2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
43 #include "ext4_jbd2.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
53 struct ext4_inode_info
*ei
)
55 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
60 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
61 raw
->i_checksum_lo
= 0;
62 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
63 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
64 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
65 raw
->i_checksum_hi
= 0;
68 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
69 EXT4_INODE_SIZE(inode
->i_sb
));
71 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
72 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
73 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
74 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
79 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
80 struct ext4_inode_info
*ei
)
82 __u32 provided
, calculated
;
84 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
85 cpu_to_le32(EXT4_OS_LINUX
) ||
86 !ext4_has_metadata_csum(inode
->i_sb
))
89 provided
= le16_to_cpu(raw
->i_checksum_lo
);
90 calculated
= ext4_inode_csum(inode
, raw
, ei
);
91 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
92 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
93 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
97 return provided
== calculated
;
100 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
101 struct ext4_inode_info
*ei
)
105 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
106 cpu_to_le32(EXT4_OS_LINUX
) ||
107 !ext4_has_metadata_csum(inode
->i_sb
))
110 csum
= ext4_inode_csum(inode
, raw
, ei
);
111 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
112 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
113 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
114 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
120 trace_ext4_begin_ordered_truncate(inode
, new_size
);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode
)->jinode
)
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
130 EXT4_I(inode
)->jinode
,
134 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
135 unsigned int length
);
136 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
137 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
138 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
142 * Test whether an inode is a fast symlink.
144 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
146 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
147 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
149 if (ext4_has_inline_data(inode
))
152 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
160 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
171 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
172 jbd_debug(2, "restarting handle %p\n", handle
);
173 up_write(&EXT4_I(inode
)->i_data_sem
);
174 ret
= ext4_journal_restart(handle
, nblocks
);
175 down_write(&EXT4_I(inode
)->i_data_sem
);
176 ext4_discard_preallocations(inode
);
182 * Called at the last iput() if i_nlink is zero.
184 void ext4_evict_inode(struct inode
*inode
)
189 trace_ext4_evict_inode(inode
);
191 if (inode
->i_nlink
) {
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
207 * Note that directories do not have this problem because they
208 * don't use page cache.
210 if (ext4_should_journal_data(inode
) &&
211 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
212 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
213 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
214 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
216 jbd2_complete_transaction(journal
, commit_tid
);
217 filemap_write_and_wait(&inode
->i_data
);
219 truncate_inode_pages_final(&inode
->i_data
);
221 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
225 if (is_bad_inode(inode
))
227 dquot_initialize(inode
);
229 if (ext4_should_order_data(inode
))
230 ext4_begin_ordered_truncate(inode
, 0);
231 truncate_inode_pages_final(&inode
->i_data
);
233 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode
->i_sb
);
240 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
241 ext4_blocks_for_truncate(inode
)+3);
242 if (IS_ERR(handle
)) {
243 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
249 ext4_orphan_del(NULL
, inode
);
250 sb_end_intwrite(inode
->i_sb
);
255 ext4_handle_sync(handle
);
257 err
= ext4_mark_inode_dirty(handle
, inode
);
259 ext4_warning(inode
->i_sb
,
260 "couldn't mark inode dirty (err %d)", err
);
264 ext4_truncate(inode
);
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
272 if (!ext4_handle_has_enough_credits(handle
, 3)) {
273 err
= ext4_journal_extend(handle
, 3);
275 err
= ext4_journal_restart(handle
, 3);
277 ext4_warning(inode
->i_sb
,
278 "couldn't extend journal (err %d)", err
);
280 ext4_journal_stop(handle
);
281 ext4_orphan_del(NULL
, inode
);
282 sb_end_intwrite(inode
->i_sb
);
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
295 ext4_orphan_del(handle
, inode
);
296 EXT4_I(inode
)->i_dtime
= get_seconds();
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
305 if (ext4_mark_inode_dirty(handle
, inode
))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode
);
309 ext4_free_inode(handle
, inode
);
310 ext4_journal_stop(handle
);
311 sb_end_intwrite(inode
->i_sb
);
314 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
318 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
320 return &EXT4_I(inode
)->i_reserved_quota
;
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
328 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
330 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
331 return ext4_ext_calc_metadata_amount(inode
, lblock
);
333 return ext4_ind_calc_metadata_amount(inode
, lblock
);
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
340 void ext4_da_update_reserve_space(struct inode
*inode
,
341 int used
, int quota_claim
)
343 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
344 struct ext4_inode_info
*ei
= EXT4_I(inode
);
346 spin_lock(&ei
->i_block_reservation_lock
);
347 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
348 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
349 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__
, inode
->i_ino
, used
,
352 ei
->i_reserved_data_blocks
);
354 used
= ei
->i_reserved_data_blocks
;
357 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
358 ext4_warning(inode
->i_sb
, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
362 ei
->i_reserved_meta_blocks
, used
,
363 ei
->i_reserved_data_blocks
);
365 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
368 /* Update per-inode reservations */
369 ei
->i_reserved_data_blocks
-= used
;
370 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
371 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
372 used
+ ei
->i_allocated_meta_blocks
);
373 ei
->i_allocated_meta_blocks
= 0;
375 if (ei
->i_reserved_data_blocks
== 0) {
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
381 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
382 ei
->i_reserved_meta_blocks
);
383 ei
->i_reserved_meta_blocks
= 0;
384 ei
->i_da_metadata_calc_len
= 0;
386 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
388 /* Update quota subsystem for data blocks */
390 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
397 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
405 if ((ei
->i_reserved_data_blocks
== 0) &&
406 (atomic_read(&inode
->i_writecount
) == 0))
407 ext4_discard_preallocations(inode
);
410 static int __check_block_validity(struct inode
*inode
, const char *func
,
412 struct ext4_map_blocks
*map
)
414 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
416 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map
->m_lblk
,
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
431 struct ext4_map_blocks
*es_map
,
432 struct ext4_map_blocks
*map
,
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
445 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
446 down_read(&EXT4_I(inode
)->i_data_sem
);
447 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
448 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
449 EXT4_GET_BLOCKS_KEEP_SIZE
);
451 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
452 EXT4_GET_BLOCKS_KEEP_SIZE
);
454 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
455 up_read((&EXT4_I(inode
)->i_data_sem
));
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
460 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
466 if (es_map
->m_lblk
!= map
->m_lblk
||
467 es_map
->m_flags
!= map
->m_flags
||
468 es_map
->m_pblk
!= map
->m_pblk
) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
473 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
474 map
->m_len
, map
->m_pblk
, map
->m_flags
,
478 #endif /* ES_AGGRESSIVE_TEST */
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
492 * On success, it returns the number of blocks being mapped or allocated.
493 * if create==0 and the blocks are pre-allocated and unwritten block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
498 * that case, buffer head is unmapped
500 * It returns the error in case of allocation failure.
502 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
503 struct ext4_map_blocks
*map
, int flags
)
505 struct extent_status es
;
508 #ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map
;
511 memcpy(&orig_map
, map
, sizeof(*map
));
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
517 (unsigned long) map
->m_lblk
);
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
522 if (unlikely(map
->m_len
> INT_MAX
))
523 map
->m_len
= INT_MAX
;
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
531 ext4_es_lru_add(inode
);
532 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
533 map
->m_pblk
= ext4_es_pblock(&es
) +
534 map
->m_lblk
- es
.es_lblk
;
535 map
->m_flags
|= ext4_es_is_written(&es
) ?
536 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
537 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
538 if (retval
> map
->m_len
)
541 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle
, inode
, map
,
554 * Try to see if we can get the block without requesting a new
557 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
558 down_read(&EXT4_I(inode
)->i_data_sem
);
559 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
560 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
561 EXT4_GET_BLOCKS_KEEP_SIZE
);
563 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
564 EXT4_GET_BLOCKS_KEEP_SIZE
);
569 if (unlikely(retval
!= map
->m_len
)) {
570 ext4_warning(inode
->i_sb
,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode
->i_ino
, retval
, map
->m_len
);
577 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
578 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
579 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
580 !(status
& EXTENT_STATUS_WRITTEN
) &&
581 ext4_find_delalloc_range(inode
, map
->m_lblk
,
582 map
->m_lblk
+ map
->m_len
- 1))
583 status
|= EXTENT_STATUS_DELAYED
;
584 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
585 map
->m_len
, map
->m_pblk
, status
);
589 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
590 up_read((&EXT4_I(inode
)->i_data_sem
));
593 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
594 ret
= check_block_validity(inode
, map
);
599 /* If it is only a block(s) look up */
600 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
604 * Returns if the blocks have already allocated
606 * Note that if blocks have been preallocated
607 * ext4_ext_get_block() returns the create = 0
608 * with buffer head unmapped.
610 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
612 * If we need to convert extent to unwritten
613 * we continue and do the actual work in
614 * ext4_ext_map_blocks()
616 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
620 * Here we clear m_flags because after allocating an new extent,
621 * it will be set again.
623 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
626 * New blocks allocate and/or writing to unwritten extent
627 * will possibly result in updating i_data, so we take
628 * the write lock of i_data_sem, and call get_blocks()
629 * with create == 1 flag.
631 down_write(&EXT4_I(inode
)->i_data_sem
);
634 * if the caller is from delayed allocation writeout path
635 * we have already reserved fs blocks for allocation
636 * let the underlying get_block() function know to
637 * avoid double accounting
639 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
640 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
642 * We need to check for EXT4 here because migrate
643 * could have changed the inode type in between
645 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
646 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
648 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
650 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
652 * We allocated new blocks which will result in
653 * i_data's format changing. Force the migrate
654 * to fail by clearing migrate flags
656 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
660 * Update reserved blocks/metadata blocks after successful
661 * block allocation which had been deferred till now. We don't
662 * support fallocate for non extent files. So we can update
663 * reserve space here.
666 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
667 ext4_da_update_reserve_space(inode
, retval
, 1);
669 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
670 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
675 if (unlikely(retval
!= map
->m_len
)) {
676 ext4_warning(inode
->i_sb
,
677 "ES len assertion failed for inode "
678 "%lu: retval %d != map->m_len %d",
679 inode
->i_ino
, retval
, map
->m_len
);
684 * If the extent has been zeroed out, we don't need to update
685 * extent status tree.
687 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
688 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
689 if (ext4_es_is_written(&es
))
692 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
693 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
694 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
695 !(status
& EXTENT_STATUS_WRITTEN
) &&
696 ext4_find_delalloc_range(inode
, map
->m_lblk
,
697 map
->m_lblk
+ map
->m_len
- 1))
698 status
|= EXTENT_STATUS_DELAYED
;
699 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
700 map
->m_pblk
, status
);
706 up_write((&EXT4_I(inode
)->i_data_sem
));
707 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
708 ret
= check_block_validity(inode
, map
);
716 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
717 * we have to be careful as someone else may be manipulating b_state as well.
719 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
721 unsigned long old_state
;
722 unsigned long new_state
;
724 flags
&= EXT4_MAP_FLAGS
;
726 /* Dummy buffer_head? Set non-atomically. */
728 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
732 * Someone else may be modifying b_state. Be careful! This is ugly but
733 * once we get rid of using bh as a container for mapping information
734 * to pass to / from get_block functions, this can go away.
