1 <?xml version=
"1.0" encoding=
"UTF-8"?>
2 <!DOCTYPE book PUBLIC
"-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []
>
5 <!-- ****************************************************** -->
7 <!-- ****************************************************** -->
8 <book id=
"Writing-an-ALSA-Driver">
10 <title>Writing an ALSA Driver
</title>
12 <firstname>Takashi
</firstname>
13 <surname>Iwai
</surname>
16 <email>tiwai@suse.de
</email>
21 <date>Oct
15,
2007</date>
22 <edition>0.3.7</edition>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
33 Copyright (c)
2002-
2005 Takashi Iwai
<email>tiwai@suse.de
</email>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version
2 of the License, or
40 (at your option) any later version.
44 This document is distributed in the hope that it will be useful,
45 but
<emphasis>WITHOUT ANY WARRANTY
</emphasis>; without even the
46 implied warranty of
<emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE
</emphasis>. See the GNU General Public License
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc.,
59 Temple Place, Suite
330, Boston,
61 <!-- ****************************************************** -->
63 <!-- ****************************************************** -->
64 <preface id=
"preface">
65 <title>Preface
</title>
67 This document describes how to write an
68 <ulink url=
"http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)
</citetitle></ulink>
70 driver. The document focuses mainly on PCI soundcards.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
78 This document targets people who already have enough
79 C language skills and have basic linux kernel programming
80 knowledge. This document doesn't explain the general
81 topic of linux kernel coding and doesn't cover low-level
82 driver implementation details. It only describes
83 the standard way to write a PCI sound driver on ALSA.
87 If you are already familiar with the older ALSA ver
.0.5.x API, you
88 can check the drivers such as
<filename>sound/pci/es1938.c
</filename> or
89 <filename>sound/pci/maestro3.c
</filename> which have also almost the same
90 code-base in the ALSA
0.5.x tree, so you can compare the differences.
94 This document is still a draft version. Any feedback and
100 <!-- ****************************************************** -->
101 <!-- File Tree Structure -->
102 <!-- ****************************************************** -->
103 <chapter id=
"file-tree">
104 <title>File Tree Structure
</title>
106 <section id=
"file-tree-general">
107 <title>General
</title>
109 The ALSA drivers are provided in two ways.
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the
2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source code for the Linux
2.6 (or later)
118 tree. This tree is designed only for compilation on
2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling ALSA drivers outside of the Linux kernel tree,
121 wrapper functions for older
2.2 and
2.4 kernels, to adapt the latest kernel API,
122 and additional drivers which are still in development or in
123 tests. The drivers in alsa-driver tree will be moved to
124 alsa-kernel (and eventually to the
2.6 kernel tree) when they are
125 finished and confirmed to work fine.
129 The file tree structure of ALSA driver is depicted below. Both
130 alsa-kernel and alsa-driver have almost the same file
131 structure, except for
<quote>core
</quote> directory. It's
132 named as
<quote>acore
</quote> in alsa-driver tree.
135 <title>ALSA File Tree Structure
</title>
167 <section id=
"file-tree-core-directory">
168 <title>core directory
</title>
170 This directory contains the middle layer which is the heart
171 of ALSA drivers. In this directory, the native ALSA modules are
172 stored. The sub-directories contain different modules and are
173 dependent upon the kernel config.
176 <section id=
"file-tree-core-directory-oss">
177 <title>core/oss
</title>
180 The codes for PCM and mixer OSS emulation modules are stored
181 in this directory. The rawmidi OSS emulation is included in
182 the ALSA rawmidi code since it's quite small. The sequencer
183 code is stored in
<filename>core/seq/oss
</filename> directory (see
184 <link linkend=
"file-tree-core-directory-seq-oss"><citetitle>
185 below
</citetitle></link>).
189 <section id=
"file-tree-core-directory-ioctl32">
190 <title>core/ioctl32
</title>
193 This directory contains the
32bit-ioctl wrappers for
64bit
194 architectures such like x86-
64, ppc64 and sparc64. For
32bit
195 and alpha architectures, these are not compiled.
199 <section id=
"file-tree-core-directory-seq">
200 <title>core/seq
</title>
202 This directory and its sub-directories are for the ALSA
203 sequencer. This directory contains the sequencer core and
204 primary sequencer modules such like snd-seq-midi,
205 snd-seq-virmidi, etc. They are compiled only when
206 <constant>CONFIG_SND_SEQUENCER
</constant> is set in the kernel
211 <section id=
"file-tree-core-directory-seq-oss">
212 <title>core/seq/oss
</title>
214 This contains the OSS sequencer emulation codes.
218 <section id=
"file-tree-core-directory-deq-instr">
219 <title>core/seq/instr
</title>
221 This directory contains the modules for the sequencer
227 <section id=
"file-tree-include-directory">
228 <title>include directory
</title>
230 This is the place for the public header files of ALSA drivers,
231 which are to be exported to user-space, or included by
232 several files at different directories. Basically, the private
233 header files should not be placed in this directory, but you may
234 still find files there, due to historical reasons :)
238 <section id=
"file-tree-drivers-directory">
239 <title>drivers directory
</title>
241 This directory contains code shared among different drivers
242 on different architectures. They are hence supposed not to be
243 architecture-specific.
244 For example, the dummy pcm driver and the serial MIDI
245 driver are found in this directory. In the sub-directories,
246 there is code for components which are independent from
247 bus and cpu architectures.
250 <section id=
"file-tree-drivers-directory-mpu401">
251 <title>drivers/mpu401
</title>
253 The MPU401 and MPU401-UART modules are stored here.
257 <section id=
"file-tree-drivers-directory-opl3">
258 <title>drivers/opl3 and opl4
</title>
260 The OPL3 and OPL4 FM-synth stuff is found here.
265 <section id=
"file-tree-i2c-directory">
266 <title>i2c directory
</title>
268 This contains the ALSA i2c components.
272 Although there is a standard i2c layer on Linux, ALSA has its
273 own i2c code for some cards, because the soundcard needs only a
274 simple operation and the standard i2c API is too complicated for
278 <section id=
"file-tree-i2c-directory-l3">
279 <title>i2c/l3
</title>
281 This is a sub-directory for ARM L3 i2c.
286 <section id=
"file-tree-synth-directory">
287 <title>synth directory
</title>
289 This contains the synth middle-level modules.
293 So far, there is only Emu8000/Emu10k1 synth driver under
294 the
<filename>synth/emux
</filename> sub-directory.
298 <section id=
"file-tree-pci-directory">
299 <title>pci directory
</title>
301 This directory and its sub-directories hold the top-level card modules
302 for PCI soundcards and the code specific to the PCI BUS.
306 The drivers compiled from a single file are stored directly
307 in the pci directory, while the drivers with several source files are
308 stored on their own sub-directory (e.g. emu10k1, ice1712).
312 <section id=
"file-tree-isa-directory">
313 <title>isa directory
</title>
315 This directory and its sub-directories hold the top-level card modules
320 <section id=
"file-tree-arm-ppc-sparc-directories">
321 <title>arm, ppc, and sparc directories
</title>
323 They are used for top-level card modules which are
324 specific to one of these architectures.
328 <section id=
"file-tree-usb-directory">
329 <title>usb directory
</title>
331 This directory contains the USB-audio driver. In the latest version, the
332 USB MIDI driver is integrated in the usb-audio driver.
336 <section id=
"file-tree-pcmcia-directory">
337 <title>pcmcia directory
</title>
339 The PCMCIA, especially PCCard drivers will go here. CardBus
340 drivers will be in the pci directory, because their API is identical
341 to that of standard PCI cards.
345 <section id=
"file-tree-oss-directory">
346 <title>oss directory
</title>
348 The OSS/Lite source files are stored here in Linux
2.6 (or
349 later) tree. In the ALSA driver tarball, this directory is empty,
356 <!-- ****************************************************** -->
357 <!-- Basic Flow for PCI Drivers -->
358 <!-- ****************************************************** -->
359 <chapter id=
"basic-flow">
360 <title>Basic Flow for PCI Drivers
</title>
362 <section id=
"basic-flow-outline">
363 <title>Outline
</title>
365 The minimum flow for PCI soundcards is as follows:
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend=
"pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).
</para></listitem>
371 <listitem><para>create
<function>probe()
</function> callback.
</para></listitem>
372 <listitem><para>create
<function>remove()
</function> callback.
</para></listitem>
373 <listitem><para>create a
<structname>pci_driver
</structname> structure
374 containing the three pointers above.
</para></listitem>
375 <listitem><para>create an
<function>init()
</function> function just calling
376 the
<function>pci_register_driver()
</function> to register the pci_driver table
377 defined above.
</para></listitem>
378 <listitem><para>create an
<function>exit()
</function> function to call
379 the
<function>pci_unregister_driver()
</function> function.
</para></listitem>
384 <section id=
"basic-flow-example">
385 <title>Full Code Example
</title>
387 The code example is shown below. Some parts are kept
388 unimplemented at this moment but will be filled in the
389 next sections. The numbers in the comment lines of the
390 <function>snd_mychip_probe()
</function> function
391 refer to details explained in the following section.
394 <title>Basic Flow for PCI Drivers - Example
</title>
397 #include
<linux/init.h
>
398 #include
<linux/pci.h
>
399 #include
<linux/slab.h
>
400 #include
<sound/core.h
>
401 #include
<sound/initval.h
>
403 /* module parameters (see
"Module Parameters") */
404 /* SNDRV_CARDS: maximum number of cards supported by this module */
405 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
406 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
409 /* definition of the chip-specific record */
411 struct snd_card *card;
412 /* the rest of the implementation will be in section
413 *
"PCI Resource Management"
417 /* chip-specific destructor
418 * (see
"PCI Resource Management")
420 static int snd_mychip_free(struct mychip *chip)
422 .... /* will be implemented later... */
425 /* component-destructor
426 * (see
"Management of Cards and Components")
428 static int snd_mychip_dev_free(struct snd_device *device)
430 return snd_mychip_free(device-
>device_data);
433 /* chip-specific constructor
434 * (see
"Management of Cards and Components")
436 static int snd_mychip_create(struct snd_card *card,
438 struct mychip **rchip)
442 static struct snd_device_ops ops = {
443 .dev_free = snd_mychip_dev_free,
448 /* check PCI availability here
449 * (see
"PCI Resource Management")
453 /* allocate a chip-specific data with zero filled */
454 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
460 /* rest of initialization here; will be implemented
461 * later, see
"PCI Resource Management"
465 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
467 snd_mychip_free(chip);
475 /* constructor -- see
"Constructor" sub-section */
476 static int snd_mychip_probe(struct pci_dev *pci,
477 const struct pci_device_id *pci_id)
480 struct snd_card *card;
485 if (dev
>= SNDRV_CARDS)
493 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
499 err = snd_mychip_create(card, pci, &chip);
506 strcpy(card-
>driver,
"My Chip");
507 strcpy(card-
>shortname,
"My Own Chip 123");
508 sprintf(card-
>longname,
"%s at 0x%lx irq %i",
509 card-
>shortname, chip-
>ioport, chip-
>irq);
512 .... /* implemented later */
515 err = snd_card_register(card);
522 pci_set_drvdata(pci, card);
527 /* destructor -- see the
"Destructor" sub-section */
528 static void snd_mychip_remove(struct pci_dev *pci)
530 snd_card_free(pci_get_drvdata(pci));
531 pci_set_drvdata(pci, NULL);
539 <section id=
"basic-flow-constructor">
540 <title>Constructor
</title>
542 The real constructor of PCI drivers is the
<function>probe
</function> callback.
543 The
<function>probe
</function> callback and other component-constructors which are called
544 from the
<function>probe
</function> callback cannot be used with
545 the
<parameter>__init
</parameter> prefix
546 because any PCI device could be a hotplug device.
550 In the
<function>probe
</function> callback, the following scheme is often used.
553 <section id=
"basic-flow-constructor-device-index">
554 <title>1) Check and increment the device index.
</title>
561 if (dev
>= SNDRV_CARDS)
571 where enable[dev] is the module option.
575 Each time the
<function>probe
</function> callback is called, check the
576 availability of the device. If not available, simply increment
577 the device index and returns. dev will be incremented also
579 linkend=
"basic-flow-constructor-set-pci"><citetitle>step
580 7</citetitle></link>).
584 <section id=
"basic-flow-constructor-create-card">
585 <title>2) Create a card instance
</title>
590 struct snd_card *card;
593 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
601 The details will be explained in the section
602 <link linkend=
"card-management-card-instance"><citetitle>
603 Management of Cards and Components
</citetitle></link>.
607 <section id=
"basic-flow-constructor-create-main">
608 <title>3) Create a main component
</title>
610 In this part, the PCI resources are allocated.
617 err = snd_mychip_create(card, pci, &chip);
626 The details will be explained in the section
<link
627 linkend=
"pci-resource"><citetitle>PCI Resource
628 Management
</citetitle></link>.
632 <section id=
"basic-flow-constructor-main-component">
633 <title>4) Set the driver ID and name strings.
</title>
638 strcpy(card-
>driver,
"My Chip");
639 strcpy(card-
>shortname,
"My Own Chip 123");
640 sprintf(card-
>longname,
"%s at 0x%lx irq %i",
641 card-
>shortname, chip-
>ioport, chip-
>irq);
646 The driver field holds the minimal ID string of the
647 chip. This is used by alsa-lib's configurator, so keep it
649 Even the same driver can have different driver IDs to
650 distinguish the functionality of each chip type.
654 The shortname field is a string shown as more verbose
655 name. The longname field contains the information
656 shown in
<filename>/proc/asound/cards
</filename>.
660 <section id=
"basic-flow-constructor-create-other">
661 <title>5) Create other components, such as mixer, MIDI, etc.
</title>
663 Here you define the basic components such as
664 <link linkend=
"pcm-interface"><citetitle>PCM
</citetitle></link>,
665 mixer (e.g.
<link linkend=
"api-ac97"><citetitle>AC97
</citetitle></link>),
666 MIDI (e.g.
<link linkend=
"midi-interface"><citetitle>MPU-
401</citetitle></link>),
667 and other interfaces.
668 Also, if you want a
<link linkend=
"proc-interface"><citetitle>proc
669 file
</citetitle></link>, define it here, too.
673 <section id=
"basic-flow-constructor-register-card">
674 <title>6) Register the card instance.
</title>
679 err = snd_card_register(card);
690 Will be explained in the section
<link
691 linkend=
"card-management-registration"><citetitle>Management
692 of Cards and Components
</citetitle></link>, too.
696 <section id=
"basic-flow-constructor-set-pci">
697 <title>7) Set the PCI driver data and return zero.
</title>
702 pci_set_drvdata(pci, card);
709 In the above, the card record is stored. This pointer is
710 used in the remove callback and power-management
716 <section id=
"basic-flow-destructor">
717 <title>Destructor
</title>
719 The destructor, remove callback, simply releases the card
720 instance. Then the ALSA middle layer will release all the
721 attached components automatically.
725 It would be typically like the following:
730 static void snd_mychip_remove(struct pci_dev *pci)
732 snd_card_free(pci_get_drvdata(pci));
733 pci_set_drvdata(pci, NULL);
739 The above code assumes that the card pointer is set to the PCI
744 <section id=
"basic-flow-header-files">
745 <title>Header Files
</title>
747 For the above example, at least the following include files
753 #include
<linux/init.h
>
754 #include
<linux/pci.h
>
755 #include
<linux/slab.h
>
756 #include
<sound/core.h
>
757 #include
<sound/initval.h
>
762 where the last one is necessary only when module options are
763 defined in the source file. If the code is split into several
764 files, the files without module options don't need them.
768 In addition to these headers, you'll need
769 <filename><linux/interrupt.h
></filename> for interrupt
770 handling, and
<filename><asm/io.h
></filename> for I/O
771 access. If you use the
<function>mdelay()
</function> or
772 <function>udelay()
</function> functions, you'll need to include
773 <filename><linux/delay.h
></filename> too.
777 The ALSA interfaces like the PCM and control APIs are defined in other
778 <filename><sound/xxx.h
></filename> header files.
779 They have to be included after
780 <filename><sound/core.h
></filename>.
787 <!-- ****************************************************** -->
788 <!-- Management of Cards and Components -->
789 <!-- ****************************************************** -->
790 <chapter id=
"card-management">
791 <title>Management of Cards and Components
</title>
793 <section id=
"card-management-card-instance">
794 <title>Card Instance
</title>
796 For each soundcard, a
<quote>card
</quote> record must be allocated.
800 A card record is the headquarters of the soundcard. It manages
801 the whole list of devices (components) on the soundcard, such as
802 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
803 record holds the ID and the name strings of the card, manages
804 the root of proc files, and controls the power-management states
805 and hotplug disconnections. The component list on the card
806 record is used to manage the correct release of resources at
811 As mentioned above, to create a card instance, call
812 <function>snd_card_new()
</function>.
817 struct snd_card *card;
819 err = snd_card_new(&pci-
>dev, index, id, module, extra_size, &card);
826 The function takes six arguments: the parent device pointer,
827 the card-index number, the id string, the module pointer (usually
828 <constant>THIS_MODULE
</constant>),
829 the size of extra-data space, and the pointer to return the
830 card instance. The extra_size argument is used to
831 allocate card-
>private_data for the
832 chip-specific data. Note that these data
833 are allocated by
<function>snd_card_new()
</function>.
837 The first argument, the pointer of struct
838 <structname>device
</structname>, specifies the parent device.
839 For PCI devices, typically
&pci-
> is passed there.
843 <section id=
"card-management-component">
844 <title>Components
</title>
846 After the card is created, you can attach the components
847 (devices) to the card instance. In an ALSA driver, a component is
848 represented as a struct
<structname>snd_device
</structname> object.
849 A component can be a PCM instance, a control interface, a raw
850 MIDI interface, etc. Each such instance has one component
855 A component can be created via
856 <function>snd_device_new()
</function> function.
861 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
868 This takes the card pointer, the device-level
869 (
<constant>SNDRV_DEV_XXX
</constant>), the data pointer, and the
870 callback pointers (
<parameter>&ops
</parameter>). The
871 device-level defines the type of components and the order of
872 registration and de-registration. For most components, the
873 device-level is already defined. For a user-defined component,
874 you can use
<constant>SNDRV_DEV_LOWLEVEL
</constant>.
878 This function itself doesn't allocate the data space. The data
879 must be allocated manually beforehand, and its pointer is passed
880 as the argument. This pointer (
<parameter>chip
</parameter> in the
881 above example) is used as the identifier for the instance.
