2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
27 * For _first_ page only:
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/module.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/bitops.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 #include <linux/cpumask.h>
61 #include <linux/cpu.h>
62 #include <linux/vmalloc.h>
63 #include <linux/preempt.h>
64 #include <linux/spinlock.h>
65 #include <linux/types.h>
66 #include <linux/debugfs.h>
67 #include <linux/zsmalloc.h>
68 #include <linux/zpool.h>
71 * This must be power of 2 and greater than of equal to sizeof(link_free).
72 * These two conditions ensure that any 'struct link_free' itself doesn't
73 * span more than 1 page which avoids complex case of mapping 2 pages simply
74 * to restore link_free pointer values.
79 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
80 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
82 #define ZS_MAX_ZSPAGE_ORDER 2
83 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
85 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88 * Object location (<PFN>, <obj_idx>) is encoded as
89 * as single (unsigned long) handle value.
91 * Note that object index <obj_idx> is relative to system
92 * page <PFN> it is stored in, so for each sub-page belonging
93 * to a zspage, obj_idx starts with 0.
95 * This is made more complicated by various memory models and PAE.
98 #ifndef MAX_PHYSMEM_BITS
99 #ifdef CONFIG_HIGHMEM64G
100 #define MAX_PHYSMEM_BITS 36
101 #else /* !CONFIG_HIGHMEM64G */
103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106 #define MAX_PHYSMEM_BITS BITS_PER_LONG
109 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
112 * Memory for allocating for handle keeps object position by
113 * encoding <page, obj_idx> and the encoded value has a room
114 * in least bit(ie, look at obj_to_location).
115 * We use the bit to synchronize between object access by
116 * user and migration.
118 #define HANDLE_PIN_BIT 0
121 * Head in allocated object should have OBJ_ALLOCATED_TAG
122 * to identify the object was allocated or not.
123 * It's okay to add the status bit in the least bit because
124 * header keeps handle which is 4byte-aligned address so we
125 * have room for two bit at least.
127 #define OBJ_ALLOCATED_TAG 1
128 #define OBJ_TAG_BITS 1
129 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
130 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
132 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
133 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
134 #define ZS_MIN_ALLOC_SIZE \
135 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
136 /* each chunk includes extra space to keep handle */
137 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
140 * On systems with 4K page size, this gives 255 size classes! There is a
142 * - Large number of size classes is potentially wasteful as free page are
143 * spread across these classes
144 * - Small number of size classes causes large internal fragmentation
145 * - Probably its better to use specific size classes (empirically
146 * determined). NOTE: all those class sizes must be set as multiple of
147 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
149 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
152 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
155 * We do not maintain any list for completely empty or full pages
157 enum fullness_group
{
160 _ZS_NR_FULLNESS_GROUPS
,
173 #ifdef CONFIG_ZSMALLOC_STAT
174 #define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
176 #define NR_ZS_STAT_TYPE (OBJ_USED + 1)
179 struct zs_size_stat
{
180 unsigned long objs
[NR_ZS_STAT_TYPE
];
183 #ifdef CONFIG_ZSMALLOC_STAT
184 static struct dentry
*zs_stat_root
;
188 * number of size_classes
190 static int zs_size_classes
;
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
204 * (see: fix_fullness_group())
206 static const int fullness_threshold_frac
= 4;
210 struct page
*fullness_list
[_ZS_NR_FULLNESS_GROUPS
];
212 * Size of objects stored in this class. Must be multiple
218 struct zs_size_stat stats
;
220 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
221 int pages_per_zspage
;
222 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, first_page->freelist gives head of this list.
230 * This must be power of 2 and less than or equal to ZS_ALIGN
235 * Position of next free chunk (encodes <PFN, obj_idx>)
236 * It's valid for non-allocated object
240 * Handle of allocated object.
242 unsigned long handle
;
249 struct size_class
**size_class
;
250 struct kmem_cache
*handle_cachep
;
252 atomic_long_t pages_allocated
;
254 struct zs_pool_stats stats
;
256 /* Compact classes */
257 struct shrinker shrinker
;
259 * To signify that register_shrinker() was successful
260 * and unregister_shrinker() will not Oops.
262 bool shrinker_enabled
;
263 #ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry
*stat_dentry
;
269 * A zspage's class index and fullness group
270 * are encoded in its (first)page->mapping
272 #define CLASS_IDX_BITS 28
273 #define FULLNESS_BITS 4
274 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
275 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
277 struct mapping_area
{
278 #ifdef CONFIG_PGTABLE_MAPPING
279 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
281 char *vm_buf
; /* copy buffer for objects that span pages */
283 char *vm_addr
; /* address of kmap_atomic()'ed pages */
284 enum zs_mapmode vm_mm
; /* mapping mode */
287 static int create_handle_cache(struct zs_pool
*pool
)
289 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
291 return pool
->handle_cachep
? 0 : 1;
294 static void destroy_handle_cache(struct zs_pool
*pool
)
296 kmem_cache_destroy(pool
->handle_cachep
);
299 static unsigned long alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
301 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
302 gfp
& ~__GFP_HIGHMEM
);
305 static void free_handle(struct zs_pool
*pool
, unsigned long handle
)
307 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
310 static void record_obj(unsigned long handle
, unsigned long obj
)
313 * lsb of @obj represents handle lock while other bits
314 * represent object value the handle is pointing so
315 * updating shouldn't do store tearing.