737 old_state
= ACCESS_ONCE(bh
->b_state
);
738 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
740 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
743 /* Maximum number of blocks we map for direct IO at once. */
744 #define DIO_MAX_BLOCKS 4096
746 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
747 struct buffer_head
*bh
, int flags
)
749 handle_t
*handle
= ext4_journal_current_handle();
750 struct ext4_map_blocks map
;
751 int ret
= 0, started
= 0;
754 if (ext4_has_inline_data(inode
))
758 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
760 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
761 /* Direct IO write... */
762 if (map
.m_len
> DIO_MAX_BLOCKS
)
763 map
.m_len
= DIO_MAX_BLOCKS
;
764 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
765 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
767 if (IS_ERR(handle
)) {
768 ret
= PTR_ERR(handle
);
774 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
776 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
778 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
779 ext4_update_bh_state(bh
, map
.m_flags
);
780 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
781 set_buffer_defer_completion(bh
);
782 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
786 ext4_journal_stop(handle
);
790 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
791 struct buffer_head
*bh
, int create
)
793 return _ext4_get_block(inode
, iblock
, bh
,
794 create
? EXT4_GET_BLOCKS_CREATE
: 0);
798 * `handle' can be NULL if create is zero
800 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
801 ext4_lblk_t block
, int create
, int *errp
)
803 struct ext4_map_blocks map
;
804 struct buffer_head
*bh
;
807 J_ASSERT(handle
!= NULL
|| create
== 0);
811 err
= ext4_map_blocks(handle
, inode
, &map
,
812 create
? EXT4_GET_BLOCKS_CREATE
: 0);
814 /* ensure we send some value back into *errp */
817 if (create
&& err
== 0)
818 err
= -ENOSPC
; /* should never happen */
824 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
829 if (map
.m_flags
& EXT4_MAP_NEW
) {
830 J_ASSERT(create
!= 0);
831 J_ASSERT(handle
!= NULL
);
834 * Now that we do not always journal data, we should
835 * keep in mind whether this should always journal the
836 * new buffer as metadata. For now, regular file
837 * writes use ext4_get_block instead, so it's not a
841 BUFFER_TRACE(bh
, "call get_create_access");
842 fatal
= ext4_journal_get_create_access(handle
, bh
);
843 if (!fatal
&& !buffer_uptodate(bh
)) {
844 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
845 set_buffer_uptodate(bh
);
848 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
849 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
853 BUFFER_TRACE(bh
, "not a new buffer");
863 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
864 ext4_lblk_t block
, int create
, int *err
)
866 struct buffer_head
*bh
;
868 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
871 if (buffer_uptodate(bh
))
873 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
875 if (buffer_uptodate(bh
))
882 int ext4_walk_page_buffers(handle_t
*handle
,
883 struct buffer_head
*head
,
887 int (*fn
)(handle_t
*handle
,
888 struct buffer_head
*bh
))
890 struct buffer_head
*bh
;
891 unsigned block_start
, block_end
;
892 unsigned blocksize
= head
->b_size
;
894 struct buffer_head
*next
;
896 for (bh
= head
, block_start
= 0;
897 ret
== 0 && (bh
!= head
|| !block_start
);
898 block_start
= block_end
, bh
= next
) {
899 next
= bh
->b_this_page
;
900 block_end
= block_start
+ blocksize
;
901 if (block_end
<= from
|| block_start
>= to
) {
902 if (partial
&& !buffer_uptodate(bh
))
906 err
= (*fn
)(handle
, bh
);
914 * To preserve ordering, it is essential that the hole instantiation and
915 * the data write be encapsulated in a single transaction. We cannot
916 * close off a transaction and start a new one between the ext4_get_block()
917 * and the commit_write(). So doing the jbd2_journal_start at the start of
918 * prepare_write() is the right place.
920 * Also, this function can nest inside ext4_writepage(). In that case, we
921 * *know* that ext4_writepage() has generated enough buffer credits to do the
922 * whole page. So we won't block on the journal in that case, which is good,
923 * because the caller may be PF_MEMALLOC.
925 * By accident, ext4 can be reentered when a transaction is open via
926 * quota file writes. If we were to commit the transaction while thus
927 * reentered, there can be a deadlock - we would be holding a quota
928 * lock, and the commit would never complete if another thread had a
929 * transaction open and was blocking on the quota lock - a ranking
932 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
933 * will _not_ run commit under these circumstances because handle->h_ref
934 * is elevated. We'll still have enough credits for the tiny quotafile
937 int do_journal_get_write_access(handle_t
*handle
,
938 struct buffer_head
*bh
)
940 int dirty
= buffer_dirty(bh
);
943 if (!buffer_mapped(bh
) || buffer_freed(bh
))
946 * __block_write_begin() could have dirtied some buffers. Clean
947 * the dirty bit as jbd2_journal_get_write_access() could complain
948 * otherwise about fs integrity issues. Setting of the dirty bit
949 * by __block_write_begin() isn't a real problem here as we clear
950 * the bit before releasing a page lock and thus writeback cannot
951 * ever write the buffer.
954 clear_buffer_dirty(bh
);
955 BUFFER_TRACE(bh
, "get write access");
956 ret
= ext4_journal_get_write_access(handle
, bh
);
958 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
962 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
963 struct buffer_head
*bh_result
, int create
);
964 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
965 loff_t pos
, unsigned len
, unsigned flags
,
966 struct page
**pagep
, void **fsdata
)
968 struct inode
*inode
= mapping
->host
;
969 int ret
, needed_blocks
;
976 trace_ext4_write_begin(inode
, pos
, len
, flags
);
978 * Reserve one block more for addition to orphan list in case
979 * we allocate blocks but write fails for some reason
981 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
982 index
= pos
>> PAGE_CACHE_SHIFT
;
983 from
= pos
& (PAGE_CACHE_SIZE
- 1);
986 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
987 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
996 * grab_cache_page_write_begin() can take a long time if the
997 * system is thrashing due to memory pressure, or if the page
998 * is being written back. So grab it first before we start
999 * the transaction handle. This also allows us to allocate
1000 * the page (if needed) without using GFP_NOFS.
1003 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1009 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1010 if (IS_ERR(handle
)) {
1011 page_cache_release(page
);
1012 return PTR_ERR(handle
);
1016 if (page
->mapping
!= mapping
) {
1017 /* The page got truncated from under us */
1019 page_cache_release(page
);
1020 ext4_journal_stop(handle
);
1023 /* In case writeback began while the page was unlocked */
1024 wait_for_stable_page(page
);
1026 if (ext4_should_dioread_nolock(inode
))
1027 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1029 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1031 if (!ret
&& ext4_should_journal_data(inode
)) {
1032 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1034 do_journal_get_write_access
);
1040 * __block_write_begin may have instantiated a few blocks
1041 * outside i_size. Trim these off again. Don't need
1042 * i_size_read because we hold i_mutex.
1044 * Add inode to orphan list in case we crash before
1047 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1048 ext4_orphan_add(handle
, inode
);
1050 ext4_journal_stop(handle
);
1051 if (pos
+ len
> inode
->i_size
) {
1052 ext4_truncate_failed_write(inode
);
1054 * If truncate failed early the inode might
1055 * still be on the orphan list; we need to
1056 * make sure the inode is removed from the
1057 * orphan list in that case.
1060 ext4_orphan_del(NULL
, inode
);
1063 if (ret
== -ENOSPC
&&
1064 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1066 page_cache_release(page
);
1073 /* For write_end() in data=journal mode */
1074 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1077 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1079 set_buffer_uptodate(bh
);
1080 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1081 clear_buffer_meta(bh
);
1082 clear_buffer_prio(bh
);
1087 * We need to pick up the new inode size which generic_commit_write gave us
1088 * `file' can be NULL - eg, when called from page_symlink().
1090 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1091 * buffers are managed internally.
1093 static int ext4_write_end(struct file
*file
,
1094 struct address_space
*mapping
,
1095 loff_t pos
, unsigned len
, unsigned copied
,
1096 struct page
*page
, void *fsdata
)
1098 handle_t
*handle
= ext4_journal_current_handle();
1099 struct inode
*inode
= mapping
->host
;
1101 int i_size_changed
= 0;
1103 trace_ext4_write_end(inode
, pos
, len
, copied
);
1104 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1105 ret
= ext4_jbd2_file_inode(handle
, inode
);
1108 page_cache_release(page
);
1113 if (ext4_has_inline_data(inode
)) {
1114 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1120 copied
= block_write_end(file
, mapping
, pos
,
1121 len
, copied
, page
, fsdata
);
1123 * it's important to update i_size while still holding page lock:
1124 * page writeout could otherwise come in and zero beyond i_size.
1126 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1128 page_cache_release(page
);
1131 * Don't mark the inode dirty under page lock. First, it unnecessarily
1132 * makes the holding time of page lock longer. Second, it forces lock
1133 * ordering of page lock and transaction start for journaling
1137 ext4_mark_inode_dirty(handle
, inode
);
1139 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1140 /* if we have allocated more blocks and copied
1141 * less. We will have blocks allocated outside
1142 * inode->i_size. So truncate them
1144 ext4_orphan_add(handle
, inode
);
1146 ret2
= ext4_journal_stop(handle
);
1150 if (pos
+ len
> inode
->i_size
) {
1151 ext4_truncate_failed_write(inode
);
1153 * If truncate failed early the inode might still be
1154 * on the orphan list; we need to make sure the inode
1155 * is removed from the orphan list in that case.
1158 ext4_orphan_del(NULL
, inode
);
1161 return ret
? ret
: copied
;
1164 static int ext4_journalled_write_end(struct file
*file
,
1165 struct address_space
*mapping
,
1166 loff_t pos
, unsigned len
, unsigned copied
,
1167 struct page
*page
, void *fsdata
)
1169 handle_t
*handle
= ext4_journal_current_handle();
1170 struct inode
*inode
= mapping
->host
;
1174 int size_changed
= 0;
1176 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1177 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1180 BUG_ON(!ext4_handle_valid(handle
));
1182 if (ext4_has_inline_data(inode
))
1183 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1187 if (!PageUptodate(page
))
1189 page_zero_new_buffers(page
, from
+copied
, to
);
1192 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1193 to
, &partial
, write_end_fn
);
1195 SetPageUptodate(page
);
1197 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1198 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1199 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1201 page_cache_release(page
);
1204 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1209 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1210 /* if we have allocated more blocks and copied
1211 * less. We will have blocks allocated outside
1212 * inode->i_size. So truncate them
1214 ext4_orphan_add(handle
, inode
);
1216 ret2
= ext4_journal_stop(handle
);
1219 if (pos
+ len
> inode
->i_size
) {
1220 ext4_truncate_failed_write(inode
);
1222 * If truncate failed early the inode might still be
1223 * on the orphan list; we need to make sure the inode
1224 * is removed from the orphan list in that case.
1227 ext4_orphan_del(NULL
, inode
);
1230 return ret
? ret
: copied
;
1234 * Reserve a metadata for a single block located at lblock
1236 static int ext4_da_reserve_metadata(struct inode
*inode
, ext4_lblk_t lblock
)
1238 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1239 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1240 unsigned int md_needed
;
1241 ext4_lblk_t save_last_lblock
;
1245 * recalculate the amount of metadata blocks to reserve
1246 * in order to allocate nrblocks
1247 * worse case is one extent per block
1249 spin_lock(&ei
->i_block_reservation_lock
);
1251 * ext4_calc_metadata_amount() has side effects, which we have
1252 * to be prepared undo if we fail to claim space.
1254 save_len
= ei
->i_da_metadata_calc_len
;
1255 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1256 md_needed
= EXT4_NUM_B2C(sbi
,
1257 ext4_calc_metadata_amount(inode
, lblock
));
1258 trace_ext4_da_reserve_space(inode
, md_needed
);
1261 * We do still charge estimated metadata to the sb though;
1262 * we cannot afford to run out of free blocks.