885 Each pre-defined ALSA component such as ac97 and pcm calls
886 <function>snd_device_new()
</function> inside its
887 constructor. The destructor for each component is defined in the
888 callback pointers. Hence, you don't need to take care of
889 calling a destructor for such a component.
893 If you wish to create your own component, you need to
894 set the destructor function to the dev_free callback in
895 the
<parameter>ops
</parameter>, so that it can be released
896 automatically via
<function>snd_card_free()
</function>.
897 The next example will show an implementation of chip-specific
902 <section id=
"card-management-chip-specific">
903 <title>Chip-Specific Data
</title>
905 Chip-specific information, e.g. the I/O port address, its
906 resource pointer, or the irq number, is stored in the
907 chip-specific record.
921 In general, there are two ways of allocating the chip record.
924 <section id=
"card-management-chip-specific-snd-card-new">
925 <title>1. Allocating via
<function>snd_card_new()
</function>.
</title>
927 As mentioned above, you can pass the extra-data-length
928 to the
5th argument of
<function>snd_card_new()
</function>, i.e.
933 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
934 sizeof(struct mychip), &card);
939 struct
<structname>mychip
</structname> is the type of the chip record.
943 In return, the allocated record can be accessed as
948 struct mychip *chip = card-
>private_data;
953 With this method, you don't have to allocate twice.
954 The record is released together with the card instance.
958 <section id=
"card-management-chip-specific-allocate-extra">
959 <title>2. Allocating an extra device.
</title>
962 After allocating a card instance via
963 <function>snd_card_new()
</function> (with
964 <constant>0</constant> on the
4th arg), call
965 <function>kzalloc()
</function>.
970 struct snd_card *card;
972 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
975 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
982 The chip record should have the field to hold the card
989 struct snd_card *card;
998 Then, set the card pointer in the returned chip instance.
1010 Next, initialize the fields, and register this chip
1011 record as a low-level device with a specified
1012 <parameter>ops
</parameter>,
1017 static struct snd_device_ops ops = {
1018 .dev_free = snd_mychip_dev_free,
1021 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1026 <function>snd_mychip_dev_free()
</function> is the
1027 device-destructor function, which will call the real
1035 static int snd_mychip_dev_free(struct snd_device *device)
1037 return snd_mychip_free(device-
>device_data);
1043 where
<function>snd_mychip_free()
</function> is the real destructor.
1048 <section id=
"card-management-registration">
1049 <title>Registration and Release
</title>
1051 After all components are assigned, register the card instance
1052 by calling
<function>snd_card_register()
</function>. Access
1053 to the device files is enabled at this point. That is, before
1054 <function>snd_card_register()
</function> is called, the
1055 components are safely inaccessible from external side. If this
1056 call fails, exit the probe function after releasing the card via
1057 <function>snd_card_free()
</function>.
1061 For releasing the card instance, you can call simply
1062 <function>snd_card_free()
</function>. As mentioned earlier, all
1063 components are released automatically by this call.
1067 For a device which allows hotplugging, you can use
1068 <function>snd_card_free_when_closed
</function>. This one will
1069 postpone the destruction until all devices are closed.
1077 <!-- ****************************************************** -->
1078 <!-- PCI Resource Management -->
1079 <!-- ****************************************************** -->
1080 <chapter id=
"pci-resource">
1081 <title>PCI Resource Management
</title>
1083 <section id=
"pci-resource-example">
1084 <title>Full Code Example
</title>
1086 In this section, we'll complete the chip-specific constructor,
1087 destructor and PCI entries. Example code is shown first,
1091 <title>PCI Resource Management Example
</title>
1095 struct snd_card *card;
1096 struct pci_dev *pci;
1102 static int snd_mychip_free(struct mychip *chip)
1104 /* disable hardware here if any */
1105 .... /* (not implemented in this document) */
1107 /* release the irq */
1109 free_irq(chip-
>irq, chip);
1110 /* release the I/O ports & memory */
1111 pci_release_regions(chip-
>pci);
1112 /* disable the PCI entry */
1113 pci_disable_device(chip-
>pci);
1114 /* release the data */
1119 /* chip-specific constructor */
1120 static int snd_mychip_create(struct snd_card *card,
1121 struct pci_dev *pci,
1122 struct mychip **rchip)
1124 struct mychip *chip;
1126 static struct snd_device_ops ops = {
1127 .dev_free = snd_mychip_dev_free,
1132 /* initialize the PCI entry */
1133 err = pci_enable_device(pci);
1136 /* check PCI availability (
28bit DMA) */
1137 if (pci_set_dma_mask(pci, DMA_BIT_MASK(
28)) <
0 ||
1138 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(
28)) <
0) {
1139 printk(KERN_ERR
"error to set 28bit mask DMA\n");
1140 pci_disable_device(pci);
1144 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1146 pci_disable_device(pci);
1150 /* initialize the stuff */
1155 /* (
1) PCI resource allocation */
1156 err = pci_request_regions(pci,
"My Chip");
1159 pci_disable_device(pci);
1162 chip-
>port = pci_resource_start(pci,
0);
1163 if (request_irq(pci-
>irq, snd_mychip_interrupt,
1164 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1165 printk(KERN_ERR
"cannot grab irq %d\n", pci-
>irq);
1166 snd_mychip_free(chip);
1169 chip-
>irq = pci-
>irq;
1171 /* (
2) initialization of the chip hardware */
1172 .... /* (not implemented in this document) */
1174 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1176 snd_mychip_free(chip);
1185 static struct pci_device_id snd_mychip_ids[] = {
1186 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1187 PCI_ANY_ID, PCI_ANY_ID,
0,
0,
0, },
1191 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1193 /* pci_driver definition */
1194 static struct pci_driver driver = {
1195 .name = KBUILD_MODNAME,
1196 .id_table = snd_mychip_ids,
1197 .probe = snd_mychip_probe,
1198 .remove = snd_mychip_remove,
1201 /* module initialization */
1202 static int __init alsa_card_mychip_init(void)
1204 return pci_register_driver(&driver);
1207 /* module clean up */
1208 static void __exit alsa_card_mychip_exit(void)
1210 pci_unregister_driver(&driver);
1213 module_init(alsa_card_mychip_init)
1214 module_exit(alsa_card_mychip_exit)
1216 EXPORT_NO_SYMBOLS; /* for old kernels only */
1223 <section id=
"pci-resource-some-haftas">
1224 <title>Some Hafta's
</title>
1226 The allocation of PCI resources is done in the
1227 <function>probe()
</function> function, and usually an extra
1228 <function>xxx_create()
</function> function is written for this
1233 In the case of PCI devices, you first have to call
1234 the
<function>pci_enable_device()
</function> function before
1235 allocating resources. Also, you need to set the proper PCI DMA
1236 mask to limit the accessed I/O range. In some cases, you might
1237 need to call
<function>pci_set_master()
</function> function,
1242 Suppose the
28bit mask, and the code to be added would be like:
1247 err = pci_enable_device(pci);
1250 if (pci_set_dma_mask(pci, DMA_BIT_MASK(
28)) <
0 ||
1251 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(
28)) <
0) {
1252 printk(KERN_ERR
"error to set 28bit mask DMA\n");
1253 pci_disable_device(pci);
1263 <section id=
"pci-resource-resource-allocation">
1264 <title>Resource Allocation
</title>
1266 The allocation of I/O ports and irqs is done via standard kernel
1267 functions. Unlike ALSA ver
.0.5.x., there are no helpers for
1268 that. And these resources must be released in the destructor
1269 function (see below). Also, on ALSA
0.9.x, you don't need to
1270 allocate (pseudo-)DMA for PCI like in ALSA
0.5.x.
1274 Now assume that the PCI device has an I/O port with
8 bytes
1275 and an interrupt. Then struct
<structname>mychip
</structname> will have the
1282 struct snd_card *card;
1293 For an I/O port (and also a memory region), you need to have
1294 the resource pointer for the standard resource management. For
1295 an irq, you have to keep only the irq number (integer). But you
1296 need to initialize this number as -
1 before actual allocation,
1297 since irq
0 is valid. The port address and its resource pointer
1298 can be initialized as null by
1299 <function>kzalloc()
</function> automatically, so you
1300 don't have to take care of resetting them.
1304 The allocation of an I/O port is done like this:
1309 err = pci_request_regions(pci,
"My Chip");
1312 pci_disable_device(pci);
1315 chip-
>port = pci_resource_start(pci,
0);
1323 It will reserve the I/O port region of
8 bytes of the given
1324 PCI device. The returned value, chip-
>res_port, is allocated
1325 via
<function>kmalloc()
</function> by
1326 <function>request_region()
</function>. The pointer must be
1327 released via
<function>kfree()
</function>, but there is a
1328 problem with this. This issue will be explained later.
1332 The allocation of an interrupt source is done like this:
1337 if (request_irq(pci-
>irq, snd_mychip_interrupt,
1338 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1339 printk(KERN_ERR
"cannot grab irq %d\n", pci-
>irq);
1340 snd_mychip_free(chip);
1343 chip-
>irq = pci-
>irq;
1348 where
<function>snd_mychip_interrupt()
</function> is the
1349 interrupt handler defined
<link
1350 linkend=
"pcm-interface-interrupt-handler"><citetitle>later
</citetitle></link>.
1351 Note that chip-
>irq should be defined
1352 only when
<function>request_irq()
</function> succeeded.
1356 On the PCI bus, interrupts can be shared. Thus,
1357 <constant>IRQF_SHARED
</constant> is used as the interrupt flag of
1358 <function>request_irq()
</function>.
1362 The last argument of
<function>request_irq()
</function> is the
1363 data pointer passed to the interrupt handler. Usually, the
1364 chip-specific record is used for that, but you can use what you
1369 I won't give details about the interrupt handler at this
1370 point, but at least its appearance can be explained now. The
1371 interrupt handler looks usually like the following:
1376 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1378 struct mychip *chip = dev_id;
1388 Now let's write the corresponding destructor for the resources
1389 above. The role of destructor is simple: disable the hardware
1390 (if already activated) and release the resources. So far, we
1391 have no hardware part, so the disabling code is not written here.
1395 To release the resources, the
<quote>check-and-release
</quote>
1396 method is a safer way. For the interrupt, do like this:
1402 free_irq(chip-
>irq, chip);
1407 Since the irq number can start from
0, you should initialize
1408 chip-
>irq with a negative value (e.g. -
1), so that you can
1409 check the validity of the irq number as above.
1413 When you requested I/O ports or memory regions via
1414 <function>pci_request_region()
</function> or
1415 <function>pci_request_regions()
</function> like in this example,
1416 release the resource(s) using the corresponding function,
1417 <function>pci_release_region()
</function> or
1418 <function>pci_release_regions()
</function>.
1423 pci_release_regions(chip-
>pci);
1430 When you requested manually via
<function>request_region()
</function>
1431 or
<function>request_mem_region
</function>, you can release it via
1432 <function>release_resource()
</function>. Suppose that you keep
1433 the resource pointer returned from
<function>request_region()
</function>
1434 in chip-
>res_port, the release procedure looks like:
1439 release_and_free_resource(chip-
>res_port);
1446 Don't forget to call
<function>pci_disable_device()
</function>
1451 And finally, release the chip-specific record.
1463 We didn't implement the hardware disabling part in the above.
1464 If you need to do this, please note that the destructor may be
1465 called even before the initialization of the chip is completed.
1466 It would be better to have a flag to skip hardware disabling
1467 if the hardware was not initialized yet.
1471 When the chip-data is assigned to the card using
1472 <function>snd_device_new()
</function> with
1473 <constant>SNDRV_DEV_LOWLELVEL
</constant> , its destructor is
1474 called at the last. That is, it is assured that all other
1475 components like PCMs and controls have already been released.
1476 You don't have to stop PCMs, etc. explicitly, but just
1477 call low-level hardware stopping.
1481 The management of a memory-mapped region is almost as same as
1482 the management of an I/O port. You'll need three fields like
1490 unsigned long iobase_phys;
1491 void __iomem *iobase_virt;
1497 and the allocation would be like below:
1502 if ((err = pci_request_regions(pci,
"My Chip")) <
0) {
1506 chip-
>iobase_phys = pci_resource_start(pci,
0);
1507 chip-
>iobase_virt = ioremap_nocache(chip-
>iobase_phys,
1508 pci_resource_len(pci,
0));
1513 and the corresponding destructor would be:
1518 static int snd_mychip_free(struct mychip *chip)
1521 if (chip-
>iobase_virt)
1522 iounmap(chip-
>iobase_virt);
1524 pci_release_regions(chip-
>pci);
1534 <section id=
"pci-resource-entries">
1535 <title>PCI Entries
</title>
1537 So far, so good. Let's finish the missing PCI
1538 stuff. At first, we need a
1539 <structname>pci_device_id
</structname> table for this
1540 chipset. It's a table of PCI vendor/device ID number, and some
1550 static struct pci_device_id snd_mychip_ids[] = {
1551 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1552 PCI_ANY_ID, PCI_ANY_ID,
0,
0,
0, },
1556 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1563 The first and second fields of
1564 the
<structname>pci_device_id
</structname> structure are the vendor and
1565 device IDs. If you have no reason to filter the matching
1566 devices, you can leave the remaining fields as above. The last
1567 field of the
<structname>pci_device_id
</structname> struct contains
1568 private data for this entry. You can specify any value here, for
1569 example, to define specific operations for supported device IDs.
1570 Such an example is found in the intel8x0 driver.
1574 The last entry of this list is the terminator. You must
1575 specify this all-zero entry.
1579 Then, prepare the
<structname>pci_driver
</structname> record:
1584 static struct pci_driver driver = {
1585 .name = KBUILD_MODNAME,
1586 .id_table = snd_mychip_ids,
1587 .probe = snd_mychip_probe,
1588 .remove = snd_mychip_remove,
1596 The
<structfield>probe
</structfield> and
1597 <structfield>remove
</structfield> functions have already
1598 been defined in the previous sections.
1599 The
<structfield>name
</structfield>
1600 field is the name string of this device. Note that you must not
1601 use a slash
<quote>/
</quote> in this string.
1605 And at last, the module entries:
1610 static int __init alsa_card_mychip_init(void)
1612 return pci_register_driver(&driver);
1615 static void __exit alsa_card_mychip_exit(void)
1617 pci_unregister_driver(&driver);
1620 module_init(alsa_card_mychip_init)
1621 module_exit(alsa_card_mychip_exit)
1628 Note that these module entries are tagged with
1629 <parameter>__init
</parameter> and
1630 <parameter>__exit
</parameter> prefixes.
1634 Oh, one thing was forgotten. If you have no exported symbols,
1635 you need to declare it in
2.2 or
2.4 kernels (it's not necessary in
2.6 kernels).
1651 <!-- ****************************************************** -->
1652 <!-- PCM Interface -->
1653 <!-- ****************************************************** -->
1654 <chapter id=
"pcm-interface">
1655 <title>PCM Interface
</title>
1657 <section id=
"pcm-interface-general">
1658 <title>General
</title>
1660 The PCM middle layer of ALSA is quite powerful and it is only
1661 necessary for each driver to implement the low-level functions
1662 to access its hardware.
1666 For accessing to the PCM layer, you need to include
1667 <filename><sound/pcm.h
></filename> first. In addition,
1668 <filename><sound/pcm_params.h
></filename> might be needed
1669 if you access to some functions related with hw_param.
1673 Each card device can have up to four pcm instances. A pcm
1674 instance corresponds to a pcm device file. The limitation of
1675 number of instances comes only from the available bit size of
1676 the Linux's device numbers. Once when
64bit device number is
1677 used, we'll have more pcm instances available.
1681 A pcm instance consists of pcm playback and capture streams,
1682 and each pcm stream consists of one or more pcm substreams. Some
1683 soundcards support multiple playback functions. For example,
1684 emu10k1 has a PCM playback of
32 stereo substreams. In this case, at
1685 each open, a free substream is (usually) automatically chosen
1686 and opened. Meanwhile, when only one substream exists and it was
1687 already opened, the successful open will either block
1688 or error with
<constant>EAGAIN
</constant> according to the
1689 file open mode. But you don't have to care about such details in your
1690 driver. The PCM middle layer will take care of such work.
1694 <section id=
"pcm-interface-example">
1695 <title>Full Code Example
</title>
1697 The example code below does not include any hardware access
1698 routines but shows only the skeleton, how to build up the PCM
1702 <title>PCM Example Code
</title>
1705 #include
<sound/pcm.h
>
1708 /* hardware definition */
1709 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1710 .info = (SNDRV_PCM_INFO_MMAP |
1711 SNDRV_PCM_INFO_INTERLEAVED |
1712 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1713 SNDRV_PCM_INFO_MMAP_VALID),
1714 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1715 .rates = SNDRV_PCM_RATE_8000_48000,
1720 .buffer_bytes_max =
32768,
1721 .period_bytes_min =
4096,
1722 .period_bytes_max =
32768,
1724 .periods_max =
1024,
1727 /* hardware definition */
1728 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1729 .info = (SNDRV_PCM_INFO_MMAP |
1730 SNDRV_PCM_INFO_INTERLEAVED |
1731 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1732 SNDRV_PCM_INFO_MMAP_VALID),
1733 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1734 .rates = SNDRV_PCM_RATE_8000_48000,
1739 .buffer_bytes_max =
32768,
1740 .period_bytes_min =
4096,
1741 .period_bytes_max =
32768,
1743 .periods_max =
1024,
1747 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1749 struct mychip *chip = snd_pcm_substream_chip(substream);
1750 struct snd_pcm_runtime *runtime = substream-
>runtime;
1752 runtime-
>hw = snd_mychip_playback_hw;
1753 /* more hardware-initialization will be done here */
1758 /* close callback */
1759 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1761 struct mychip *chip = snd_pcm_substream_chip(substream);
1762 /* the hardware-specific codes will be here */
1769 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1771 struct mychip *chip = snd_pcm_substream_chip(substream);
1772 struct snd_pcm_runtime *runtime = substream-
>runtime;
1774 runtime-
>hw = snd_mychip_capture_hw;
1775 /* more hardware-initialization will be done here */
1780 /* close callback */
1781 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1783 struct mychip *chip = snd_pcm_substream_chip(substream);
1784 /* the hardware-specific codes will be here */
1790 /* hw_params callback */
1791 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1792 struct snd_pcm_hw_params *hw_params)
1794 return snd_pcm_lib_malloc_pages(substream,
1795 params_buffer_bytes(hw_params));
1798 /* hw_free callback */
1799 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1801 return snd_pcm_lib_free_pages(substream);
1804 /* prepare callback */
1805 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1807 struct mychip *chip = snd_pcm_substream_chip(substream);
1808 struct snd_pcm_runtime *runtime = substream-
>runtime;
1810 /* set up the hardware with the current configuration
1813 mychip_set_sample_format(chip, runtime-
>format);
1814 mychip_set_sample_rate(chip, runtime-
>rate);
1815 mychip_set_channels(chip, runtime-
>channels);
1816 mychip_set_dma_setup(chip, runtime-
>dma_addr,
1822 /* trigger callback */
1823 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1827 case SNDRV_PCM_TRIGGER_START:
1828 /* do something to start the PCM engine */
1831 case SNDRV_PCM_TRIGGER_STOP:
1832 /* do something to stop the PCM engine */
1840 /* pointer callback */
1841 static snd_pcm_uframes_t
1842 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1844 struct mychip *chip = snd_pcm_substream_chip(substream);
1845 unsigned int current_ptr;
1847 /* get the current hardware pointer */
1848 current_ptr = mychip_get_hw_pointer(chip);
1853 static struct snd_pcm_ops snd_mychip_playback_ops = {
1854 .open = snd_mychip_playback_open,
1855 .close = snd_mychip_playback_close,
1856 .ioctl = snd_pcm_lib_ioctl,
1857 .hw_params = snd_mychip_pcm_hw_params,
1858 .hw_free = snd_mychip_pcm_hw_free,
1859 .prepare = snd_mychip_pcm_prepare,
1860 .trigger = snd_mychip_pcm_trigger,
1861 .pointer = snd_mychip_pcm_pointer,
1865 static struct snd_pcm_ops snd_mychip_capture_ops = {
1866 .open = snd_mychip_capture_open,
1867 .close = snd_mychip_capture_close,
1868 .ioctl = snd_pcm_lib_ioctl,
1869 .hw_params = snd_mychip_pcm_hw_params,
1870 .hw_free = snd_mychip_pcm_hw_free,
1871 .prepare = snd_mychip_pcm_prepare,
1872 .trigger = snd_mychip_pcm_trigger,
1873 .pointer = snd_mychip_pcm_pointer,
1877 * definitions of capture are omitted here...
