4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
32 static void sum_vm_events(unsigned long *ret
)
37 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
39 for_each_online_cpu(cpu
) {
40 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
42 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
43 ret
[i
] += this->event
[i
];
48 * Accumulate the vm event counters across all CPUs.
49 * The result is unavoidably approximate - it can change
50 * during and after execution of this function.
52 void all_vm_events(unsigned long *ret
)
58 EXPORT_SYMBOL_GPL(all_vm_events
);
61 * Fold the foreign cpu events into our own.
63 * This is adding to the events on one processor
64 * but keeps the global counts constant.
66 void vm_events_fold_cpu(int cpu
)
68 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
71 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
72 count_vm_events(i
, fold_state
->event
[i
]);
73 fold_state
->event
[i
] = 0;
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
80 * Manage combined zone based / global counters
82 * vm_stat contains the global counters
84 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
85 EXPORT_SYMBOL(vm_stat
);
89 int calculate_pressure_threshold(struct zone
*zone
)
92 int watermark_distance
;
95 * As vmstats are not up to date, there is drift between the estimated
96 * and real values. For high thresholds and a high number of CPUs, it
97 * is possible for the min watermark to be breached while the estimated
98 * value looks fine. The pressure threshold is a reduced value such
99 * that even the maximum amount of drift will not accidentally breach
102 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
103 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
106 * Maximum threshold is 125
108 threshold
= min(125, threshold
);
113 int calculate_normal_threshold(struct zone
*zone
)
116 int mem
; /* memory in 128 MB units */
119 * The threshold scales with the number of processors and the amount
120 * of memory per zone. More memory means that we can defer updates for
121 * longer, more processors could lead to more contention.
122 * fls() is used to have a cheap way of logarithmic scaling.
124 * Some sample thresholds:
126 * Threshold Processors (fls) Zonesize fls(mem+1)
127 * ------------------------------------------------------------------
144 * 125 1024 10 8-16 GB 8
145 * 125 1024 10 16-32 GB 9
148 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
150 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
153 * Maximum threshold is 125
155 threshold
= min(125, threshold
);
161 * Refresh the thresholds for each zone.
163 void refresh_zone_stat_thresholds(void)
169 for_each_populated_zone(zone
) {
170 unsigned long max_drift
, tolerate_drift
;
172 threshold
= calculate_normal_threshold(zone
);
174 for_each_online_cpu(cpu
)
175 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
179 * Only set percpu_drift_mark if there is a danger that
180 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 * the min watermark could be breached by an allocation
183 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
184 max_drift
= num_online_cpus() * threshold
;
185 if (max_drift
> tolerate_drift
)
186 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
191 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
192 int (*calculate_pressure
)(struct zone
*))
199 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
200 zone
= &pgdat
->node_zones
[i
];
201 if (!zone
->percpu_drift_mark
)
204 threshold
= (*calculate_pressure
)(zone
);
205 for_each_online_cpu(cpu
)
206 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
212 * For use when we know that interrupts are disabled,
213 * or when we know that preemption is disabled and that
214 * particular counter cannot be updated from interrupt context.
216 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
219 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
220 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
224 x
= delta
+ __this_cpu_read(*p
);
226 t
= __this_cpu_read(pcp
->stat_threshold
);
228 if (unlikely(x
> t
|| x
< -t
)) {
229 zone_page_state_add(x
, zone
, item
);
232 __this_cpu_write(*p
, x
);
234 EXPORT_SYMBOL(__mod_zone_page_state
);
237 * Optimized increment and decrement functions.
239 * These are only for a single page and therefore can take a struct page *
240 * argument instead of struct zone *. This allows the inclusion of the code
241 * generated for page_zone(page) into the optimized functions.
243 * No overflow check is necessary and therefore the differential can be
244 * incremented or decremented in place which may allow the compilers to
245 * generate better code.
246 * The increment or decrement is known and therefore one boundary check can
249 * NOTE: These functions are very performance sensitive. Change only
252 * Some processors have inc/dec instructions that are atomic vs an interrupt.