1264 if (ext4_claim_free_clusters(sbi
, md_needed
, 0)) {
1265 ei
->i_da_metadata_calc_len
= save_len
;
1266 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1267 spin_unlock(&ei
->i_block_reservation_lock
);
1270 ei
->i_reserved_meta_blocks
+= md_needed
;
1271 spin_unlock(&ei
->i_block_reservation_lock
);
1273 return 0; /* success */
1277 * Reserve a single cluster located at lblock
1279 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1281 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1282 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1283 unsigned int md_needed
;
1285 ext4_lblk_t save_last_lblock
;
1289 * We will charge metadata quota at writeout time; this saves
1290 * us from metadata over-estimation, though we may go over by
1291 * a small amount in the end. Here we just reserve for data.
1293 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1298 * recalculate the amount of metadata blocks to reserve
1299 * in order to allocate nrblocks
1300 * worse case is one extent per block
1302 spin_lock(&ei
->i_block_reservation_lock
);
1304 * ext4_calc_metadata_amount() has side effects, which we have
1305 * to be prepared undo if we fail to claim space.
1307 save_len
= ei
->i_da_metadata_calc_len
;
1308 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1309 md_needed
= EXT4_NUM_B2C(sbi
,
1310 ext4_calc_metadata_amount(inode
, lblock
));
1311 trace_ext4_da_reserve_space(inode
, md_needed
);
1314 * We do still charge estimated metadata to the sb though;
1315 * we cannot afford to run out of free blocks.
1317 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1318 ei
->i_da_metadata_calc_len
= save_len
;
1319 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1320 spin_unlock(&ei
->i_block_reservation_lock
);
1321 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1324 ei
->i_reserved_data_blocks
++;
1325 ei
->i_reserved_meta_blocks
+= md_needed
;
1326 spin_unlock(&ei
->i_block_reservation_lock
);
1328 return 0; /* success */
1331 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1333 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1334 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1337 return; /* Nothing to release, exit */
1339 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1341 trace_ext4_da_release_space(inode
, to_free
);
1342 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1344 * if there aren't enough reserved blocks, then the
1345 * counter is messed up somewhere. Since this
1346 * function is called from invalidate page, it's
1347 * harmless to return without any action.
1349 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1350 "ino %lu, to_free %d with only %d reserved "
1351 "data blocks", inode
->i_ino
, to_free
,
1352 ei
->i_reserved_data_blocks
);
1354 to_free
= ei
->i_reserved_data_blocks
;
1356 ei
->i_reserved_data_blocks
-= to_free
;
1358 if (ei
->i_reserved_data_blocks
== 0) {
1360 * We can release all of the reserved metadata blocks
1361 * only when we have written all of the delayed
1362 * allocation blocks.
1363 * Note that in case of bigalloc, i_reserved_meta_blocks,
1364 * i_reserved_data_blocks, etc. refer to number of clusters.
1366 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1367 ei
->i_reserved_meta_blocks
);
1368 ei
->i_reserved_meta_blocks
= 0;
1369 ei
->i_da_metadata_calc_len
= 0;
1372 /* update fs dirty data blocks counter */
1373 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1375 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1377 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1380 static void ext4_da_page_release_reservation(struct page
*page
,
1381 unsigned int offset
,
1382 unsigned int length
)
1384 int to_release
= 0, contiguous_blks
= 0;
1385 struct buffer_head
*head
, *bh
;
1386 unsigned int curr_off
= 0;
1387 struct inode
*inode
= page
->mapping
->host
;
1388 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1389 unsigned int stop
= offset
+ length
;
1393 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1395 head
= page_buffers(page
);
1398 unsigned int next_off
= curr_off
+ bh
->b_size
;
1400 if (next_off
> stop
)
1403 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1406 clear_buffer_delay(bh
);
1407 } else if (contiguous_blks
) {
1408 lblk
= page
->index
<<
1409 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1410 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1412 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1413 contiguous_blks
= 0;
1415 curr_off
= next_off
;
1416 } while ((bh
= bh
->b_this_page
) != head
);
1418 if (contiguous_blks
) {
1419 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1420 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1421 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1424 /* If we have released all the blocks belonging to a cluster, then we
1425 * need to release the reserved space for that cluster. */
1426 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1427 while (num_clusters
> 0) {
1428 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1429 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1430 if (sbi
->s_cluster_ratio
== 1 ||
1431 !ext4_find_delalloc_cluster(inode
, lblk
))
1432 ext4_da_release_space(inode
, 1);
1439 * Delayed allocation stuff
1442 struct mpage_da_data
{
1443 struct inode
*inode
;
1444 struct writeback_control
*wbc
;
1446 pgoff_t first_page
; /* The first page to write */
1447 pgoff_t next_page
; /* Current page to examine */
1448 pgoff_t last_page
; /* Last page to examine */
1450 * Extent to map - this can be after first_page because that can be
1451 * fully mapped. We somewhat abuse m_flags to store whether the extent
1452 * is delalloc or unwritten.
1454 struct ext4_map_blocks map
;
1455 struct ext4_io_submit io_submit
; /* IO submission data */
1458 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1463 struct pagevec pvec
;
1464 struct inode
*inode
= mpd
->inode
;
1465 struct address_space
*mapping
= inode
->i_mapping
;
1467 /* This is necessary when next_page == 0. */
1468 if (mpd
->first_page
>= mpd
->next_page
)
1471 index
= mpd
->first_page
;
1472 end
= mpd
->next_page
- 1;
1474 ext4_lblk_t start
, last
;
1475 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1476 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1477 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1480 pagevec_init(&pvec
, 0);
1481 while (index
<= end
) {
1482 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1485 for (i
= 0; i
< nr_pages
; i
++) {
1486 struct page
*page
= pvec
.pages
[i
];
1487 if (page
->index
> end
)
1489 BUG_ON(!PageLocked(page
));
1490 BUG_ON(PageWriteback(page
));
1492 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1493 ClearPageUptodate(page
);
1497 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1498 pagevec_release(&pvec
);
1502 static void ext4_print_free_blocks(struct inode
*inode
)
1504 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1505 struct super_block
*sb
= inode
->i_sb
;
1506 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1508 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1509 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1510 ext4_count_free_clusters(sb
)));
1511 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1512 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1513 (long long) EXT4_C2B(EXT4_SB(sb
),
1514 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1515 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1516 (long long) EXT4_C2B(EXT4_SB(sb
),
1517 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1518 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1519 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1520 ei
->i_reserved_data_blocks
);
1521 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1522 ei
->i_reserved_meta_blocks
);
1523 ext4_msg(sb
, KERN_CRIT
, "i_allocated_meta_blocks=%u",
1524 ei
->i_allocated_meta_blocks
);
1528 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1530 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1534 * This function is grabs code from the very beginning of
1535 * ext4_map_blocks, but assumes that the caller is from delayed write
1536 * time. This function looks up the requested blocks and sets the
1537 * buffer delay bit under the protection of i_data_sem.
1539 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1540 struct ext4_map_blocks
*map
,
1541 struct buffer_head
*bh
)
1543 struct extent_status es
;
1545 sector_t invalid_block
= ~((sector_t
) 0xffff);
1546 #ifdef ES_AGGRESSIVE_TEST
1547 struct ext4_map_blocks orig_map
;
1549 memcpy(&orig_map
, map
, sizeof(*map
));
1552 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1556 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1557 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1558 (unsigned long) map
->m_lblk
);
1560 /* Lookup extent status tree firstly */
1561 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1562 ext4_es_lru_add(inode
);
1563 if (ext4_es_is_hole(&es
)) {
1565 down_read(&EXT4_I(inode
)->i_data_sem
);
1570 * Delayed extent could be allocated by fallocate.
1571 * So we need to check it.
1573 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1574 map_bh(bh
, inode
->i_sb
, invalid_block
);
1576 set_buffer_delay(bh
);
1580 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1581 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1582 if (retval
> map
->m_len
)
1583 retval
= map
->m_len
;
1584 map
->m_len
= retval
;
1585 if (ext4_es_is_written(&es
))
1586 map
->m_flags
|= EXT4_MAP_MAPPED
;
1587 else if (ext4_es_is_unwritten(&es
))
1588 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1592 #ifdef ES_AGGRESSIVE_TEST
1593 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1599 * Try to see if we can get the block without requesting a new
1600 * file system block.
1602 down_read(&EXT4_I(inode
)->i_data_sem
);
1603 if (ext4_has_inline_data(inode
)) {
1605 * We will soon create blocks for this page, and let
1606 * us pretend as if the blocks aren't allocated yet.
1607 * In case of clusters, we have to handle the work
1608 * of mapping from cluster so that the reserved space
1609 * is calculated properly.
1611 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1612 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1613 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1615 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1616 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1617 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1619 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1620 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1626 * XXX: __block_prepare_write() unmaps passed block,
1630 * If the block was allocated from previously allocated cluster,
1631 * then we don't need to reserve it again. However we still need
1632 * to reserve metadata for every block we're going to write.
1634 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1635 ret
= ext4_da_reserve_space(inode
, iblock
);
1637 /* not enough space to reserve */
1642 ret
= ext4_da_reserve_metadata(inode
, iblock
);
1644 /* not enough space to reserve */
1650 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1651 ~0, EXTENT_STATUS_DELAYED
);
1657 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1658 * and it should not appear on the bh->b_state.
1660 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1662 map_bh(bh
, inode
->i_sb
, invalid_block
);
1664 set_buffer_delay(bh
);
1665 } else if (retval
> 0) {
1667 unsigned int status
;
1669 if (unlikely(retval
!= map
->m_len
)) {
1670 ext4_warning(inode
->i_sb
,
1671 "ES len assertion failed for inode "
1672 "%lu: retval %d != map->m_len %d",
1673 inode
->i_ino
, retval
, map
->m_len
);
1677 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1678 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1679 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1680 map
->m_pblk
, status
);
1686 up_read((&EXT4_I(inode
)->i_data_sem
));
1692 * This is a special get_blocks_t callback which is used by
1693 * ext4_da_write_begin(). It will either return mapped block or
1694 * reserve space for a single block.
1696 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1697 * We also have b_blocknr = -1 and b_bdev initialized properly
1699 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1700 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1701 * initialized properly.
1703 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1704 struct buffer_head
*bh
, int create
)
1706 struct ext4_map_blocks map
;
1709 BUG_ON(create
== 0);
1710 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1712 map
.m_lblk
= iblock
;
1716 * first, we need to know whether the block is allocated already
1717 * preallocated blocks are unmapped but should treated
1718 * the same as allocated blocks.
1720 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1724 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1725 ext4_update_bh_state(bh
, map
.m_flags
);
1727 if (buffer_unwritten(bh
)) {
1728 /* A delayed write to unwritten bh should be marked
1729 * new and mapped. Mapped ensures that we don't do
1730 * get_block multiple times when we write to the same
1731 * offset and new ensures that we do proper zero out
1732 * for partial write.