1880 /* create a pcm device */
1881 static int snd_mychip_new_pcm(struct mychip *chip)
1883 struct snd_pcm *pcm;
1886 err = snd_pcm_new(chip-
>card,
"My Chip",
0,
1,
1, &pcm);
1889 pcm-
>private_data = chip;
1890 strcpy(pcm-
>name,
"My Chip");
1893 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1894 &snd_mychip_playback_ops);
1895 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1896 &snd_mychip_capture_ops);
1897 /* pre-allocation of buffers */
1898 /* NOTE: this may fail */
1899 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1900 snd_dma_pci_data(chip-
>pci),
1910 <section id=
"pcm-interface-constructor">
1911 <title>Constructor
</title>
1913 A pcm instance is allocated by the
<function>snd_pcm_new()
</function>
1914 function. It would be better to create a constructor for pcm,
1920 static int snd_mychip_new_pcm(struct mychip *chip)
1922 struct snd_pcm *pcm;
1925 err = snd_pcm_new(chip-
>card,
"My Chip",
0,
1,
1, &pcm);
1928 pcm-
>private_data = chip;
1929 strcpy(pcm-
>name,
"My Chip");
1940 The
<function>snd_pcm_new()
</function> function takes four
1941 arguments. The first argument is the card pointer to which this
1942 pcm is assigned, and the second is the ID string.
1946 The third argument (
<parameter>index
</parameter>,
0 in the
1947 above) is the index of this new pcm. It begins from zero. If
1948 you create more than one pcm instances, specify the
1949 different numbers in this argument. For example,
1950 <parameter>index
</parameter> =
1 for the second PCM device.
1954 The fourth and fifth arguments are the number of substreams
1955 for playback and capture, respectively. Here
1 is used for
1956 both arguments. When no playback or capture substreams are available,
1957 pass
0 to the corresponding argument.
1961 If a chip supports multiple playbacks or captures, you can
1962 specify more numbers, but they must be handled properly in
1963 open/close, etc. callbacks. When you need to know which
1964 substream you are referring to, then it can be obtained from
1965 struct
<structname>snd_pcm_substream
</structname> data passed to each callback
1971 struct snd_pcm_substream *substream;
1972 int index = substream-
>number;
1979 After the pcm is created, you need to set operators for each
1985 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1986 &snd_mychip_playback_ops);
1987 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1988 &snd_mychip_capture_ops);
1995 The operators are defined typically like this:
2000 static struct snd_pcm_ops snd_mychip_playback_ops = {
2001 .open = snd_mychip_pcm_open,
2002 .close = snd_mychip_pcm_close,
2003 .ioctl = snd_pcm_lib_ioctl,
2004 .hw_params = snd_mychip_pcm_hw_params,
2005 .hw_free = snd_mychip_pcm_hw_free,
2006 .prepare = snd_mychip_pcm_prepare,
2007 .trigger = snd_mychip_pcm_trigger,
2008 .pointer = snd_mychip_pcm_pointer,
2014 All the callbacks are described in the
2015 <link linkend=
"pcm-interface-operators"><citetitle>
2016 Operators
</citetitle></link> subsection.
2020 After setting the operators, you probably will want to
2021 pre-allocate the buffer. For the pre-allocation, simply call
2027 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2028 snd_dma_pci_data(chip-
>pci),
2034 It will allocate a buffer up to
64kB as default.
2035 Buffer management details will be described in the later section
<link
2036 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
2037 Management
</citetitle></link>.
2041 Additionally, you can set some extra information for this pcm
2042 in pcm-
>info_flags.
2043 The available values are defined as
2044 <constant>SNDRV_PCM_INFO_XXX
</constant> in
2045 <filename><sound/asound.h
></filename>, which is used for
2046 the hardware definition (described later). When your soundchip
2047 supports only half-duplex, specify like this:
2052 pcm-
>info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2059 <section id=
"pcm-interface-destructor">
2060 <title>... And the Destructor?
</title>
2062 The destructor for a pcm instance is not always
2063 necessary. Since the pcm device will be released by the middle
2064 layer code automatically, you don't have to call the destructor
2069 The destructor would be necessary if you created
2070 special records internally and needed to release them. In such a
2071 case, set the destructor function to
2072 pcm-
>private_free:
2075 <title>PCM Instance with a Destructor
</title>
2078 static void mychip_pcm_free(struct snd_pcm *pcm)
2080 struct mychip *chip = snd_pcm_chip(pcm);
2081 /* free your own data */
2082 kfree(chip-
>my_private_pcm_data);
2083 /* do what you like else */
2087 static int snd_mychip_new_pcm(struct mychip *chip)
2089 struct snd_pcm *pcm;
2091 /* allocate your own data */
2092 chip-
>my_private_pcm_data = kmalloc(...);
2093 /* set the destructor */
2094 pcm-
>private_data = chip;
2095 pcm-
>private_free = mychip_pcm_free;
2104 <section id=
"pcm-interface-runtime">
2105 <title>Runtime Pointer - The Chest of PCM Information
</title>
2107 When the PCM substream is opened, a PCM runtime instance is
2108 allocated and assigned to the substream. This pointer is
2109 accessible via
<constant>substream-
>runtime
</constant>.
2110 This runtime pointer holds most information you need
2111 to control the PCM: the copy of hw_params and sw_params configurations, the buffer
2112 pointers, mmap records, spinlocks, etc.
2116 The definition of runtime instance is found in
2117 <filename><sound/pcm.h
></filename>. Here are
2118 the contents of this file:
2122 struct _snd_pcm_runtime {
2124 struct snd_pcm_substream *trigger_master;
2125 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2127 snd_pcm_uframes_t avail_max;
2128 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2129 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2131 /* -- HW params -- */
2132 snd_pcm_access_t access; /* access mode */
2133 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2134 snd_pcm_subformat_t subformat; /* subformat */
2135 unsigned int rate; /* rate in Hz */
2136 unsigned int channels; /* channels */
2137 snd_pcm_uframes_t period_size; /* period size */
2138 unsigned int periods; /* periods */
2139 snd_pcm_uframes_t buffer_size; /* buffer size */
2140 unsigned int tick_time; /* tick time */
2141 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2143 unsigned int frame_bits;
2144 unsigned int sample_bits;
2146 unsigned int rate_num;
2147 unsigned int rate_den;
2149 /* -- SW params -- */
2150 struct timespec tstamp_mode; /* mmap timestamp is updated */
2151 unsigned int period_step;
2152 unsigned int sleep_min; /* min ticks to sleep */
2153 snd_pcm_uframes_t start_threshold;
2154 snd_pcm_uframes_t stop_threshold;
2155 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2156 noise is nearest than this */
2157 snd_pcm_uframes_t silence_size; /* Silence filling size */
2158 snd_pcm_uframes_t boundary; /* pointers wrap point */
2160 snd_pcm_uframes_t silenced_start;
2161 snd_pcm_uframes_t silenced_size;
2163 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2166 volatile struct snd_pcm_mmap_status *status;
2167 volatile struct snd_pcm_mmap_control *control;
2168 atomic_t mmap_count;
2170 /* -- locking / scheduling -- */
2172 wait_queue_head_t sleep;
2173 struct timer_list tick_timer;
2174 struct fasync_struct *fasync;
2176 /* -- private section -- */
2178 void (*private_free)(struct snd_pcm_runtime *runtime);
2180 /* -- hardware description -- */
2181 struct snd_pcm_hardware hw;
2182 struct snd_pcm_hw_constraints hw_constraints;
2185 unsigned int timer_resolution; /* timer resolution */
2188 unsigned char *dma_area; /* DMA area */
2189 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2190 size_t dma_bytes; /* size of DMA area */
2192 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2194 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2195 /* -- OSS things -- */
2196 struct snd_pcm_oss_runtime oss;
2205 For the operators (callbacks) of each sound driver, most of
2206 these records are supposed to be read-only. Only the PCM
2207 middle-layer changes / updates them. The exceptions are
2208 the hardware description (hw) DMA buffer information and the
2209 private data. Besides, if you use the standard buffer allocation
2210 method via
<function>snd_pcm_lib_malloc_pages()
</function>,
2211 you don't need to set the DMA buffer information by yourself.
2215 In the sections below, important records are explained.
2218 <section id=
"pcm-interface-runtime-hw">
2219 <title>Hardware Description
</title>
2221 The hardware descriptor (struct
<structname>snd_pcm_hardware
</structname>)
2222 contains the definitions of the fundamental hardware
2223 configuration. Above all, you'll need to define this in
2224 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2225 the open callback
</citetitle></link>.
2226 Note that the runtime instance holds the copy of the
2227 descriptor, not the pointer to the existing descriptor. That
2228 is, in the open callback, you can modify the copied descriptor
2229 (
<constant>runtime-
>hw
</constant>) as you need. For example, if the maximum
2230 number of channels is
1 only on some chip models, you can
2231 still use the same hardware descriptor and change the
2236 struct snd_pcm_runtime *runtime = substream-
>runtime;
2238 runtime-
>hw = snd_mychip_playback_hw; /* common definition */
2239 if (chip-
>model == VERY_OLD_ONE)
2240 runtime-
>hw.channels_max =
1;
2247 Typically, you'll have a hardware descriptor as below:
2251 static struct snd_pcm_hardware snd_mychip_playback_hw = {
2252 .info = (SNDRV_PCM_INFO_MMAP |
2253 SNDRV_PCM_INFO_INTERLEAVED |
2254 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2255 SNDRV_PCM_INFO_MMAP_VALID),
2256 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2257 .rates = SNDRV_PCM_RATE_8000_48000,
2262 .buffer_bytes_max =
32768,
2263 .period_bytes_min =
4096,
2264 .period_bytes_max =
32768,
2266 .periods_max =
1024,
2276 The
<structfield>info
</structfield> field contains the type and
2277 capabilities of this pcm. The bit flags are defined in
2278 <filename><sound/asound.h
></filename> as
2279 <constant>SNDRV_PCM_INFO_XXX
</constant>. Here, at least, you
2280 have to specify whether the mmap is supported and which
2281 interleaved format is supported.
2282 When the hardware supports mmap, add the
2283 <constant>SNDRV_PCM_INFO_MMAP
</constant> flag here. When the
2284 hardware supports the interleaved or the non-interleaved
2285 formats,
<constant>SNDRV_PCM_INFO_INTERLEAVED
</constant> or
2286 <constant>SNDRV_PCM_INFO_NONINTERLEAVED
</constant> flag must
2287 be set, respectively. If both are supported, you can set both,
2292 In the above example,
<constant>MMAP_VALID
</constant> and
2293 <constant>BLOCK_TRANSFER
</constant> are specified for the OSS mmap
2294 mode. Usually both are set. Of course,
2295 <constant>MMAP_VALID
</constant> is set only if the mmap is
2300 The other possible flags are
2301 <constant>SNDRV_PCM_INFO_PAUSE
</constant> and
2302 <constant>SNDRV_PCM_INFO_RESUME
</constant>. The
2303 <constant>PAUSE
</constant> bit means that the pcm supports the
2304 <quote>pause
</quote> operation, while the
2305 <constant>RESUME
</constant> bit means that the pcm supports
2306 the full
<quote>suspend/resume
</quote> operation.
2307 If the
<constant>PAUSE
</constant> flag is set,
2308 the
<structfield>trigger
</structfield> callback below
2309 must handle the corresponding (pause push/release) commands.
2310 The suspend/resume trigger commands can be defined even without
2311 the
<constant>RESUME
</constant> flag. See
<link
2312 linkend=
"power-management"><citetitle>
2313 Power Management
</citetitle></link> section for details.
2317 When the PCM substreams can be synchronized (typically,
2318 synchronized start/stop of a playback and a capture streams),
2319 you can give
<constant>SNDRV_PCM_INFO_SYNC_START
</constant>,
2320 too. In this case, you'll need to check the linked-list of
2321 PCM substreams in the trigger callback. This will be
2322 described in the later section.
2328 <structfield>formats
</structfield> field contains the bit-flags
2329 of supported formats (
<constant>SNDRV_PCM_FMTBIT_XXX
</constant>).
2330 If the hardware supports more than one format, give all or'ed
2331 bits. In the example above, the signed
16bit little-endian
2332 format is specified.
2338 <structfield>rates
</structfield> field contains the bit-flags of
2339 supported rates (
<constant>SNDRV_PCM_RATE_XXX
</constant>).
2340 When the chip supports continuous rates, pass
2341 <constant>CONTINUOUS
</constant> bit additionally.
2342 The pre-defined rate bits are provided only for typical
2343 rates. If your chip supports unconventional rates, you need to add
2344 the
<constant>KNOT
</constant> bit and set up the hardware
2345 constraint manually (explained later).
2351 <structfield>rate_min
</structfield> and
2352 <structfield>rate_max
</structfield> define the minimum and
2353 maximum sample rate. This should correspond somehow to
2354 <structfield>rates
</structfield> bits.
2360 <structfield>channel_min
</structfield> and
2361 <structfield>channel_max
</structfield>
2362 define, as you might already expected, the minimum and maximum
2369 <structfield>buffer_bytes_max
</structfield> defines the
2370 maximum buffer size in bytes. There is no
2371 <structfield>buffer_bytes_min
</structfield> field, since
2372 it can be calculated from the minimum period size and the
2373 minimum number of periods.
2374 Meanwhile,
<structfield>period_bytes_min
</structfield> and
2375 define the minimum and maximum size of the period in bytes.
2376 <structfield>periods_max
</structfield> and
2377 <structfield>periods_min
</structfield> define the maximum and
2378 minimum number of periods in the buffer.
2382 The
<quote>period
</quote> is a term that corresponds to
2383 a fragment in the OSS world. The period defines the size at
2384 which a PCM interrupt is generated. This size strongly
2385 depends on the hardware.
2386 Generally, the smaller period size will give you more
2387 interrupts, that is, more controls.
2388 In the case of capture, this size defines the input latency.
2389 On the other hand, the whole buffer size defines the
2390 output latency for the playback direction.
2396 There is also a field
<structfield>fifo_size
</structfield>.
2397 This specifies the size of the hardware FIFO, but currently it
2398 is neither used in the driver nor in the alsa-lib. So, you
2399 can ignore this field.
2406 <section id=
"pcm-interface-runtime-config">
2407 <title>PCM Configurations
</title>
2409 Ok, let's go back again to the PCM runtime records.
2410 The most frequently referred records in the runtime instance are
2411 the PCM configurations.
2412 The PCM configurations are stored in the runtime instance
2413 after the application sends
<type>hw_params
</type> data via
2414 alsa-lib. There are many fields copied from hw_params and
2415 sw_params structs. For example,
2416 <structfield>format
</structfield> holds the format type
2417 chosen by the application. This field contains the enum value
2418 <constant>SNDRV_PCM_FORMAT_XXX
</constant>.
2422 One thing to be noted is that the configured buffer and period
2423 sizes are stored in
<quote>frames
</quote> in the runtime.
2424 In the ALSA world,
1 frame = channels * samples-size.
2425 For conversion between frames and bytes, you can use the
2426 <function>frames_to_bytes()
</function> and
2427 <function>bytes_to_frames()
</function> helper functions.
2431 period_bytes = frames_to_bytes(runtime, runtime-
>period_size);
2438 Also, many software parameters (sw_params) are
2439 stored in frames, too. Please check the type of the field.
2440 <type>snd_pcm_uframes_t
</type> is for the frames as unsigned
2441 integer while
<type>snd_pcm_sframes_t
</type> is for the frames
2446 <section id=
"pcm-interface-runtime-dma">
2447 <title>DMA Buffer Information
</title>
2449 The DMA buffer is defined by the following four fields,
2450 <structfield>dma_area
</structfield>,
2451 <structfield>dma_addr
</structfield>,
2452 <structfield>dma_bytes
</structfield> and
2453 <structfield>dma_private
</structfield>.
2454 The
<structfield>dma_area
</structfield> holds the buffer
2455 pointer (the logical address). You can call
2456 <function>memcpy
</function> from/to
2457 this pointer. Meanwhile,
<structfield>dma_addr
</structfield>
2458 holds the physical address of the buffer. This field is
2459 specified only when the buffer is a linear buffer.
2460 <structfield>dma_bytes
</structfield> holds the size of buffer
2461 in bytes.