253 * However, the code must first determine the differential location in a zone
254 * based on the processor number and then inc/dec the counter. There is no
255 * guarantee without disabling preemption that the processor will not change
256 * in between and therefore the atomicity vs. interrupt cannot be exploited
257 * in a useful way here.
259 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
261 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
262 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
265 v
= __this_cpu_inc_return(*p
);
266 t
= __this_cpu_read(pcp
->stat_threshold
);
267 if (unlikely(v
> t
)) {
268 s8 overstep
= t
>> 1;
270 zone_page_state_add(v
+ overstep
, zone
, item
);
271 __this_cpu_write(*p
, -overstep
);
275 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
277 __inc_zone_state(page_zone(page
), item
);
279 EXPORT_SYMBOL(__inc_zone_page_state
);
281 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
283 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
284 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
287 v
= __this_cpu_dec_return(*p
);
288 t
= __this_cpu_read(pcp
->stat_threshold
);
289 if (unlikely(v
< - t
)) {
290 s8 overstep
= t
>> 1;
292 zone_page_state_add(v
- overstep
, zone
, item
);
293 __this_cpu_write(*p
, overstep
);
297 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
299 __dec_zone_state(page_zone(page
), item
);
301 EXPORT_SYMBOL(__dec_zone_page_state
);
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
305 * If we have cmpxchg_local support then we do not need to incur the overhead
306 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
308 * mod_state() modifies the zone counter state through atomic per cpu
311 * Overstep mode specifies how overstep should handled:
313 * 1 Overstepping half of threshold
314 * -1 Overstepping minus half of threshold
316 static inline void mod_state(struct zone
*zone
,
317 enum zone_stat_item item
, int delta
, int overstep_mode
)
319 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
320 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
324 z
= 0; /* overflow to zone counters */
327 * The fetching of the stat_threshold is racy. We may apply
328 * a counter threshold to the wrong the cpu if we get
329 * rescheduled while executing here. However, the next
330 * counter update will apply the threshold again and
331 * therefore bring the counter under the threshold again.
333 * Most of the time the thresholds are the same anyways
334 * for all cpus in a zone.
336 t
= this_cpu_read(pcp
->stat_threshold
);
338 o
= this_cpu_read(*p
);
341 if (n
> t
|| n
< -t
) {
342 int os
= overstep_mode
* (t
>> 1) ;
344 /* Overflow must be added to zone counters */
348 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
351 zone_page_state_add(z
, zone
, item
);
354 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
357 mod_state(zone
, item
, delta
, 0);
359 EXPORT_SYMBOL(mod_zone_page_state
);
361 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
363 mod_state(zone
, item
, 1, 1);
366 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
368 mod_state(page_zone(page
), item
, 1, 1);
370 EXPORT_SYMBOL(inc_zone_page_state
);
372 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
374 mod_state(page_zone(page
), item
, -1, -1);
376 EXPORT_SYMBOL(dec_zone_page_state
);
379 * Use interrupt disable to serialize counter updates
381 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
386 local_irq_save(flags
);
387 __mod_zone_page_state(zone
, item
, delta
);
388 local_irq_restore(flags
);
390 EXPORT_SYMBOL(mod_zone_page_state
);
392 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
396 local_irq_save(flags
);
397 __inc_zone_state(zone
, item
);
398 local_irq_restore(flags
);
401 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
406 zone
= page_zone(page
);
407 local_irq_save(flags
);
408 __inc_zone_state(zone
, item
);
409 local_irq_restore(flags
);
411 EXPORT_SYMBOL(inc_zone_page_state
);
413 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
417 local_irq_save(flags
);
418 __dec_zone_page_state(page
, item
);
419 local_irq_restore(flags
);
421 EXPORT_SYMBOL(dec_zone_page_state
);
426 * Fold a differential into the global counters.
427 * Returns the number of counters updated.
429 static int fold_diff(int *diff
)
434 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
436 atomic_long_add(diff
[i
], &vm_stat
[i
]);
443 * Update the zone counters for the current cpu.