317 WRITE_ONCE(*(unsigned long *)handle
, obj
);
324 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
325 const struct zpool_ops
*zpool_ops
,
329 * Ignore global gfp flags: zs_malloc() may be invoked from
330 * different contexts and its caller must provide a valid
333 return zs_create_pool(name
);
336 static void zs_zpool_destroy(void *pool
)
338 zs_destroy_pool(pool
);
341 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
342 unsigned long *handle
)
344 *handle
= zs_malloc(pool
, size
, gfp
);
345 return *handle
? 0 : -1;
347 static void zs_zpool_free(void *pool
, unsigned long handle
)
349 zs_free(pool
, handle
);
352 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
353 unsigned int *reclaimed
)
358 static void *zs_zpool_map(void *pool
, unsigned long handle
,
359 enum zpool_mapmode mm
)
361 enum zs_mapmode zs_mm
;
370 case ZPOOL_MM_RW
: /* fallthru */
376 return zs_map_object(pool
, handle
, zs_mm
);
378 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
380 zs_unmap_object(pool
, handle
);
383 static u64
zs_zpool_total_size(void *pool
)
385 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
388 static struct zpool_driver zs_zpool_driver
= {
390 .owner
= THIS_MODULE
,
391 .create
= zs_zpool_create
,
392 .destroy
= zs_zpool_destroy
,
393 .malloc
= zs_zpool_malloc
,
394 .free
= zs_zpool_free
,
395 .shrink
= zs_zpool_shrink
,
397 .unmap
= zs_zpool_unmap
,
398 .total_size
= zs_zpool_total_size
,
401 MODULE_ALIAS("zpool-zsmalloc");
402 #endif /* CONFIG_ZPOOL */
404 static unsigned int get_maxobj_per_zspage(int size
, int pages_per_zspage
)
406 return pages_per_zspage
* PAGE_SIZE
/ size
;
409 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
410 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
412 static int is_first_page(struct page
*page
)
414 return PagePrivate(page
);
417 static int is_last_page(struct page
*page
)
419 return PagePrivate2(page
);
422 static void get_zspage_mapping(struct page
*first_page
,
423 unsigned int *class_idx
,
424 enum fullness_group
*fullness
)
427 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
429 m
= (unsigned long)first_page
->mapping
;
430 *fullness
= m
& FULLNESS_MASK
;
431 *class_idx
= (m
>> FULLNESS_BITS
) & CLASS_IDX_MASK
;
434 static void set_zspage_mapping(struct page
*first_page
,
435 unsigned int class_idx
,
436 enum fullness_group fullness
)
439 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
441 m
= ((class_idx
& CLASS_IDX_MASK
) << FULLNESS_BITS
) |
442 (fullness
& FULLNESS_MASK
);
443 first_page
->mapping
= (struct address_space
*)m
;
447 * zsmalloc divides the pool into various size classes where each
448 * class maintains a list of zspages where each zspage is divided
449 * into equal sized chunks. Each allocation falls into one of these
450 * classes depending on its size. This function returns index of the
451 * size class which has chunk size big enough to hold the give size.
453 static int get_size_class_index(int size
)
457 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
458 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
459 ZS_SIZE_CLASS_DELTA
);
461 return min(zs_size_classes
- 1, idx
);
464 static inline void zs_stat_inc(struct size_class
*class,
465 enum zs_stat_type type
, unsigned long cnt
)
467 if (type
< NR_ZS_STAT_TYPE
)
468 class->stats
.objs
[type
] += cnt
;
471 static inline void zs_stat_dec(struct size_class
*class,
472 enum zs_stat_type type
, unsigned long cnt
)
474 if (type
< NR_ZS_STAT_TYPE
)
475 class->stats
.objs
[type
] -= cnt
;
478 static inline unsigned long zs_stat_get(struct size_class
*class,
479 enum zs_stat_type type
)
481 if (type
< NR_ZS_STAT_TYPE
)
482 return class->stats
.objs
[type
];
486 #ifdef CONFIG_ZSMALLOC_STAT
488 static void __init
zs_stat_init(void)
490 if (!debugfs_initialized()) {
491 pr_warn("debugfs not available, stat dir not created\n");
495 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
497 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
500 static void __exit
zs_stat_exit(void)
502 debugfs_remove_recursive(zs_stat_root
);
505 static unsigned long zs_can_compact(struct size_class
*class);
507 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
510 struct zs_pool
*pool
= s
->private;
511 struct size_class
*class;
513 unsigned long class_almost_full
, class_almost_empty
;
514 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
515 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
516 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
517 unsigned long total_freeable
= 0;
519 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
520 "class", "size", "almost_full", "almost_empty",
521 "obj_allocated", "obj_used", "pages_used",
522 "pages_per_zspage", "freeable");
524 for (i
= 0; i
< zs_size_classes
; i
++) {
525 class = pool
->size_class
[i
];
527 if (class->index
!= i
)
530 spin_lock(&class->lock
);
531 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
532 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
533 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
534 obj_used
= zs_stat_get(class, OBJ_USED
);
535 freeable
= zs_can_compact(class);
536 spin_unlock(&class->lock
);
538 objs_per_zspage
= get_maxobj_per_zspage(class->size
,
539 class->pages_per_zspage
);
540 pages_used
= obj_allocated
/ objs_per_zspage
*
541 class->pages_per_zspage
;
543 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
544 " %10lu %10lu %16d %8lu\n",
545 i
, class->size
, class_almost_full
, class_almost_empty
,
546 obj_allocated
, obj_used
, pages_used
,
547 class->pages_per_zspage
, freeable
);
549 total_class_almost_full
+= class_almost_full
;
550 total_class_almost_empty
+= class_almost_empty
;
551 total_objs
+= obj_allocated
;
552 total_used_objs
+= obj_used
;
553 total_pages
+= pages_used
;
554 total_freeable
+= freeable
;
558 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
559 "Total", "", total_class_almost_full
,
560 total_class_almost_empty
, total_objs
,
561 total_used_objs
, total_pages
, "", total_freeable
);
566 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
568 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
571 static const struct file_operations zs_stat_size_ops
= {
572 .open
= zs_stats_size_open
,
575 .release
= single_release
,
578 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
580 struct dentry
*entry
;
583 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
587 entry
= debugfs_create_dir(name
, zs_stat_root
);
589 pr_warn("debugfs dir <%s> creation failed\n", name
);
592 pool
->stat_dentry
= entry
;
594 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
595 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
597 pr_warn("%s: debugfs file entry <%s> creation failed\n",
599 debugfs_remove_recursive(pool
->stat_dentry
);
600 pool
->stat_dentry
= NULL
;
604 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
606 debugfs_remove_recursive(pool
->stat_dentry
);
609 #else /* CONFIG_ZSMALLOC_STAT */
610 static void __init
zs_stat_init(void)
614 static void __exit
zs_stat_exit(void)
618 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
622 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
628 * For each size class, zspages are divided into different groups
629 * depending on how "full" they are. This was done so that we could
630 * easily find empty or nearly empty zspages when we try to shrink
631 * the pool (not yet implemented). This function returns fullness
632 * status of the given page.