<structfield>dma_private
</structfield> is used for
2462 the ALSA DMA allocator.
2466 If you use a standard ALSA function,
2467 <function>snd_pcm_lib_malloc_pages()
</function>, for
2468 allocating the buffer, these fields are set by the ALSA middle
2469 layer, and you should
<emphasis>not
</emphasis> change them by
2470 yourself. You can read them but not write them.
2471 On the other hand, if you want to allocate the buffer by
2472 yourself, you'll need to manage it in hw_params callback.
2473 At least,
<structfield>dma_bytes
</structfield> is mandatory.
2474 <structfield>dma_area
</structfield> is necessary when the
2475 buffer is mmapped. If your driver doesn't support mmap, this
2476 field is not necessary.
<structfield>dma_addr
</structfield>
2477 is also optional. You can use
2478 <structfield>dma_private
</structfield> as you like, too.
2482 <section id=
"pcm-interface-runtime-status">
2483 <title>Running Status
</title>
2485 The running status can be referred via
<constant>runtime-
>status
</constant>.
2486 This is the pointer to the struct
<structname>snd_pcm_mmap_status
</structname>
2487 record. For example, you can get the current DMA hardware
2488 pointer via
<constant>runtime-
>status-
>hw_ptr
</constant>.
2492 The DMA application pointer can be referred via
2493 <constant>runtime-
>control
</constant>, which points to the
2494 struct
<structname>snd_pcm_mmap_control
</structname> record.
2495 However, accessing directly to this value is not recommended.
2499 <section id=
"pcm-interface-runtime-private">
2500 <title>Private Data
</title>
2502 You can allocate a record for the substream and store it in
2503 <constant>runtime-
>private_data
</constant>. Usually, this
2505 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2506 the open callback
</citetitle></link>.
2507 Don't mix this with
<constant>pcm-
>private_data
</constant>.
2508 The
<constant>pcm-
>private_data
</constant> usually points to the
2509 chip instance assigned statically at the creation of PCM, while the
2510 <constant>runtime-
>private_data
</constant> points to a dynamic
2511 data structure created at the PCM open callback.
2516 static int snd_xxx_open(struct snd_pcm_substream *substream)
2518 struct my_pcm_data *data;
2520 data = kmalloc(sizeof(*data), GFP_KERNEL);
2521 substream-
>runtime-
>private_data = data;
2530 The allocated object must be released in
2531 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2532 the close callback
</citetitle></link>.
2538 <section id=
"pcm-interface-operators">
2539 <title>Operators
</title>
2541 OK, now let me give details about each pcm callback
2542 (
<parameter>ops
</parameter>). In general, every callback must
2543 return
0 if successful, or a negative error number
2544 such as
<constant>-EINVAL
</constant>. To choose an appropriate
2545 error number, it is advised to check what value other parts of
2546 the kernel return when the same kind of request fails.
2550 The callback function takes at least the argument with
2551 <structname>snd_pcm_substream
</structname> pointer. To retrieve
2552 the chip record from the given substream instance, you can use the
2559 struct mychip *chip = snd_pcm_substream_chip(substream);
2566 The macro reads
<constant>substream-
>private_data
</constant>,
2567 which is a copy of
<constant>pcm-
>private_data
</constant>.
2568 You can override the former if you need to assign different data
2569 records per PCM substream. For example, the cmi8330 driver assigns
2570 different private_data for playback and capture directions,
2571 because it uses two different codecs (SB- and AD-compatible) for
2572 different directions.
2575 <section id=
"pcm-interface-operators-open-callback">
2576 <title>open callback
</title>
2581 static int snd_xxx_open(struct snd_pcm_substream *substream);
2586 This is called when a pcm substream is opened.
2590 At least, here you have to initialize the runtime-
>hw
2591 record. Typically, this is done by like this:
2596 static int snd_xxx_open(struct snd_pcm_substream *substream)
2598 struct mychip *chip = snd_pcm_substream_chip(substream);
2599 struct snd_pcm_runtime *runtime = substream-
>runtime;
2601 runtime-
>hw = snd_mychip_playback_hw;
2608 where
<parameter>snd_mychip_playback_hw
</parameter> is the
2609 pre-defined hardware description.
2613 You can allocate a private data in this callback, as described
2614 in
<link linkend=
"pcm-interface-runtime-private"><citetitle>
2615 Private Data
</citetitle></link> section.
2619 If the hardware configuration needs more constraints, set the
2620 hardware constraints here, too.
2621 See
<link linkend=
"pcm-interface-constraints"><citetitle>
2622 Constraints
</citetitle></link> for more details.
2626 <section id=
"pcm-interface-operators-close-callback">
2627 <title>close callback
</title>
2632 static int snd_xxx_close(struct snd_pcm_substream *substream);
2637 Obviously, this is called when a pcm substream is closed.
2641 Any private instance for a pcm substream allocated in the
2642 open callback will be released here.
2647 static int snd_xxx_close(struct snd_pcm_substream *substream)
2650 kfree(substream-
>runtime-
>private_data);
2659 <section id=
"pcm-interface-operators-ioctl-callback">
2660 <title>ioctl callback
</title>
2662 This is used for any special call to pcm ioctls. But
2663 usually you can pass a generic ioctl callback,
2664 <function>snd_pcm_lib_ioctl
</function>.
2668 <section id=
"pcm-interface-operators-hw-params-callback">
2669 <title>hw_params callback
</title>
2674 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2675 struct snd_pcm_hw_params *hw_params);
2682 This is called when the hardware parameter
2683 (
<structfield>hw_params
</structfield>) is set
2684 up by the application,
2685 that is, once when the buffer size, the period size, the
2686 format, etc. are defined for the pcm substream.
2690 Many hardware setups should be done in this callback,
2691 including the allocation of buffers.
2695 Parameters to be initialized are retrieved by
2696 <function>params_xxx()
</function> macros. To allocate
2697 buffer, you can call a helper function,
2702 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2707 <function>snd_pcm_lib_malloc_pages()
</function> is available
2708 only when the DMA buffers have been pre-allocated.
2709 See the section
<link
2710 linkend=
"buffer-and-memory-buffer-types"><citetitle>
2711 Buffer Types
</citetitle></link> for more details.
2715 Note that this and
<structfield>prepare
</structfield> callbacks
2716 may be called multiple times per initialization.
2717 For example, the OSS emulation may
2718 call these callbacks at each change via its ioctl.
2722 Thus, you need to be careful not to allocate the same buffers
2723 many times, which will lead to memory leaks! Calling the
2724 helper function above many times is OK. It will release the
2725 previous buffer automatically when it was already allocated.
2729 Another note is that this callback is non-atomic
2730 (schedulable) as default, i.e. when no
2731 <structfield>nonatomic
</structfield> flag set.
2732 This is important, because the
2733 <structfield>trigger
</structfield> callback
2734 is atomic (non-schedulable). That is, mutexes or any
2735 schedule-related functions are not available in
2736 <structfield>trigger
</structfield> callback.
2737 Please see the subsection
2738 <link linkend=
"pcm-interface-atomicity"><citetitle>
2739 Atomicity
</citetitle></link> for details.
2743 <section id=
"pcm-interface-operators-hw-free-callback">
2744 <title>hw_free callback
</title>
2749 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2756 This is called to release the resources allocated via
2757 <structfield>hw_params
</structfield>. For example, releasing the
2759 <function>snd_pcm_lib_malloc_pages()
</function> is done by
2760 calling the following:
2765 snd_pcm_lib_free_pages(substream);
2772 This function is always called before the close callback is called.
2773 Also, the callback may be called multiple times, too.
2774 Keep track whether the resource was already released.
2778 <section id=
"pcm-interface-operators-prepare-callback">
2779 <title>prepare callback
</title>
2784 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2791 This callback is called when the pcm is
2792 <quote>prepared
</quote>. You can set the format type, sample
2793 rate, etc. here. The difference from
2794 <structfield>hw_params
</structfield> is that the
2795 <structfield>prepare
</structfield> callback will be called each
2797 <function>snd_pcm_prepare()
</function> is called, i.e. when
2798 recovering after underruns, etc.
2802 Note that this callback is now non-atomic.
2803 You can use schedule-related functions safely in this callback.
2807 In this and the following callbacks, you can refer to the
2808 values via the runtime record,
2809 substream-
>runtime.
2810 For example, to get the current
2811 rate, format or channels, access to
2813 runtime-
>format or
2814 runtime-
>channels, respectively.
2815 The physical address of the allocated buffer is set to
2816 runtime-
>dma_area. The buffer and period sizes are
2817 in runtime-
>buffer_size and runtime-
>period_size,
2822 Be careful that this callback will be called many times at
2827 <section id=
"pcm-interface-operators-trigger-callback">
2828 <title>trigger callback
</title>
2833 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2838 This is called when the pcm is started, stopped or paused.
2842 Which action is specified in the second argument,
2843 <constant>SNDRV_PCM_TRIGGER_XXX
</constant> in
2844 <filename><sound/pcm.h
></filename>. At least,
2845 the
<constant>START
</constant> and
<constant>STOP
</constant>
2846 commands must be defined in this callback.
2852 case SNDRV_PCM_TRIGGER_START:
2853 /* do something to start the PCM engine */
2855 case SNDRV_PCM_TRIGGER_STOP:
2856 /* do something to stop the PCM engine */
2867 When the pcm supports the pause operation (given in the info
2868 field of the hardware table), the
<constant>PAUSE_PUSH
</constant>
2869 and
<constant>PAUSE_RELEASE
</constant> commands must be
2870 handled here, too. The former is the command to pause the pcm,
2871 and the latter to restart the pcm again.
2875 When the pcm supports the suspend/resume operation,
2876 regardless of full or partial suspend/resume support,
2877 the
<constant>SUSPEND
</constant> and
<constant>RESUME
</constant>
2878 commands must be handled, too.
2879 These commands are issued when the power-management status is
2880 changed. Obviously, the
<constant>SUSPEND
</constant> and
2881 <constant>RESUME
</constant> commands
2882 suspend and resume the pcm substream, and usually, they
2883 are identical to the
<constant>STOP
</constant> and
2884 <constant>START
</constant> commands, respectively.
2885 See the
<link linkend=
"power-management"><citetitle>
2886 Power Management
</citetitle></link> section for details.
2890 As mentioned, this callback is atomic as default unless
2891 <structfield>nonatomic
</structfield> flag set, and
2892 you cannot call functions which may sleep.
2893 The trigger callback should be as minimal as possible,
2894 just really triggering the DMA. The other stuff should be
2895 initialized hw_params and prepare callbacks properly
2900 <section id=
"pcm-interface-operators-pointer-callback">
2901 <title>pointer callback
</title>
2906 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2911 This callback is called when the PCM middle layer inquires
2912 the current hardware position on the buffer. The position must
2913 be returned in frames,
2914 ranging from
0 to buffer_size -
1.
2918 This is called usually from the buffer-update routine in the
2919 pcm middle layer, which is invoked when
2920 <function>snd_pcm_period_elapsed()
</function> is called in the
2921 interrupt routine. Then the pcm middle layer updates the
2922 position and calculates the available space, and wakes up the
2923 sleeping poll threads, etc.
2927 This callback is also atomic as default.
2931 <section id=
"pcm-interface-operators-copy-silence">
2932 <title>copy and silence callbacks
</title>
2934 These callbacks are not mandatory, and can be omitted in
2935 most cases. These callbacks are used when the hardware buffer
2936 cannot be in the normal memory space. Some chips have their
2937 own buffer on the hardware which is not mappable. In such a
2938 case, you have to transfer the data manually from the memory
2939 buffer to the hardware buffer. Or, if the buffer is
2940 non-contiguous on both physical and virtual memory spaces,
2941 these callbacks must be defined, too.
2945 If these two callbacks are defined, copy and set-silence
2946 operations are done by them. The detailed will be described in
2947 the later section
<link
2948 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
2949 Management
</citetitle></link>.
2953 <section id=
"pcm-interface-operators-ack">
2954 <title>ack callback
</title>
2956 This callback is also not mandatory. This callback is called
2957 when the appl_ptr is updated in read or write operations.
2958 Some drivers like emu10k1-fx and cs46xx need to track the
2959 current appl_ptr for the internal buffer, and this callback
2960 is useful only for such a purpose.
2963 This callback is atomic as default.
2967 <section id=
"pcm-interface-operators-page-callback">
2968 <title>page callback
</title>
2971 This callback is optional too. This callback is used
2972 mainly for non-contiguous buffers. The mmap calls this
2973 callback to get the page address. Some examples will be
2974 explained in the later section
<link
2975 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
2976 Management
</citetitle></link>, too.
2981 <section id=
"pcm-interface-interrupt-handler">
2982 <title>Interrupt Handler
</title>
2984 The rest of pcm stuff is the PCM interrupt handler. The
2985 role of PCM interrupt handler in the sound driver is to update
2986 the buffer position and to tell the PCM middle layer when the
2987 buffer position goes across the prescribed period size. To
2988 inform this, call the
<function>snd_pcm_period_elapsed()
</function>
2993 There are several types of sound chips to generate the interrupts.
2996 <section id=
"pcm-interface-interrupt-handler-boundary">
2997 <title>Interrupts at the period (fragment) boundary
</title>
2999 This is the most frequently found type: the hardware
3000 generates an interrupt at each period boundary.
3001 In this case, you can call
3002 <function>snd_pcm_period_elapsed()
</function> at each
3007 <function>snd_pcm_period_elapsed()
</function> takes the
3008 substream pointer as its argument. Thus, you need to keep the
3009 substream pointer accessible from the chip instance. For
3010 example, define substream field in the chip record to hold the
3011 current running substream pointer, and set the pointer value
3012 at open callback (and reset at close callback).
3016 If you acquire a spinlock in the interrupt handler, and the
3017 lock is used in other pcm callbacks, too, then you have to
3018 release the lock before calling
3019 <function>snd_pcm_period_elapsed()
</function>, because
3020 <function>snd_pcm_period_elapsed()
</function> calls other pcm
3025 Typical code would be like:
3028 <title>Interrupt Handler Case #
1</title>
3031 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3033 struct mychip *chip = dev_id;
3034 spin_lock(&chip-
>lock);
3036 if (pcm_irq_invoked(chip)) {
3037 /* call updater, unlock before it */
3038 spin_unlock(&chip-
>lock);
3039 snd_pcm_period_elapsed(chip-
>substream);
3040 spin_lock(&chip-
>lock);
3041 /* acknowledge the interrupt if necessary */
3044 spin_unlock(&chip-
>lock);
3053 <section id=
"pcm-interface-interrupt-handler-timer">
3054 <title>High frequency timer interrupts
</title>
3056 This happens when the hardware doesn't generate interrupts
3057 at the period boundary but issues timer interrupts at a fixed
3058 timer rate (e.g. es1968 or ymfpci drivers).
3059 In this case, you need to check the current hardware
3060 position and accumulate the processed sample length at each
3061 interrupt. When the accumulated size exceeds the period
3063 <function>snd_pcm_period_elapsed()
</function> and reset the
3068 Typical code would be like the following.
3071 <title>Interrupt Handler Case #
2</title>
3074 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3076 struct mychip *chip = dev_id;
3077 spin_lock(&chip-
>lock);
3079 if (pcm_irq_invoked(chip)) {
3080 unsigned int last_ptr, size;
3081 /* get the current hardware pointer (in frames) */
3082 last_ptr = get_hw_ptr(chip);
3083 /* calculate the processed frames since the
3086 if (last_ptr < chip-
>last_ptr)
3087 size = runtime-
>buffer_size + last_ptr
3090 size = last_ptr - chip-
>last_ptr;
3091 /* remember the last updated point */
3092 chip-
>last_ptr = last_ptr;
3093 /* accumulate the size */
3095 /* over the period boundary? */
3096 if (chip-
>size
>= runtime-
>period_size) {
3097 /* reset the accumulator */
3098 chip-
>size %= runtime-
>period_size;
3100 spin_unlock(&chip-
>lock);
3101 snd_pcm_period_elapsed(substream);
3102 spin_lock(&chip-
>lock);
3104 /* acknowledge the interrupt if necessary */
3107 spin_unlock(&chip-
>lock);
3116 <section id=
"pcm-interface-interrupt-handler-both">
3117 <title>On calling
<function>snd_pcm_period_elapsed()
</function></title>
3119 In both cases, even if more than one period are elapsed, you
3121 <function>snd_pcm_period_elapsed()
</function> many times. Call
3122 only once. And the pcm layer will check the current hardware
3123 pointer and update to the latest status.
3128 <section id=
"pcm-interface-atomicity">
3129 <title>Atomicity
</title>
3131 One of the most important (and thus difficult to debug) problems
3132 in kernel programming are race conditions.
3133 In the Linux kernel, they are usually avoided via spin-locks, mutexes
3134 or semaphores. In general, if a race condition can happen
3135 in an interrupt handler, it has to be managed atomically, and you
3136 have to use a spinlock to protect the critical session. If the
3137 critical section is not in interrupt handler code and
3138 if taking a relatively long time to execute is acceptable, you
3139 should use mutexes or semaphores instead.
3143 As already seen, some pcm callbacks are atomic and some are
3144 not. For example, the
<parameter>hw_params
</parameter> callback is
3145 non-atomic, while
<parameter>trigger
</parameter> callback is
3146 atomic. This means, the latter is called already in a spinlock
3147 held by the PCM middle layer. Please take this atomicity into
3148 account when you choose a locking scheme in the callbacks.
3152 In the atomic callbacks, you cannot use functions which may call
3153 <function>schedule
</function> or go to
3154 <function>sleep
</function>. Semaphores and mutexes can sleep,
3155 and hence they cannot be used inside the atomic callbacks
3156 (e.g.
<parameter>trigger
</parameter> callback).
3157 To implement some delay in such a callback, please use
3158 <function>udelay()
</function> or
<function>mdelay()
</function>.
3162 All three atomic callbacks (trigger, pointer, and ack) are
3163 called with local interrupts disabled.
3167 The recent changes in PCM core code, however, allow all PCM
3168 operations to be non-atomic. This assumes that the all caller
3169 sides are in non-atomic contexts. For example, the function
3170 <function>snd_pcm_period_elapsed()
</function> is called
3171 typically from the interrupt handler. But, if you set up the
3172 driver to use a threaded interrupt handler, this call can be in
3173 non-atomic context, too. In such a case, you can set
3174 <structfield>nonatomic
</structfield> filed of
3175 <structname>snd_pcm
</structname> object after creating it.