445 * Note that refresh_cpu_vm_stats strives to only access
446 * node local memory. The per cpu pagesets on remote zones are placed
447 * in the memory local to the processor using that pageset. So the
448 * loop over all zones will access a series of cachelines local to
451 * The call to zone_page_state_add updates the cachelines with the
452 * statistics in the remote zone struct as well as the global cachelines
453 * with the global counters. These could cause remote node cache line
454 * bouncing and will have to be only done when necessary.
456 * The function returns the number of global counters updated.
458 static int refresh_cpu_vm_stats(void)
462 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
465 for_each_populated_zone(zone
) {
466 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
468 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
471 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
474 atomic_long_add(v
, &zone
->vm_stat
[i
]);
477 /* 3 seconds idle till flush */
478 __this_cpu_write(p
->expire
, 3);
485 * Deal with draining the remote pageset of this
488 * Check if there are pages remaining in this pageset
489 * if not then there is nothing to expire.
491 if (!__this_cpu_read(p
->expire
) ||
492 !__this_cpu_read(p
->pcp
.count
))
496 * We never drain zones local to this processor.
498 if (zone_to_nid(zone
) == numa_node_id()) {
499 __this_cpu_write(p
->expire
, 0);
503 if (__this_cpu_dec_return(p
->expire
))
506 if (__this_cpu_read(p
->pcp
.count
)) {
507 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
512 changes
+= fold_diff(global_diff
);
517 * Fold the data for an offline cpu into the global array.
518 * There cannot be any access by the offline cpu and therefore
519 * synchronization is simplified.
521 void cpu_vm_stats_fold(int cpu
)
525 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
527 for_each_populated_zone(zone
) {
528 struct per_cpu_pageset
*p
;
530 p
= per_cpu_ptr(zone
->pageset
, cpu
);
532 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
533 if (p
->vm_stat_diff
[i
]) {
536 v
= p
->vm_stat_diff
[i
];
537 p
->vm_stat_diff
[i
] = 0;
538 atomic_long_add(v
, &zone
->vm_stat
[i
]);
543 fold_diff(global_diff
);
547 * this is only called if !populated_zone(zone), which implies no other users of
548 * pset->vm_stat_diff[] exsist.
550 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
554 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
555 if (pset
->vm_stat_diff
[i
]) {
556 int v
= pset
->vm_stat_diff
[i
];
557 pset
->vm_stat_diff
[i
] = 0;
558 atomic_long_add(v
, &zone
->vm_stat
[i
]);
559 atomic_long_add(v
, &vm_stat
[i
]);
566 * zonelist = the list of zones passed to the allocator
567 * z = the zone from which the allocation occurred.
569 * Must be called with interrupts disabled.
571 * When __GFP_OTHER_NODE is set assume the node of the preferred
572 * zone is the local node. This is useful for daemons who allocate
573 * memory on behalf of other processes.
575 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
577 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
578 __inc_zone_state(z
, NUMA_HIT
);
580 __inc_zone_state(z
, NUMA_MISS
);
581 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
583 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
584 preferred_zone
->node
: numa_node_id()))
585 __inc_zone_state(z
, NUMA_LOCAL
);
587 __inc_zone_state(z
, NUMA_OTHER
);
591 #ifdef CONFIG_COMPACTION
593 struct contig_page_info
{
594 unsigned long free_pages
;
595 unsigned long free_blocks_total
;
596 unsigned long free_blocks_suitable
;
600 * Calculate the number of free pages in a zone, how many contiguous
601 * pages are free and how many are large enough to satisfy an allocation of
602 * the target size. Note that this function makes no attempt to estimate
603 * how many suitable free blocks there *might* be if MOVABLE pages were
604 * migrated. Calculating that is possible, but expensive and can be
605 * figured out from userspace
607 static void fill_contig_page_info(struct zone
*zone
,
608 unsigned int suitable_order
,
609 struct contig_page_info
*info
)
613 info
->free_pages
= 0;
614 info
->free_blocks_total
= 0;
615 info
->free_blocks_suitable
= 0;
617 for (order
= 0; order
< MAX_ORDER
; order
++) {
618 unsigned long blocks
;
620 /* Count number of free blocks */
621 blocks
= zone
->free_area
[order
].nr_free
;
622 info
->free_blocks_total
+= blocks
;
624 /* Count free base pages */
625 info
->free_pages
+= blocks
<< order
;
627 /* Count the suitable free blocks */
628 if (order
>= suitable_order
)
629 info
->free_blocks_suitable
+= blocks
<<
630 (order
- suitable_order
);
635 * A fragmentation index only makes sense if an allocation of a requested
636 * size would fail. If that is true, the fragmentation index indicates
637 * whether external fragmentation or a lack of memory was the problem.