634 static enum fullness_group
get_fullness_group(struct page
*first_page
)
636 int inuse
, max_objects
;
637 enum fullness_group fg
;
639 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
641 inuse
= first_page
->inuse
;
642 max_objects
= first_page
->objects
;
646 else if (inuse
== max_objects
)
648 else if (inuse
<= 3 * max_objects
/ fullness_threshold_frac
)
649 fg
= ZS_ALMOST_EMPTY
;
657 * Each size class maintains various freelists and zspages are assigned
658 * to one of these freelists based on the number of live objects they
659 * have. This functions inserts the given zspage into the freelist
660 * identified by <class, fullness_group>.
662 static void insert_zspage(struct size_class
*class,
663 enum fullness_group fullness
,
664 struct page
*first_page
)
668 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
670 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
673 zs_stat_inc(class, fullness
== ZS_ALMOST_EMPTY
?
674 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
676 head
= &class->fullness_list
[fullness
];
683 * We want to see more ZS_FULL pages and less almost
684 * empty/full. Put pages with higher ->inuse first.
686 list_add_tail(&first_page
->lru
, &(*head
)->lru
);
687 if (first_page
->inuse
>= (*head
)->inuse
)
692 * This function removes the given zspage from the freelist identified
693 * by <class, fullness_group>.
695 static void remove_zspage(struct size_class
*class,
696 enum fullness_group fullness
,
697 struct page
*first_page
)
701 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
703 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
706 head
= &class->fullness_list
[fullness
];
707 VM_BUG_ON_PAGE(!*head
, first_page
);
708 if (list_empty(&(*head
)->lru
))
710 else if (*head
== first_page
)
711 *head
= (struct page
*)list_entry((*head
)->lru
.next
,
714 list_del_init(&first_page
->lru
);
715 zs_stat_dec(class, fullness
== ZS_ALMOST_EMPTY
?
716 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
720 * Each size class maintains zspages in different fullness groups depending
721 * on the number of live objects they contain. When allocating or freeing
722 * objects, the fullness status of the page can change, say, from ALMOST_FULL
723 * to ALMOST_EMPTY when freeing an object. This function checks if such
724 * a status change has occurred for the given page and accordingly moves the
725 * page from the freelist of the old fullness group to that of the new
728 static enum fullness_group
fix_fullness_group(struct size_class
*class,
729 struct page
*first_page
)
732 enum fullness_group currfg
, newfg
;
734 get_zspage_mapping(first_page
, &class_idx
, &currfg
);
735 newfg
= get_fullness_group(first_page
);
739 remove_zspage(class, currfg
, first_page
);
740 insert_zspage(class, newfg
, first_page
);
741 set_zspage_mapping(first_page
, class_idx
, newfg
);
748 * We have to decide on how many pages to link together
749 * to form a zspage for each size class. This is important
750 * to reduce wastage due to unusable space left at end of
751 * each zspage which is given as:
752 * wastage = Zp % class_size
753 * usage = Zp - wastage
754 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
756 * For example, for size class of 3/8 * PAGE_SIZE, we should
757 * link together 3 PAGE_SIZE sized pages to form a zspage
758 * since then we can perfectly fit in 8 such objects.
760 static int get_pages_per_zspage(int class_size
)
762 int i
, max_usedpc
= 0;
763 /* zspage order which gives maximum used size per KB */
764 int max_usedpc_order
= 1;
766 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
770 zspage_size
= i
* PAGE_SIZE
;
771 waste
= zspage_size
% class_size
;
772 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
774 if (usedpc
> max_usedpc
) {
776 max_usedpc_order
= i
;
780 return max_usedpc_order
;
784 * A single 'zspage' is composed of many system pages which are
785 * linked together using fields in struct page. This function finds
786 * the first/head page, given any component page of a zspage.
788 static struct page
*get_first_page(struct page
*page
)
790 if (is_first_page(page
))
793 return (struct page
*)page_private(page
);
796 static struct page
*get_next_page(struct page
*page
)
800 if (is_last_page(page
))
802 else if (is_first_page(page
))
803 next
= (struct page
*)page_private(page
);
805 next
= list_entry(page
->lru
.next
, struct page
, lru
);
811 * Encode <page, obj_idx> as a single handle value.
812 * We use the least bit of handle for tagging.