1735 set_buffer_mapped(bh
);
1740 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1746 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1752 static int __ext4_journalled_writepage(struct page
*page
,
1755 struct address_space
*mapping
= page
->mapping
;
1756 struct inode
*inode
= mapping
->host
;
1757 struct buffer_head
*page_bufs
= NULL
;
1758 handle_t
*handle
= NULL
;
1759 int ret
= 0, err
= 0;
1760 int inline_data
= ext4_has_inline_data(inode
);
1761 struct buffer_head
*inode_bh
= NULL
;
1763 ClearPageChecked(page
);
1766 BUG_ON(page
->index
!= 0);
1767 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1768 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1769 if (inode_bh
== NULL
)
1772 page_bufs
= page_buffers(page
);
1777 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1781 * We need to release the page lock before we start the
1782 * journal, so grab a reference so the page won't disappear
1783 * out from under us.
1788 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1789 ext4_writepage_trans_blocks(inode
));
1790 if (IS_ERR(handle
)) {
1791 ret
= PTR_ERR(handle
);
1793 goto out_no_pagelock
;
1795 BUG_ON(!ext4_handle_valid(handle
));
1799 if (page
->mapping
!= mapping
) {
1800 /* The page got truncated from under us */
1801 ext4_journal_stop(handle
);
1807 BUFFER_TRACE(inode_bh
, "get write access");
1808 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1810 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1813 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1814 do_journal_get_write_access
);
1816 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1821 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1822 err
= ext4_journal_stop(handle
);
1826 if (!ext4_has_inline_data(inode
))
1827 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1829 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1838 * Note that we don't need to start a transaction unless we're journaling data
1839 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1840 * need to file the inode to the transaction's list in ordered mode because if
1841 * we are writing back data added by write(), the inode is already there and if
1842 * we are writing back data modified via mmap(), no one guarantees in which
1843 * transaction the data will hit the disk. In case we are journaling data, we
1844 * cannot start transaction directly because transaction start ranks above page
1845 * lock so we have to do some magic.
1847 * This function can get called via...
1848 * - ext4_writepages after taking page lock (have journal handle)
1849 * - journal_submit_inode_data_buffers (no journal handle)
1850 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1851 * - grab_page_cache when doing write_begin (have journal handle)
1853 * We don't do any block allocation in this function. If we have page with
1854 * multiple blocks we need to write those buffer_heads that are mapped. This
1855 * is important for mmaped based write. So if we do with blocksize 1K
1856 * truncate(f, 1024);
1857 * a = mmap(f, 0, 4096);
1859 * truncate(f, 4096);
1860 * we have in the page first buffer_head mapped via page_mkwrite call back
1861 * but other buffer_heads would be unmapped but dirty (dirty done via the
1862 * do_wp_page). So writepage should write the first block. If we modify
1863 * the mmap area beyond 1024 we will again get a page_fault and the
1864 * page_mkwrite callback will do the block allocation and mark the
1865 * buffer_heads mapped.
1867 * We redirty the page if we have any buffer_heads that is either delay or
1868 * unwritten in the page.
1870 * We can get recursively called as show below.
1872 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1875 * But since we don't do any block allocation we should not deadlock.
1876 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1878 static int ext4_writepage(struct page
*page
,
1879 struct writeback_control
*wbc
)
1884 struct buffer_head
*page_bufs
= NULL
;
1885 struct inode
*inode
= page
->mapping
->host
;
1886 struct ext4_io_submit io_submit
;
1887 bool keep_towrite
= false;
1889 trace_ext4_writepage(page
);
1890 size
= i_size_read(inode
);
1891 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1892 len
= size
& ~PAGE_CACHE_MASK
;
1894 len
= PAGE_CACHE_SIZE
;
1896 page_bufs
= page_buffers(page
);
1898 * We cannot do block allocation or other extent handling in this
1899 * function. If there are buffers needing that, we have to redirty
1900 * the page. But we may reach here when we do a journal commit via
1901 * journal_submit_inode_data_buffers() and in that case we must write
1902 * allocated buffers to achieve data=ordered mode guarantees.
1904 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1905 ext4_bh_delay_or_unwritten
)) {
1906 redirty_page_for_writepage(wbc
, page
);
1907 if (current
->flags
& PF_MEMALLOC
) {
1909 * For memory cleaning there's no point in writing only
1910 * some buffers. So just bail out. Warn if we came here
1911 * from direct reclaim.
1913 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1918 keep_towrite
= true;
1921 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1923 * It's mmapped pagecache. Add buffers and journal it. There
1924 * doesn't seem much point in redirtying the page here.
1926 return __ext4_journalled_writepage(page
, len
);
1928 ext4_io_submit_init(&io_submit
, wbc
);
1929 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1930 if (!io_submit
.io_end
) {
1931 redirty_page_for_writepage(wbc
, page
);
1935 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
1936 ext4_io_submit(&io_submit
);
1937 /* Drop io_end reference we got from init */
1938 ext4_put_io_end_defer(io_submit
.io_end
);
1942 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1945 loff_t size
= i_size_read(mpd
->inode
);
1948 BUG_ON(page
->index
!= mpd
->first_page
);
1949 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1950 len
= size
& ~PAGE_CACHE_MASK
;
1952 len
= PAGE_CACHE_SIZE
;
1953 clear_page_dirty_for_io(page
);
1954 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
1956 mpd
->wbc
->nr_to_write
--;
1962 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965 * mballoc gives us at most this number of blocks...
1966 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1967 * The rest of mballoc seems to handle chunks up to full group size.
1969 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1972 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1974 * @mpd - extent of blocks
1975 * @lblk - logical number of the block in the file
1976 * @bh - buffer head we want to add to the extent
1978 * The function is used to collect contig. blocks in the same state. If the
1979 * buffer doesn't require mapping for writeback and we haven't started the
1980 * extent of buffers to map yet, the function returns 'true' immediately - the
1981 * caller can write the buffer right away. Otherwise the function returns true
1982 * if the block has been added to the extent, false if the block couldn't be
1985 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1986 struct buffer_head
*bh
)
1988 struct ext4_map_blocks
*map
= &mpd
->map
;
1990 /* Buffer that doesn't need mapping for writeback? */
1991 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1992 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1993 /* So far no extent to map => we write the buffer right away */
1994 if (map
->m_len
== 0)
1999 /* First block in the extent? */
2000 if (map
->m_len
== 0) {
2003 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2007 /* Don't go larger than mballoc is willing to allocate */
2008 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2011 /* Can we merge the block to our big extent? */
2012 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2013 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2021 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2023 * @mpd - extent of blocks for mapping
2024 * @head - the first buffer in the page
2025 * @bh - buffer we should start processing from
2026 * @lblk - logical number of the block in the file corresponding to @bh
2028 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2029 * the page for IO if all buffers in this page were mapped and there's no
2030 * accumulated extent of buffers to map or add buffers in the page to the
2031 * extent of buffers to map. The function returns 1 if the caller can continue
2032 * by processing the next page, 0 if it should stop adding buffers to the
2033 * extent to map because we cannot extend it anymore. It can also return value
2034 * < 0 in case of error during IO submission.
2036 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2037 struct buffer_head
*head
,
2038 struct buffer_head
*bh
,
2041 struct inode
*inode
= mpd
->inode
;
2043 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
2044 >> inode
->i_blkbits
;
2047 BUG_ON(buffer_locked(bh
));
2049 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2050 /* Found extent to map? */
2053 /* Everything mapped so far and we hit EOF */
2056 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2057 /* So far everything mapped? Submit the page for IO. */
2058 if (mpd
->map
.m_len
== 0) {
2059 err
= mpage_submit_page(mpd
, head
->b_page
);
2063 return lblk
< blocks
;
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 * submit fully mapped pages for IO
2070 * @mpd - description of extent to map, on return next extent to map
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2080 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2082 struct pagevec pvec
;
2084 struct inode
*inode
= mpd
->inode
;
2085 struct buffer_head
*head
, *bh
;
2086 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2092 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2093 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2094 lblk
= start
<< bpp_bits
;
2095 pblock
= mpd
->map
.m_pblk
;
2097 pagevec_init(&pvec
, 0);
2098 while (start
<= end
) {
2099 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2103 for (i
= 0; i
< nr_pages
; i
++) {
2104 struct page
*page
= pvec
.pages
[i
];
2106 if (page
->index
> end
)
2108 /* Up to 'end' pages must be contiguous */
2109 BUG_ON(page
->index
!= start
);
2110 bh
= head
= page_buffers(page
);
2112 if (lblk
< mpd
->map
.m_lblk
)
2114 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2116 * Buffer after end of mapped extent.
2117 * Find next buffer in the page to map.
2120 mpd
->map
.m_flags
= 0;
2122 * FIXME: If dioread_nolock supports
2123 * blocksize < pagesize, we need to make
2124 * sure we add size mapped so far to
2125 * io_end->size as the following call
2126 * can submit the page for IO.
2128 err
= mpage_process_page_bufs(mpd
, head
,
2130 pagevec_release(&pvec
);
2135 if (buffer_delay(bh
)) {
2136 clear_buffer_delay(bh
);
2137 bh
->b_blocknr
= pblock
++;
2139 clear_buffer_unwritten(bh
);
2140 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2143 * FIXME: This is going to break if dioread_nolock
2144 * supports blocksize < pagesize as we will try to
2145 * convert potentially unmapped parts of inode.
2147 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2148 /* Page fully mapped - let IO run! */
2149 err
= mpage_submit_page(mpd
, page
);
2151 pagevec_release(&pvec
);
2156 pagevec_release(&pvec
);
2158 /* Extent fully mapped and matches with page boundary. We are done. */
2160 mpd
->map
.m_flags
= 0;
2164 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2166 struct inode
*inode
= mpd
->inode
;
2167 struct ext4_map_blocks
*map
= &mpd
->map
;
2168 int get_blocks_flags
;
2169 int err
, dioread_nolock
;
2171 trace_ext4_da_write_pages_extent(inode
, map
);
2173 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2174 * to convert an unwritten extent to be initialized (in the case
2175 * where we have written into one or more preallocated blocks). It is
2176 * possible that we're going to need more metadata blocks than
2177 * previously reserved. However we must not fail because we're in
2178 * writeback and there is nothing we can do about it so it might result
2179 * in data loss. So use reserved blocks to allocate metadata if
2182 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2183 * in question are delalloc blocks. This affects functions in many
2184 * different parts of the allocation call path. This flag exists
2185 * primarily because we don't want to change *many* call functions, so
2186 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2187 * once the inode's allocation semaphore is taken.
2189 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2190 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2191 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2193 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2194 if (map
->m_flags
& (1 << BH_Delay
))
2195 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2197 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2200 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2201 if (!mpd
->io_submit
.io_end
->handle
&&
2202 ext4_handle_valid(handle
)) {
2203 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2204 handle
->h_rsv_handle
= NULL
;
2206 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2209 BUG_ON(map
->m_len
== 0);
2210 if (map
->m_flags
& EXT4_MAP_NEW
) {
2211 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2214 for (i
= 0; i
< map
->m_len
; i
++)
2215 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2221 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222 * mpd->len and submit pages underlying it for IO
2224 * @handle - handle for journal operations
2225 * @mpd - extent to map
2226 * @give_up_on_write - we set this to true iff there is a fatal error and there
2227 * is no hope of writing the data. The caller should discard
2228 * dirty pages to avoid infinite loops.
2230 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232 * them to initialized or split the described range from larger unwritten
2233 * extent. Note that we need not map all the described range since allocation
2234 * can return less blocks or the range is covered by more unwritten extents. We
2235 * cannot map more because we are limited by reserved transaction credits. On
2236 * the other hand we always make sure that the last touched page is fully
2237 * mapped so that it can be written out (and thus forward progress is
2238 * guaranteed). After mapping we submit all mapped pages for IO.