638 * The value can be used to determine if page reclaim or compaction
641 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
643 unsigned long requested
= 1UL << order
;
645 if (!info
->free_blocks_total
)
648 /* Fragmentation index only makes sense when a request would fail */
649 if (info
->free_blocks_suitable
)
653 * Index is between 0 and 1 so return within 3 decimal places
655 * 0 => allocation would fail due to lack of memory
656 * 1 => allocation would fail due to fragmentation
658 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
661 /* Same as __fragmentation index but allocs contig_page_info on stack */
662 int fragmentation_index(struct zone
*zone
, unsigned int order
)
664 struct contig_page_info info
;
666 fill_contig_page_info(zone
, order
, &info
);
667 return __fragmentation_index(order
, &info
);
671 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
672 #include <linux/proc_fs.h>
673 #include <linux/seq_file.h>
675 static char * const migratetype_names
[MIGRATE_TYPES
] = {
683 #ifdef CONFIG_MEMORY_ISOLATION
688 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
692 for (pgdat
= first_online_pgdat();
694 pgdat
= next_online_pgdat(pgdat
))
700 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
702 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
705 return next_online_pgdat(pgdat
);
708 static void frag_stop(struct seq_file
*m
, void *arg
)
712 /* Walk all the zones in a node and print using a callback */
713 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
714 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
717 struct zone
*node_zones
= pgdat
->node_zones
;
720 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
721 if (!populated_zone(zone
))
724 spin_lock_irqsave(&zone
->lock
, flags
);
725 print(m
, pgdat
, zone
);
726 spin_unlock_irqrestore(&zone
->lock
, flags
);
731 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
732 #ifdef CONFIG_ZONE_DMA
733 #define TEXT_FOR_DMA(xx) xx "_dma",
735 #define TEXT_FOR_DMA(xx)
738 #ifdef CONFIG_ZONE_DMA32
739 #define TEXT_FOR_DMA32(xx) xx "_dma32",
741 #define TEXT_FOR_DMA32(xx)
744 #ifdef CONFIG_HIGHMEM
745 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
747 #define TEXT_FOR_HIGHMEM(xx)
750 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
751 TEXT_FOR_HIGHMEM(xx) xx "_movable",
753 const char * const vmstat_text
[] = {
754 /* enum zone_stat_item countes */
768 "nr_slab_reclaimable",
769 "nr_slab_unreclaimable",
770 "nr_page_table_pages",
775 "nr_vmscan_immediate_reclaim",
792 "workingset_refault",
793 "workingset_activate",
794 "workingset_nodereclaim",
795 "nr_anon_transparent_hugepages",
798 /* enum writeback_stat_item counters */
799 "nr_dirty_threshold",
800 "nr_dirty_background_threshold",
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803 /* enum vm_event_item counters */
809 TEXTS_FOR_ZONES("pgalloc")
818 TEXTS_FOR_ZONES("pgrefill")
819 TEXTS_FOR_ZONES("pgsteal_kswapd")
820 TEXTS_FOR_ZONES("pgsteal_direct")
821 TEXTS_FOR_ZONES("pgscan_kswapd")
822 TEXTS_FOR_ZONES("pgscan_direct")
823 "pgscan_direct_throttle",
826 "zone_reclaim_failed",
831 "kswapd_low_wmark_hit_quickly",
832 "kswapd_high_wmark_hit_quickly",
841 #ifdef CONFIG_NUMA_BALANCING
843 "numa_huge_pte_updates",
845 "numa_hint_faults_local",
846 "numa_pages_migrated",
848 #ifdef CONFIG_MIGRATION
852 #ifdef CONFIG_COMPACTION
853 "compact_migrate_scanned",
854 "compact_free_scanned",
861 #ifdef CONFIG_HUGETLB_PAGE
862 "htlb_buddy_alloc_success",
863 "htlb_buddy_alloc_fail",
865 "unevictable_pgs_culled",
