q
, true);
250 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
252 void blk_mq_wake_waiters(struct request_queue
*q
)
254 struct blk_mq_hw_ctx
*hctx
;
257 queue_for_each_hw_ctx(q
, hctx
, i
)
258 if (blk_mq_hw_queue_mapped(hctx
))
259 blk_mq_tag_wakeup_all(hctx
->tags
, true);
262 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
264 return blk_mq_has_free_tags(hctx
->tags
);
266 EXPORT_SYMBOL(blk_mq_can_queue
);
268 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
269 unsigned int tag
, unsigned int op
)
271 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
272 struct request
*rq
= tags
->static_rqs
[tag
];
276 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
278 rq
->internal_tag
= tag
;
280 if (blk_mq_tag_busy(data
->hctx
)) {
281 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
282 atomic_inc(&data
->hctx
->nr_active
);
285 rq
->internal_tag
= -1;
286 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
289 INIT_LIST_HEAD(&rq
->queuelist
);
290 /* csd/requeue_work/fifo_time is initialized before use */
292 rq
->mq_ctx
= data
->ctx
;
294 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
295 rq
->rq_flags
|= RQF_PREEMPT
;
296 if (blk_queue_io_stat(data
->q
))
297 rq
->rq_flags
|= RQF_IO_STAT
;
298 /* do not touch atomic flags, it needs atomic ops against the timer */
300 INIT_HLIST_NODE(&rq
->hash
);
301 RB_CLEAR_NODE(&rq
->rb_node
);
304 rq
->start_time
= jiffies
;
305 #ifdef CONFIG_BLK_CGROUP
307 set_start_time_ns(rq
);
308 rq
->io_start_time_ns
= 0;
310 rq
->nr_phys_segments
= 0;
311 #if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq
->nr_integrity_segments
= 0;
315 /* tag was already set */
318 INIT_LIST_HEAD(&rq
->timeout_list
);
322 rq
->end_io_data
= NULL
;
325 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
329 static struct request
*blk_mq_get_request(struct request_queue
*q
,
330 struct bio
*bio
, unsigned int op
,
331 struct blk_mq_alloc_data
*data
)
333 struct elevator_queue
*e
= q
->elevator
;
336 bool put_ctx_on_error
= false;
338 blk_queue_enter_live(q
);
340 if (likely(!data
->ctx
)) {
341 data
->ctx
= blk_mq_get_ctx(q
);
342 put_ctx_on_error
= true;
344 if (likely(!data
->hctx
))
345 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
347 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
350 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
353 * Flush requests are special and go directly to the
356 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
)
357 e
->type
->ops
.mq
.limit_depth(op
, data
);
360 tag
= blk_mq_get_tag(data
);
361 if (tag
== BLK_MQ_TAG_FAIL
) {
362 if (put_ctx_on_error
) {
363 blk_mq_put_ctx(data
->ctx
);
370 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
371 if (!op_is_flush(op
)) {
373 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
374 if (e
->type
->icq_cache
&& rq_ioc(bio
))
375 blk_mq_sched_assign_ioc(rq
, bio
);
377 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
378 rq
->rq_flags
|= RQF_ELVPRIV
;
381 data
->hctx
->queued
++;
385 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
386 blk_mq_req_flags_t flags
)
388 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
392 ret
= blk_queue_enter(q
, flags
);
396 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
400 return ERR_PTR(-EWOULDBLOCK
);
402 blk_mq_put_ctx(alloc_data
.ctx
);
405 rq
->__sector
= (sector_t
) -1;
406 rq
->bio
= rq
->biotail
= NULL
;
409 EXPORT_SYMBOL(blk_mq_alloc_request
);
411 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
412 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
414 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
425 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
426 return ERR_PTR(-EINVAL
);
428 if (hctx_idx
>= q
->nr_hw_queues
)
429 return ERR_PTR(-EIO
);
431 ret
= blk_queue_enter(q
, flags
);
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
439 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
440 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
442 return ERR_PTR(-EXDEV
);
444 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
445 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
447 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
451 return ERR_PTR(-EWOULDBLOCK
);
455 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
457 void blk_mq_free_request(struct request
*rq
)
459 struct request_queue
*q
= rq
->q
;
460 struct elevator_queue
*e
= q
->elevator
;
461 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
462 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
463 const int sched_tag
= rq
->internal_tag
;
465 if (rq
->rq_flags
& RQF_ELVPRIV
) {
466 if (e
&& e
->type
->ops
.mq
.finish_request
)
467 e
->type
->ops
.mq
.finish_request(rq
);
469 put_io_context(rq
->elv
.icq
->ioc
);
474 ctx
->rq_completed
[rq_is_sync(rq
)]++;
475 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
476 atomic_dec(&hctx
->nr_active
);
478 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
479 laptop_io_completion(q
->backing_dev_info
);
481 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
484 blk_put_rl(blk_rq_rl(rq
));
486 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
487 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
489 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
491 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
492 blk_mq_sched_restart(hctx
);
495 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
497 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
499 blk_account_io_done(rq
);
502 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
503 rq
->end_io(rq
, error
);
505 if (unlikely(blk_bidi_rq(rq
)))
506 blk_mq_free_request(rq
->next_rq
);
507 blk_mq_free_request(rq
);
510 EXPORT_SYMBOL(__blk_mq_end_request
);
512 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
514 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
516 __blk_mq_end_request(rq
, error
);
518 EXPORT_SYMBOL(blk_mq_end_request
);
520 static void __blk_mq_complete_request_remote(void *data
)
522 struct request
*rq
= data
;
524 rq
->q
->softirq_done_fn(rq
);
527 static void __blk_mq_complete_request(struct request
*rq
)
529 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
533 if (rq
->internal_tag
!= -1)
534 blk_mq_sched_completed_request(rq
);
535 if (rq
->rq_flags
& RQF_STATS
) {
536 blk_mq_poll_stats_start(rq
->q
);
540 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
541 rq
->q
->softirq_done_fn(rq
);
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
547 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
549 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
550 rq
->csd
.func
= __blk_mq_complete_request_remote
;
553 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
555 rq
->q
->softirq_done_fn(rq
);
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
568 void blk_mq_complete_request(struct request
*rq
)
570 struct request_queue
*q
= rq
->q
;
572 if (unlikely(blk_should_fake_timeout(q
)))
574 if (!blk_mark_rq_complete(rq
))
575 __blk_mq_complete_request(rq
);
577 EXPORT_SYMBOL(blk_mq_complete_request
);
579 int blk_mq_request_started(struct request
*rq
)
581 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
583 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
585 void blk_mq_start_request(struct request
*rq
)
587 struct request_queue
*q
= rq
->q
;
589 blk_mq_sched_started_request(rq
);
591 trace_block_rq_issue(q
, rq
);
593 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
594 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
595 rq
->rq_flags
|= RQF_STATS
;
596 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
));
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
614 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
615 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
)) {
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
622 * (the bits must be part of the same byte for this to be
625 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
628 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
634 rq
->nr_phys_segments
++;
637 EXPORT_SYMBOL(blk_mq_start_request
);
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641 * flag isn't set yet, so there may be race with timeout handler,
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
648 static void __blk_mq_requeue_request(struct request
*rq
)
650 struct request_queue
*q
= rq
->q
;
652 blk_mq_put_driver_tag(rq
);
654 trace_block_rq_requeue(q
, rq
);
655 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
656 blk_mq_sched_requeue_request(rq
);
658 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
659 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
660 rq
->nr_phys_segments
--;
664 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
666 __blk_mq_requeue_request(rq
);
668 BUG_ON(blk_queued_rq(rq
));
669 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
671 EXPORT_SYMBOL(blk_mq_requeue_request
);
673 static void blk_mq_requeue_work(struct work_struct
*work
)
675 struct request_queue
*q
=
676 container_of(work
, struct request_queue
, requeue_work
.work
);
678 struct request
*rq
, *next
;
680 spin_lock_irq(&q
->requeue_lock
);
681 list_splice_init(&q
->requeue_list
, &rq_list
);
682 spin_unlock_irq(&q
->requeue_lock
);
684 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
685 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
688 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
689 list_del_init(&rq
->queuelist
);
690 blk_mq_sched_insert_request(rq
, true, false, false, true);
693 while (!list_empty(&rq_list
)) {
694 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
695 list_del_init(&rq
->queuelist
);
696 blk_mq_sched_insert_request(rq
, false, false, false, true);
699 blk_mq_run_hw_queues(q
, false);
702 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
703 bool kick_requeue_list
)
705 struct request_queue
*q
= rq
->q
;
709 * We abuse this flag that is otherwise used by the I/O scheduler to
710 * request head insertion from the workqueue.