2240 static int mpage_map_and_submit_extent(handle_t
*handle
,
2241 struct mpage_da_data
*mpd
,
2242 bool *give_up_on_write
)
2244 struct inode
*inode
= mpd
->inode
;
2245 struct ext4_map_blocks
*map
= &mpd
->map
;
2250 mpd
->io_submit
.io_end
->offset
=
2251 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2253 err
= mpage_map_one_extent(handle
, mpd
);
2255 struct super_block
*sb
= inode
->i_sb
;
2257 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2258 goto invalidate_dirty_pages
;
2260 * Let the uper layers retry transient errors.
2261 * In the case of ENOSPC, if ext4_count_free_blocks()
2262 * is non-zero, a commit should free up blocks.
2264 if ((err
== -ENOMEM
) ||
2265 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2267 goto update_disksize
;
2270 ext4_msg(sb
, KERN_CRIT
,
2271 "Delayed block allocation failed for "
2272 "inode %lu at logical offset %llu with"
2273 " max blocks %u with error %d",
2275 (unsigned long long)map
->m_lblk
,
2276 (unsigned)map
->m_len
, -err
);
2277 ext4_msg(sb
, KERN_CRIT
,
2278 "This should not happen!! Data will "
2281 ext4_print_free_blocks(inode
);
2282 invalidate_dirty_pages
:
2283 *give_up_on_write
= true;
2288 * Update buffer state, submit mapped pages, and get us new
2291 err
= mpage_map_and_submit_buffers(mpd
);
2293 goto update_disksize
;
2294 } while (map
->m_len
);
2298 * Update on-disk size after IO is submitted. Races with
2299 * truncate are avoided by checking i_size under i_data_sem.
2301 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2302 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2306 down_write(&EXT4_I(inode
)->i_data_sem
);
2307 i_size
= i_size_read(inode
);
2308 if (disksize
> i_size
)
2310 if (disksize
> EXT4_I(inode
)->i_disksize
)
2311 EXT4_I(inode
)->i_disksize
= disksize
;
2312 err2
= ext4_mark_inode_dirty(handle
, inode
);
2313 up_write(&EXT4_I(inode
)->i_data_sem
);
2315 ext4_error(inode
->i_sb
,
2316 "Failed to mark inode %lu dirty",
2325 * Calculate the total number of credits to reserve for one writepages
2326 * iteration. This is called from ext4_writepages(). We map an extent of
2327 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329 * bpp - 1 blocks in bpp different extents.
2331 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2333 int bpp
= ext4_journal_blocks_per_page(inode
);
2335 return ext4_meta_trans_blocks(inode
,
2336 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341 * and underlying extent to map
2343 * @mpd - where to look for pages
2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346 * IO immediately. When we find a page which isn't mapped we start accumulating
2347 * extent of buffers underlying these pages that needs mapping (formed by
2348 * either delayed or unwritten buffers). We also lock the pages containing
2349 * these buffers. The extent found is returned in @mpd structure (starting at
2350 * mpd->lblk with length mpd->len blocks).
2352 * Note that this function can attach bios to one io_end structure which are
2353 * neither logically nor physically contiguous. Although it may seem as an
2354 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355 * case as we need to track IO to all buffers underlying a page in one io_end.
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2359 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2360 struct pagevec pvec
;
2361 unsigned int nr_pages
;
2362 long left
= mpd
->wbc
->nr_to_write
;
2363 pgoff_t index
= mpd
->first_page
;
2364 pgoff_t end
= mpd
->last_page
;
2367 int blkbits
= mpd
->inode
->i_blkbits
;
2369 struct buffer_head
*head
;
2371 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2372 tag
= PAGECACHE_TAG_TOWRITE
;
2374 tag
= PAGECACHE_TAG_DIRTY
;
2376 pagevec_init(&pvec
, 0);
2378 mpd
->next_page
= index
;
2379 while (index
<= end
) {
2380 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2381 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2385 for (i
= 0; i
< nr_pages
; i
++) {
2386 struct page
*page
= pvec
.pages
[i
];
2389 * At this point, the page may be truncated or
2390 * invalidated (changing page->mapping to NULL), or
2391 * even swizzled back from swapper_space to tmpfs file
2392 * mapping. However, page->index will not change
2393 * because we have a reference on the page.
2395 if (page
->index
> end
)
2399 * Accumulated enough dirty pages? This doesn't apply
2400 * to WB_SYNC_ALL mode. For integrity sync we have to
2401 * keep going because someone may be concurrently
2402 * dirtying pages, and we might have synced a lot of
2403 * newly appeared dirty pages, but have not synced all
2404 * of the old dirty pages.
2406 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2409 /* If we can't merge this page, we are done. */
2410 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2415 * If the page is no longer dirty, or its mapping no
2416 * longer corresponds to inode we are writing (which
2417 * means it has been truncated or invalidated), or the
2418 * page is already under writeback and we are not doing
2419 * a data integrity writeback, skip the page
2421 if (!PageDirty(page
) ||
2422 (PageWriteback(page
) &&
2423 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2424 unlikely(page
->mapping
!= mapping
)) {
2429 wait_on_page_writeback(page
);
2430 BUG_ON(PageWriteback(page
));
2432 if (mpd
->map
.m_len
== 0)
2433 mpd
->first_page
= page
->index
;
2434 mpd
->next_page
= page
->index
+ 1;
2435 /* Add all dirty buffers to mpd */
2436 lblk
= ((ext4_lblk_t
)page
->index
) <<
2437 (PAGE_CACHE_SHIFT
- blkbits
);
2438 head
= page_buffers(page
);
2439 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2445 pagevec_release(&pvec
);
2450 pagevec_release(&pvec
);
2454 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2457 struct address_space
*mapping
= data
;
2458 int ret
= ext4_writepage(page
, wbc
);
2459 mapping_set_error(mapping
, ret
);
2463 static int ext4_writepages(struct address_space
*mapping
,
2464 struct writeback_control
*wbc
)
2466 pgoff_t writeback_index
= 0;
2467 long nr_to_write
= wbc
->nr_to_write
;
2468 int range_whole
= 0;
2470 handle_t
*handle
= NULL
;
2471 struct mpage_da_data mpd
;
2472 struct inode
*inode
= mapping
->host
;
2473 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2474 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2476 struct blk_plug plug
;
2477 bool give_up_on_write
= false;
2479 trace_ext4_writepages(inode
, wbc
);
2482 * No pages to write? This is mainly a kludge to avoid starting
2483 * a transaction for special inodes like journal inode on last iput()
2484 * because that could violate lock ordering on umount
2486 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2487 goto out_writepages
;
2489 if (ext4_should_journal_data(inode
)) {
2490 struct blk_plug plug
;
2492 blk_start_plug(&plug
);
2493 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2494 blk_finish_plug(&plug
);
2495 goto out_writepages
;
2499 * If the filesystem has aborted, it is read-only, so return
2500 * right away instead of dumping stack traces later on that
2501 * will obscure the real source of the problem. We test
2502 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2503 * the latter could be true if the filesystem is mounted
2504 * read-only, and in that case, ext4_writepages should
2505 * *never* be called, so if that ever happens, we would want
2508 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2510 goto out_writepages
;
2513 if (ext4_should_dioread_nolock(inode
)) {
2515 * We may need to convert up to one extent per block in
2516 * the page and we may dirty the inode.
2518 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2522 * If we have inline data and arrive here, it means that
2523 * we will soon create the block for the 1st page, so
2524 * we'd better clear the inline data here.
2526 if (ext4_has_inline_data(inode
)) {
2527 /* Just inode will be modified... */
2528 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2529 if (IS_ERR(handle
)) {
2530 ret
= PTR_ERR(handle
);
2531 goto out_writepages
;
2533 BUG_ON(ext4_test_inode_state(inode
,
2534 EXT4_STATE_MAY_INLINE_DATA
));
2535 ext4_destroy_inline_data(handle
, inode
);
2536 ext4_journal_stop(handle
);
2539 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2542 if (wbc
->range_cyclic
) {
2543 writeback_index
= mapping
->writeback_index
;
2544 if (writeback_index
)
2546 mpd
.first_page
= writeback_index
;
2549 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2550 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2555 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2557 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2558 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2560 blk_start_plug(&plug
);
2561 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2562 /* For each extent of pages we use new io_end */
2563 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2564 if (!mpd
.io_submit
.io_end
) {
2570 * We have two constraints: We find one extent to map and we
2571 * must always write out whole page (makes a difference when
2572 * blocksize < pagesize) so that we don't block on IO when we
2573 * try to write out the rest of the page. Journalled mode is
2574 * not supported by delalloc.
2576 BUG_ON(ext4_should_journal_data(inode
));
2577 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2579 /* start a new transaction */
2580 handle
= ext4_journal_start_with_reserve(inode
,
2581 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2582 if (IS_ERR(handle
)) {
2583 ret
= PTR_ERR(handle
);
2584 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2585 "%ld pages, ino %lu; err %d", __func__
,
2586 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2587 /* Release allocated io_end */
2588 ext4_put_io_end(mpd
.io_submit
.io_end
);
2592 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2593 ret
= mpage_prepare_extent_to_map(&mpd
);
2596 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2600 * We scanned the whole range (or exhausted
2601 * nr_to_write), submitted what was mapped and
2602 * didn't find anything needing mapping. We are
2608 ext4_journal_stop(handle
);
2609 /* Submit prepared bio */
2610 ext4_io_submit(&mpd
.io_submit
);
2611 /* Unlock pages we didn't use */
2612 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2613 /* Drop our io_end reference we got from init */
2614 ext4_put_io_end(mpd
.io_submit
.io_end
);
2616 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2618 * Commit the transaction which would
2619 * free blocks released in the transaction
2622 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2626 /* Fatal error - ENOMEM, EIO... */
2630 blk_finish_plug(&plug
);
2631 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2633 mpd
.last_page
= writeback_index
- 1;
2639 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2641 * Set the writeback_index so that range_cyclic
2642 * mode will write it back later
2644 mapping
->writeback_index
= mpd
.first_page
;
2647 trace_ext4_writepages_result(inode
, wbc
, ret
,
2648 nr_to_write
- wbc
->nr_to_write
);
2652 static int ext4_nonda_switch(struct super_block
*sb
)
2654 s64 free_clusters
, dirty_clusters
;
2655 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2658 * switch to non delalloc mode if we are running low
2659 * on free block. The free block accounting via percpu
2660 * counters can get slightly wrong with percpu_counter_batch getting
2661 * accumulated on each CPU without updating global counters
2662 * Delalloc need an accurate free block accounting. So switch
2663 * to non delalloc when we are near to error range.
2666 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2668 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2670 * Start pushing delalloc when 1/2 of free blocks are dirty.
2672 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2673 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2675 if (2 * free_clusters
< 3 * dirty_clusters
||
2676 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2678 * free block count is less than 150% of dirty blocks
2679 * or free blocks is less than watermark
2686 /* We always reserve for an inode update; the superblock could be there too */
2687 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2689 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
2690 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
)))
2693 if (pos
+ len
<= 0x7fffffffULL
)
2696 /* We might need to update the superblock to set LARGE_FILE */
2700 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2701 loff_t pos
, unsigned len
, unsigned flags
,
2702 struct page
**pagep
, void **fsdata
)
2704 int ret
, retries
= 0;
2707 struct inode
*inode
= mapping
->host
;
2710 index
= pos
>> PAGE_CACHE_SHIFT
;
2712 if (ext4_nonda_switch(inode
->i_sb
)) {
2713 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2714 return ext4_write_begin(file
, mapping
, pos
,
2715 len
, flags
, pagep
, fsdata
);
2717 *fsdata
= (void *)0;
2718 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2720 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2721 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2731 * grab_cache_page_write_begin() can take a long time if the
2732 * system is thrashing due to memory pressure, or if the page
2733 * is being written back. So grab it first before we start
2734 * the transaction handle. This also allows us to allocate
2735 * the page (if needed) without using GFP_NOFS.