814 static void *location_to_obj(struct page
*page
, unsigned long obj_idx
)
823 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
824 obj
|= ((obj_idx
) & OBJ_INDEX_MASK
);
825 obj
<<= OBJ_TAG_BITS
;
831 * Decode <page, obj_idx> pair from the given object handle. We adjust the
832 * decoded obj_idx back to its original value since it was adjusted in
835 static void obj_to_location(unsigned long obj
, struct page
**page
,
836 unsigned long *obj_idx
)
838 obj
>>= OBJ_TAG_BITS
;
839 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
840 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
843 static unsigned long handle_to_obj(unsigned long handle
)
845 return *(unsigned long *)handle
;
848 static unsigned long obj_to_head(struct size_class
*class, struct page
*page
,
852 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
853 return page_private(page
);
855 return *(unsigned long *)obj
;
858 static unsigned long obj_idx_to_offset(struct page
*page
,
859 unsigned long obj_idx
, int class_size
)
861 unsigned long off
= 0;
863 if (!is_first_page(page
))
866 return off
+ obj_idx
* class_size
;
869 static inline int trypin_tag(unsigned long handle
)
871 unsigned long *ptr
= (unsigned long *)handle
;
873 return !test_and_set_bit_lock(HANDLE_PIN_BIT
, ptr
);
876 static void pin_tag(unsigned long handle
)
878 while (!trypin_tag(handle
));
881 static void unpin_tag(unsigned long handle
)
883 unsigned long *ptr
= (unsigned long *)handle
;
885 clear_bit_unlock(HANDLE_PIN_BIT
, ptr
);
888 static void reset_page(struct page
*page
)
890 clear_bit(PG_private
, &page
->flags
);
891 clear_bit(PG_private_2
, &page
->flags
);
892 set_page_private(page
, 0);
893 page
->mapping
= NULL
;
894 page
->freelist
= NULL
;
895 page_mapcount_reset(page
);
898 static void free_zspage(struct page
*first_page
)
900 struct page
*nextp
, *tmp
, *head_extra
;
902 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
903 VM_BUG_ON_PAGE(first_page
->inuse
, first_page
);
905 head_extra
= (struct page
*)page_private(first_page
);
907 reset_page(first_page
);
908 __free_page(first_page
);
910 /* zspage with only 1 system page */
914 list_for_each_entry_safe(nextp
, tmp
, &head_extra
->lru
, lru
) {
915 list_del(&nextp
->lru
);
919 reset_page(head_extra
);
920 __free_page(head_extra
);
923 /* Initialize a newly allocated zspage */
924 static void init_zspage(struct size_class
*class, struct page
*first_page
)
926 unsigned long off
= 0;
927 struct page
*page
= first_page
;
929 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
932 struct page
*next_page
;
933 struct link_free
*link
;
938 * page->index stores offset of first object starting
939 * in the page. For the first page, this is always 0,
940 * so we use first_page->index (aka ->freelist) to store
941 * head of corresponding zspage's freelist.
943 if (page
!= first_page
)
946 vaddr
= kmap_atomic(page
);
947 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
949 while ((off
+= class->size
) < PAGE_SIZE
) {
950 link
->next
= location_to_obj(page
, i
++);
951 link
+= class->size
/ sizeof(*link
);
955 * We now come to the last (full or partial) object on this
956 * page, which must point to the first object on the next
959 next_page
= get_next_page(page
);
960 link
->next
= location_to_obj(next_page
, 0);
961 kunmap_atomic(vaddr
);
968 * Allocate a zspage for the given size class
970 static struct page
*alloc_zspage(struct size_class
*class, gfp_t flags
)
973 struct page
*first_page
= NULL
, *uninitialized_var(prev_page
);
976 * Allocate individual pages and link them together as:
977 * 1. first page->private = first sub-page
978 * 2. all sub-pages are linked together using page->lru
979 * 3. each sub-page is linked to the first page using page->private
981 * For each size class, First/Head pages are linked together using
982 * page->lru. Also, we set PG_private to identify the first page
983 * (i.e. no other sub-page has this flag set) and PG_private_2 to
984 * identify the last page.
987 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
990 page
= alloc_page(flags
);
994 INIT_LIST_HEAD(&page
->lru
);
995 if (i
== 0) { /* first page */
996 SetPagePrivate(page
);
997 set_page_private(page
, 0);
999 first_page
->inuse
= 0;
1002 set_page_private(first_page
, (unsigned long)page
);
1004 set_page_private(page
, (unsigned long)first_page
);
1006 list_add(&page
->lru
, &prev_page
->lru
);
1007 if (i
== class->pages_per_zspage
- 1) /* last page */
1008 SetPagePrivate2(page
);
1012 init_zspage(class, first_page
);
1014 first_page
->freelist
= location_to_obj(first_page
, 0);
1015 /* Maximum number of objects we can store in this zspage */
1016 first_page
->objects
= class->pages_per_zspage
* PAGE_SIZE
/ class->size
;
1018 error
= 0; /* Success */
1021 if (unlikely(error
) && first_page
) {
1022 free_zspage(first_page
);
1029 static struct page
*find_get_zspage(struct size_class
*class)
1034 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1035 page
= class->fullness_list
[i
];
1043 #ifdef CONFIG_PGTABLE_MAPPING
1044 static inline int __zs_cpu_up(struct mapping_area
*area
)
1047 * Make sure we don't leak memory if a cpu UP notification
1048 * and zs_init() race and both call zs_cpu_up() on the same cpu