712 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
714 spin_lock_irqsave(&q
->requeue_lock
, flags
);
716 rq
->rq_flags
|= RQF_SOFTBARRIER
;
717 list_add(&rq
->queuelist
, &q
->requeue_list
);
719 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
721 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
723 if (kick_requeue_list
)
724 blk_mq_kick_requeue_list(q
);
726 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
728 void blk_mq_kick_requeue_list(struct request_queue
*q
)
730 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
732 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
734 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
738 msecs_to_jiffies(msecs
));
740 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
742 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
744 if (tag
< tags
->nr_tags
) {
745 prefetch(tags
->rqs
[tag
]);
746 return tags
->rqs
[tag
];
751 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
753 struct blk_mq_timeout_data
{
755 unsigned int next_set
;
758 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
760 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
761 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
769 * both flags will get cleared. So check here again, and ignore
770 * a timeout event with a request that isn't active.
772 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
776 ret
= ops
->timeout(req
, reserved
);
780 __blk_mq_complete_request(req
);
782 case BLK_EH_RESET_TIMER
:
784 blk_clear_rq_complete(req
);
786 case BLK_EH_NOT_HANDLED
:
789 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
794 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
795 struct request
*rq
, void *priv
, bool reserved
)
797 struct blk_mq_timeout_data
*data
= priv
;
798 unsigned long deadline
;
800 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
809 deadline
= READ_ONCE(rq
->deadline
);
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
824 if (time_after_eq(jiffies
, deadline
)) {
825 if (!blk_mark_rq_complete(rq
)) {
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
832 * (There's also the MB implied by the test_and_clear())
834 blk_mq_rq_timed_out(rq
, reserved
);
836 } else if (!data
->next_set
|| time_after(data
->next
, deadline
)) {
837 data
->next
= deadline
;
842 static void blk_mq_timeout_work(struct work_struct
*work
)
844 struct request_queue
*q
=
845 container_of(work
, struct request_queue
, timeout_work
);
846 struct blk_mq_timeout_data data
= {
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
861 * blk_freeze_queue_start, and the moment the last request is
862 * consumed, marked by the instant q_usage_counter reaches
865 if (!percpu_ref_tryget(&q
->q_usage_counter
))
868 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
871 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
872 mod_timer(&q
->timeout
, data
.next
);
874 struct blk_mq_hw_ctx
*hctx
;
876 queue_for_each_hw_ctx(q
, hctx
, i
) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx
))
879 blk_mq_tag_idle(hctx
);
885 struct flush_busy_ctx_data
{
886 struct blk_mq_hw_ctx
*hctx
;
887 struct list_head
*list
;
890 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
892 struct flush_busy_ctx_data
*flush_data
= data
;
893 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
894 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
896 sbitmap_clear_bit(sb
, bitnr
);
897 spin_lock(&ctx
->lock
);
898 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
899 spin_unlock(&ctx
->lock
);
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
909 struct flush_busy_ctx_data data
= {
914 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
918 struct dispatch_rq_data
{
919 struct blk_mq_hw_ctx
*hctx
;
923 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
926 struct dispatch_rq_data
*dispatch_data
= data
;
927 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
928 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
930 spin_lock(&ctx
->lock
);
931 if (unlikely(!list_empty(&ctx
->rq_list
))) {
932 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
933 list_del_init(&dispatch_data
->rq
->queuelist
);
934 if (list_empty(&ctx
->rq_list
))
935 sbitmap_clear_bit(sb
, bitnr
);
937 spin_unlock(&ctx
->lock
);
939 return !dispatch_data
->rq
;
942 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
943 struct blk_mq_ctx
*start
)
945 unsigned off
= start
? start
->index_hw
: 0;
946 struct dispatch_rq_data data
= {
951 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
952 dispatch_rq_from_ctx
, &data
);
957 static inline unsigned int queued_to_index(unsigned int queued
)
962 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
965 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
968 struct blk_mq_alloc_data data
= {
970 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
971 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
974 might_sleep_if(wait
);
979 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
980 data
.flags
|= BLK_MQ_REQ_RESERVED
;
982 rq
->tag
= blk_mq_get_tag(&data
);
984 if (blk_mq_tag_busy(data
.hctx
)) {
985 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
986 atomic_inc(&data
.hctx
->nr_active
);
988 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
994 return rq
->tag
!= -1;
997 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
998 int flags
, void *key
)
1000 struct blk_mq_hw_ctx
*hctx
;
1002 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1004 list_del_init(&wait
->entry
);
1005 blk_mq_run_hw_queue(hctx
, true);
1010 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1012 * restart. For both caes, take care to check the condition again after
1013 * marking us as waiting.