3176 When this flag is set, mutex and rwsem are used internally in
3177 the PCM core instead of spin and rwlocks, so that you can call
3178 all PCM functions safely in a non-atomic context.
3182 <section id=
"pcm-interface-constraints">
3183 <title>Constraints
</title>
3185 If your chip supports unconventional sample rates, or only the
3186 limited samples, you need to set a constraint for the
3191 For example, in order to restrict the sample rates in the some
3192 supported values, use
3193 <function>snd_pcm_hw_constraint_list()
</function>.
3194 You need to call this function in the open callback.
3197 <title>Example of Hardware Constraints
</title>
3200 static unsigned int rates[] =
3201 {
4000,
10000,
22050,
44100};
3202 static struct snd_pcm_hw_constraint_list constraints_rates = {
3203 .count = ARRAY_SIZE(rates),
3208 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3212 err = snd_pcm_hw_constraint_list(substream-
>runtime,
0,
3213 SNDRV_PCM_HW_PARAM_RATE,
3214 &constraints_rates);
3225 There are many different constraints.
3226 Look at
<filename>sound/pcm.h
</filename> for a complete list.
3227 You can even define your own constraint rules.
3228 For example, let's suppose my_chip can manage a substream of
1 channel
3229 if and only if the format is S16_LE, otherwise it supports any format
3230 specified in the
<structname>snd_pcm_hardware
</structname> structure (or in any
3231 other constraint_list). You can build a rule like this:
3234 <title>Example of Hardware Constraints for Channels
</title>
3237 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3238 struct snd_pcm_hw_rule *rule)
3240 struct snd_interval *c = hw_param_interval(params,
3241 SNDRV_PCM_HW_PARAM_CHANNELS);
3242 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3243 struct snd_interval ch;
3245 snd_interval_any(&ch);
3246 if (f-
>bits[
0] == SNDRV_PCM_FMTBIT_S16_LE) {
3247 ch.min = ch.max =
1;
3249 return snd_interval_refine(c, &ch);
3259 Then you need to call this function to add your rule:
3264 snd_pcm_hw_rule_add(substream-
>runtime,
0, SNDRV_PCM_HW_PARAM_CHANNELS,
3265 hw_rule_channels_by_format, NULL,
3266 SNDRV_PCM_HW_PARAM_FORMAT, -
1);
3273 The rule function is called when an application sets the PCM
3274 format, and it refines the number of channels accordingly.
3275 But an application may set the number of channels before
3276 setting the format. Thus you also need to define the inverse rule:
3279 <title>Example of Hardware Constraints for Formats
</title>
3282 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3283 struct snd_pcm_hw_rule *rule)
3285 struct snd_interval *c = hw_param_interval(params,
3286 SNDRV_PCM_HW_PARAM_CHANNELS);
3287 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3288 struct snd_mask fmt;
3290 snd_mask_any(&fmt); /* Init the struct */
3292 fmt.bits[
0] &= SNDRV_PCM_FMTBIT_S16_LE;
3293 return snd_mask_refine(f, &fmt);
3303 ...and in the open callback:
3307 snd_pcm_hw_rule_add(substream-
>runtime,
0, SNDRV_PCM_HW_PARAM_FORMAT,
3308 hw_rule_format_by_channels, NULL,
3309 SNDRV_PCM_HW_PARAM_CHANNELS, -
1);
3316 I won't give more details here, rather I
3317 would like to say,
<quote>Luke, use the source.
</quote>
3324 <!-- ****************************************************** -->
3325 <!-- Control Interface -->
3326 <!-- ****************************************************** -->
3327 <chapter id=
"control-interface">
3328 <title>Control Interface
</title>
3330 <section id=
"control-interface-general">
3331 <title>General
</title>
3333 The control interface is used widely for many switches,
3334 sliders, etc. which are accessed from user-space. Its most
3335 important use is the mixer interface. In other words, since ALSA
3336 0.9.x, all the mixer stuff is implemented on the control kernel API.
3340 ALSA has a well-defined AC97 control module. If your chip
3341 supports only the AC97 and nothing else, you can skip this
3346 The control API is defined in
3347 <filename><sound/control.h
></filename>.
3348 Include this file if you want to add your own controls.
3352 <section id=
"control-interface-definition">
3353 <title>Definition of Controls
</title>
3355 To create a new control, you need to define the
3357 callbacks:
<structfield>info
</structfield>,
3358 <structfield>get
</structfield> and
3359 <structfield>put
</structfield>. Then, define a
3360 struct
<structname>snd_kcontrol_new
</structname> record, such as:
3363 <title>Definition of a Control
</title>
3366 static struct snd_kcontrol_new my_control = {
3367 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3368 .name =
"PCM Playback Switch",
3370 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3371 .private_value =
0xffff,
3372 .info = my_control_info,
3373 .get = my_control_get,
3374 .put = my_control_put
3382 The
<structfield>iface
</structfield> field specifies the control
3383 type,
<constant>SNDRV_CTL_ELEM_IFACE_XXX
</constant>, which
3384 is usually
<constant>MIXER
</constant>.
3385 Use
<constant>CARD
</constant> for global controls that are not
3386 logically part of the mixer.
3387 If the control is closely associated with some specific device on
3388 the sound card, use
<constant>HWDEP
</constant>,
3389 <constant>PCM
</constant>,
<constant>RAWMIDI
</constant>,
3390 <constant>TIMER
</constant>, or
<constant>SEQUENCER
</constant>, and
3391 specify the device number with the
3392 <structfield>device
</structfield> and
3393 <structfield>subdevice
</structfield> fields.
3397 The
<structfield>name
</structfield> is the name identifier
3398 string. Since ALSA
0.9.x, the control name is very important,
3399 because its role is classified from its name. There are
3400 pre-defined standard control names. The details are described in
3401 the
<link linkend=
"control-interface-control-names"><citetitle>
3402 Control Names
</citetitle></link> subsection.
3406 The
<structfield>index
</structfield> field holds the index number
3407 of this control. If there are several different controls with
3408 the same name, they can be distinguished by the index
3409 number. This is the case when
3410 several codecs exist on the card. If the index is zero, you can
3411 omit the definition above.
3415 The
<structfield>access
</structfield> field contains the access
3416 type of this control. Give the combination of bit masks,
3417 <constant>SNDRV_CTL_ELEM_ACCESS_XXX
</constant>, there.
3418 The details will be explained in
3419 the
<link linkend=
"control-interface-access-flags"><citetitle>
3420 Access Flags
</citetitle></link> subsection.
3424 The
<structfield>private_value
</structfield> field contains
3425 an arbitrary long integer value for this record. When using
3426 the generic
<structfield>info
</structfield>,
3427 <structfield>get
</structfield> and
3428 <structfield>put
</structfield> callbacks, you can pass a value
3429 through this field. If several small numbers are necessary, you can
3430 combine them in bitwise. Or, it's possible to give a pointer
3431 (casted to unsigned long) of some record to this field, too.
3435 The
<structfield>tlv
</structfield> field can be used to provide
3436 metadata about the control; see the
3437 <link linkend=
"control-interface-tlv">
3438 <citetitle>Metadata
</citetitle></link> subsection.
3443 <link linkend=
"control-interface-callbacks"><citetitle>
3444 callback functions
</citetitle></link>.
3448 <section id=
"control-interface-control-names">
3449 <title>Control Names
</title>
3451 There are some standards to define the control names. A
3452 control is usually defined from the three parts as
3453 <quote>SOURCE DIRECTION FUNCTION
</quote>.
3457 The first,
<constant>SOURCE
</constant>, specifies the source
3458 of the control, and is a string such as
<quote>Master
</quote>,
3459 <quote>PCM
</quote>,
<quote>CD
</quote> and
3460 <quote>Line
</quote>. There are many pre-defined sources.
3464 The second,
<constant>DIRECTION
</constant>, is one of the
3465 following strings according to the direction of the control:
3466 <quote>Playback
</quote>,
<quote>Capture
</quote>,
<quote>Bypass
3467 Playback
</quote> and
<quote>Bypass Capture
</quote>. Or, it can
3468 be omitted, meaning both playback and capture directions.
3472 The third,
<constant>FUNCTION
</constant>, is one of the
3473 following strings according to the function of the control:
3474 <quote>Switch
</quote>,
<quote>Volume
</quote> and
3475 <quote>Route
</quote>.
3479 The example of control names are, thus,
<quote>Master Capture
3480 Switch
</quote> or
<quote>PCM Playback Volume
</quote>.
3484 There are some exceptions:
3487 <section id=
"control-interface-control-names-global">
3488 <title>Global capture and playback
</title>
3490 <quote>Capture Source
</quote>,
<quote>Capture Switch
</quote>
3491 and
<quote>Capture Volume
</quote> are used for the global
3492 capture (input) source, switch and volume. Similarly,
3493 <quote>Playback Switch
</quote> and
<quote>Playback
3494 Volume
</quote> are used for the global output gain switch and
3499 <section id=
"control-interface-control-names-tone">
3500 <title>Tone-controls
</title>
3502 tone-control switch and volumes are specified like
3503 <quote>Tone Control - XXX
</quote>, e.g.
<quote>Tone Control -
3504 Switch
</quote>,
<quote>Tone Control - Bass
</quote>,
3505 <quote>Tone Control - Center
</quote>.
3509 <section id=
"control-interface-control-names-3d">
3510 <title>3D controls
</title>
3512 3D-control switches and volumes are specified like
<quote>3D
3513 Control - XXX
</quote>, e.g.
<quote>3D Control -
3514 Switch
</quote>,
<quote>3D Control - Center
</quote>,
<quote>3D
3515 Control - Space
</quote>.
3519 <section id=
"control-interface-control-names-mic">
3520 <title>Mic boost
</title>
3522 Mic-boost switch is set as
<quote>Mic Boost
</quote> or
3523 <quote>Mic Boost (
6dB)
</quote>.
3527 More precise information can be found in
3528 <filename>Documentation/sound/alsa/ControlNames.txt
</filename>.
3533 <section id=
"control-interface-access-flags">
3534 <title>Access Flags
</title>
3537 The access flag is the bitmask which specifies the access type
3538 of the given control. The default access type is
3539 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE
</constant>,
3540 which means both read and write are allowed to this control.
3541 When the access flag is omitted (i.e. =
0), it is
3542 considered as
<constant>READWRITE
</constant> access as default.
3546 When the control is read-only, pass
3547 <constant>SNDRV_CTL_ELEM_ACCESS_READ
</constant> instead.
3548 In this case, you don't have to define
3549 the
<structfield>put
</structfield> callback.
3550 Similarly, when the control is write-only (although it's a rare
3551 case), you can use the
<constant>WRITE
</constant> flag instead, and
3552 you don't need the
<structfield>get
</structfield> callback.
3556 If the control value changes frequently (e.g. the VU meter),
3557 <constant>VOLATILE
</constant> flag should be given. This means
3558 that the control may be changed without
3559 <link linkend=
"control-interface-change-notification"><citetitle>
3560 notification
</citetitle></link>. Applications should poll such
3561 a control constantly.
3565 When the control is inactive, set
3566 the
<constant>INACTIVE
</constant> flag, too.
3567 There are
<constant>LOCK
</constant> and
3568 <constant>OWNER
</constant> flags to change the write
3574 <section id=
"control-interface-callbacks">
3575 <title>Callbacks
</title>
3577 <section id=
"control-interface-callbacks-info">
3578 <title>info callback
</title>
3580 The
<structfield>info
</structfield> callback is used to get
3581 detailed information on this control. This must store the
3582 values of the given struct
<structname>snd_ctl_elem_info
</structname>
3583 object. For example, for a boolean control with a single
3587 <title>Example of info callback
</title>
3590 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3591 struct snd_ctl_elem_info *uinfo)
3593 uinfo-
>type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3595 uinfo-
>value.integer.min =
0;
3596 uinfo-
>value.integer.max =
1;
3605 The
<structfield>type
</structfield> field specifies the type
3606 of the control. There are
<constant>BOOLEAN
</constant>,
3607 <constant>INTEGER
</constant>,
<constant>ENUMERATED
</constant>,
3608 <constant>BYTES
</constant>,
<constant>IEC958
</constant> and
3609 <constant>INTEGER64
</constant>. The
3610 <structfield>count
</structfield> field specifies the
3611 number of elements in this control. For example, a stereo
3612 volume would have count =
2. The
3613 <structfield>value
</structfield> field is a union, and
3614 the values stored are depending on the type. The boolean and
3615 integer types are identical.
3619 The enumerated type is a bit different from others. You'll
3620 need to set the string for the currently given item index.
3625 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3626 struct snd_ctl_elem_info *uinfo)
3628 static char *texts[
4] = {
3629 "First",
"Second",
"Third",
"Fourth"
3631 uinfo-
>type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3633 uinfo-
>value.enumerated.items =
4;
3634 if (uinfo-
>value.enumerated.item
> 3)
3635 uinfo-
>value.enumerated.item =
3;
3636 strcpy(uinfo-
>value.enumerated.name,
3637 texts[uinfo-
>value.enumerated.item]);
3646 The above callback can be simplified with a helper function,
3647 <function>snd_ctl_enum_info
</function>. The final code
3649 (You can pass ARRAY_SIZE(texts) instead of
4 in the third
3650 argument; it's a matter of taste.)
3655 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3656 struct snd_ctl_elem_info *uinfo)
3658 static char *texts[
4] = {
3659 "First",
"Second",
"Third",
"Fourth"
3661 return snd_ctl_enum_info(uinfo,
1,
4, texts);
3669 Some common info callbacks are available for your convenience:
3670 <function>snd_ctl_boolean_mono_info()
</function> and
3671 <function>snd_ctl_boolean_stereo_info()
</function>.
3672 Obviously, the former is an info callback for a mono channel
3673 boolean item, just like
<function>snd_myctl_mono_info
</function>
3674 above, and the latter is for a stereo channel boolean item.
3679 <section id=
"control-interface-callbacks-get">
3680 <title>get callback
</title>
3683 This callback is used to read the current value of the
3684 control and to return to user-space.
3691 <title>Example of get callback
</title>
3694 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3695 struct snd_ctl_elem_value *ucontrol)
3697 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3698 ucontrol-
>value.integer.value[
0] = get_some_value(chip);
3707 The
<structfield>value
</structfield> field depends on
3708 the type of control as well as on the info callback. For example,
3709 the sb driver uses this field to store the register offset,
3710 the bit-shift and the bit-mask. The
3711 <structfield>private_value
</structfield> field is set as follows:
3715 .private_value = reg | (shift <<
16) | (mask <<
24)
3719 and is retrieved in callbacks like
3723 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3724 struct snd_ctl_elem_value *ucontrol)
3726 int reg = kcontrol-
>private_value &
0xff;
3727 int shift = (kcontrol-
>private_value
>> 16) &
0xff;
3728 int mask = (kcontrol-
>private_value
>> 24) &
0xff;
3737 In the
<structfield>get
</structfield> callback,
3738 you have to fill all the elements if the
3739 control has more than one elements,
3740 i.e.
<structfield>count
</structfield> > 1.
3741 In the example above, we filled only one element
3742 (
<structfield>value.integer.value[
0]
</structfield>) since it's
3743 assumed as
<structfield>count
</structfield> =
1.
3747 <section id=
"control-interface-callbacks-put">
3748 <title>put callback
</title>
3751 This callback is used to write a value from user-space.
3758 <title>Example of put callback
</title>
3761 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3762 struct snd_ctl_elem_value *ucontrol)
3764 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3766 if (chip-
>current_value !=
3767 ucontrol-
>value.integer.value[
0]) {
3768 change_current_value(chip,
3769 ucontrol-
>value.integer.value[
0]);
3778 As seen above, you have to return
1 if the value is
3779 changed. If the value is not changed, return
0 instead.
3780 If any fatal error happens, return a negative error code as
3785 As in the
<structfield>get
</structfield> callback,
3786 when the control has more than one elements,
3787 all elements must be evaluated in this callback, too.
3791 <section id=
"control-interface-callbacks-all">
3792 <title>Callbacks are not atomic
</title>
3794 All these three callbacks are basically not atomic.
3799 <section id=
"control-interface-constructor">
3800 <title>Constructor
</title>
3802 When everything is ready, finally we can create a new
3803 control. To create a control, there are two functions to be
3804 called,
<function>snd_ctl_new1()
</function> and
3805 <function>snd_ctl_add()
</function>.
3809 In the simplest way, you can do like this:
3814 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3821 where
<parameter>my_control
</parameter> is the
3822 struct
<structname>snd_kcontrol_new
</structname> object defined above, and chip
3823 is the object pointer to be passed to
3824 kcontrol-
>private_data
3825 which can be referred to in callbacks.
3829 <function>snd_ctl_new1()
</function> allocates a new
3830 <structname>snd_kcontrol
</structname> instance,
3831 and
<function>snd_ctl_add
</function> assigns the given
3832 control component to the card.
3836 <section id=
"control-interface-change-notification">
3837 <title>Change Notification
</title>
3839 If you need to change and update a control in the interrupt
3840 routine, you can call
<function>snd_ctl_notify()
</function>. For
3846 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3851 This function takes the card pointer, the event-mask, and the
3852 control id pointer for the notification. The event-mask
3853 specifies the types of notification, for example, in the above
3854 example, the change of control values is notified.
3855 The id pointer is the pointer of struct
<structname>snd_ctl_elem_id
</structname>
3857 You can find some examples in
<filename>es1938.c
</filename> or
3858 <filename>es1968.c
</filename> for hardware volume interrupts.
3862 <section id=
"control-interface-tlv">
3863 <title>Metadata
</title>
3865 To provide information about the dB values of a mixer control, use
3866 on of the
<constant>DECLARE_TLV_xxx
</constant> macros from
3867 <filename><sound/tlv.h
></filename> to define a variable
3868 containing this information, set the
<structfield>tlv.p
3869 </structfield> field to point to this variable, and include the
3870 <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ
</constant> flag in the
3871 <structfield>access
</structfield> field; like this:
3875 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -
4050,
150,
0);
3877 static struct snd_kcontrol_new my_control = {
3879 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3880 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3882 .tlv.p = db_scale_my_control,
3890 The
<function>DECLARE_TLV_DB_SCALE
</function> macro defines
3891 information about a mixer control where each step in the control's
3892 value changes the dB value by a constant dB amount.
3893 The first parameter is the name of the variable to be defined.
3894 The second parameter is the minimum value, in units of
0.01 dB.
3895 The third parameter is the step size, in units of
0.01 dB.