866 "unevictable_pgs_scanned",
867 "unevictable_pgs_rescued",
868 "unevictable_pgs_mlocked",
869 "unevictable_pgs_munlocked",
870 "unevictable_pgs_cleared",
871 "unevictable_pgs_stranded",
873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
875 "thp_fault_fallback",
876 "thp_collapse_alloc",
877 "thp_collapse_alloc_failed",
879 "thp_zero_page_alloc",
880 "thp_zero_page_alloc_failed",
882 #ifdef CONFIG_MEMORY_BALLOON
885 #ifdef CONFIG_BALLOON_COMPACTION
888 #endif /* CONFIG_MEMORY_BALLOON */
889 #ifdef CONFIG_DEBUG_TLBFLUSH
891 "nr_tlb_remote_flush",
892 "nr_tlb_remote_flush_received",
893 #endif /* CONFIG_SMP */
894 "nr_tlb_local_flush_all",
895 "nr_tlb_local_flush_one",
896 #endif /* CONFIG_DEBUG_TLBFLUSH */
898 #ifdef CONFIG_DEBUG_VM_VMACACHE
899 "vmacache_find_calls",
900 "vmacache_find_hits",
902 #endif /* CONFIG_VM_EVENTS_COUNTERS */
904 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
907 #ifdef CONFIG_PROC_FS
908 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
913 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
914 for (order
= 0; order
< MAX_ORDER
; ++order
)
915 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
920 * This walks the free areas for each zone.
922 static int frag_show(struct seq_file
*m
, void *arg
)
924 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
925 walk_zones_in_node(m
, pgdat
, frag_show_print
);
929 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
930 pg_data_t
*pgdat
, struct zone
*zone
)
934 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
935 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
938 migratetype_names
[mtype
]);
939 for (order
= 0; order
< MAX_ORDER
; ++order
) {
940 unsigned long freecount
= 0;
941 struct free_area
*area
;
942 struct list_head
*curr
;
944 area
= &(zone
->free_area
[order
]);
946 list_for_each(curr
, &area
->free_list
[mtype
])
948 seq_printf(m
, "%6lu ", freecount
);
954 /* Print out the free pages at each order for each migatetype */
955 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
958 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
961 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
962 for (order
= 0; order
< MAX_ORDER
; ++order
)
963 seq_printf(m
, "%6d ", order
);
966 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
971 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
972 pg_data_t
*pgdat
, struct zone
*zone
)
976 unsigned long start_pfn
= zone
->zone_start_pfn
;
977 unsigned long end_pfn
= zone_end_pfn(zone
);
978 unsigned long count
[MIGRATE_TYPES
] = { 0, };
980 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
986 page
= pfn_to_page(pfn
);
988 /* Watch for unexpected holes punched in the memmap */
989 if (!memmap_valid_within(pfn
, page
, zone
))
992 mtype
= get_pageblock_migratetype(page
);
994 if (mtype
< MIGRATE_TYPES
)
999 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1000 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1001 seq_printf(m
, "%12lu ", count
[mtype
]);
1005 /* Print out the free pages at each order for each migratetype */
1006 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
1009 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1011 seq_printf(m
, "\n%-23s", "Number of blocks type ");
1012 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1013 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1015 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
1021 * This prints out statistics in relation to grouping pages by mobility.
1022 * It is expensive to collect so do not constantly read the file.