1052 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1058 static inline void __zs_cpu_down(struct mapping_area
*area
)
1061 free_vm_area(area
->vm
);
1065 static inline void *__zs_map_object(struct mapping_area
*area
,
1066 struct page
*pages
[2], int off
, int size
)
1068 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1069 area
->vm_addr
= area
->vm
->addr
;
1070 return area
->vm_addr
+ off
;
1073 static inline void __zs_unmap_object(struct mapping_area
*area
,
1074 struct page
*pages
[2], int off
, int size
)
1076 unsigned long addr
= (unsigned long)area
->vm_addr
;
1078 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1081 #else /* CONFIG_PGTABLE_MAPPING */
1083 static inline int __zs_cpu_up(struct mapping_area
*area
)
1086 * Make sure we don't leak memory if a cpu UP notification
1087 * and zs_init() race and both call zs_cpu_up() on the same cpu
1091 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1097 static inline void __zs_cpu_down(struct mapping_area
*area
)
1099 kfree(area
->vm_buf
);
1100 area
->vm_buf
= NULL
;
1103 static void *__zs_map_object(struct mapping_area
*area
,
1104 struct page
*pages
[2], int off
, int size
)
1108 char *buf
= area
->vm_buf
;
1110 /* disable page faults to match kmap_atomic() return conditions */
1111 pagefault_disable();
1113 /* no read fastpath */
1114 if (area
->vm_mm
== ZS_MM_WO
)
1117 sizes
[0] = PAGE_SIZE
- off
;
1118 sizes
[1] = size
- sizes
[0];
1120 /* copy object to per-cpu buffer */
1121 addr
= kmap_atomic(pages
[0]);
1122 memcpy(buf
, addr
+ off
, sizes
[0]);
1123 kunmap_atomic(addr
);
1124 addr
= kmap_atomic(pages
[1]);
1125 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1126 kunmap_atomic(addr
);
1128 return area
->vm_buf
;
1131 static void __zs_unmap_object(struct mapping_area
*area
,
1132 struct page
*pages
[2], int off
, int size
)
1138 /* no write fastpath */
1139 if (area
->vm_mm
== ZS_MM_RO
)
1143 buf
= buf
+ ZS_HANDLE_SIZE
;
1144 size
-= ZS_HANDLE_SIZE
;
1145 off
+= ZS_HANDLE_SIZE
;
1147 sizes
[0] = PAGE_SIZE
- off
;
1148 sizes
[1] = size
- sizes
[0];
1150 /* copy per-cpu buffer to object */
1151 addr
= kmap_atomic(pages
[0]);
1152 memcpy(addr
+ off
, buf
, sizes
[0]);
1153 kunmap_atomic(addr
);
1154 addr
= kmap_atomic(pages
[1]);
1155 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1156 kunmap_atomic(addr
);
1159 /* enable page faults to match kunmap_atomic() return conditions */
1163 #endif /* CONFIG_PGTABLE_MAPPING */
1165 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
1168 int ret
, cpu
= (long)pcpu
;
1169 struct mapping_area
*area
;
1172 case CPU_UP_PREPARE
:
1173 area
= &per_cpu(zs_map_area
, cpu
);
1174 ret
= __zs_cpu_up(area
);
1176 return notifier_from_errno(ret
);
1179 case CPU_UP_CANCELED
:
1180 area
= &per_cpu(zs_map_area
, cpu
);
1181 __zs_cpu_down(area
);
1188 static struct notifier_block zs_cpu_nb
= {
1189 .notifier_call
= zs_cpu_notifier
1192 static int zs_register_cpu_notifier(void)
1194 int cpu
, uninitialized_var(ret
);
1196 cpu_notifier_register_begin();
1198 __register_cpu_notifier(&zs_cpu_nb
);
1199 for_each_online_cpu(cpu
) {
1200 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1201 if (notifier_to_errno(ret
))
1205 cpu_notifier_register_done();
1206 return notifier_to_errno(ret
);
1209 static void zs_unregister_cpu_notifier(void)
1213 cpu_notifier_register_begin();
1215 for_each_online_cpu(cpu
)
1216 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
1217 __unregister_cpu_notifier(&zs_cpu_nb
);
1219 cpu_notifier_register_done();
1222 static void init_zs_size_classes(void)
1226 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1227 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1230 zs_size_classes
= nr
;
1233 static bool can_merge(struct size_class
*prev
, int size
, int pages_per_zspage
)
1235 if (prev
->pages_per_zspage
!= pages_per_zspage
)
1238 if (get_maxobj_per_zspage(prev
->size
, prev
->pages_per_zspage
)
1239 != get_maxobj_per_zspage(size
, pages_per_zspage
))
1245 static bool zspage_full(struct page
*first_page
)
1247 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
1249 return first_page
->inuse
== first_page
->objects
;
1252 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1254 return atomic_long_read(&pool
->pages_allocated
);
1256 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1259 * zs_map_object - get address of allocated object from handle.
1260 * @pool: pool from which the object was allocated
1261 * @handle: handle returned from zs_malloc
1263 * Before using an object allocated from zs_malloc, it must be mapped using
1264 * this function. When done with the object, it must be unmapped using
1267 * Only one object can be mapped per cpu at a time. There is no protection
1268 * against nested mappings.
1270 * This function returns with preemption and page faults disabled.
1272 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1276 unsigned long obj
, obj_idx
, off
;
1278 unsigned int class_idx
;
1279 enum fullness_group fg
;
1280 struct size_class
*class;
1281 struct mapping_area
*area
;
1282 struct page
*pages
[2];
1286 * Because we use per-cpu mapping areas shared among the
1287 * pools/users, we can't allow mapping in interrupt context
1288 * because it can corrupt another users mappings.