3896 Set the fourth parameter to
1 if the minimum value actually mutes
3901 The
<function>DECLARE_TLV_DB_LINEAR
</function> macro defines
3902 information about a mixer control where the control's value affects
3903 the output linearly.
3904 The first parameter is the name of the variable to be defined.
3905 The second parameter is the minimum value, in units of
0.01 dB.
3906 The third parameter is the maximum value, in units of
0.01 dB.
3907 If the minimum value mutes the control, set the second parameter to
3908 <constant>TLV_DB_GAIN_MUTE
</constant>.
3915 <!-- ****************************************************** -->
3916 <!-- API for AC97 Codec -->
3917 <!-- ****************************************************** -->
3918 <chapter id=
"api-ac97">
3919 <title>API for AC97 Codec
</title>
3922 <title>General
</title>
3924 The ALSA AC97 codec layer is a well-defined one, and you don't
3925 have to write much code to control it. Only low-level control
3926 routines are necessary. The AC97 codec API is defined in
3927 <filename><sound/ac97_codec.h
></filename>.
3931 <section id=
"api-ac97-example">
3932 <title>Full Code Example
</title>
3935 <title>Example of AC97 Interface
</title>
3940 struct snd_ac97 *ac97;
3944 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3947 struct mychip *chip = ac97-
>private_data;
3949 /* read a register value here from the codec */
3950 return the_register_value;
3953 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3954 unsigned short reg, unsigned short val)
3956 struct mychip *chip = ac97-
>private_data;
3958 /* write the given register value to the codec */
3961 static int snd_mychip_ac97(struct mychip *chip)
3963 struct snd_ac97_bus *bus;
3964 struct snd_ac97_template ac97;
3966 static struct snd_ac97_bus_ops ops = {
3967 .write = snd_mychip_ac97_write,
3968 .read = snd_mychip_ac97_read,
3971 err = snd_ac97_bus(chip-
>card,
0, &ops, NULL, &bus);
3974 memset(&ac97,
0, sizeof(ac97));
3975 ac97.private_data = chip;
3976 return snd_ac97_mixer(bus, &ac97, &chip-
>ac97);
3985 <section id=
"api-ac97-constructor">
3986 <title>Constructor
</title>
3988 To create an ac97 instance, first call
<function>snd_ac97_bus
</function>
3989 with an
<type>ac97_bus_ops_t
</type> record with callback functions.
3994 struct snd_ac97_bus *bus;
3995 static struct snd_ac97_bus_ops ops = {
3996 .write = snd_mychip_ac97_write,
3997 .read = snd_mychip_ac97_read,
4000 snd_ac97_bus(card,
0, &ops, NULL, &pbus);
4005 The bus record is shared among all belonging ac97 instances.
4009 And then call
<function>snd_ac97_mixer()
</function> with an
4010 struct
<structname>snd_ac97_template
</structname>
4011 record together with the bus pointer created above.
4016 struct snd_ac97_template ac97;
4019 memset(&ac97,
0, sizeof(ac97));
4020 ac97.private_data = chip;
4021 snd_ac97_mixer(bus, &ac97, &chip-
>ac97);
4026 where chip-
>ac97 is a pointer to a newly created
4027 <type>ac97_t
</type> instance.
4028 In this case, the chip pointer is set as the private data, so that
4029 the read/write callback functions can refer to this chip instance.
4030 This instance is not necessarily stored in the chip
4031 record. If you need to change the register values from the
4032 driver, or need the suspend/resume of ac97 codecs, keep this
4033 pointer to pass to the corresponding functions.
4037 <section id=
"api-ac97-callbacks">
4038 <title>Callbacks
</title>
4040 The standard callbacks are
<structfield>read
</structfield> and
4041 <structfield>write
</structfield>. Obviously they
4042 correspond to the functions for read and write accesses to the
4043 hardware low-level codes.
4047 The
<structfield>read
</structfield> callback returns the
4048 register value specified in the argument.
4053 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
4056 struct mychip *chip = ac97-
>private_data;
4058 return the_register_value;
4064 Here, the chip can be cast from ac97-
>private_data.
4068 Meanwhile, the
<structfield>write
</structfield> callback is
4069 used to set the register value.
4074 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4075 unsigned short reg, unsigned short val)
4082 These callbacks are non-atomic like the control API callbacks.
4086 There are also other callbacks:
4087 <structfield>reset
</structfield>,
4088 <structfield>wait
</structfield> and
4089 <structfield>init
</structfield>.
4093 The
<structfield>reset
</structfield> callback is used to reset
4094 the codec. If the chip requires a special kind of reset, you can
4095 define this callback.
4099 The
<structfield>wait
</structfield> callback is used to
4100 add some waiting time in the standard initialization of the codec. If the
4101 chip requires the extra waiting time, define this callback.
4105 The
<structfield>init
</structfield> callback is used for
4106 additional initialization of the codec.
4110 <section id=
"api-ac97-updating-registers">
4111 <title>Updating Registers in The Driver
</title>
4113 If you need to access to the codec from the driver, you can
4114 call the following functions:
4115 <function>snd_ac97_write()
</function>,
4116 <function>snd_ac97_read()
</function>,
4117 <function>snd_ac97_update()
</function> and
4118 <function>snd_ac97_update_bits()
</function>.
4122 Both
<function>snd_ac97_write()
</function> and
4123 <function>snd_ac97_update()
</function> functions are used to
4124 set a value to the given register
4125 (
<constant>AC97_XXX
</constant>). The difference between them is
4126 that
<function>snd_ac97_update()
</function> doesn't write a
4127 value if the given value has been already set, while
4128 <function>snd_ac97_write()
</function> always rewrites the
4134 snd_ac97_write(ac97, AC97_MASTER,
0x8080);
4135 snd_ac97_update(ac97, AC97_MASTER,
0x8080);
4142 <function>snd_ac97_read()
</function> is used to read the value
4143 of the given register. For example,
4148 value = snd_ac97_read(ac97, AC97_MASTER);
4155 <function>snd_ac97_update_bits()
</function> is used to update
4156 some bits in the given register.
4161 snd_ac97_update_bits(ac97, reg, mask, value);
4168 Also, there is a function to change the sample rate (of a
4169 given register such as
4170 <constant>AC97_PCM_FRONT_DAC_RATE
</constant>) when VRA or
4171 DRA is supported by the codec:
4172 <function>snd_ac97_set_rate()
</function>.
4177 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE,
44100);
4184 The following registers are available to set the rate:
4185 <constant>AC97_PCM_MIC_ADC_RATE
</constant>,
4186 <constant>AC97_PCM_FRONT_DAC_RATE
</constant>,
4187 <constant>AC97_PCM_LR_ADC_RATE
</constant>,
4188 <constant>AC97_SPDIF
</constant>. When
4189 <constant>AC97_SPDIF
</constant> is specified, the register is
4190 not really changed but the corresponding IEC958 status bits will
4195 <section id=
"api-ac97-clock-adjustment">
4196 <title>Clock Adjustment
</title>
4198 In some chips, the clock of the codec isn't
48000 but using a
4199 PCI clock (to save a quartz!). In this case, change the field
4200 bus-
>clock to the corresponding
4201 value. For example, intel8x0
4202 and es1968 drivers have their own function to read from the clock.
4206 <section id=
"api-ac97-proc-files">
4207 <title>Proc Files
</title>
4209 The ALSA AC97 interface will create a proc file such as
4210 <filename>/proc/asound/card0/codec97#
0/ac97#
0-
0</filename> and
4211 <filename>ac97#
0-
0+regs
</filename>. You can refer to these files to
4212 see the current status and registers of the codec.
4216 <section id=
"api-ac97-multiple-codecs">
4217 <title>Multiple Codecs
</title>
4219 When there are several codecs on the same card, you need to
4220 call
<function>snd_ac97_mixer()
</function> multiple times with
4221 ac97.num=
1 or greater. The
<structfield>num
</structfield> field
4222 specifies the codec number.
4226 If you set up multiple codecs, you either need to write
4227 different callbacks for each codec or check
4228 ac97-
>num in the callback routines.
4235 <!-- ****************************************************** -->
4236 <!-- MIDI (MPU401-UART) Interface -->
4237 <!-- ****************************************************** -->
4238 <chapter id=
"midi-interface">
4239 <title>MIDI (MPU401-UART) Interface
</title>
4241 <section id=
"midi-interface-general">
4242 <title>General
</title>
4244 Many soundcards have built-in MIDI (MPU401-UART)
4245 interfaces. When the soundcard supports the standard MPU401-UART
4246 interface, most likely you can use the ALSA MPU401-UART API. The
4247 MPU401-UART API is defined in
4248 <filename><sound/mpu401.h
></filename>.
4252 Some soundchips have a similar but slightly different
4253 implementation of mpu401 stuff. For example, emu10k1 has its own
4258 <section id=
"midi-interface-constructor">
4259 <title>Constructor
</title>
4261 To create a rawmidi object, call
4262 <function>snd_mpu401_uart_new()
</function>.
4267 struct snd_rawmidi *rmidi;
4268 snd_mpu401_uart_new(card,
0, MPU401_HW_MPU401, port, info_flags,
4276 The first argument is the card pointer, and the second is the
4277 index of this component. You can create up to
8 rawmidi
4282 The third argument is the type of the hardware,
4283 <constant>MPU401_HW_XXX
</constant>. If it's not a special one,
4284 you can use
<constant>MPU401_HW_MPU401
</constant>.
4288 The
4th argument is the I/O port address. Many
4289 backward-compatible MPU401 have an I/O port such as
0x330. Or, it
4290 might be a part of its own PCI I/O region. It depends on the
4295 The
5th argument is a bitflag for additional information.
4296 When the I/O port address above is part of the PCI I/O
4297 region, the MPU401 I/O port might have been already allocated
4298 (reserved) by the driver itself. In such a case, pass a bit flag
4299 <constant>MPU401_INFO_INTEGRATED
</constant>,
4300 and the mpu401-uart layer will allocate the I/O ports by itself.
4304 When the controller supports only the input or output MIDI stream,
4305 pass the
<constant>MPU401_INFO_INPUT
</constant> or
4306 <constant>MPU401_INFO_OUTPUT
</constant> bitflag, respectively.
4307 Then the rawmidi instance is created as a single stream.
4311 <constant>MPU401_INFO_MMIO
</constant> bitflag is used to change
4312 the access method to MMIO (via readb and writeb) instead of
4313 iob and outb. In this case, you have to pass the iomapped address
4314 to
<function>snd_mpu401_uart_new()
</function>.
4318 When
<constant>MPU401_INFO_TX_IRQ
</constant> is set, the output
4319 stream isn't checked in the default interrupt handler. The driver
4320 needs to call
<function>snd_mpu401_uart_interrupt_tx()
</function>
4321 by itself to start processing the output stream in the irq handler.
4325 If the MPU-
401 interface shares its interrupt with the other logical
4326 devices on the card, set
<constant>MPU401_INFO_IRQ_HOOK
</constant>
4327 (see
<link linkend=
"midi-interface-interrupt-handler"><citetitle>
4328 below
</citetitle></link>).
4332 Usually, the port address corresponds to the command port and
4333 port +
1 corresponds to the data port. If not, you may change
4334 the
<structfield>cport
</structfield> field of
4335 struct
<structname>snd_mpu401
</structname> manually
4336 afterward. However,
<structname>snd_mpu401
</structname> pointer is not
4337 returned explicitly by
4338 <function>snd_mpu401_uart_new()
</function>. You need to cast
4339 rmidi-
>private_data to
4340 <structname>snd_mpu401
</structname> explicitly,
4345 struct snd_mpu401 *mpu;
4346 mpu = rmidi-
>private_data;
4351 and reset the cport as you like:
4356 mpu-
>cport = my_own_control_port;
4363 The
6th argument specifies the ISA irq number that will be
4364 allocated. If no interrupt is to be allocated (because your
4365 code is already allocating a shared interrupt, or because the
4366 device does not use interrupts), pass -
1 instead.
4367 For a MPU-
401 device without an interrupt, a polling timer
4368 will be used instead.
4372 <section id=
"midi-interface-interrupt-handler">
4373 <title>Interrupt Handler
</title>
4375 When the interrupt is allocated in
4376 <function>snd_mpu401_uart_new()
</function>, an exclusive ISA
4377 interrupt handler is automatically used, hence you don't have
4378 anything else to do than creating the mpu401 stuff. Otherwise, you
4379 have to set
<constant>MPU401_INFO_IRQ_HOOK
</constant>, and call
4380 <function>snd_mpu401_uart_interrupt()
</function> explicitly from your
4381 own interrupt handler when it has determined that a UART interrupt
4386 In this case, you need to pass the private_data of the
4387 returned rawmidi object from
4388 <function>snd_mpu401_uart_new()
</function> as the second
4389 argument of
<function>snd_mpu401_uart_interrupt()
</function>.
4394 snd_mpu401_uart_interrupt(irq, rmidi-
>private_data, regs);
4404 <!-- ****************************************************** -->
4405 <!-- RawMIDI Interface -->
4406 <!-- ****************************************************** -->
4407 <chapter id=
"rawmidi-interface">
4408 <title>RawMIDI Interface
</title>
4410 <section id=
"rawmidi-interface-overview">
4411 <title>Overview
</title>
4414 The raw MIDI interface is used for hardware MIDI ports that can
4415 be accessed as a byte stream. It is not used for synthesizer
4416 chips that do not directly understand MIDI.
4420 ALSA handles file and buffer management. All you have to do is
4421 to write some code to move data between the buffer and the
4426 The rawmidi API is defined in
4427 <filename><sound/rawmidi.h
></filename>.
4431 <section id=
"rawmidi-interface-constructor">
4432 <title>Constructor
</title>
4435 To create a rawmidi device, call the
4436 <function>snd_rawmidi_new
</function> function:
4440 struct snd_rawmidi *rmidi;
4441 err = snd_rawmidi_new(chip-
>card,
"MyMIDI",
0, outs, ins, &rmidi);
4444 rmidi-
>private_data = chip;
4445 strcpy(rmidi-
>name,
"My MIDI");
4446 rmidi-
>info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4447 SNDRV_RAWMIDI_INFO_INPUT |
4448 SNDRV_RAWMIDI_INFO_DUPLEX;
4455 The first argument is the card pointer, the second argument is
4460 The third argument is the index of this component. You can
4461 create up to
8 rawmidi devices.
4465 The fourth and fifth arguments are the number of output and
4466 input substreams, respectively, of this device (a substream is
4467 the equivalent of a MIDI port).
4471 Set the
<structfield>info_flags
</structfield> field to specify
4472 the capabilities of the device.
4473 Set
<constant>SNDRV_RAWMIDI_INFO_OUTPUT
</constant> if there is
4474 at least one output port,
4475 <constant>SNDRV_RAWMIDI_INFO_INPUT
</constant> if there is at
4476 least one input port,
4477 and
<constant>SNDRV_RAWMIDI_INFO_DUPLEX
</constant> if the device
4478 can handle output and input at the same time.
4482 After the rawmidi device is created, you need to set the
4483 operators (callbacks) for each substream. There are helper
4484 functions to set the operators for all the substreams of a device:
4488 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4489 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4496 The operators are usually defined like this:
4500 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4501 .open = snd_mymidi_output_open,
4502 .close = snd_mymidi_output_close,
4503 .trigger = snd_mymidi_output_trigger,
4508 These callbacks are explained in the
<link
4509 linkend=
"rawmidi-interface-callbacks"><citetitle>Callbacks
</citetitle></link>
4514 If there are more than one substream, you should give a
4515 unique name to each of them:
4519 struct snd_rawmidi_substream *substream;
4520 list_for_each_entry(substream,
4521 &rmidi-
>streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4523 sprintf(substream-
>name,
"My MIDI Port %d", substream-
>number +
1);
4525 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4532 <section id=
"rawmidi-interface-callbacks">
4533 <title>Callbacks
</title>
4536 In all the callbacks, the private data that you've set for the
4537 rawmidi device can be accessed as
4538 substream-
>rmidi-
>private_data.
4539 <!-- <code> isn't available before DocBook 4.3 -->
4543 If there is more than one port, your callbacks can determine the
4544 port index from the struct snd_rawmidi_substream data passed to each
4549 struct snd_rawmidi_substream *substream;
4550 int index = substream-
>number;
4556 <section id=
"rawmidi-interface-op-open">
4557 <title><function>open
</function> callback
</title>
4562 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4568 This is called when a substream is opened.
4569 You can initialize the hardware here, but you shouldn't
4570 start transmitting/receiving data yet.
4574 <section id=
"rawmidi-interface-op-close">
4575 <title><function>close
</function> callback
</title>
4580 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4590 The
<function>open
</function> and
<function>close
</function>
4591 callbacks of a rawmidi device are serialized with a mutex,
4596 <section id=
"rawmidi-interface-op-trigger-out">
4597 <title><function>trigger
</function> callback for output
4603 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4609 This is called with a nonzero
<parameter>up
</parameter>
4610 parameter when there is some data in the substream buffer that
4611 must be transmitted.
4615 To read data from the buffer, call
4616 <function>snd_rawmidi_transmit_peek
</function>. It will
4617 return the number of bytes that have been read; this will be
4618 less than the number of bytes requested when there are no more
4620 After the data have been transmitted successfully, call
4621 <function>snd_rawmidi_transmit_ack
</function> to remove the
4622 data from the substream buffer:
4627 while (snd_rawmidi_transmit_peek(substream, &data,
1) ==
1) {
4628 if (snd_mychip_try_to_transmit(data))
4629 snd_rawmidi_transmit_ack(substream,
1);
4631 break; /* hardware FIFO full */
4639 If you know beforehand that the hardware will accept data, you
4640 can use the
<function>snd_rawmidi_transmit
</function> function
4641 which reads some data and removes them from the buffer at once:
4645 while (snd_mychip_transmit_possible()) {
4647 if (snd_rawmidi_transmit(substream, &data,
1) !=
1)
4648 break; /* no more data */
4649 snd_mychip_transmit(data);
4657 If you know beforehand how many bytes you can accept, you can
4658 use a buffer size greater than one with the
4659 <function>snd_rawmidi_transmit*
</function> functions.
4663 The
<function>trigger
</function> callback must not sleep. If
4664 the hardware FIFO is full before the substream buffer has been
4665 emptied, you have to continue transmitting data later, either
4666 in an interrupt handler, or with a timer if the hardware
4667 doesn't have a MIDI transmit interrupt.
4671 The
<function>trigger
</function> callback is called with a
4672 zero
<parameter>up
</parameter> parameter when the transmission
4673 of data should be aborted.