1024 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
1026 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1028 /* check memoryless node */
1029 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1032 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1033 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1035 pagetypeinfo_showfree(m
, pgdat
);
1036 pagetypeinfo_showblockcount(m
, pgdat
);
1041 static const struct seq_operations fragmentation_op
= {
1042 .start
= frag_start
,
1048 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1050 return seq_open(file
, &fragmentation_op
);
1053 static const struct file_operations fragmentation_file_operations
= {
1054 .open
= fragmentation_open
,
1056 .llseek
= seq_lseek
,
1057 .release
= seq_release
,
1060 static const struct seq_operations pagetypeinfo_op
= {
1061 .start
= frag_start
,
1064 .show
= pagetypeinfo_show
,
1067 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1069 return seq_open(file
, &pagetypeinfo_op
);
1072 static const struct file_operations pagetypeinfo_file_ops
= {
1073 .open
= pagetypeinfo_open
,
1075 .llseek
= seq_lseek
,
1076 .release
= seq_release
,
1079 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1083 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1093 zone_page_state(zone
, NR_FREE_PAGES
),
1094 min_wmark_pages(zone
),
1095 low_wmark_pages(zone
),
1096 high_wmark_pages(zone
),
1097 zone_page_state(zone
, NR_PAGES_SCANNED
),
1098 zone
->spanned_pages
,
1099 zone
->present_pages
,
1100 zone
->managed_pages
);
1102 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1103 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1104 zone_page_state(zone
, i
));
1107 "\n protection: (%ld",
1108 zone
->lowmem_reserve
[0]);
1109 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1110 seq_printf(m
, ", %ld", zone
->lowmem_reserve
[i
]);
1114 for_each_online_cpu(i
) {
1115 struct per_cpu_pageset
*pageset
;
1117 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1126 pageset
->pcp
.batch
);
1128 seq_printf(m
, "\n vm stats threshold: %d",
1129 pageset
->stat_threshold
);
1133 "\n all_unreclaimable: %u"
1135 "\n inactive_ratio: %u",
1136 !zone_reclaimable(zone
),
1137 zone
->zone_start_pfn
,
1138 zone
->inactive_ratio
);
1143 * Output information about zones in @pgdat.
1145 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1147 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1148 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1152 static const struct seq_operations zoneinfo_op
= {
1153 .start
= frag_start
, /* iterate over all zones. The same as in
1157 .show
= zoneinfo_show
,
1160 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1162 return seq_open(file
, &zoneinfo_op
);
1165 static const struct file_operations proc_zoneinfo_file_operations
= {
1166 .open
= zoneinfo_open
,
1168 .llseek
= seq_lseek
,
1169 .release
= seq_release
,
1172 enum writeback_stat_item
{
1174 NR_DIRTY_BG_THRESHOLD
,
1175 NR_VM_WRITEBACK_STAT_ITEMS
,
1178 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1181 int i
, stat_items_size
;
1183 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1185 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1186 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1188 #ifdef CONFIG_VM_EVENT_COUNTERS
1189 stat_items_size
+= sizeof(struct vm_event_state
);
1192 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1195 return ERR_PTR(-ENOMEM
);
1196 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1197 v
[i
] = global_page_state(i
);
1198 v
+= NR_VM_ZONE_STAT_ITEMS
;
1200 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1201 v
+ NR_DIRTY_THRESHOLD
);
1202 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1204 #ifdef CONFIG_VM_EVENT_COUNTERS
1206 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1209 return (unsigned long *)m
->private + *pos
;
1212 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1215 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1217 return (unsigned long *)m
->private + *pos
;
1220 static int vmstat_show(struct seq_file
*m
, void *arg
)
1222 unsigned long *l
= arg
;
1223 unsigned long off
= l
- (unsigned long *)m
->private;
1225 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1229 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1235 static const struct seq_operations vmstat_op
= {
1236 .start
= vmstat_start
,
1237 .next
= vmstat_next
,
1238 .stop
= vmstat_stop
,
1239 .show
= vmstat_show
,
1242 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1244 return seq_open(file
, &vmstat_op
);
1247 static const struct file_operations proc_vmstat_file_operations
= {
1248 .open
= vmstat_open
,
1250 .llseek
= seq_lseek
,
1251 .release
= seq_release
,
1253 #endif /* CONFIG_PROC_FS */
1256 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1257 int sysctl_stat_interval __read_mostly
= HZ
;
1258 static cpumask_var_t cpu_stat_off
;
1260 static void vmstat_update(struct work_struct
*w
)
1262 if (refresh_cpu_vm_stats())
1264 * Counters were updated so we expect more updates
1265 * to occur in the future. Keep on running the
1266 * update worker thread.