1015 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
**hctx
,
1018 struct blk_mq_hw_ctx
*this_hctx
= *hctx
;
1019 bool shared_tags
= (this_hctx
->flags
& BLK_MQ_F_TAG_SHARED
) != 0;
1020 struct sbq_wait_state
*ws
;
1021 wait_queue_entry_t
*wait
;
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
))
1026 set_bit(BLK_MQ_S_SCHED_RESTART
, &this_hctx
->state
);
1028 wait
= &this_hctx
->dispatch_wait
;
1029 if (!list_empty_careful(&wait
->entry
))
1032 spin_lock(&this_hctx
->lock
);
1033 if (!list_empty(&wait
->entry
)) {
1034 spin_unlock(&this_hctx
->lock
);
1038 ws
= bt_wait_ptr(&this_hctx
->tags
->bitmap_tags
, this_hctx
);
1039 add_wait_queue(&ws
->wait
, wait
);
1043 * It's possible that a tag was freed in the window between the
1044 * allocation failure and adding the hardware queue to the wait
1047 ret
= blk_mq_get_driver_tag(rq
, hctx
, false);
1051 * Don't clear RESTART here, someone else could have set it.
1052 * At most this will cost an extra queue run.
1057 spin_unlock(&this_hctx
->lock
);
1062 * We got a tag, remove ourselves from the wait queue to ensure
1063 * someone else gets the wakeup.
1065 spin_lock_irq(&ws
->wait
.lock
);
1066 list_del_init(&wait
->entry
);
1067 spin_unlock_irq(&ws
->wait
.lock
);
1068 spin_unlock(&this_hctx
->lock
);
1073 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1076 struct blk_mq_hw_ctx
*hctx
;
1077 struct request
*rq
, *nxt
;
1078 bool no_tag
= false;
1081 if (list_empty(list
))
1084 WARN_ON(!list_is_singular(list
) && got_budget
);
1087 * Now process all the entries, sending them to the driver.
1089 errors
= queued
= 0;
1091 struct blk_mq_queue_data bd
;
1094 rq
= list_first_entry(list
, struct request
, queuelist
);
1095 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
1097 * The initial allocation attempt failed, so we need to
1098 * rerun the hardware queue when a tag is freed. The
1099 * waitqueue takes care of that. If the queue is run
1100 * before we add this entry back on the dispatch list,
1101 * we'll re-run it below.
1103 if (!blk_mq_mark_tag_wait(&hctx
, rq
)) {
1105 blk_mq_put_dispatch_budget(hctx
);
1107 * For non-shared tags, the RESTART check
1110 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1116 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
)) {
1117 blk_mq_put_driver_tag(rq
);
1121 list_del_init(&rq
->queuelist
);
1126 * Flag last if we have no more requests, or if we have more
1127 * but can't assign a driver tag to it.
1129 if (list_empty(list
))
1132 nxt
= list_first_entry(list
, struct request
, queuelist
);
1133 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1136 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1137 if (ret
== BLK_STS_RESOURCE
) {
1139 * If an I/O scheduler has been configured and we got a
1140 * driver tag for the next request already, free it
1143 if (!list_empty(list
)) {
1144 nxt
= list_first_entry(list
, struct request
, queuelist
);
1145 blk_mq_put_driver_tag(nxt
);
1147 list_add(&rq
->queuelist
, list
);
1148 __blk_mq_requeue_request(rq
);
1152 if (unlikely(ret
!= BLK_STS_OK
)) {
1154 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1159 } while (!list_empty(list
));
1161 hctx
->dispatched
[queued_to_index(queued
)]++;
1164 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 * that is where we will continue on next queue run.
1167 if (!list_empty(list
)) {
1168 spin_lock(&hctx
->lock
);
1169 list_splice_init(list
, &hctx
->dispatch
);
1170 spin_unlock(&hctx
->lock
);
1173 * If SCHED_RESTART was set by the caller of this function and
1174 * it is no longer set that means that it was cleared by another
1175 * thread and hence that a queue rerun is needed.
1177 * If 'no_tag' is set, that means that we failed getting
1178 * a driver tag with an I/O scheduler attached. If our dispatch
1179 * waitqueue is no longer active, ensure that we run the queue
1180 * AFTER adding our entries back to the list.
1182 * If no I/O scheduler has been configured it is possible that
1183 * the hardware queue got stopped and restarted before requests
1184 * were pushed back onto the dispatch list. Rerun the queue to
1185 * avoid starvation. Notes:
1186 * - blk_mq_run_hw_queue() checks whether or not a queue has
1187 * been stopped before rerunning a queue.
1188 * - Some but not all block drivers stop a queue before
1189 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1192 if (!blk_mq_sched_needs_restart(hctx
) ||
1193 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1194 blk_mq_run_hw_queue(hctx
, true);
1197 return (queued
+ errors
) != 0;
1200 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1205 * We should be running this queue from one of the CPUs that
1208 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1209 cpu_online(hctx
->next_cpu
));
1212 * We can't run the queue inline with ints disabled. Ensure that
1213 * we catch bad users of this early.
1215 WARN_ON_ONCE(in_interrupt());
1217 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1219 blk_mq_sched_dispatch_requests(hctx
);
1224 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1225 blk_mq_sched_dispatch_requests(hctx
);
1226 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1231 * It'd be great if the workqueue API had a way to pass
1232 * in a mask and had some smarts for more clever placement.
1233 * For now we just round-robin here, switching for every
1234 * BLK_MQ_CPU_WORK_BATCH queued items.
1236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1238 if (hctx
->queue
->nr_hw_queues
== 1)
1239 return WORK_CPU_UNBOUND
;
1241 if (--hctx
->next_cpu_batch
<= 0) {
1244 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1245 if (next_cpu
>= nr_cpu_ids
)
1246 next_cpu
= cpumask_first(hctx
->cpumask
);
1248 hctx
->next_cpu
= next_cpu
;
1249 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1252 return hctx
->next_cpu
;
1255 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1256 unsigned long msecs
)
1258 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1261 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1264 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1265 int cpu
= get_cpu();
1266 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1267 __blk_mq_run_hw_queue(hctx
);
1275 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1277 msecs_to_jiffies(msecs
));
1280 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1282 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1284 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1286 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1288 if (blk_mq_hctx_has_pending(hctx
)) {
1289 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1295 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1297 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1299 struct blk_mq_hw_ctx
*hctx
;
1302 queue_for_each_hw_ctx(q
, hctx
, i
) {
1303 if (blk_mq_hctx_stopped(hctx
))
1306 blk_mq_run_hw_queue(hctx
, async
);
1309 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1312 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1313 * @q: request queue.
1315 * The caller is responsible for serializing this function against
1316 * blk_mq_{start,stop}_hw_queue().
1318 bool blk_mq_queue_stopped(struct request_queue
*q
)
1320 struct blk_mq_hw_ctx
*hctx
;
1323 queue_for_each_hw_ctx(q
, hctx
, i
)
1324 if (blk_mq_hctx_stopped(hctx
))
1329 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1332 * This function is often used for pausing .queue_rq() by driver when
1333 * there isn't enough resource or some conditions aren't satisfied, and
1334 * BLK_STS_RESOURCE is usually returned.