2738 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2744 * With delayed allocation, we don't log the i_disksize update
2745 * if there is delayed block allocation. But we still need
2746 * to journalling the i_disksize update if writes to the end
2747 * of file which has an already mapped buffer.
2750 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2751 ext4_da_write_credits(inode
, pos
, len
));
2752 if (IS_ERR(handle
)) {
2753 page_cache_release(page
);
2754 return PTR_ERR(handle
);
2758 if (page
->mapping
!= mapping
) {
2759 /* The page got truncated from under us */
2761 page_cache_release(page
);
2762 ext4_journal_stop(handle
);
2765 /* In case writeback began while the page was unlocked */
2766 wait_for_stable_page(page
);
2768 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2771 ext4_journal_stop(handle
);
2773 * block_write_begin may have instantiated a few blocks
2774 * outside i_size. Trim these off again. Don't need
2775 * i_size_read because we hold i_mutex.
2777 if (pos
+ len
> inode
->i_size
)
2778 ext4_truncate_failed_write(inode
);
2780 if (ret
== -ENOSPC
&&
2781 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2784 page_cache_release(page
);
2793 * Check if we should update i_disksize
2794 * when write to the end of file but not require block allocation
2796 static int ext4_da_should_update_i_disksize(struct page
*page
,
2797 unsigned long offset
)
2799 struct buffer_head
*bh
;
2800 struct inode
*inode
= page
->mapping
->host
;
2804 bh
= page_buffers(page
);
2805 idx
= offset
>> inode
->i_blkbits
;
2807 for (i
= 0; i
< idx
; i
++)
2808 bh
= bh
->b_this_page
;
2810 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2815 static int ext4_da_write_end(struct file
*file
,
2816 struct address_space
*mapping
,
2817 loff_t pos
, unsigned len
, unsigned copied
,
2818 struct page
*page
, void *fsdata
)
2820 struct inode
*inode
= mapping
->host
;
2822 handle_t
*handle
= ext4_journal_current_handle();
2824 unsigned long start
, end
;
2825 int write_mode
= (int)(unsigned long)fsdata
;
2827 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2828 return ext4_write_end(file
, mapping
, pos
,
2829 len
, copied
, page
, fsdata
);
2831 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2832 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2833 end
= start
+ copied
- 1;
2836 * generic_write_end() will run mark_inode_dirty() if i_size
2837 * changes. So let's piggyback the i_disksize mark_inode_dirty
2840 new_i_size
= pos
+ copied
;
2841 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2842 if (ext4_has_inline_data(inode
) ||
2843 ext4_da_should_update_i_disksize(page
, end
)) {
2844 down_write(&EXT4_I(inode
)->i_data_sem
);
2845 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2846 EXT4_I(inode
)->i_disksize
= new_i_size
;
2847 up_write(&EXT4_I(inode
)->i_data_sem
);
2848 /* We need to mark inode dirty even if
2849 * new_i_size is less that inode->i_size
2850 * bu greater than i_disksize.(hint delalloc)
2852 ext4_mark_inode_dirty(handle
, inode
);
2856 if (write_mode
!= CONVERT_INLINE_DATA
&&
2857 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2858 ext4_has_inline_data(inode
))
2859 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2862 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2868 ret2
= ext4_journal_stop(handle
);
2872 return ret
? ret
: copied
;
2875 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2876 unsigned int length
)
2879 * Drop reserved blocks
2881 BUG_ON(!PageLocked(page
));
2882 if (!page_has_buffers(page
))
2885 ext4_da_page_release_reservation(page
, offset
, length
);
2888 ext4_invalidatepage(page
, offset
, length
);
2894 * Force all delayed allocation blocks to be allocated for a given inode.
2896 int ext4_alloc_da_blocks(struct inode
*inode
)
2898 trace_ext4_alloc_da_blocks(inode
);
2900 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2901 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2905 * We do something simple for now. The filemap_flush() will
2906 * also start triggering a write of the data blocks, which is
2907 * not strictly speaking necessary (and for users of
2908 * laptop_mode, not even desirable). However, to do otherwise
2909 * would require replicating code paths in:
2911 * ext4_writepages() ->
2912 * write_cache_pages() ---> (via passed in callback function)
2913 * __mpage_da_writepage() -->
2914 * mpage_add_bh_to_extent()
2915 * mpage_da_map_blocks()
2917 * The problem is that write_cache_pages(), located in
2918 * mm/page-writeback.c, marks pages clean in preparation for
2919 * doing I/O, which is not desirable if we're not planning on
2922 * We could call write_cache_pages(), and then redirty all of
2923 * the pages by calling redirty_page_for_writepage() but that
2924 * would be ugly in the extreme. So instead we would need to
2925 * replicate parts of the code in the above functions,
2926 * simplifying them because we wouldn't actually intend to
2927 * write out the pages, but rather only collect contiguous
2928 * logical block extents, call the multi-block allocator, and
2929 * then update the buffer heads with the block allocations.
2931 * For now, though, we'll cheat by calling filemap_flush(),
2932 * which will map the blocks, and start the I/O, but not
2933 * actually wait for the I/O to complete.
2935 return filemap_flush(inode
->i_mapping
);
2939 * bmap() is special. It gets used by applications such as lilo and by
2940 * the swapper to find the on-disk block of a specific piece of data.
2942 * Naturally, this is dangerous if the block concerned is still in the
2943 * journal. If somebody makes a swapfile on an ext4 data-journaling
2944 * filesystem and enables swap, then they may get a nasty shock when the
2945 * data getting swapped to that swapfile suddenly gets overwritten by
2946 * the original zero's written out previously to the journal and
2947 * awaiting writeback in the kernel's buffer cache.
2949 * So, if we see any bmap calls here on a modified, data-journaled file,
2950 * take extra steps to flush any blocks which might be in the cache.
2952 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2954 struct inode
*inode
= mapping
->host
;
2959 * We can get here for an inline file via the FIBMAP ioctl
2961 if (ext4_has_inline_data(inode
))
2964 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2965 test_opt(inode
->i_sb
, DELALLOC
)) {
2967 * With delalloc we want to sync the file
2968 * so that we can make sure we allocate
2971 filemap_write_and_wait(mapping
);
2974 if (EXT4_JOURNAL(inode
) &&
2975 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2977 * This is a REALLY heavyweight approach, but the use of
2978 * bmap on dirty files is expected to be extremely rare:
2979 * only if we run lilo or swapon on a freshly made file
2980 * do we expect this to happen.
2982 * (bmap requires CAP_SYS_RAWIO so this does not
2983 * represent an unprivileged user DOS attack --- we'd be
2984 * in trouble if mortal users could trigger this path at
2987 * NB. EXT4_STATE_JDATA is not set on files other than
2988 * regular files. If somebody wants to bmap a directory
2989 * or symlink and gets confused because the buffer
2990 * hasn't yet been flushed to disk, they deserve
2991 * everything they get.
2994 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2995 journal
= EXT4_JOURNAL(inode
);
2996 jbd2_journal_lock_updates(journal
);
2997 err
= jbd2_journal_flush(journal
);
2998 jbd2_journal_unlock_updates(journal
);
3004 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3007 static int ext4_readpage(struct file
*file
, struct page
*page
)
3010 struct inode
*inode
= page
->mapping
->host
;
3012 trace_ext4_readpage(page
);
3014 if (ext4_has_inline_data(inode
))
3015 ret
= ext4_readpage_inline(inode
, page
);
3018 return mpage_readpage(page
, ext4_get_block
);
3024 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3025 struct list_head
*pages
, unsigned nr_pages
)
3027 struct inode
*inode
= mapping
->host
;
3029 /* If the file has inline data, no need to do readpages. */
3030 if (ext4_has_inline_data(inode
))
3033 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3036 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3037 unsigned int length
)
3039 trace_ext4_invalidatepage(page
, offset
, length
);
3041 /* No journalling happens on data buffers when this function is used */
3042 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3044 block_invalidatepage(page
, offset
, length
);
3047 static int __ext4_journalled_invalidatepage(struct page
*page
,
3048 unsigned int offset
,
3049 unsigned int length
)
3051 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3053 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3056 * If it's a full truncate we just forget about the pending dirtying
3058 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
3059 ClearPageChecked(page
);
3061 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3064 /* Wrapper for aops... */
3065 static void ext4_journalled_invalidatepage(struct page
*page
,
3066 unsigned int offset
,
3067 unsigned int length
)
3069 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3072 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3074 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3076 trace_ext4_releasepage(page
);
3078 /* Page has dirty journalled data -> cannot release */
3079 if (PageChecked(page
))
3082 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3084 return try_to_free_buffers(page
);
3088 * ext4_get_block used when preparing for a DIO write or buffer write.
3089 * We allocate an uinitialized extent if blocks haven't been allocated.
3090 * The extent will be converted to initialized after the IO is complete.
3092 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3093 struct buffer_head
*bh_result
, int create
)
3095 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3096 inode
->i_ino
, create
);
3097 return _ext4_get_block(inode
, iblock
, bh_result
,
3098 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3101 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3102 struct buffer_head
*bh_result
, int create
)
3104 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3105 inode
->i_ino
, create
);
3106 return _ext4_get_block(inode
, iblock
, bh_result
,
3107 EXT4_GET_BLOCKS_NO_LOCK
);
3110 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3111 ssize_t size
, void *private)
3113 ext4_io_end_t
*io_end
= iocb
->private;
3115 /* if not async direct IO just return */
3119 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3120 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3121 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3124 iocb
->private = NULL
;
3125 io_end
->offset
= offset
;
3126 io_end
->size
= size
;
3127 ext4_put_io_end(io_end
);
3131 * For ext4 extent files, ext4 will do direct-io write to holes,
3132 * preallocated extents, and those write extend the file, no need to
3133 * fall back to buffered IO.
3135 * For holes, we fallocate those blocks, mark them as unwritten
3136 * If those blocks were preallocated, we mark sure they are split, but
3137 * still keep the range to write as unwritten.
3139 * The unwritten extents will be converted to written when DIO is completed.
3140 * For async direct IO, since the IO may still pending when return, we
3141 * set up an end_io call back function, which will do the conversion
3142 * when async direct IO completed.
3144 * If the O_DIRECT write will extend the file then add this inode to the
3145 * orphan list. So recovery will truncate it back to the original size
3146 * if the machine crashes during the write.
3149 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3150 struct iov_iter
*iter
, loff_t offset
)
3152 struct file
*file
= iocb
->ki_filp
;
3153 struct inode
*inode
= file
->f_mapping
->host
;
3155 size_t count
= iov_iter_count(iter
);
3157 get_block_t
*get_block_func
= NULL
;
3159 loff_t final_size
= offset
+ count
;
3160 ext4_io_end_t
*io_end
= NULL
;
3162 /* Use the old path for reads and writes beyond i_size. */
3163 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3164 return ext4_ind_direct_IO(rw
, iocb
, iter
, offset
);
3166 BUG_ON(iocb
->private == NULL
);
3169 * Make all waiters for direct IO properly wait also for extent
3170 * conversion. This also disallows race between truncate() and
3171 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3174 atomic_inc(&inode
->i_dio_count
);
3176 /* If we do a overwrite dio, i_mutex locking can be released */
3177 overwrite
= *((int *)iocb
->private);
3180 down_read(&EXT4_I(inode
)->i_data_sem
);
3181 mutex_unlock(&inode
->i_mutex
);
3185 * We could direct write to holes and fallocate.