1290 WARN_ON_ONCE(in_interrupt());
1292 /* From now on, migration cannot move the object */
1295 obj
= handle_to_obj(handle
);
1296 obj_to_location(obj
, &page
, &obj_idx
);
1297 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1298 class = pool
->size_class
[class_idx
];
1299 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1301 area
= &get_cpu_var(zs_map_area
);
1303 if (off
+ class->size
<= PAGE_SIZE
) {
1304 /* this object is contained entirely within a page */
1305 area
->vm_addr
= kmap_atomic(page
);
1306 ret
= area
->vm_addr
+ off
;
1310 /* this object spans two pages */
1312 pages
[1] = get_next_page(page
);
1315 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1318 ret
+= ZS_HANDLE_SIZE
;
1322 EXPORT_SYMBOL_GPL(zs_map_object
);
1324 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1327 unsigned long obj
, obj_idx
, off
;
1329 unsigned int class_idx
;
1330 enum fullness_group fg
;
1331 struct size_class
*class;
1332 struct mapping_area
*area
;
1334 obj
= handle_to_obj(handle
);
1335 obj_to_location(obj
, &page
, &obj_idx
);
1336 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1337 class = pool
->size_class
[class_idx
];
1338 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1340 area
= this_cpu_ptr(&zs_map_area
);
1341 if (off
+ class->size
<= PAGE_SIZE
)
1342 kunmap_atomic(area
->vm_addr
);
1344 struct page
*pages
[2];
1347 pages
[1] = get_next_page(page
);
1350 __zs_unmap_object(area
, pages
, off
, class->size
);
1352 put_cpu_var(zs_map_area
);
1355 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1357 static unsigned long obj_malloc(struct size_class
*class,
1358 struct page
*first_page
, unsigned long handle
)
1361 struct link_free
*link
;
1363 struct page
*m_page
;
1364 unsigned long m_objidx
, m_offset
;
1367 handle
|= OBJ_ALLOCATED_TAG
;
1368 obj
= (unsigned long)first_page
->freelist
;
1369 obj_to_location(obj
, &m_page
, &m_objidx
);
1370 m_offset
= obj_idx_to_offset(m_page
, m_objidx
, class->size
);
1372 vaddr
= kmap_atomic(m_page
);
1373 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1374 first_page
->freelist
= link
->next
;
1376 /* record handle in the header of allocated chunk */
1377 link
->handle
= handle
;
1379 /* record handle in first_page->private */
1380 set_page_private(first_page
, handle
);
1381 kunmap_atomic(vaddr
);
1382 first_page
->inuse
++;
1383 zs_stat_inc(class, OBJ_USED
, 1);
1390 * zs_malloc - Allocate block of given size from pool.
1391 * @pool: pool to allocate from
1392 * @size: size of block to allocate
1394 * On success, handle to the allocated object is returned,
1396 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1398 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1400 unsigned long handle
, obj
;
1401 struct size_class
*class;
1402 struct page
*first_page
;
1404 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1407 handle
= alloc_handle(pool
, gfp
);
1411 /* extra space in chunk to keep the handle */
1412 size
+= ZS_HANDLE_SIZE
;
1413 class = pool
->size_class
[get_size_class_index(size
)];
1415 spin_lock(&class->lock
);
1416 first_page
= find_get_zspage(class);
1419 spin_unlock(&class->lock
);
1420 first_page
= alloc_zspage(class, gfp
);
1421 if (unlikely(!first_page
)) {
1422 free_handle(pool
, handle
);
1426 set_zspage_mapping(first_page
, class->index
, ZS_EMPTY
);
1427 atomic_long_add(class->pages_per_zspage
,
1428 &pool
->pages_allocated
);
1430 spin_lock(&class->lock
);
1431 zs_stat_inc(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1432 class->size
, class->pages_per_zspage
));
1435 obj
= obj_malloc(class, first_page
, handle
);
1436 /* Now move the zspage to another fullness group, if required */
1437 fix_fullness_group(class, first_page
);
1438 record_obj(handle
, obj
);
1439 spin_unlock(&class->lock
);
1443 EXPORT_SYMBOL_GPL(zs_malloc
);
1445 static void obj_free(struct size_class
*class, unsigned long obj
)
1447 struct link_free
*link
;
1448 struct page
*first_page
, *f_page
;
1449 unsigned long f_objidx
, f_offset
;
1452 obj
&= ~OBJ_ALLOCATED_TAG
;
1453 obj_to_location(obj
, &f_page
, &f_objidx
);
1454 first_page
= get_first_page(f_page
);
1456 f_offset
= obj_idx_to_offset(f_page
, f_objidx
, class->size
);
1458 vaddr
= kmap_atomic(f_page
);
1460 /* Insert this object in containing zspage's freelist */
1461 link
= (struct link_free
*)(vaddr
+ f_offset
);
1462 link
->next
= first_page
->freelist
;
1464 set_page_private(first_page
, 0);
1465 kunmap_atomic(vaddr
);
1466 first_page
->freelist
= (void *)obj
;
1467 first_page
->inuse
--;
1468 zs_stat_dec(class, OBJ_USED
, 1);
1471 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1473 struct page
*first_page
, *f_page
;
1474 unsigned long obj
, f_objidx
;
1476 struct size_class
*class;
1477 enum fullness_group fullness
;
1479 if (unlikely(!handle
))
1483 obj
= handle_to_obj(handle
);
1484 obj_to_location(obj
, &f_page
, &f_objidx
);
1485 first_page
= get_first_page(f_page
);
1487 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1488 class = pool
->size_class
[class_idx
];
1490 spin_lock(&class->lock
);
1491 obj_free(class, obj
);
1492 fullness
= fix_fullness_group(class, first_page
);
1493 if (fullness
== ZS_EMPTY
) {
1494 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1495 class->size
, class->pages_per_zspage
));
1496 atomic_long_sub(class->pages_per_zspage
,
1497 &pool
->pages_allocated
);
1498 free_zspage(first_page
);
1500 spin_unlock(&class->lock
);
1503 free_handle(pool
, handle
);
1505 EXPORT_SYMBOL_GPL(zs_free
);