1336 * We do not guarantee that dispatch can be drained or blocked
1337 * after blk_mq_stop_hw_queue() returns. Please use
1338 * blk_mq_quiesce_queue() for that requirement.
1340 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1342 cancel_delayed_work(&hctx
->run_work
);
1344 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1346 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1349 * This function is often used for pausing .queue_rq() by driver when
1350 * there isn't enough resource or some conditions aren't satisfied, and
1351 * BLK_STS_RESOURCE is usually returned.
1353 * We do not guarantee that dispatch can be drained or blocked
1354 * after blk_mq_stop_hw_queues() returns. Please use
1355 * blk_mq_quiesce_queue() for that requirement.
1357 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1359 struct blk_mq_hw_ctx
*hctx
;
1362 queue_for_each_hw_ctx(q
, hctx
, i
)
1363 blk_mq_stop_hw_queue(hctx
);
1365 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1367 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1369 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1371 blk_mq_run_hw_queue(hctx
, false);
1373 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1375 void blk_mq_start_hw_queues(struct request_queue
*q
)
1377 struct blk_mq_hw_ctx
*hctx
;
1380 queue_for_each_hw_ctx(q
, hctx
, i
)
1381 blk_mq_start_hw_queue(hctx
);
1383 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1385 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1387 if (!blk_mq_hctx_stopped(hctx
))
1390 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1391 blk_mq_run_hw_queue(hctx
, async
);
1393 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1395 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1397 struct blk_mq_hw_ctx
*hctx
;
1400 queue_for_each_hw_ctx(q
, hctx
, i
)
1401 blk_mq_start_stopped_hw_queue(hctx
, async
);
1403 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1405 static void blk_mq_run_work_fn(struct work_struct
*work
)
1407 struct blk_mq_hw_ctx
*hctx
;
1409 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1412 * If we are stopped, don't run the queue. The exception is if
1413 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1414 * the STOPPED bit and run it.
1416 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1417 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1420 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1421 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1424 __blk_mq_run_hw_queue(hctx
);
1428 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1430 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1434 * Stop the hw queue, then modify currently delayed work.
1435 * This should prevent us from running the queue prematurely.
1436 * Mark the queue as auto-clearing STOPPED when it runs.
1438 blk_mq_stop_hw_queue(hctx
);
1439 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1440 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1442 msecs_to_jiffies(msecs
));
1444 EXPORT_SYMBOL(blk_mq_delay_queue
);
1446 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1450 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1452 lockdep_assert_held(&ctx
->lock
);
1454 trace_block_rq_insert(hctx
->queue
, rq
);
1457 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1459 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1462 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1465 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1467 lockdep_assert_held(&ctx
->lock
);
1469 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1470 blk_mq_hctx_mark_pending(hctx
, ctx
);
1474 * Should only be used carefully, when the caller knows we want to
1475 * bypass a potential IO scheduler on the target device.
1477 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1479 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1480 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1482 spin_lock(&hctx
->lock
);
1483 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1484 spin_unlock(&hctx
->lock
);
1487 blk_mq_run_hw_queue(hctx
, false);
1490 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1491 struct list_head
*list
)
1495 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1498 spin_lock(&ctx
->lock
);
1499 while (!list_empty(list
)) {
1502 rq
= list_first_entry(list
, struct request
, queuelist
);
1503 BUG_ON(rq
->mq_ctx
!= ctx
);
1504 list_del_init(&rq
->queuelist
);
1505 __blk_mq_insert_req_list(hctx
, rq
, false);
1507 blk_mq_hctx_mark_pending(hctx
, ctx
);
1508 spin_unlock(&ctx
->lock
);
1511 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1513 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1514 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1516 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1517 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1518 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1521 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1523 struct blk_mq_ctx
*this_ctx
;
1524 struct request_queue
*this_q
;
1527 LIST_HEAD(ctx_list
);
1530 list_splice_init(&plug
->mq_list
, &list
);
1532 list_sort(NULL
, &list
, plug_ctx_cmp
);
1538 while (!list_empty(&list
)) {
1539 rq
= list_entry_rq(list
.next
);
1540 list_del_init(&rq
->queuelist
);
1542 if (rq
->mq_ctx
!= this_ctx
) {
1544 trace_block_unplug(this_q
, depth
, from_schedule
);
1545 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1550 this_ctx
= rq
->mq_ctx
;
1556 list_add_tail(&rq
->queuelist
, &ctx_list
);
1560 * If 'this_ctx' is set, we know we have entries to complete
1561 * on 'ctx_list'. Do those.
1564 trace_block_unplug(this_q
, depth
, from_schedule
);
1565 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1570 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1572 blk_init_request_from_bio(rq
, bio
);
1574 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1576 blk_account_io_start(rq
, true);
1579 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx
*hctx
,
1580 struct blk_mq_ctx
*ctx
,
1583 spin_lock(&ctx
->lock
);
1584 __blk_mq_insert_request(hctx
, rq
, false);
1585 spin_unlock(&ctx
->lock
);
1588 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1591 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1593 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1596 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1598 blk_qc_t
*cookie
, bool may_sleep
)
1600 struct request_queue
*q
= rq
->q
;
1601 struct blk_mq_queue_data bd
= {
1605 blk_qc_t new_cookie
;
1607 bool run_queue
= true;
1609 /* RCU or SRCU read lock is needed before checking quiesced flag */
1610 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1618 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1621 if (!blk_mq_get_dispatch_budget(hctx
)) {
1622 blk_mq_put_driver_tag(rq
);
1626 new_cookie
= request_to_qc_t(hctx
, rq
);
1629 * For OK queue, we are done. For error, kill it. Any other
1630 * error (busy), just add it to our list as we previously
1633 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1636 *cookie
= new_cookie
;
1638 case BLK_STS_RESOURCE
:
1639 __blk_mq_requeue_request(rq
);
1642 *cookie
= BLK_QC_T_NONE
;
1643 blk_mq_end_request(rq
, ret
);
1648 blk_mq_sched_insert_request(rq
, false, run_queue
, false, may_sleep
);
1651 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1652 struct request
*rq
, blk_qc_t
*cookie
)
1654 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1656 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1659 unsigned int srcu_idx
;
1663 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1664 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, true);
1665 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1669 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1671 const int is_sync
= op_is_sync(bio
->bi_opf
);
1672 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1673 struct blk_mq_alloc_data data
= { .flags
= 0 };
1675 unsigned int request_count
= 0;
1676 struct blk_plug
*plug
;
1677 struct request
*same_queue_rq
= NULL
;
1679 unsigned int wb_acct
;
1681 blk_queue_bounce(q
, &bio
);
1683 blk_queue_split(q
, &bio
);
1685 if (!bio_integrity_prep(bio
))
1686 return BLK_QC_T_NONE
;
1688 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1689 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1690 return BLK_QC_T_NONE
;
1692 if (blk_mq_sched_bio_merge(q
, bio
))
1693 return BLK_QC_T_NONE
;
1695 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1697 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1699 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1700 if (unlikely(!rq
)) {
1701 __wbt_done(q
->rq_wb
, wb_acct
);
1702 if (bio
->bi_opf
& REQ_NOWAIT
)
1703 bio_wouldblock_error(bio
);
1704 return BLK_QC_T_NONE
;
1707 wbt_track(&rq
->issue_stat
, wb_acct
);
1709 cookie
= request_to_qc_t(data
.hctx
, rq
);
1711 plug
= current
->plug
;
1712 if (unlikely(is_flush_fua
)) {
1713 blk_mq_put_ctx(data
.ctx
);
1714 blk_mq_bio_to_request(rq
, bio
);
1716 /* bypass scheduler for flush rq */
1717 blk_insert_flush(rq
);
1718 blk_mq_run_hw_queue(data
.hctx
, true);
1719 } else if (plug
&& q
->nr_hw_queues
== 1) {
1720 struct request
*last
= NULL
;
1722 blk_mq_put_ctx(data
.ctx
);
1723 blk_mq_bio_to_request(rq
, bio
);
1726 * @request_count may become stale because of schedule
1727 * out, so check the list again.