4677 <section id=
"rawmidi-interface-op-trigger-in">
4678 <title><function>trigger
</function> callback for input
4684 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4690 This is called with a nonzero
<parameter>up
</parameter>
4691 parameter to enable receiving data, or with a zero
4692 <parameter>up
</parameter> parameter do disable receiving data.
4696 The
<function>trigger
</function> callback must not sleep; the
4697 actual reading of data from the device is usually done in an
4702 When data reception is enabled, your interrupt handler should
4703 call
<function>snd_rawmidi_receive
</function> for all received
4708 void snd_mychip_midi_interrupt(...)
4710 while (mychip_midi_available()) {
4712 data = mychip_midi_read();
4713 snd_rawmidi_receive(substream, &data,
1);
4722 <section id=
"rawmidi-interface-op-drain">
4723 <title><function>drain
</function> callback
</title>
4728 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4734 This is only used with output substreams. This function should wait
4735 until all data read from the substream buffer have been transmitted.
4736 This ensures that the device can be closed and the driver unloaded
4737 without losing data.
4741 This callback is optional. If you do not set
4742 <structfield>drain
</structfield> in the struct snd_rawmidi_ops
4743 structure, ALSA will simply wait for
50 milliseconds
4752 <!-- ****************************************************** -->
4753 <!-- Miscellaneous Devices -->
4754 <!-- ****************************************************** -->
4755 <chapter id=
"misc-devices">
4756 <title>Miscellaneous Devices
</title>
4758 <section id=
"misc-devices-opl3">
4759 <title>FM OPL3
</title>
4761 The FM OPL3 is still used in many chips (mainly for backward
4762 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4763 OPL3 API is defined in
4764 <filename><sound/opl3.h
></filename>.
4768 FM registers can be directly accessed through the direct-FM API,
4769 defined in
<filename><sound/asound_fm.h
></filename>. In
4770 ALSA native mode, FM registers are accessed through
4771 the Hardware-Dependent Device direct-FM extension API, whereas in
4772 OSS compatible mode, FM registers can be accessed with the OSS
4773 direct-FM compatible API in
<filename>/dev/dmfmX
</filename> device.
4777 To create the OPL3 component, you have two functions to
4778 call. The first one is a constructor for the
<type>opl3_t
</type>
4784 struct snd_opl3 *opl3;
4785 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4793 The first argument is the card pointer, the second one is the
4794 left port address, and the third is the right port address. In
4795 most cases, the right port is placed at the left port +
2.
4799 The fourth argument is the hardware type.
4803 When the left and right ports have been already allocated by
4804 the card driver, pass non-zero to the fifth argument
4805 (
<parameter>integrated
</parameter>). Otherwise, the opl3 module will
4806 allocate the specified ports by itself.
4810 When the accessing the hardware requires special method
4811 instead of the standard I/O access, you can create opl3 instance
4812 separately with
<function>snd_opl3_new()
</function>.
4817 struct snd_opl3 *opl3;
4818 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4825 Then set
<structfield>command
</structfield>,
4826 <structfield>private_data
</structfield> and
4827 <structfield>private_free
</structfield> for the private
4828 access function, the private data and the destructor.
4829 The l_port and r_port are not necessarily set. Only the
4830 command must be set properly. You can retrieve the data
4831 from the opl3-
>private_data field.
4835 After creating the opl3 instance via
<function>snd_opl3_new()
</function>,
4836 call
<function>snd_opl3_init()
</function> to initialize the chip to the
4837 proper state. Note that
<function>snd_opl3_create()
</function> always
4838 calls it internally.
4842 If the opl3 instance is created successfully, then create a
4843 hwdep device for this opl3.
4848 struct snd_hwdep *opl3hwdep;
4849 snd_opl3_hwdep_new(opl3,
0,
1, &opl3hwdep);
4856 The first argument is the
<type>opl3_t
</type> instance you
4857 created, and the second is the index number, usually
0.
4861 The third argument is the index-offset for the sequencer
4862 client assigned to the OPL3 port. When there is an MPU401-UART,
4863 give
1 for here (UART always takes
0).
4867 <section id=
"misc-devices-hardware-dependent">
4868 <title>Hardware-Dependent Devices
</title>
4870 Some chips need user-space access for special
4871 controls or for loading the micro code. In such a case, you can
4872 create a hwdep (hardware-dependent) device. The hwdep API is
4873 defined in
<filename><sound/hwdep.h
></filename>. You can
4874 find examples in opl3 driver or
4875 <filename>isa/sb/sb16_csp.c
</filename>.
4879 The creation of the
<type>hwdep
</type> instance is done via
4880 <function>snd_hwdep_new()
</function>.
4885 struct snd_hwdep *hw;
4886 snd_hwdep_new(card,
"My HWDEP",
0, &hw);
4891 where the third argument is the index number.
4895 You can then pass any pointer value to the
4896 <parameter>private_data
</parameter>.
4897 If you assign a private data, you should define the
4898 destructor, too. The destructor function is set in
4899 the
<structfield>private_free
</structfield> field.
4904 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4905 hw-
>private_data = p;
4906 hw-
>private_free = mydata_free;
4911 and the implementation of the destructor would be:
4916 static void mydata_free(struct snd_hwdep *hw)
4918 struct mydata *p = hw-
>private_data;
4927 The arbitrary file operations can be defined for this
4928 instance. The file operators are defined in
4929 the
<parameter>ops
</parameter> table. For example, assume that
4930 this chip needs an ioctl.
4935 hw-
>ops.open = mydata_open;
4936 hw-
>ops.ioctl = mydata_ioctl;
4937 hw-
>ops.release = mydata_release;
4942 And implement the callback functions as you like.
4946 <section id=
"misc-devices-IEC958">
4947 <title>IEC958 (S/PDIF)
</title>
4949 Usually the controls for IEC958 devices are implemented via
4950 the control interface. There is a macro to compose a name string for
4951 IEC958 controls,
<function>SNDRV_CTL_NAME_IEC958()
</function>
4952 defined in
<filename><include/asound.h
></filename>.
4956 There are some standard controls for IEC958 status bits. These
4957 controls use the type
<type>SNDRV_CTL_ELEM_TYPE_IEC958
</type>,
4958 and the size of element is fixed as
4 bytes array
4959 (value.iec958.status[x]). For the
<structfield>info
</structfield>
4960 callback, you don't specify
4961 the value field for this type (the count field must be set,
4966 <quote>IEC958 Playback Con Mask
</quote> is used to return the
4967 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4968 <quote>IEC958 Playback Pro Mask
</quote> returns the bitmask for
4969 professional mode. They are read-only controls, and are defined
4970 as MIXER controls (iface =
4971 <constant>SNDRV_CTL_ELEM_IFACE_MIXER
</constant>).
4975 Meanwhile,
<quote>IEC958 Playback Default
</quote> control is
4976 defined for getting and setting the current default IEC958
4977 bits. Note that this one is usually defined as a PCM control
4978 (iface =
<constant>SNDRV_CTL_ELEM_IFACE_PCM
</constant>),
4979 although in some places it's defined as a MIXER control.
4983 In addition, you can define the control switches to
4984 enable/disable or to set the raw bit mode. The implementation
4985 will depend on the chip, but the control should be named as
4986 <quote>IEC958 xxx
</quote>, preferably using
4987 the
<function>SNDRV_CTL_NAME_IEC958()
</function> macro.
4991 You can find several cases, for example,
4992 <filename>pci/emu10k1
</filename>,
4993 <filename>pci/ice1712
</filename>, or
4994 <filename>pci/cmipci.c
</filename>.
5001 <!-- ****************************************************** -->
5002 <!-- Buffer and Memory Management -->
5003 <!-- ****************************************************** -->
5004 <chapter id=
"buffer-and-memory">
5005 <title>Buffer and Memory Management
</title>
5007 <section id=
"buffer-and-memory-buffer-types">
5008 <title>Buffer Types
</title>
5010 ALSA provides several different buffer allocation functions
5011 depending on the bus and the architecture. All these have a
5012 consistent API. The allocation of physically-contiguous pages is
5014 <function>snd_malloc_xxx_pages()
</function> function, where xxx
5019 The allocation of pages with fallback is
5020 <function>snd_malloc_xxx_pages_fallback()
</function>. This
5021 function tries to allocate the specified pages but if the pages
5022 are not available, it tries to reduce the page sizes until
5023 enough space is found.
5027 The release the pages, call
5028 <function>snd_free_xxx_pages()
</function> function.
5032 Usually, ALSA drivers try to allocate and reserve
5033 a large contiguous physical space
5034 at the time the module is loaded for the later use.
5035 This is called
<quote>pre-allocation
</quote>.
5036 As already written, you can call the following function at
5037 pcm instance construction time (in the case of PCI bus).
5042 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5043 snd_dma_pci_data(pci), size, max);
5048 where
<parameter>size
</parameter> is the byte size to be
5049 pre-allocated and the
<parameter>max
</parameter> is the maximum
5050 size to be changed via the
<filename>prealloc
</filename> proc file.
5051 The allocator will try to get an area as large as possible
5052 within the given size.
5056 The second argument (type) and the third argument (device pointer)
5057 are dependent on the bus.
5058 In the case of the ISA bus, pass
<function>snd_dma_isa_data()
</function>
5059 as the third argument with
<constant>SNDRV_DMA_TYPE_DEV
</constant> type.
5060 For the continuous buffer unrelated to the bus can be pre-allocated
5061 with
<constant>SNDRV_DMA_TYPE_CONTINUOUS
</constant> type and the
5062 <function>snd_dma_continuous_data(GFP_KERNEL)
</function> device pointer,
5063 where
<constant>GFP_KERNEL
</constant> is the kernel allocation flag to
5065 For the PCI scatter-gather buffers, use
5066 <constant>SNDRV_DMA_TYPE_DEV_SG
</constant> with
5067 <function>snd_dma_pci_data(pci)
</function>
5069 <link linkend=
"buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5070 </citetitle></link> section).
5074 Once the buffer is pre-allocated, you can use the
5075 allocator in the
<structfield>hw_params
</structfield> callback:
5080 snd_pcm_lib_malloc_pages(substream, size);
5085 Note that you have to pre-allocate to use this function.
5089 <section id=
"buffer-and-memory-external-hardware">
5090 <title>External Hardware Buffers
</title>
5092 Some chips have their own hardware buffers and the DMA
5093 transfer from the host memory is not available. In such a case,
5094 you need to either
1) copy/set the audio data directly to the
5095 external hardware buffer, or
2) make an intermediate buffer and
5096 copy/set the data from it to the external hardware buffer in
5097 interrupts (or in tasklets, preferably).
5101 The first case works fine if the external hardware buffer is large
5102 enough. This method doesn't need any extra buffers and thus is
5103 more effective. You need to define the
5104 <structfield>copy
</structfield> and
5105 <structfield>silence
</structfield> callbacks for
5106 the data transfer. However, there is a drawback: it cannot
5107 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5112 The second case allows for mmap on the buffer, although you have
5113 to handle an interrupt or a tasklet to transfer the data
5114 from the intermediate buffer to the hardware buffer. You can find an
5115 example in the vxpocket driver.
5119 Another case is when the chip uses a PCI memory-map
5120 region for the buffer instead of the host memory. In this case,
5121 mmap is available only on certain architectures like the Intel one.
5122 In non-mmap mode, the data cannot be transferred as in the normal
5123 way. Thus you need to define the
<structfield>copy
</structfield> and
5124 <structfield>silence
</structfield> callbacks as well,
5125 as in the cases above. The examples are found in
5126 <filename>rme32.c
</filename> and
<filename>rme96.c
</filename>.
5130 The implementation of the
<structfield>copy
</structfield> and
5131 <structfield>silence
</structfield> callbacks depends upon
5132 whether the hardware supports interleaved or non-interleaved
5133 samples. The
<structfield>copy
</structfield> callback is
5134 defined like below, a bit
5135 differently depending whether the direction is playback or
5141 static int playback_copy(struct snd_pcm_substream *substream, int channel,
5142 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5143 static int capture_copy(struct snd_pcm_substream *substream, int channel,
5144 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5151 In the case of interleaved samples, the second argument
5152 (
<parameter>channel
</parameter>) is not used. The third argument
5153 (
<parameter>pos
</parameter>) points the
5154 current position offset in frames.
5158 The meaning of the fourth argument is different between
5159 playback and capture. For playback, it holds the source data
5160 pointer, and for capture, it's the destination data pointer.
5164 The last argument is the number of frames to be copied.
5168 What you have to do in this callback is again different
5169 between playback and capture directions. In the
5170 playback case, you copy the given amount of data
5171 (
<parameter>count
</parameter>) at the specified pointer
5172 (
<parameter>src
</parameter>) to the specified offset
5173 (
<parameter>pos
</parameter>) on the hardware buffer. When
5174 coded like memcpy-like way, the copy would be like:
5179 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5180 frames_to_bytes(runtime, count));
5187 For the capture direction, you copy the given amount of
5188 data (
<parameter>count
</parameter>) at the specified offset
5189 (
<parameter>pos
</parameter>) on the hardware buffer to the
5190 specified pointer (
<parameter>dst
</parameter>).
5195 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5196 frames_to_bytes(runtime, count));
5201 Note that both the position and the amount of data are given
5206 In the case of non-interleaved samples, the implementation
5207 will be a bit more complicated.
5211 You need to check the channel argument, and if it's -
1, copy
5212 the whole channels. Otherwise, you have to copy only the
5213 specified channel. Please check
5214 <filename>isa/gus/gus_pcm.c
</filename> as an example.
5218 The
<structfield>silence
</structfield> callback is also
5219 implemented in a similar way.
5224 static int silence(struct snd_pcm_substream *substream, int channel,
5225 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5232 The meanings of arguments are the same as in the
5233 <structfield>copy
</structfield>
5234 callback, although there is no
<parameter>src/dst
</parameter>
5235 argument. In the case of interleaved samples, the channel
5236 argument has no meaning, as well as on
5237 <structfield>copy
</structfield> callback.
5241 The role of
<structfield>silence
</structfield> callback is to
5242 set the given amount
5243 (
<parameter>count
</parameter>) of silence data at the
5244 specified offset (
<parameter>pos
</parameter>) on the hardware
5245 buffer. Suppose that the data format is signed (that is, the
5246 silent-data is
0), and the implementation using a memset-like
5247 function would be like:
5252 my_memcpy(my_buffer + frames_to_bytes(runtime, pos),
0,
5253 frames_to_bytes(runtime, count));
5260 In the case of non-interleaved samples, again, the
5261 implementation becomes a bit more complicated. See, for example,
5262 <filename>isa/gus/gus_pcm.c
</filename>.
5266 <section id=
"buffer-and-memory-non-contiguous">
5267 <title>Non-Contiguous Buffers
</title>
5269 If your hardware supports the page table as in emu10k1 or the
5270 buffer descriptors as in via82xx, you can use the scatter-gather
5271 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5272 The API is provided in
<filename><sound/pcm.h
></filename>.
5276 For creating the SG-buffer handler, call
5277 <function>snd_pcm_lib_preallocate_pages()
</function> or
5278 <function>snd_pcm_lib_preallocate_pages_for_all()
</function>
5279 with
<constant>SNDRV_DMA_TYPE_DEV_SG
</constant>
5280 in the PCM constructor like other PCI pre-allocator.
5281 You need to pass
<function>snd_dma_pci_data(pci)
</function>,
5282 where pci is the struct
<structname>pci_dev
</structname> pointer
5283 of the chip as well.
5284 The
<type>struct snd_sg_buf
</type> instance is created as
5285 substream-
>dma_private. You can cast
5291 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream-
>dma_private;
5298 Then call
<function>snd_pcm_lib_malloc_pages()
</function>
5299 in the
<structfield>hw_params
</structfield> callback
5300 as well as in the case of normal PCI buffer.
5301 The SG-buffer handler will allocate the non-contiguous kernel
5302 pages of the given size and map them onto the virtually contiguous
5303 memory. The virtual pointer is addressed in runtime-
>dma_area.
5304 The physical address (runtime-
>dma_addr) is set to zero,
5305 because the buffer is physically non-contiguous.
5306 The physical address table is set up in sgbuf-
>table.
5307 You can get the physical address at a certain offset via
5308 <function>snd_pcm_sgbuf_get_addr()
</function>.
5312 When a SG-handler is used, you need to set
5313 <function>snd_pcm_sgbuf_ops_page
</function> as
5314 the
<structfield>page
</structfield> callback.
5315 (See
<link linkend=
"pcm-interface-operators-page-callback">
5316 <citetitle>page callback section
</citetitle></link>.)
5320 To release the data, call
5321 <function>snd_pcm_lib_free_pages()
</function> in the
5322 <structfield>hw_free
</structfield> callback as usual.
5326 <section id=
"buffer-and-memory-vmalloced">
5327 <title>Vmalloc'ed Buffers
</title>
5329 It's possible to use a buffer allocated via
5330 <function>vmalloc
</function>, for example, for an intermediate
5331 buffer. Since the allocated pages are not contiguous, you need
5332 to set the
<structfield>page
</structfield> callback to obtain
5333 the physical address at every offset.
5337 The implementation of
<structfield>page
</structfield> callback
5343 #include
<linux/vmalloc.h
>
5345 /* get the physical page pointer on the given offset */
5346 static struct page *mychip_page(struct snd_pcm_substream *substream,
5347 unsigned long offset)
5349 void *pageptr = substream-
>runtime-
>dma_area + offset;
5350 return vmalloc_to_page(pageptr);
5361 <!-- ****************************************************** -->
5362 <!-- Proc Interface -->
5363 <!-- ****************************************************** -->
5364 <chapter id=
"proc-interface">
5365 <title>Proc Interface
</title>
5367 ALSA provides an easy interface for procfs. The proc files are
5368 very useful for debugging. I recommend you set up proc files if
5369 you write a driver and want to get a running status or register
5370 dumps. The API is found in
5371 <filename><sound/info.h
></filename>.
5375 To create a proc file, call
5376 <function>snd_card_proc_new()
</function>.
5381 struct snd_info_entry *entry;
5382 int err = snd_card_proc_new(card,
"my-file", &entry);
5387 where the second argument specifies the name of the proc file to be
5388 created. The above example will create a file
5389 <filename>my-file
</filename> under the card directory,
5390 e.g.
<filename>/proc/asound/card0/my-file
</filename>.