1507 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1510 struct page
*s_page
, *d_page
;
1511 unsigned long s_objidx
, d_objidx
;
1512 unsigned long s_off
, d_off
;
1513 void *s_addr
, *d_addr
;
1514 int s_size
, d_size
, size
;
1517 s_size
= d_size
= class->size
;
1519 obj_to_location(src
, &s_page
, &s_objidx
);
1520 obj_to_location(dst
, &d_page
, &d_objidx
);
1522 s_off
= obj_idx_to_offset(s_page
, s_objidx
, class->size
);
1523 d_off
= obj_idx_to_offset(d_page
, d_objidx
, class->size
);
1525 if (s_off
+ class->size
> PAGE_SIZE
)
1526 s_size
= PAGE_SIZE
- s_off
;
1528 if (d_off
+ class->size
> PAGE_SIZE
)
1529 d_size
= PAGE_SIZE
- d_off
;
1531 s_addr
= kmap_atomic(s_page
);
1532 d_addr
= kmap_atomic(d_page
);
1535 size
= min(s_size
, d_size
);
1536 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1539 if (written
== class->size
)
1547 if (s_off
>= PAGE_SIZE
) {
1548 kunmap_atomic(d_addr
);
1549 kunmap_atomic(s_addr
);
1550 s_page
= get_next_page(s_page
);
1551 s_addr
= kmap_atomic(s_page
);
1552 d_addr
= kmap_atomic(d_page
);
1553 s_size
= class->size
- written
;
1557 if (d_off
>= PAGE_SIZE
) {
1558 kunmap_atomic(d_addr
);
1559 d_page
= get_next_page(d_page
);
1560 d_addr
= kmap_atomic(d_page
);
1561 d_size
= class->size
- written
;
1566 kunmap_atomic(d_addr
);
1567 kunmap_atomic(s_addr
);
1571 * Find alloced object in zspage from index object and
1574 static unsigned long find_alloced_obj(struct size_class
*class,
1575 struct page
*page
, int index
)
1579 unsigned long handle
= 0;
1580 void *addr
= kmap_atomic(page
);
1582 if (!is_first_page(page
))
1583 offset
= page
->index
;
1584 offset
+= class->size
* index
;
1586 while (offset
< PAGE_SIZE
) {
1587 head
= obj_to_head(class, page
, addr
+ offset
);
1588 if (head
& OBJ_ALLOCATED_TAG
) {
1589 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1590 if (trypin_tag(handle
))
1595 offset
+= class->size
;
1599 kunmap_atomic(addr
);
1603 struct zs_compact_control
{
1604 /* Source page for migration which could be a subpage of zspage. */
1605 struct page
*s_page
;
1606 /* Destination page for migration which should be a first page
1608 struct page
*d_page
;
1609 /* Starting object index within @s_page which used for live object
1610 * in the subpage. */
1614 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1615 struct zs_compact_control
*cc
)
1617 unsigned long used_obj
, free_obj
;
1618 unsigned long handle
;
1619 struct page
*s_page
= cc
->s_page
;
1620 struct page
*d_page
= cc
->d_page
;
1621 unsigned long index
= cc
->index
;
1625 handle
= find_alloced_obj(class, s_page
, index
);
1627 s_page
= get_next_page(s_page
);
1634 /* Stop if there is no more space */
1635 if (zspage_full(d_page
)) {
1641 used_obj
= handle_to_obj(handle
);
1642 free_obj
= obj_malloc(class, d_page
, handle
);
1643 zs_object_copy(class, free_obj
, used_obj
);
1646 * record_obj updates handle's value to free_obj and it will
1647 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1648 * breaks synchronization using pin_tag(e,g, zs_free) so
1649 * let's keep the lock bit.
1651 free_obj
|= BIT(HANDLE_PIN_BIT
);
1652 record_obj(handle
, free_obj
);
1654 obj_free(class, used_obj
);
1657 /* Remember last position in this iteration */
1658 cc
->s_page
= s_page
;
1664 static struct page
*isolate_target_page(struct size_class
*class)
1669 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1670 page
= class->fullness_list
[i
];
1672 remove_zspage(class, i
, page
);
1681 * putback_zspage - add @first_page into right class's fullness list
1682 * @pool: target pool
1683 * @class: destination class
1684 * @first_page: target page
1686 * Return @fist_page's fullness_group
1688 static enum fullness_group
putback_zspage(struct zs_pool
*pool
,
1689 struct size_class
*class,
1690 struct page
*first_page
)
1692 enum fullness_group fullness
;
1694 fullness
= get_fullness_group(first_page
);
1695 insert_zspage(class, fullness
, first_page
);
1696 set_zspage_mapping(first_page
, class->index
, fullness
);
1698 if (fullness
== ZS_EMPTY
) {
1699 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1700 class->size
, class->pages_per_zspage
));
1701 atomic_long_sub(class->pages_per_zspage
,
1702 &pool
->pages_allocated
);
1704 free_zspage(first_page
);
1710 static struct page
*isolate_source_page(struct size_class
*class)
1713 struct page
*page
= NULL
;
1715 for (i
= ZS_ALMOST_EMPTY
; i
>= ZS_ALMOST_FULL
; i
--) {
1716 page
= class->fullness_list
[i
];
1720 remove_zspage(class, i
, page
);
1729 * Based on the number of unused allocated objects calculate
1730 * and return the number of pages that we can free.
1732 static unsigned long zs_can_compact(struct size_class
*class)
1734 unsigned long obj_wasted
;
1735 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
1736 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
1738 if (obj_allocated
<= obj_used
)
1741 obj_wasted
= obj_allocated
- obj_used
;
1742 obj_wasted
/= get_maxobj_per_zspage(class->size
,
1743 class->pages_per_zspage
);
1745 return obj_wasted
* class->pages_per_zspage
;
1748 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
1750 struct zs_compact_control cc
;
1751 struct page
*src_page
;
1752 struct page
*dst_page
= NULL
;
1754 spin_lock(&class->lock
);
1755 while ((src_page
= isolate_source_page(class))) {
1757 if (!zs_can_compact(class))
1761 cc
.s_page
= src_page
;
1763 while ((dst_page
= isolate_target_page(class))) {
1764 cc
.d_page
= dst_page
;
1766 * If there is no more space in dst_page, resched
1767 * and see if anyone had allocated another zspage.