1729 if (list_empty(&plug
->mq_list
))
1731 else if (blk_queue_nomerges(q
))
1732 request_count
= blk_plug_queued_count(q
);
1735 trace_block_plug(q
);
1737 last
= list_entry_rq(plug
->mq_list
.prev
);
1739 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1740 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1741 blk_flush_plug_list(plug
, false);
1742 trace_block_plug(q
);
1745 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1746 } else if (plug
&& !blk_queue_nomerges(q
)) {
1747 blk_mq_bio_to_request(rq
, bio
);
1750 * We do limited plugging. If the bio can be merged, do that.
1751 * Otherwise the existing request in the plug list will be
1752 * issued. So the plug list will have one request at most
1753 * The plug list might get flushed before this. If that happens,
1754 * the plug list is empty, and same_queue_rq is invalid.
1756 if (list_empty(&plug
->mq_list
))
1757 same_queue_rq
= NULL
;
1759 list_del_init(&same_queue_rq
->queuelist
);
1760 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1762 blk_mq_put_ctx(data
.ctx
);
1764 if (same_queue_rq
) {
1765 data
.hctx
= blk_mq_map_queue(q
,
1766 same_queue_rq
->mq_ctx
->cpu
);
1767 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1770 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1771 blk_mq_put_ctx(data
.ctx
);
1772 blk_mq_bio_to_request(rq
, bio
);
1773 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1774 } else if (q
->elevator
) {
1775 blk_mq_put_ctx(data
.ctx
);
1776 blk_mq_bio_to_request(rq
, bio
);
1777 blk_mq_sched_insert_request(rq
, false, true, true, true);
1779 blk_mq_put_ctx(data
.ctx
);
1780 blk_mq_bio_to_request(rq
, bio
);
1781 blk_mq_queue_io(data
.hctx
, data
.ctx
, rq
);
1782 blk_mq_run_hw_queue(data
.hctx
, true);
1788 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1789 unsigned int hctx_idx
)
1793 if (tags
->rqs
&& set
->ops
->exit_request
) {
1796 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1797 struct request
*rq
= tags
->static_rqs
[i
];
1801 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1802 tags
->static_rqs
[i
] = NULL
;
1806 while (!list_empty(&tags
->page_list
)) {
1807 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1808 list_del_init(&page
->lru
);
1810 * Remove kmemleak object previously allocated in
1811 * blk_mq_init_rq_map().
1813 kmemleak_free(page_address(page
));
1814 __free_pages(page
, page
->private);
1818 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1822 kfree(tags
->static_rqs
);
1823 tags
->static_rqs
= NULL
;
1825 blk_mq_free_tags(tags
);
1828 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1829 unsigned int hctx_idx
,
1830 unsigned int nr_tags
,
1831 unsigned int reserved_tags
)
1833 struct blk_mq_tags
*tags
;
1836 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1837 if (node
== NUMA_NO_NODE
)
1838 node
= set
->numa_node
;
1840 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1841 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1845 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1846 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1849 blk_mq_free_tags(tags
);
1853 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1854 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1856 if (!tags
->static_rqs
) {
1858 blk_mq_free_tags(tags
);
1865 static size_t order_to_size(unsigned int order
)
1867 return (size_t)PAGE_SIZE
<< order
;
1870 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1871 unsigned int hctx_idx
, unsigned int depth
)
1873 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1874 size_t rq_size
, left
;
1877 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1878 if (node
== NUMA_NO_NODE
)
1879 node
= set
->numa_node
;
1881 INIT_LIST_HEAD(&tags
->page_list
);
1884 * rq_size is the size of the request plus driver payload, rounded
1885 * to the cacheline size
1887 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1889 left
= rq_size
* depth
;
1891 for (i
= 0; i
< depth
; ) {
1892 int this_order
= max_order
;
1897 while (this_order
&& left
< order_to_size(this_order
- 1))
1901 page
= alloc_pages_node(node
,
1902 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1908 if (order_to_size(this_order
) < rq_size
)
1915 page
->private = this_order
;
1916 list_add_tail(&page
->lru
, &tags
->page_list
);
1918 p
= page_address(page
);
1920 * Allow kmemleak to scan these pages as they contain pointers
1921 * to additional allocations like via ops->init_request().