5394 Like other components, the proc entry created via
5395 <function>snd_card_proc_new()
</function> will be registered and
5396 released automatically in the card registration and release
5401 When the creation is successful, the function stores a new
5402 instance in the pointer given in the third argument.
5403 It is initialized as a text proc file for read only. To use
5404 this proc file as a read-only text file as it is, set the read
5405 callback with a private data via
5406 <function>snd_info_set_text_ops()
</function>.
5411 snd_info_set_text_ops(entry, chip, my_proc_read);
5416 where the second argument (
<parameter>chip
</parameter>) is the
5417 private data to be used in the callbacks. The third parameter
5418 specifies the read buffer size and the fourth
5419 (
<parameter>my_proc_read
</parameter>) is the callback function, which
5425 static void my_proc_read(struct snd_info_entry *entry,
5426 struct snd_info_buffer *buffer);
5434 In the read callback, use
<function>snd_iprintf()
</function> for
5435 output strings, which works just like normal
5436 <function>printf()
</function>. For example,
5441 static void my_proc_read(struct snd_info_entry *entry,
5442 struct snd_info_buffer *buffer)
5444 struct my_chip *chip = entry-
>private_data;
5446 snd_iprintf(buffer,
"This is my chip!\n");
5447 snd_iprintf(buffer,
"Port = %ld\n", chip-
>port);
5455 The file permissions can be changed afterwards. As default, it's
5456 set as read only for all users. If you want to add write
5457 permission for the user (root as default), do as follows:
5462 entry-
>mode = S_IFREG | S_IRUGO | S_IWUSR;
5467 and set the write buffer size and the callback
5472 entry-
>c.text.write = my_proc_write;
5479 For the write callback, you can use
5480 <function>snd_info_get_line()
</function> to get a text line, and
5481 <function>snd_info_get_str()
</function> to retrieve a string from
5482 the line. Some examples are found in
5483 <filename>core/oss/mixer_oss.c
</filename>, core/oss/and
5484 <filename>pcm_oss.c
</filename>.
5488 For a raw-data proc-file, set the attributes as follows:
5493 static struct snd_info_entry_ops my_file_io_ops = {
5494 .read = my_file_io_read,
5497 entry-
>content = SNDRV_INFO_CONTENT_DATA;
5498 entry-
>private_data = chip;
5499 entry-
>c.ops =
&my_file_io_ops;
5501 entry-
>mode = S_IFREG | S_IRUGO;
5506 For the raw data,
<structfield>size
</structfield> field must be
5507 set properly. This specifies the maximum size of the proc file access.
5511 The read/write callbacks of raw mode are more direct than the text mode.
5512 You need to use a low-level I/O functions such as
5513 <function>copy_from/to_user()
</function> to transfer the
5519 static ssize_t my_file_io_read(struct snd_info_entry *entry,
5520 void *file_private_data,
5526 if (copy_to_user(buf, local_data + pos, count))
5534 If the size of the info entry has been set up properly,
5535 <structfield>count
</structfield> and
<structfield>pos
</structfield> are
5536 guaranteed to fit within
0 and the given size.
5537 You don't have to check the range in the callbacks unless any
5538 other condition is required.
5545 <!-- ****************************************************** -->
5546 <!-- Power Management -->
5547 <!-- ****************************************************** -->
5548 <chapter id=
"power-management">
5549 <title>Power Management
</title>
5551 If the chip is supposed to work with suspend/resume
5552 functions, you need to add power-management code to the
5553 driver. The additional code for power-management should be
5554 <function>ifdef
</function>'ed with
5555 <constant>CONFIG_PM
</constant>.
5559 If the driver
<emphasis>fully
</emphasis> supports suspend/resume
5560 that is, the device can be
5561 properly resumed to its state when suspend was called,
5562 you can set the
<constant>SNDRV_PCM_INFO_RESUME
</constant> flag
5563 in the pcm info field. Usually, this is possible when the
5564 registers of the chip can be safely saved and restored to
5565 RAM. If this is set, the trigger callback is called with
5566 <constant>SNDRV_PCM_TRIGGER_RESUME
</constant> after the resume
5571 Even if the driver doesn't support PM fully but
5572 partial suspend/resume is still possible, it's still worthy to
5573 implement suspend/resume callbacks. In such a case, applications
5574 would reset the status by calling
5575 <function>snd_pcm_prepare()
</function> and restart the stream
5576 appropriately. Hence, you can define suspend/resume callbacks
5577 below but don't set
<constant>SNDRV_PCM_INFO_RESUME
</constant>
5578 info flag to the PCM.
5582 Note that the trigger with SUSPEND can always be called when
5583 <function>snd_pcm_suspend_all
</function> is called,
5584 regardless of the
<constant>SNDRV_PCM_INFO_RESUME
</constant> flag.
5585 The
<constant>RESUME
</constant> flag affects only the behavior
5586 of
<function>snd_pcm_resume()
</function>.
5588 <constant>SNDRV_PCM_TRIGGER_RESUME
</constant> isn't needed
5589 to be handled in the trigger callback when no
5590 <constant>SNDRV_PCM_INFO_RESUME
</constant> flag is set. But,
5591 it's better to keep it for compatibility reasons.)
5594 In the earlier version of ALSA drivers, a common
5595 power-management layer was provided, but it has been removed.
5596 The driver needs to define the suspend/resume hooks according to
5597 the bus the device is connected to. In the case of PCI drivers, the
5598 callbacks look like below:
5604 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5606 .... /* do things for suspend */
5609 static int snd_my_resume(struct pci_dev *pci)
5611 .... /* do things for suspend */
5621 The scheme of the real suspend job is as follows.
5624 <listitem><para>Retrieve the card and the chip data.
</para></listitem>
5625 <listitem><para>Call
<function>snd_power_change_state()
</function> with
5626 <constant>SNDRV_CTL_POWER_D3hot
</constant> to change the
5627 power status.
</para></listitem>
5628 <listitem><para>Call
<function>snd_pcm_suspend_all()
</function> to suspend the running PCM streams.
</para></listitem>
5629 <listitem><para>If AC97 codecs are used, call
5630 <function>snd_ac97_suspend()
</function> for each codec.
</para></listitem>
5631 <listitem><para>Save the register values if necessary.
</para></listitem>
5632 <listitem><para>Stop the hardware if necessary.
</para></listitem>
5633 <listitem><para>Disable the PCI device by calling
5634 <function>pci_disable_device()
</function>. Then, call
5635 <function>pci_save_state()
</function> at last.
</para></listitem>
5640 A typical code would be like:
5645 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5648 struct snd_card *card = pci_get_drvdata(pci);
5649 struct mychip *chip = card-
>private_data;
5651 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5653 snd_pcm_suspend_all(chip-
>pcm);
5655 snd_ac97_suspend(chip-
>ac97);
5657 snd_mychip_save_registers(chip);
5659 snd_mychip_stop_hardware(chip);
5661 pci_disable_device(pci);
5662 pci_save_state(pci);
5671 The scheme of the real resume job is as follows.
5674 <listitem><para>Retrieve the card and the chip data.
</para></listitem>
5675 <listitem><para>Set up PCI. First, call
<function>pci_restore_state()
</function>.
5676 Then enable the pci device again by calling
<function>pci_enable_device()
</function>.
5677 Call
<function>pci_set_master()
</function> if necessary, too.
</para></listitem>
5678 <listitem><para>Re-initialize the chip.
</para></listitem>
5679 <listitem><para>Restore the saved registers if necessary.
</para></listitem>
5680 <listitem><para>Resume the mixer, e.g. calling
5681 <function>snd_ac97_resume()
</function>.
</para></listitem>
5682 <listitem><para>Restart the hardware (if any).
</para></listitem>
5683 <listitem><para>Call
<function>snd_power_change_state()
</function> with
5684 <constant>SNDRV_CTL_POWER_D0
</constant> to notify the processes.
</para></listitem>
5689 A typical code would be like:
5694 static int mychip_resume(struct pci_dev *pci)
5697 struct snd_card *card = pci_get_drvdata(pci);
5698 struct mychip *chip = card-
>private_data;
5700 pci_restore_state(pci);
5701 pci_enable_device(pci);
5702 pci_set_master(pci);
5704 snd_mychip_reinit_chip(chip);
5706 snd_mychip_restore_registers(chip);
5708 snd_ac97_resume(chip-
>ac97);
5710 snd_mychip_restart_chip(chip);
5712 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5721 As shown in the above, it's better to save registers after
5722 suspending the PCM operations via
5723 <function>snd_pcm_suspend_all()
</function> or
5724 <function>snd_pcm_suspend()
</function>. It means that the PCM
5725 streams are already stopped when the register snapshot is
5726 taken. But, remember that you don't have to restart the PCM
5727 stream in the resume callback. It'll be restarted via
5728 trigger call with
<constant>SNDRV_PCM_TRIGGER_RESUME
</constant>
5733 OK, we have all callbacks now. Let's set them up. In the
5734 initialization of the card, make sure that you can get the chip
5735 data from the card instance, typically via
5736 <structfield>private_data
</structfield> field, in case you
5737 created the chip data individually.
5742 static int snd_mychip_probe(struct pci_dev *pci,
5743 const struct pci_device_id *pci_id)
5746 struct snd_card *card;
5747 struct mychip *chip;
5750 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
5753 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5755 card-
>private_data = chip;
5762 When you created the chip data with
5763 <function>snd_card_new()
</function>, it's anyway accessible
5764 via
<structfield>private_data
</structfield> field.
5769 static int snd_mychip_probe(struct pci_dev *pci,
5770 const struct pci_device_id *pci_id)
5773 struct snd_card *card;
5774 struct mychip *chip;
5777 err = snd_card_new(&pci-
>dev, index[dev], id[dev], THIS_MODULE,
5778 sizeof(struct mychip), &card);
5780 chip = card-
>private_data;
5790 If you need a space to save the registers, allocate the
5791 buffer for it here, too, since it would be fatal
5792 if you cannot allocate a memory in the suspend phase.
5793 The allocated buffer should be released in the corresponding
5798 And next, set suspend/resume callbacks to the pci_driver.
5803 static struct pci_driver driver = {
5804 .name = KBUILD_MODNAME,
5805 .id_table = snd_my_ids,
5806 .probe = snd_my_probe,
5807 .remove = snd_my_remove,
5809 .suspend = snd_my_suspend,
5810 .resume = snd_my_resume,
5821 <!-- ****************************************************** -->
5822 <!-- Module Parameters -->
5823 <!-- ****************************************************** -->
5824 <chapter id=
"module-parameters">
5825 <title>Module Parameters
</title>
5827 There are standard module options for ALSA. At least, each
5828 module should have the
<parameter>index
</parameter>,
5829 <parameter>id
</parameter> and
<parameter>enable
</parameter>
5834 If the module supports multiple cards (usually up to
5835 8 =
<constant>SNDRV_CARDS
</constant> cards), they should be
5836 arrays. The default initial values are defined already as
5837 constants for easier programming:
5842 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5843 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5844 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5851 If the module supports only a single card, they could be single
5852 variables, instead.
<parameter>enable
</parameter> option is not
5853 always necessary in this case, but it would be better to have a
5854 dummy option for compatibility.
5858 The module parameters must be declared with the standard
5859 <function>module_param()()
</function>,
5860 <function>module_param_array()()
</function> and
5861 <function>MODULE_PARM_DESC()
</function> macros.
5865 The typical coding would be like below:
5870 #define CARD_NAME
"My Chip"
5872 module_param_array(index, int, NULL,
0444);
5873 MODULE_PARM_DESC(index,
"Index value for " CARD_NAME
" soundcard.");
5874 module_param_array(id, charp, NULL,
0444);
5875 MODULE_PARM_DESC(id,
"ID string for " CARD_NAME
" soundcard.");
5876 module_param_array(enable, bool, NULL,
0444);
5877 MODULE_PARM_DESC(enable,
"Enable " CARD_NAME
" soundcard.");
5884 Also, don't forget to define the module description, classes,
5885 license and devices. Especially, the recent modprobe requires to
5886 define the module license as GPL, etc., otherwise the system is
5887 shown as
<quote>tainted
</quote>.
5892 MODULE_DESCRIPTION(
"My Chip");
5893 MODULE_LICENSE(
"GPL");
5894 MODULE_SUPPORTED_DEVICE(
"{{Vendor,My Chip Name}}");
5903 <!-- ****************************************************** -->
5904 <!-- How To Put Your Driver -->
5905 <!-- ****************************************************** -->
5906 <chapter id=
"how-to-put-your-driver">
5907 <title>How To Put Your Driver Into ALSA Tree
</title>
5909 <title>General
</title>
5911 So far, you've learned how to write the driver codes.
5912 And you might have a question now: how to put my own
5913 driver into the ALSA driver tree?
5914 Here (finally :) the standard procedure is described briefly.
5918 Suppose that you create a new PCI driver for the card
5919 <quote>xyz
</quote>. The card module name would be
5920 snd-xyz. The new driver is usually put into the alsa-driver
5921 tree,
<filename>alsa-driver/pci
</filename> directory in
5922 the case of PCI cards.
5923 Then the driver is evaluated, audited and tested
5924 by developers and users. After a certain time, the driver
5925 will go to the alsa-kernel tree (to the corresponding directory,
5926 such as
<filename>alsa-kernel/pci
</filename>) and eventually
5927 will be integrated into the Linux
2.6 tree (the directory would be
5928 <filename>linux/sound/pci
</filename>).
5932 In the following sections, the driver code is supposed
5933 to be put into alsa-driver tree. The two cases are covered:
5934 a driver consisting of a single source file and one consisting
5935 of several source files.
5940 <title>Driver with A Single Source File
</title>
5945 Modify alsa-driver/pci/Makefile
5949 Suppose you have a file xyz.c. Add the following
5954 snd-xyz-objs := xyz.o
5955 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5964 Create the Kconfig entry
5968 Add the new entry of Kconfig for your xyz driver.
5973 tristate
"Foobar XYZ"
5977 Say Y here to include support for Foobar XYZ soundcard.
5979 To compile this driver as a module, choose M here: the module
5980 will be called snd-xyz.
5985 the line, select SND_PCM, specifies that the driver xyz supports
5986 PCM. In addition to SND_PCM, the following components are
5987 supported for select command:
5988 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5989 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5990 Add the select command for each supported component.
5994 Note that some selections imply the lowlevel selections.
5995 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5996 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5997 You don't need to give the lowlevel selections again.
6001 For the details of Kconfig script, refer to the kbuild
6009 Run cvscompile script to re-generate the configure script and
6010 build the whole stuff again.
6018 <title>Drivers with Several Source Files
</title>
6020 Suppose that the driver snd-xyz have several source files.
6021 They are located in the new subdirectory,
6027 Add a new directory (
<filename>xyz
</filename>) in
6028 <filename>alsa-driver/pci/Makefile
</filename> as below
6033 obj-$(CONFIG_SND) += xyz/
6042 Under the directory
<filename>xyz
</filename>, create a Makefile
6045 <title>Sample Makefile for a driver xyz
</title>
6052 include $(SND_TOPDIR)/toplevel.config
6053 include $(SND_TOPDIR)/Makefile.conf
6055 snd-xyz-objs := xyz.o abc.o def.o
6057 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6059 include $(SND_TOPDIR)/Rules.make
6068 Create the Kconfig entry
6072 This procedure is as same as in the last section.
6078 Run cvscompile script to re-generate the configure script and
6079 build the whole stuff again.
6088 <!-- ****************************************************** -->
6089 <!-- Useful Functions -->
6090 <!-- ****************************************************** -->
6091 <chapter id=
"useful-functions">
6092 <title>Useful Functions
</title>
6094 <section id=
"useful-functions-snd-printk">
6095 <title><function>snd_printk()
</function> and friends
</title>
6097 ALSA provides a verbose version of the
6098 <function>printk()
</function> function. If a kernel config
6099 <constant>CONFIG_SND_VERBOSE_PRINTK
</constant> is set, this
6100 function prints the given message together with the file name
6101 and the line of the caller. The
<constant>KERN_XXX
</constant>
6102 prefix is processed as
6103 well as the original
<function>printk()
</function> does, so it's
6104 recommended to add this prefix, e.g.
6109 snd_printk(KERN_ERR
"Oh my, sorry, it's extremely bad!\n");
6116 There are also
<function>printk()
</function>'s for
6117 debugging.
<function>snd_printd()
</function> can be used for
6118 general debugging purposes. If
6119 <constant>CONFIG_SND_DEBUG
</constant> is set, this function is
6120 compiled, and works just like
6121 <function>snd_printk()
</function>. If the ALSA is compiled
6122 without the debugging flag, it's ignored.
6126 <function>snd_printdd()
</function> is compiled in only when
6127 <constant>CONFIG_SND_DEBUG_VERBOSE
</constant> is set. Please note
6128 that
<constant>CONFIG_SND_DEBUG_VERBOSE
</constant> is not set as default
6129 even if you configure the alsa-driver with
6130 <option>--with-debug=full
</option> option. You need to give
6131 explicitly
<option>--with-debug=detect
</option> option instead.
6135 <section id=
"useful-functions-snd-bug">
6136 <title><function>snd_BUG()
</function></title>
6138 It shows the
<computeroutput>BUG?
</computeroutput> message and
6139 stack trace as well as
<function>snd_BUG_ON
</function> at the point.
6140 It's useful to show that a fatal error happens there.
6143 When no debug flag is set, this macro is ignored.
6147 <section id=
"useful-functions-snd-bug-on">
6148 <title><function>snd_BUG_ON()
</function></title>
6150 <function>snd_BUG_ON()
</function> macro is similar with
6151 <function>WARN_ON()
</function> macro. For example,
6156 snd_BUG_ON(!pointer);
6161 or it can be used as the condition,
6165 if (snd_BUG_ON(non_zero_is_bug))
6174 The macro takes an conditional expression to evaluate.
6175 When
<constant>CONFIG_SND_DEBUG
</constant>, is set, if the
6176 expression is non-zero, it shows the warning message such as
6177 <computeroutput>BUG? (xxx)
</computeroutput>
6178 normally followed by stack trace.
6180 In both cases it returns the evaluated value.
6188 <!-- ****************************************************** -->
6189 <!-- Acknowledgments -->
6190 <!-- ****************************************************** -->
6191 <chapter id=
"acknowledgments">
6192 <title>Acknowledgments
</title>
6194 I would like to thank Phil Kerr for his help for improvement and
6195 corrections of this document.
6198 Kevin Conder reformatted the original plain-text to the
6202 Giuliano Pochini corrected typos and contributed the example codes
6203 in the hardware constraints section.