3187 * Allocated blocks to fill the hole are marked as
3188 * unwritten to prevent parallel buffered read to expose
3189 * the stale data before DIO complete the data IO.
3191 * As to previously fallocated extents, ext4 get_block will
3192 * just simply mark the buffer mapped but still keep the
3193 * extents unwritten.
3195 * For non AIO case, we will convert those unwritten extents
3196 * to written after return back from blockdev_direct_IO.
3198 * For async DIO, the conversion needs to be deferred when the
3199 * IO is completed. The ext4 end_io callback function will be
3200 * called to take care of the conversion work. Here for async
3201 * case, we allocate an io_end structure to hook to the iocb.
3203 iocb
->private = NULL
;
3205 get_block_func
= ext4_get_block_write_nolock
;
3207 ext4_inode_aio_set(inode
, NULL
);
3208 if (!is_sync_kiocb(iocb
)) {
3209 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3215 * Grab reference for DIO. Will be dropped in
3218 iocb
->private = ext4_get_io_end(io_end
);
3220 * we save the io structure for current async direct
3221 * IO, so that later ext4_map_blocks() could flag the
3222 * io structure whether there is a unwritten extents
3223 * needs to be converted when IO is completed.
3225 ext4_inode_aio_set(inode
, io_end
);
3227 get_block_func
= ext4_get_block_write
;
3228 dio_flags
= DIO_LOCKING
;
3230 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3231 inode
->i_sb
->s_bdev
, iter
,
3239 * Put our reference to io_end. This can free the io_end structure e.g.
3240 * in sync IO case or in case of error. It can even perform extent
3241 * conversion if all bios we submitted finished before we got here.
3242 * Note that in that case iocb->private can be already set to NULL
3246 ext4_inode_aio_set(inode
, NULL
);
3247 ext4_put_io_end(io_end
);
3249 * When no IO was submitted ext4_end_io_dio() was not
3250 * called so we have to put iocb's reference.
3252 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3253 WARN_ON(iocb
->private != io_end
);
3254 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3255 ext4_put_io_end(io_end
);
3256 iocb
->private = NULL
;
3259 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3260 EXT4_STATE_DIO_UNWRITTEN
)) {
3263 * for non AIO case, since the IO is already
3264 * completed, we could do the conversion right here
3266 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3270 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3275 inode_dio_done(inode
);
3276 /* take i_mutex locking again if we do a ovewrite dio */
3278 up_read(&EXT4_I(inode
)->i_data_sem
);
3279 mutex_lock(&inode
->i_mutex
);
3285 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3286 struct iov_iter
*iter
, loff_t offset
)
3288 struct file
*file
= iocb
->ki_filp
;
3289 struct inode
*inode
= file
->f_mapping
->host
;
3290 size_t count
= iov_iter_count(iter
);
3294 * If we are doing data journalling we don't support O_DIRECT
3296 if (ext4_should_journal_data(inode
))
3299 /* Let buffer I/O handle the inline data case. */
3300 if (ext4_has_inline_data(inode
))
3303 trace_ext4_direct_IO_enter(inode
, offset
, count
, rw
);
3304 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3305 ret
= ext4_ext_direct_IO(rw
, iocb
, iter
, offset
);
3307 ret
= ext4_ind_direct_IO(rw
, iocb
, iter
, offset
);
3308 trace_ext4_direct_IO_exit(inode
, offset
, count
, rw
, ret
);
3313 * Pages can be marked dirty completely asynchronously from ext4's journalling
3314 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3315 * much here because ->set_page_dirty is called under VFS locks. The page is
3316 * not necessarily locked.
3318 * We cannot just dirty the page and leave attached buffers clean, because the
3319 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3320 * or jbddirty because all the journalling code will explode.
3322 * So what we do is to mark the page "pending dirty" and next time writepage
3323 * is called, propagate that into the buffers appropriately.
3325 static int ext4_journalled_set_page_dirty(struct page
*page
)
3327 SetPageChecked(page
);
3328 return __set_page_dirty_nobuffers(page
);
3331 static const struct address_space_operations ext4_aops
= {
3332 .readpage
= ext4_readpage
,
3333 .readpages
= ext4_readpages
,
3334 .writepage
= ext4_writepage
,
3335 .writepages
= ext4_writepages
,
3336 .write_begin
= ext4_write_begin
,
3337 .write_end
= ext4_write_end
,
3339 .invalidatepage
= ext4_invalidatepage
,
3340 .releasepage
= ext4_releasepage
,
3341 .direct_IO
= ext4_direct_IO
,
3342 .migratepage
= buffer_migrate_page
,
3343 .is_partially_uptodate
= block_is_partially_uptodate
,
3344 .error_remove_page
= generic_error_remove_page
,
3347 static const struct address_space_operations ext4_journalled_aops
= {
3348 .readpage
= ext4_readpage
,
3349 .readpages
= ext4_readpages
,
3350 .writepage
= ext4_writepage
,
3351 .writepages
= ext4_writepages
,
3352 .write_begin
= ext4_write_begin
,
3353 .write_end
= ext4_journalled_write_end
,
3354 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3356 .invalidatepage
= ext4_journalled_invalidatepage
,
3357 .releasepage
= ext4_releasepage
,
3358 .direct_IO
= ext4_direct_IO
,
3359 .is_partially_uptodate
= block_is_partially_uptodate
,
3360 .error_remove_page
= generic_error_remove_page
,
3363 static const struct address_space_operations ext4_da_aops
= {
3364 .readpage
= ext4_readpage
,
3365 .readpages
= ext4_readpages
,
3366 .writepage
= ext4_writepage
,
3367 .writepages
= ext4_writepages
,
3368 .write_begin
= ext4_da_write_begin
,
3369 .write_end
= ext4_da_write_end
,
3371 .invalidatepage
= ext4_da_invalidatepage
,
3372 .releasepage
= ext4_releasepage
,
3373 .direct_IO
= ext4_direct_IO
,
3374 .migratepage
= buffer_migrate_page
,
3375 .is_partially_uptodate
= block_is_partially_uptodate
,
3376 .error_remove_page
= generic_error_remove_page
,
3379 void ext4_set_aops(struct inode
*inode
)
3381 switch (ext4_inode_journal_mode(inode
)) {
3382 case EXT4_INODE_ORDERED_DATA_MODE
:
3383 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3385 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3386 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3388 case EXT4_INODE_JOURNAL_DATA_MODE
:
3389 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3394 if (test_opt(inode
->i_sb
, DELALLOC
))
3395 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3397 inode
->i_mapping
->a_ops
= &ext4_aops
;
3401 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3402 * starting from file offset 'from'. The range to be zero'd must
3403 * be contained with in one block. If the specified range exceeds
3404 * the end of the block it will be shortened to end of the block
3405 * that cooresponds to 'from'
3407 static int ext4_block_zero_page_range(handle_t
*handle
,
3408 struct address_space
*mapping
, loff_t from
, loff_t length
)
3410 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3411 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3412 unsigned blocksize
, max
, pos
;
3414 struct inode
*inode
= mapping
->host
;
3415 struct buffer_head
*bh
;
3419 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3420 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3424 blocksize
= inode
->i_sb
->s_blocksize
;
3425 max
= blocksize
- (offset
& (blocksize
- 1));
3428 * correct length if it does not fall between
3429 * 'from' and the end of the block
3431 if (length
> max
|| length
< 0)
3434 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3436 if (!page_has_buffers(page
))
3437 create_empty_buffers(page
, blocksize
, 0);
3439 /* Find the buffer that contains "offset" */
3440 bh
= page_buffers(page
);
3442 while (offset
>= pos
) {
3443 bh
= bh
->b_this_page
;
3447 if (buffer_freed(bh
)) {
3448 BUFFER_TRACE(bh
, "freed: skip");
3451 if (!buffer_mapped(bh
)) {
3452 BUFFER_TRACE(bh
, "unmapped");
3453 ext4_get_block(inode
, iblock
, bh
, 0);
3454 /* unmapped? It's a hole - nothing to do */
3455 if (!buffer_mapped(bh
)) {
3456 BUFFER_TRACE(bh
, "still unmapped");
3461 /* Ok, it's mapped. Make sure it's up-to-date */
3462 if (PageUptodate(page
))
3463 set_buffer_uptodate(bh
);
3465 if (!buffer_uptodate(bh
)) {
3467 ll_rw_block(READ
, 1, &bh
);
3469 /* Uhhuh. Read error. Complain and punt. */
3470 if (!buffer_uptodate(bh
))
3473 if (ext4_should_journal_data(inode
)) {
3474 BUFFER_TRACE(bh
, "get write access");
3475 err
= ext4_journal_get_write_access(handle
, bh
);
3479 zero_user(page
, offset
, length
);
3480 BUFFER_TRACE(bh
, "zeroed end of block");
3482 if (ext4_should_journal_data(inode
)) {
3483 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3486 mark_buffer_dirty(bh
);
3487 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3488 err
= ext4_jbd2_file_inode(handle
, inode
);
3493 page_cache_release(page
);
3498 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3499 * up to the end of the block which corresponds to `from'.
3500 * This required during truncate. We need to physically zero the tail end
3501 * of that block so it doesn't yield old data if the file is later grown.
3503 static int ext4_block_truncate_page(handle_t
*handle
,
3504 struct address_space
*mapping
, loff_t from
)
3506 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3509 struct inode
*inode
= mapping
->host
;
3511 blocksize
= inode
->i_sb
->s_blocksize
;
3512 length
= blocksize
- (offset
& (blocksize
- 1));
3514 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3517 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3518 loff_t lstart
, loff_t length
)
3520 struct super_block
*sb
= inode
->i_sb
;
3521 struct address_space
*mapping
= inode
->i_mapping
;
3522 unsigned partial_start
, partial_end
;
3523 ext4_fsblk_t start
, end
;
3524 loff_t byte_end
= (lstart
+ length
- 1);
3527 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3528 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3530 start
= lstart
>> sb
->s_blocksize_bits
;
3531 end
= byte_end
>> sb
->s_blocksize_bits
;
3533 /* Handle partial zero within the single block */
3535 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3536 err
= ext4_block_zero_page_range(handle
, mapping
,
3540 /* Handle partial zero out on the start of the range */
3541 if (partial_start
) {
3542 err
= ext4_block_zero_page_range(handle
, mapping
,
3543 lstart
, sb
->s_blocksize
);
3547 /* Handle partial zero out on the end of the range */
3548 if (partial_end
!= sb
->s_blocksize
- 1)
3549 err
= ext4_block_zero_page_range(handle
, mapping
,
3550 byte_end
- partial_end
,
3555 int ext4_can_truncate(struct inode
*inode
)
3557 if (S_ISREG(inode
->i_mode
))
3559 if (S_ISDIR(inode
->i_mode
))
3561 if (S_ISLNK(inode
->i_mode
))
3562 return !ext4_inode_is_fast_symlink(inode
);
3567 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3568 * associated with the given offset and length
3570 * @inode: File inode
3571 * @offset: The offset where the hole will begin
3572 * @len: The length of the hole
3574 * Returns: 0 on success or negative on failure
3577 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3579 struct super_block
*sb
= inode
->i_sb
;
3580 ext4_lblk_t first_block
, stop_block
;
3581 struct address_space
*mapping
= inode
->i_mapping
;
3582 loff_t first_block_offset
, last_block_offset
;
3584 unsigned int credits
;
3587 if (!S_ISREG(inode
->i_mode
))
3590 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3593 * Write out all dirty pages to avoid race conditions
3594 * Then release them.