1923 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1924 entries_per_page
= order_to_size(this_order
) / rq_size
;
1925 to_do
= min(entries_per_page
, depth
- i
);
1926 left
-= to_do
* rq_size
;
1927 for (j
= 0; j
< to_do
; j
++) {
1928 struct request
*rq
= p
;
1930 tags
->static_rqs
[i
] = rq
;
1931 if (set
->ops
->init_request
) {
1932 if (set
->ops
->init_request(set
, rq
, hctx_idx
,
1934 tags
->static_rqs
[i
] = NULL
;
1946 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1951 * 'cpu' is going away. splice any existing rq_list entries from this
1952 * software queue to the hw queue dispatch list, and ensure that it
1955 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1957 struct blk_mq_hw_ctx
*hctx
;
1958 struct blk_mq_ctx
*ctx
;
1961 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1962 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1964 spin_lock(&ctx
->lock
);
1965 if (!list_empty(&ctx
->rq_list
)) {
1966 list_splice_init(&ctx
->rq_list
, &tmp
);
1967 blk_mq_hctx_clear_pending(hctx
, ctx
);
1969 spin_unlock(&ctx
->lock
);
1971 if (list_empty(&tmp
))
1974 spin_lock(&hctx
->lock
);
1975 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1976 spin_unlock(&hctx
->lock
);
1978 blk_mq_run_hw_queue(hctx
, true);
1982 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1984 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1988 /* hctx->ctxs will be freed in queue's release handler */
1989 static void blk_mq_exit_hctx(struct request_queue
*q
,
1990 struct blk_mq_tag_set
*set
,
1991 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1993 blk_mq_debugfs_unregister_hctx(hctx
);
1995 blk_mq_tag_idle(hctx
);
1997 if (set
->ops
->exit_request
)
1998 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2000 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2002 if (set
->ops
->exit_hctx
)
2003 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2005 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2006 cleanup_srcu_struct(hctx
->queue_rq_srcu
);
2008 blk_mq_remove_cpuhp(hctx
);
2009 blk_free_flush_queue(hctx
->fq
);
2010 sbitmap_free(&hctx
->ctx_map
);
2013 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2014 struct blk_mq_tag_set
*set
, int nr_queue
)
2016 struct blk_mq_hw_ctx
*hctx
;
2019 queue_for_each_hw_ctx(q
, hctx
, i
) {
2022 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2026 static int blk_mq_init_hctx(struct request_queue
*q
,
2027 struct blk_mq_tag_set
*set
,
2028 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2032 node
= hctx
->numa_node
;
2033 if (node
== NUMA_NO_NODE
)
2034 node
= hctx
->numa_node
= set
->numa_node
;
2036 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2037 spin_lock_init(&hctx
->lock
);
2038 INIT_LIST_HEAD(&hctx
->dispatch
);
2040 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2042 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2044 hctx
->tags
= set
->tags
[hctx_idx
];
2047 * Allocate space for all possible cpus to avoid allocation at
2050 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2053 goto unregister_cpu_notifier
;
2055 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2061 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2062 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2064 if (set
->ops
->init_hctx
&&
2065 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2068 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2071 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2073 goto sched_exit_hctx
;
2075 if (set
->ops
->init_request
&&
2076 set
->ops
->init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2080 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2081 init_srcu_struct(hctx
->queue_rq_srcu
);
2083 blk_mq_debugfs_register_hctx(q
, hctx
);
2090 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2092 if (set
->ops
->exit_hctx
)
2093 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2095 sbitmap_free(&hctx
->ctx_map
);
2098 unregister_cpu_notifier
:
2099 blk_mq_remove_cpuhp(hctx
);
2103 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2104 unsigned int nr_hw_queues
)
2108 for_each_possible_cpu(i
) {
2109 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2110 struct blk_mq_hw_ctx
*hctx
;
2113 spin_lock_init(&__ctx
->lock
);
2114 INIT_LIST_HEAD(&__ctx
->rq_list
);
2117 /* If the cpu isn't present, the cpu is mapped to first hctx */
2118 if (!cpu_present(i
))
2121 hctx
= blk_mq_map_queue(q
, i
);
2124 * Set local node, IFF we have more than one hw queue. If
2125 * not, we remain on the home node of the device
2127 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2128 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2132 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2136 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2137 set
->queue_depth
, set
->reserved_tags
);
2138 if (!set
->tags
[hctx_idx
])
2141 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2146 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2147 set
->tags
[hctx_idx
] = NULL
;
2151 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2152 unsigned int hctx_idx
)
2154 if (set
->tags
[hctx_idx
]) {
2155 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2156 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2157 set
->tags
[hctx_idx
] = NULL
;
2161 static void blk_mq_map_swqueue(struct request_queue
*q
)
2163 unsigned int i
, hctx_idx
;
2164 struct blk_mq_hw_ctx
*hctx
;
2165 struct blk_mq_ctx
*ctx
;
2166 struct blk_mq_tag_set
*set
= q
->tag_set
;
2169 * Avoid others reading imcomplete hctx->cpumask through sysfs
2171 mutex_lock(&q
->sysfs_lock
);
2173 queue_for_each_hw_ctx(q
, hctx
, i
) {
2174 cpumask_clear(hctx
->cpumask
);
2179 * Map software to hardware queues.
2181 * If the cpu isn't present, the cpu is mapped to first hctx.
2183 for_each_present_cpu(i
) {
2184 hctx_idx
= q
->mq_map
[i
];
2185 /* unmapped hw queue can be remapped after CPU topo changed */
2186 if (!set
->tags
[hctx_idx
] &&
2187 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2189 * If tags initialization fail for some hctx,
2190 * that hctx won't be brought online. In this
2191 * case, remap the current ctx to hctx[0] which
2192 * is guaranteed to always have tags allocated
2197 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2198 hctx
= blk_mq_map_queue(q
, i
);
2200 cpumask_set_cpu(i
, hctx
->cpumask
);
2201 ctx
->index_hw
= hctx
->nr_ctx
;
2202 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2205 mutex_unlock(&q
->sysfs_lock
);
2207 queue_for_each_hw_ctx(q
, hctx
, i
) {
2209 * If no software queues are mapped to this hardware queue,
2210 * disable it and free the request entries.
2212 if (!hctx
->nr_ctx
) {
2213 /* Never unmap queue 0. We need it as a
2214 * fallback in case of a new remap fails
2217 if (i
&& set
->tags
[i
])
2218 blk_mq_free_map_and_requests(set
, i
);
2224 hctx
->tags
= set
->tags
[i
];
2225 WARN_ON(!hctx
->tags
);
2228 * Set the map size to the number of mapped software queues.
2229 * This is more accurate and more efficient than looping
2230 * over all possibly mapped software queues.
2232 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2235 * Initialize batch roundrobin counts
2237 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2238 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2243 * Caller needs to ensure that we're either frozen/quiesced, or that
2244 * the queue isn't live yet.
2246 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2248 struct blk_mq_hw_ctx
*hctx
;
2251 queue_for_each_hw_ctx(q
, hctx
, i
) {
2253 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2254 atomic_inc(&q
->shared_hctx_restart
);
2255 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2257 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2258 atomic_dec(&q
->shared_hctx_restart
);
2259 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2264 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2267 struct request_queue
*q
;
2269 lockdep_assert_held(&set
->tag_list_lock
);
2271 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2272 blk_mq_freeze_queue(q
);
2273 queue_set_hctx_shared(q
, shared
);
2274 blk_mq_unfreeze_queue(q
);
2278 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2280 struct blk_mq_tag_set
*set
= q
->tag_set
;
2282 mutex_lock(&set
->tag_list_lock
);
2283 list_del_rcu(&q
->tag_set_list
);
2284 INIT_LIST_HEAD(&q
->tag_set_list
);
2285 if (list_is_singular(&set
->tag_list
)) {
2286 /* just transitioned to unshared */
2287 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2288 /* update existing queue */
2289 blk_mq_update_tag_set_depth(set
, false);
2291 mutex_unlock(&set
->tag_list_lock
);
2296 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2297 struct request_queue
*q
)
2301 mutex_lock(&set
->tag_list_lock
);
2304 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2306 if (!list_empty(&set
->tag_list
) &&
2307 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2308 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2309 /* update existing queue */
2310 blk_mq_update_tag_set_depth(set
, true);
2312 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2313 queue_set_hctx_shared(q
, true);
2314 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2316 mutex_unlock(&set
->tag_list_lock
);
2320 * It is the actual release handler for mq, but we do it from
2321 * request queue's release handler for avoiding use-after-free
2322 * and headache because q->mq_kobj shouldn't have been introduced,
2323 * but we can't group ctx/kctx kobj without it.