1268 schedule_delayed_work(this_cpu_ptr(&vmstat_work
),
1269 round_jiffies_relative(sysctl_stat_interval
));
1272 * We did not update any counters so the app may be in
1273 * a mode where it does not cause counter updates.
1274 * We may be uselessly running vmstat_update.
1275 * Defer the checking for differentials to the
1276 * shepherd thread on a different processor.
1280 * Shepherd work thread does not race since it never
1281 * changes the bit if its zero but the cpu
1282 * online / off line code may race if
1283 * worker threads are still allowed during
1284 * shutdown / startup.
1286 r
= cpumask_test_and_set_cpu(smp_processor_id(),
1293 * Check if the diffs for a certain cpu indicate that
1294 * an update is needed.
1296 static bool need_update(int cpu
)
1300 for_each_populated_zone(zone
) {
1301 struct per_cpu_pageset
*p
= per_cpu_ptr(zone
->pageset
, cpu
);
1303 BUILD_BUG_ON(sizeof(p
->vm_stat_diff
[0]) != 1);
1305 * The fast way of checking if there are any vmstat diffs.
1306 * This works because the diffs are byte sized items.
1308 if (memchr_inv(p
->vm_stat_diff
, 0, NR_VM_ZONE_STAT_ITEMS
))
1317 * Shepherd worker thread that checks the
1318 * differentials of processors that have their worker
1319 * threads for vm statistics updates disabled because of
1322 static void vmstat_shepherd(struct work_struct
*w
);
1324 static DECLARE_DELAYED_WORK(shepherd
, vmstat_shepherd
);
1326 static void vmstat_shepherd(struct work_struct
*w
)
1331 /* Check processors whose vmstat worker threads have been disabled */
1332 for_each_cpu(cpu
, cpu_stat_off
)
1333 if (need_update(cpu
) &&
1334 cpumask_test_and_clear_cpu(cpu
, cpu_stat_off
))
1336 schedule_delayed_work_on(cpu
, &per_cpu(vmstat_work
, cpu
),
1337 __round_jiffies_relative(sysctl_stat_interval
, cpu
));
1341 schedule_delayed_work(&shepherd
,
1342 round_jiffies_relative(sysctl_stat_interval
));
1346 static void __init
start_shepherd_timer(void)
1350 for_each_possible_cpu(cpu
)
1351 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work
, cpu
),
1354 if (!alloc_cpumask_var(&cpu_stat_off
, GFP_KERNEL
))
1356 cpumask_copy(cpu_stat_off
, cpu_online_mask
);
1358 schedule_delayed_work(&shepherd
,
1359 round_jiffies_relative(sysctl_stat_interval
));
1362 static void vmstat_cpu_dead(int node
)
1367 for_each_online_cpu(cpu
)
1368 if (cpu_to_node(cpu
) == node
)
1371 node_clear_state(node
, N_CPU
);
1377 * Use the cpu notifier to insure that the thresholds are recalculated
1380 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1381 unsigned long action
,
1384 long cpu
= (long)hcpu
;
1388 case CPU_ONLINE_FROZEN
:
1389 refresh_zone_stat_thresholds();
1390 node_set_state(cpu_to_node(cpu
), N_CPU
);
1391 cpumask_set_cpu(cpu
, cpu_stat_off
);
1393 case CPU_DOWN_PREPARE
:
1394 case CPU_DOWN_PREPARE_FROZEN
:
1395 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1396 cpumask_clear_cpu(cpu
, cpu_stat_off
);
1398 case CPU_DOWN_FAILED
:
1399 case CPU_DOWN_FAILED_FROZEN
:
1400 cpumask_set_cpu(cpu
, cpu_stat_off
);
1403 case CPU_DEAD_FROZEN
:
1404 refresh_zone_stat_thresholds();
1405 vmstat_cpu_dead(cpu_to_node(cpu
));
1413 static struct notifier_block vmstat_notifier
=
1414 { &vmstat_cpuup_callback
, NULL
, 0 };
1417 static int __init
setup_vmstat(void)
1420 cpu_notifier_register_begin();
1421 __register_cpu_notifier(&vmstat_notifier
);
1423 start_shepherd_timer();
1424 cpu_notifier_register_done();
1426 #ifdef CONFIG_PROC_FS
1427 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1428 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1429 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1430 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1434 module_init(setup_vmstat
)
1436 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1437 #include <linux/debugfs.h>
1441 * Return an index indicating how much of the available free memory is
1442 * unusable for an allocation of the requested size.