1769 if (!migrate_zspage(pool
, class, &cc
))
1772 putback_zspage(pool
, class, dst_page
);
1775 /* Stop if we couldn't find slot */
1776 if (dst_page
== NULL
)
1779 putback_zspage(pool
, class, dst_page
);
1780 if (putback_zspage(pool
, class, src_page
) == ZS_EMPTY
)
1781 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
1782 spin_unlock(&class->lock
);
1784 spin_lock(&class->lock
);
1788 putback_zspage(pool
, class, src_page
);
1790 spin_unlock(&class->lock
);
1793 unsigned long zs_compact(struct zs_pool
*pool
)
1796 struct size_class
*class;
1798 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1799 class = pool
->size_class
[i
];
1802 if (class->index
!= i
)
1804 __zs_compact(pool
, class);
1807 return pool
->stats
.pages_compacted
;
1809 EXPORT_SYMBOL_GPL(zs_compact
);
1811 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
1813 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
1815 EXPORT_SYMBOL_GPL(zs_pool_stats
);
1817 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
1818 struct shrink_control
*sc
)
1820 unsigned long pages_freed
;
1821 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
1824 pages_freed
= pool
->stats
.pages_compacted
;
1826 * Compact classes and calculate compaction delta.
1827 * Can run concurrently with a manually triggered
1828 * (by user) compaction.
1830 pages_freed
= zs_compact(pool
) - pages_freed
;
1832 return pages_freed
? pages_freed
: SHRINK_STOP
;
1835 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
1836 struct shrink_control
*sc
)
1839 struct size_class
*class;
1840 unsigned long pages_to_free
= 0;
1841 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
1844 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1845 class = pool
->size_class
[i
];
1848 if (class->index
!= i
)
1851 pages_to_free
+= zs_can_compact(class);
1854 return pages_to_free
;
1857 static void zs_unregister_shrinker(struct zs_pool
*pool
)
1859 if (pool
->shrinker_enabled
) {
1860 unregister_shrinker(&pool
->shrinker
);
1861 pool
->shrinker_enabled
= false;
1865 static int zs_register_shrinker(struct zs_pool
*pool
)
1867 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
1868 pool
->shrinker
.count_objects
= zs_shrinker_count
;
1869 pool
->shrinker
.batch
= 0;
1870 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
1872 return register_shrinker(&pool
->shrinker
);
1876 * zs_create_pool - Creates an allocation pool to work from.
1877 * @flags: allocation flags used to allocate pool metadata
1879 * This function must be called before anything when using
1880 * the zsmalloc allocator.
1882 * On success, a pointer to the newly created pool is returned,
1885 struct zs_pool
*zs_create_pool(const char *name
)
1888 struct zs_pool
*pool
;
1889 struct size_class
*prev_class
= NULL
;
1891 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
1895 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
1897 if (!pool
->size_class
) {
1902 pool
->name
= kstrdup(name
, GFP_KERNEL
);
1906 if (create_handle_cache(pool
))
1910 * Iterate reversly, because, size of size_class that we want to use
1911 * for merging should be larger or equal to current size.
1913 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1915 int pages_per_zspage
;
1916 struct size_class
*class;
1918 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
1919 if (size
> ZS_MAX_ALLOC_SIZE
)
1920 size
= ZS_MAX_ALLOC_SIZE
;
1921 pages_per_zspage
= get_pages_per_zspage(size
);
1924 * size_class is used for normal zsmalloc operation such
1925 * as alloc/free for that size. Although it is natural that we
1926 * have one size_class for each size, there is a chance that we
1927 * can get more memory utilization if we use one size_class for
1928 * many different sizes whose size_class have same
1929 * characteristics. So, we makes size_class point to
1930 * previous size_class if possible.
1933 if (can_merge(prev_class
, size
, pages_per_zspage
)) {
1934 pool
->size_class
[i
] = prev_class
;
1939 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
1945 class->pages_per_zspage
= pages_per_zspage
;
1946 if (pages_per_zspage
== 1 &&
1947 get_maxobj_per_zspage(size
, pages_per_zspage
) == 1)
1949 spin_lock_init(&class->lock
);
1950 pool
->size_class
[i
] = class;
1955 /* debug only, don't abort if it fails */
1956 zs_pool_stat_create(pool
, name
);
1959 * Not critical, we still can use the pool
1960 * and user can trigger compaction manually.
1962 if (zs_register_shrinker(pool
) == 0)
1963 pool
->shrinker_enabled
= true;
1967 zs_destroy_pool(pool
);
1970 EXPORT_SYMBOL_GPL(zs_create_pool
);
1972 void zs_destroy_pool(struct zs_pool
*pool
)
1976 zs_unregister_shrinker(pool
);
1977 zs_pool_stat_destroy(pool
);
1979 for (i
= 0; i
< zs_size_classes
; i
++) {
1981 struct size_class
*class = pool
->size_class
[i
];
1986 if (class->index
!= i
)
1989 for (fg
= 0; fg
< _ZS_NR_FULLNESS_GROUPS
; fg
++) {
1990 if (class->fullness_list
[fg
]) {
1991 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1998 destroy_handle_cache(pool
);
1999 kfree(pool
->size_class
);
2003 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2005 static int __init
zs_init(void)
2007 int ret
= zs_register_cpu_notifier();
2012 init_zs_size_classes();
2015 zpool_register_driver(&zs_zpool_driver
);
2023 zs_unregister_cpu_notifier();
2028 static void __exit
zs_exit(void)
2031 zpool_unregister_driver(&zs_zpool_driver
);
2033 zs_unregister_cpu_notifier();
2038 module_init(zs_init
);
2039 module_exit(zs_exit
);
2041 MODULE_LICENSE("Dual BSD/GPL");
2042 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");