2325 void blk_mq_release(struct request_queue
*q
)
2327 struct blk_mq_hw_ctx
*hctx
;
2330 /* hctx kobj stays in hctx */
2331 queue_for_each_hw_ctx(q
, hctx
, i
) {
2334 kobject_put(&hctx
->kobj
);
2339 kfree(q
->queue_hw_ctx
);
2342 * release .mq_kobj and sw queue's kobject now because
2343 * both share lifetime with request queue.
2345 blk_mq_sysfs_deinit(q
);
2347 free_percpu(q
->queue_ctx
);
2350 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2352 struct request_queue
*uninit_q
, *q
;
2354 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2356 return ERR_PTR(-ENOMEM
);
2358 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2360 blk_cleanup_queue(uninit_q
);
2364 EXPORT_SYMBOL(blk_mq_init_queue
);
2366 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2368 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2370 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, queue_rq_srcu
),
2371 __alignof__(struct blk_mq_hw_ctx
)) !=
2372 sizeof(struct blk_mq_hw_ctx
));
2374 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2375 hw_ctx_size
+= sizeof(struct srcu_struct
);
2380 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2381 struct request_queue
*q
)
2384 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2386 blk_mq_sysfs_unregister(q
);
2387 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2393 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2394 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2399 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2406 atomic_set(&hctxs
[i
]->nr_active
, 0);
2407 hctxs
[i
]->numa_node
= node
;
2408 hctxs
[i
]->queue_num
= i
;
2410 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2411 free_cpumask_var(hctxs
[i
]->cpumask
);
2416 blk_mq_hctx_kobj_init(hctxs
[i
]);
2418 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2419 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2423 blk_mq_free_map_and_requests(set
, j
);
2424 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2425 kobject_put(&hctx
->kobj
);
2430 q
->nr_hw_queues
= i
;
2431 blk_mq_sysfs_register(q
);
2434 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2435 struct request_queue
*q
)
2437 /* mark the queue as mq asap */
2438 q
->mq_ops
= set
->ops
;
2440 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2441 blk_mq_poll_stats_bkt
,
2442 BLK_MQ_POLL_STATS_BKTS
, q
);
2446 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2450 /* init q->mq_kobj and sw queues' kobjects */
2451 blk_mq_sysfs_init(q
);
2453 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2454 GFP_KERNEL
, set
->numa_node
);
2455 if (!q
->queue_hw_ctx
)
2458 q
->mq_map
= set
->mq_map
;
2460 blk_mq_realloc_hw_ctxs(set
, q
);
2461 if (!q
->nr_hw_queues
)
2464 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2465 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2467 q
->nr_queues
= nr_cpu_ids
;
2469 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2471 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2472 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2474 q
->sg_reserved_size
= INT_MAX
;
2476 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2477 INIT_LIST_HEAD(&q
->requeue_list
);
2478 spin_lock_init(&q
->requeue_lock
);
2480 blk_queue_make_request(q
, blk_mq_make_request
);
2481 if (q
->mq_ops
->poll
)
2482 q
->poll_fn
= blk_mq_poll
;
2485 * Do this after blk_queue_make_request() overrides it...
2487 q
->nr_requests
= set
->queue_depth
;
2490 * Default to classic polling
2494 if (set
->ops
->complete
)
2495 blk_queue_softirq_done(q
, set
->ops
->complete
);
2497 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2498 blk_mq_add_queue_tag_set(set
, q
);
2499 blk_mq_map_swqueue(q
);
2501 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2504 ret
= blk_mq_sched_init(q
);
2506 return ERR_PTR(ret
);
2512 kfree(q
->queue_hw_ctx
);
2514 free_percpu(q
->queue_ctx
);
2517 return ERR_PTR(-ENOMEM
);
2519 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2521 void blk_mq_free_queue(struct request_queue
*q
)
2523 struct blk_mq_tag_set
*set
= q
->tag_set
;
2525 blk_mq_del_queue_tag_set(q
);
2526 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2529 /* Basically redo blk_mq_init_queue with queue frozen */
2530 static void blk_mq_queue_reinit(struct request_queue
*q
)
2532 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2534 blk_mq_debugfs_unregister_hctxs(q
);
2535 blk_mq_sysfs_unregister(q
);
2538 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2539 * we should change hctx numa_node according to the new topology (this
2540 * involves freeing and re-allocating memory, worth doing?)
2542 blk_mq_map_swqueue(q
);
2544 blk_mq_sysfs_register(q
);
2545 blk_mq_debugfs_register_hctxs(q
);
2548 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2552 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2553 if (!__blk_mq_alloc_rq_map(set
, i
))
2560 blk_mq_free_rq_map(set
->tags
[i
]);
2566 * Allocate the request maps associated with this tag_set. Note that this
2567 * may reduce the depth asked for, if memory is tight. set->queue_depth
2568 * will be updated to reflect the allocated depth.
2570 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2575 depth
= set
->queue_depth
;
2577 err
= __blk_mq_alloc_rq_maps(set
);
2581 set
->queue_depth
>>= 1;
2582 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2586 } while (set
->queue_depth
);
2588 if (!set
->queue_depth
|| err
) {
2589 pr_err("blk-mq: failed to allocate request map\n");
2593 if (depth
!= set
->queue_depth
)
2594 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2595 depth
, set
->queue_depth
);
2600 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2602 if (set
->ops
->map_queues
)
2603 return set
->ops
->map_queues(set
);
2605 return blk_mq_map_queues(set
);
2609 * Alloc a tag set to be associated with one or more request queues.
2610 * May fail with EINVAL for various error conditions. May adjust the
2611 * requested depth down, if if it too large. In that case, the set
2612 * value will be stored in set->queue_depth.
2614 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2618 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2620 if (!set
->nr_hw_queues
)
2622 if (!set
->queue_depth
)
2624 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2627 if (!set
->ops
->queue_rq
)
2630 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2633 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2634 pr_info("blk-mq: reduced tag depth to %u\n",
2636 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2640 * If a crashdump is active, then we are potentially in a very
2641 * memory constrained environment. Limit us to 1 queue and
2642 * 64 tags to prevent using too much memory.