1444 static int unusable_free_index(unsigned int order
,
1445 struct contig_page_info
*info
)
1447 /* No free memory is interpreted as all free memory is unusable */
1448 if (info
->free_pages
== 0)
1452 * Index should be a value between 0 and 1. Return a value to 3
1455 * 0 => no fragmentation
1456 * 1 => high fragmentation
1458 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1462 static void unusable_show_print(struct seq_file
*m
,
1463 pg_data_t
*pgdat
, struct zone
*zone
)
1467 struct contig_page_info info
;
1469 seq_printf(m
, "Node %d, zone %8s ",
1472 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1473 fill_contig_page_info(zone
, order
, &info
);
1474 index
= unusable_free_index(order
, &info
);
1475 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1482 * Display unusable free space index
1484 * The unusable free space index measures how much of the available free
1485 * memory cannot be used to satisfy an allocation of a given size and is a
1486 * value between 0 and 1. The higher the value, the more of free memory is
1487 * unusable and by implication, the worse the external fragmentation is. This
1488 * can be expressed as a percentage by multiplying by 100.
1490 static int unusable_show(struct seq_file
*m
, void *arg
)
1492 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1494 /* check memoryless node */
1495 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1498 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1503 static const struct seq_operations unusable_op
= {
1504 .start
= frag_start
,
1507 .show
= unusable_show
,
1510 static int unusable_open(struct inode
*inode
, struct file
*file
)
1512 return seq_open(file
, &unusable_op
);
1515 static const struct file_operations unusable_file_ops
= {
1516 .open
= unusable_open
,
1518 .llseek
= seq_lseek
,
1519 .release
= seq_release
,
1522 static void extfrag_show_print(struct seq_file
*m
,
1523 pg_data_t
*pgdat
, struct zone
*zone
)
1528 /* Alloc on stack as interrupts are disabled for zone walk */
1529 struct contig_page_info info
;
1531 seq_printf(m
, "Node %d, zone %8s ",
1534 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1535 fill_contig_page_info(zone
, order
, &info
);
1536 index
= __fragmentation_index(order
, &info
);
1537 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1544 * Display fragmentation index for orders that allocations would fail for
1546 static int extfrag_show(struct seq_file
*m
, void *arg
)
1548 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1550 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1555 static const struct seq_operations extfrag_op
= {
1556 .start
= frag_start
,
1559 .show
= extfrag_show
,
1562 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1564 return seq_open(file
, &extfrag_op
);
1567 static const struct file_operations extfrag_file_ops
= {
1568 .open
= extfrag_open
,
1570 .llseek
= seq_lseek
,
1571 .release
= seq_release
,
1574 static int __init
extfrag_debug_init(void)
1576 struct dentry
*extfrag_debug_root
;
1578 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1579 if (!extfrag_debug_root
)
1582 if (!debugfs_create_file("unusable_index", 0444,
1583 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1586 if (!debugfs_create_file("extfrag_index", 0444,
1587 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1592 debugfs_remove_recursive(extfrag_debug_root
);
1596 module_init(extfrag_debug_init
);