2644 if (is_kdump_kernel()) {
2645 set
->nr_hw_queues
= 1;
2646 set
->queue_depth
= min(64U, set
->queue_depth
);
2649 * There is no use for more h/w queues than cpus.
2651 if (set
->nr_hw_queues
> nr_cpu_ids
)
2652 set
->nr_hw_queues
= nr_cpu_ids
;
2654 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2655 GFP_KERNEL
, set
->numa_node
);
2660 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2661 GFP_KERNEL
, set
->numa_node
);
2665 ret
= blk_mq_update_queue_map(set
);
2667 goto out_free_mq_map
;
2669 ret
= blk_mq_alloc_rq_maps(set
);
2671 goto out_free_mq_map
;
2673 mutex_init(&set
->tag_list_lock
);
2674 INIT_LIST_HEAD(&set
->tag_list
);
2686 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2688 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2692 for (i
= 0; i
< nr_cpu_ids
; i
++)
2693 blk_mq_free_map_and_requests(set
, i
);
2701 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2703 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2705 struct blk_mq_tag_set
*set
= q
->tag_set
;
2706 struct blk_mq_hw_ctx
*hctx
;
2712 blk_mq_freeze_queue(q
);
2715 queue_for_each_hw_ctx(q
, hctx
, i
) {
2719 * If we're using an MQ scheduler, just update the scheduler
2720 * queue depth. This is similar to what the old code would do.
2722 if (!hctx
->sched_tags
) {
2723 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2726 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2734 q
->nr_requests
= nr
;
2736 blk_mq_unfreeze_queue(q
);
2741 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2744 struct request_queue
*q
;
2746 lockdep_assert_held(&set
->tag_list_lock
);
2748 if (nr_hw_queues
> nr_cpu_ids
)
2749 nr_hw_queues
= nr_cpu_ids
;
2750 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2753 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2754 blk_mq_freeze_queue(q
);
2756 set
->nr_hw_queues
= nr_hw_queues
;
2757 blk_mq_update_queue_map(set
);
2758 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2759 blk_mq_realloc_hw_ctxs(set
, q
);
2760 blk_mq_queue_reinit(q
);
2763 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2764 blk_mq_unfreeze_queue(q
);
2767 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2769 mutex_lock(&set
->tag_list_lock
);
2770 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2771 mutex_unlock(&set
->tag_list_lock
);
2773 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2775 /* Enable polling stats and return whether they were already enabled. */
2776 static bool blk_poll_stats_enable(struct request_queue
*q
)
2778 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2779 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
2781 blk_stat_add_callback(q
, q
->poll_cb
);
2785 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2788 * We don't arm the callback if polling stats are not enabled or the
2789 * callback is already active.
2791 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2792 blk_stat_is_active(q
->poll_cb
))
2795 blk_stat_activate_msecs(q
->poll_cb
, 100);
2798 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2800 struct request_queue
*q
= cb
->data
;
2803 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2804 if (cb
->stat
[bucket
].nr_samples
)
2805 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2809 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2810 struct blk_mq_hw_ctx
*hctx
,
2813 unsigned long ret
= 0;
2817 * If stats collection isn't on, don't sleep but turn it on for
2820 if (!blk_poll_stats_enable(q
))
2824 * As an optimistic guess, use half of the mean service time
2825 * for this type of request. We can (and should) make this smarter.
2826 * For instance, if the completion latencies are tight, we can
2827 * get closer than just half the mean. This is especially
2828 * important on devices where the completion latencies are longer
2829 * than ~10 usec. We do use the stats for the relevant IO size
2830 * if available which does lead to better estimates.
2832 bucket
= blk_mq_poll_stats_bkt(rq
);
2836 if (q
->poll_stat
[bucket
].nr_samples
)
2837 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2842 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2843 struct blk_mq_hw_ctx
*hctx
,
2846 struct hrtimer_sleeper hs
;
2847 enum hrtimer_mode mode
;
2851 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2857 * -1: don't ever hybrid sleep
2858 * 0: use half of prev avg
2859 * >0: use this specific value
2861 if (q
->poll_nsec
== -1)
2863 else if (q
->poll_nsec
> 0)
2864 nsecs
= q
->poll_nsec
;
2866 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2871 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2874 * This will be replaced with the stats tracking code, using
2875 * 'avg_completion_time / 2' as the pre-sleep target.
2879 mode
= HRTIMER_MODE_REL
;
2880 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2881 hrtimer_set_expires(&hs
.timer
, kt
);
2883 hrtimer_init_sleeper(&hs
, current
);
2885 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2887 set_current_state(TASK_UNINTERRUPTIBLE
);
2888 hrtimer_start_expires(&hs
.timer
, mode
);
2891 hrtimer_cancel(&hs
.timer
);
2892 mode
= HRTIMER_MODE_ABS
;
2893 } while (hs
.task
&& !signal_pending(current
));
2895 __set_current_state(TASK_RUNNING
);
2896 destroy_hrtimer_on_stack(&hs
.timer
);
2900 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2902 struct request_queue
*q
= hctx
->queue
;
2906 * If we sleep, have the caller restart the poll loop to reset
2907 * the state. Like for the other success return cases, the
2908 * caller is responsible for checking if the IO completed. If
2909 * the IO isn't complete, we'll get called again and will go
2910 * straight to the busy poll loop.
2912 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2915 hctx
->poll_considered
++;
2917 state
= current
->state
;
2918 while (!need_resched()) {
2921 hctx
->poll_invoked
++;
2923 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2925 hctx
->poll_success
++;
2926 set_current_state(TASK_RUNNING
);
2930 if (signal_pending_state(state
, current
))
2931 set_current_state(TASK_RUNNING
);
2933 if (current
->state
== TASK_RUNNING
)
2943 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2945 struct blk_mq_hw_ctx
*hctx
;
2948 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2951 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2952 if (!blk_qc_t_is_internal(cookie
))
2953 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2955 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2957 * With scheduling, if the request has completed, we'll
2958 * get a NULL return here, as we clear the sched tag when
2959 * that happens. The request still remains valid, like always,
2960 * so we should be safe with just the NULL check.
2966 return __blk_mq_poll(hctx
, rq
);
2969 static int __init
blk_mq_init(void)
2972 * See comment in block/blk.h rq_atomic_flags enum
2974 BUILD_BUG_ON((REQ_ATOM_STARTED
/ BITS_PER_BYTE
) !=
2975 (REQ_ATOM_COMPLETE
/ BITS_PER_BYTE
));
2977 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2978 blk_mq_hctx_notify_dead
);
2981 subsys_initcall(blk_mq_init
);