3596 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3597 ret
= filemap_write_and_wait_range(mapping
, offset
,
3598 offset
+ length
- 1);
3603 mutex_lock(&inode
->i_mutex
);
3605 /* No need to punch hole beyond i_size */
3606 if (offset
>= inode
->i_size
)
3610 * If the hole extends beyond i_size, set the hole
3611 * to end after the page that contains i_size
3613 if (offset
+ length
> inode
->i_size
) {
3614 length
= inode
->i_size
+
3615 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3619 if (offset
& (sb
->s_blocksize
- 1) ||
3620 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3622 * Attach jinode to inode for jbd2 if we do any zeroing of
3625 ret
= ext4_inode_attach_jinode(inode
);
3631 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3632 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3634 /* Now release the pages and zero block aligned part of pages*/
3635 if (last_block_offset
> first_block_offset
)
3636 truncate_pagecache_range(inode
, first_block_offset
,
3639 /* Wait all existing dio workers, newcomers will block on i_mutex */
3640 ext4_inode_block_unlocked_dio(inode
);
3641 inode_dio_wait(inode
);
3643 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3644 credits
= ext4_writepage_trans_blocks(inode
);
3646 credits
= ext4_blocks_for_truncate(inode
);
3647 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3648 if (IS_ERR(handle
)) {
3649 ret
= PTR_ERR(handle
);
3650 ext4_std_error(sb
, ret
);
3654 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3659 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3660 EXT4_BLOCK_SIZE_BITS(sb
);
3661 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3663 /* If there are no blocks to remove, return now */
3664 if (first_block
>= stop_block
)
3667 down_write(&EXT4_I(inode
)->i_data_sem
);
3668 ext4_discard_preallocations(inode
);
3670 ret
= ext4_es_remove_extent(inode
, first_block
,
3671 stop_block
- first_block
);
3673 up_write(&EXT4_I(inode
)->i_data_sem
);
3677 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3678 ret
= ext4_ext_remove_space(inode
, first_block
,
3681 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3684 up_write(&EXT4_I(inode
)->i_data_sem
);
3686 ext4_handle_sync(handle
);
3688 /* Now release the pages again to reduce race window */
3689 if (last_block_offset
> first_block_offset
)
3690 truncate_pagecache_range(inode
, first_block_offset
,
3693 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3694 ext4_mark_inode_dirty(handle
, inode
);
3696 ext4_journal_stop(handle
);
3698 ext4_inode_resume_unlocked_dio(inode
);
3700 mutex_unlock(&inode
->i_mutex
);
3704 int ext4_inode_attach_jinode(struct inode
*inode
)
3706 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3707 struct jbd2_inode
*jinode
;
3709 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3712 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3713 spin_lock(&inode
->i_lock
);
3716 spin_unlock(&inode
->i_lock
);
3719 ei
->jinode
= jinode
;
3720 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3723 spin_unlock(&inode
->i_lock
);
3724 if (unlikely(jinode
!= NULL
))
3725 jbd2_free_inode(jinode
);
3732 * We block out ext4_get_block() block instantiations across the entire
3733 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3734 * simultaneously on behalf of the same inode.
3736 * As we work through the truncate and commit bits of it to the journal there
3737 * is one core, guiding principle: the file's tree must always be consistent on
3738 * disk. We must be able to restart the truncate after a crash.
3740 * The file's tree may be transiently inconsistent in memory (although it
3741 * probably isn't), but whenever we close off and commit a journal transaction,
3742 * the contents of (the filesystem + the journal) must be consistent and
3743 * restartable. It's pretty simple, really: bottom up, right to left (although
3744 * left-to-right works OK too).
3746 * Note that at recovery time, journal replay occurs *before* the restart of
3747 * truncate against the orphan inode list.
3749 * The committed inode has the new, desired i_size (which is the same as
3750 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3751 * that this inode's truncate did not complete and it will again call
3752 * ext4_truncate() to have another go. So there will be instantiated blocks
3753 * to the right of the truncation point in a crashed ext4 filesystem. But
3754 * that's fine - as long as they are linked from the inode, the post-crash
3755 * ext4_truncate() run will find them and release them.
3757 void ext4_truncate(struct inode
*inode
)
3759 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3760 unsigned int credits
;
3762 struct address_space
*mapping
= inode
->i_mapping
;
3765 * There is a possibility that we're either freeing the inode
3766 * or it's a completely new inode. In those cases we might not
3767 * have i_mutex locked because it's not necessary.
3769 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3770 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3771 trace_ext4_truncate_enter(inode
);
3773 if (!ext4_can_truncate(inode
))
3776 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3778 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3779 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3781 if (ext4_has_inline_data(inode
)) {
3784 ext4_inline_data_truncate(inode
, &has_inline
);
3789 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3790 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3791 if (ext4_inode_attach_jinode(inode
) < 0)
3795 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3796 credits
= ext4_writepage_trans_blocks(inode
);
3798 credits
= ext4_blocks_for_truncate(inode
);
3800 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3801 if (IS_ERR(handle
)) {
3802 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3806 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3807 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3810 * We add the inode to the orphan list, so that if this
3811 * truncate spans multiple transactions, and we crash, we will
3812 * resume the truncate when the filesystem recovers. It also
3813 * marks the inode dirty, to catch the new size.
3815 * Implication: the file must always be in a sane, consistent
3816 * truncatable state while each transaction commits.
3818 if (ext4_orphan_add(handle
, inode
))
3821 down_write(&EXT4_I(inode
)->i_data_sem
);
3823 ext4_discard_preallocations(inode
);
3825 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3826 ext4_ext_truncate(handle
, inode
);
3828 ext4_ind_truncate(handle
, inode
);
3830 up_write(&ei
->i_data_sem
);
3833 ext4_handle_sync(handle
);
3837 * If this was a simple ftruncate() and the file will remain alive,
3838 * then we need to clear up the orphan record which we created above.
3839 * However, if this was a real unlink then we were called by
3840 * ext4_delete_inode(), and we allow that function to clean up the
3841 * orphan info for us.
3844 ext4_orphan_del(handle
, inode
);
3846 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3847 ext4_mark_inode_dirty(handle
, inode
);
3848 ext4_journal_stop(handle
);
3850 trace_ext4_truncate_exit(inode
);
3854 * ext4_get_inode_loc returns with an extra refcount against the inode's
3855 * underlying buffer_head on success. If 'in_mem' is true, we have all
3856 * data in memory that is needed to recreate the on-disk version of this
3859 static int __ext4_get_inode_loc(struct inode
*inode
,
3860 struct ext4_iloc
*iloc
, int in_mem
)
3862 struct ext4_group_desc
*gdp
;
3863 struct buffer_head
*bh
;
3864 struct super_block
*sb
= inode
->i_sb
;
3866 int inodes_per_block
, inode_offset
;
3869 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3872 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3873 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3878 * Figure out the offset within the block group inode table
3880 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3881 inode_offset
= ((inode
->i_ino
- 1) %
3882 EXT4_INODES_PER_GROUP(sb
));
3883 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3884 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3886 bh
= sb_getblk(sb
, block
);
3889 if (!buffer_uptodate(bh
)) {
3893 * If the buffer has the write error flag, we have failed
3894 * to write out another inode in the same block. In this
3895 * case, we don't have to read the block because we may
3896 * read the old inode data successfully.
3898 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3899 set_buffer_uptodate(bh
);
3901 if (buffer_uptodate(bh
)) {
3902 /* someone brought it uptodate while we waited */
3908 * If we have all information of the inode in memory and this
3909 * is the only valid inode in the block, we need not read the
3913 struct buffer_head
*bitmap_bh
;
3916 start
= inode_offset
& ~(inodes_per_block
- 1);
3918 /* Is the inode bitmap in cache? */
3919 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3920 if (unlikely(!bitmap_bh
))
3924 * If the inode bitmap isn't in cache then the
3925 * optimisation may end up performing two reads instead
3926 * of one, so skip it.
3928 if (!buffer_uptodate(bitmap_bh
)) {
3932 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3933 if (i
== inode_offset
)
3935 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3939 if (i
== start
+ inodes_per_block
) {
3940 /* all other inodes are free, so skip I/O */
3941 memset(bh
->b_data
, 0, bh
->b_size
);
3942 set_buffer_uptodate(bh
);
3950 * If we need to do any I/O, try to pre-readahead extra
3951 * blocks from the inode table.
3953 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3954 ext4_fsblk_t b
, end
, table
;
3956 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3958 table
= ext4_inode_table(sb
, gdp
);
3959 /* s_inode_readahead_blks is always a power of 2 */
3960 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
3964 num
= EXT4_INODES_PER_GROUP(sb
);
3965 if (ext4_has_group_desc_csum(sb
))
3966 num
-= ext4_itable_unused_count(sb
, gdp
);
3967 table
+= num
/ inodes_per_block
;
3971 sb_breadahead(sb
, b
++);
3975 * There are other valid inodes in the buffer, this inode
3976 * has in-inode xattrs, or we don't have this inode in memory.
3977 * Read the block from disk.
3979 trace_ext4_load_inode(inode
);
3981 bh
->b_end_io
= end_buffer_read_sync
;
3982 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3984 if (!buffer_uptodate(bh
)) {
3985 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3986 "unable to read itable block");
3996 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3998 /* We have all inode data except xattrs in memory here. */
3999 return __ext4_get_inode_loc(inode
, iloc
,
4000 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4003 void ext4_set_inode_flags(struct inode
*inode
)
4005 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4006 unsigned int new_fl
= 0;
4008 if (flags
& EXT4_SYNC_FL
)
4010 if (flags
& EXT4_APPEND_FL
)
4012 if (flags
& EXT4_IMMUTABLE_FL
)
4013 new_fl
|= S_IMMUTABLE
;
4014 if (flags
& EXT4_NOATIME_FL
)
4015 new_fl
|= S_NOATIME
;
4016 if (flags
& EXT4_DIRSYNC_FL
)
4017 new_fl
|= S_DIRSYNC
;
4018 inode_set_flags(inode
, new_fl
,
4019 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4022 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4023 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4025 unsigned int vfs_fl
;
4026 unsigned long old_fl
, new_fl
;
4029 vfs_fl
= ei
->vfs_inode
.i_flags
;
4030 old_fl
= ei
->i_flags
;
4031 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4032 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4034 if (vfs_fl
& S_SYNC
)
4035 new_fl
|= EXT4_SYNC_FL
;
4036 if (vfs_fl
& S_APPEND
)
4037 new_fl
|= EXT4_APPEND_FL
;
4038 if (vfs_fl
& S_IMMUTABLE
)
4039 new_fl
|= EXT4_IMMUTABLE_FL
;
4040 if (vfs_fl
& S_NOATIME
)
4041 new_fl
|= EXT4_NOATIME_FL
;
4042 if (vfs_fl
& S_DIRSYNC
)
4043 new_fl
|= EXT4_DIRSYNC_FL
;
4044 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4047 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4048 struct ext4_inode_info
*ei
)
4051 struct inode
*inode
= &(ei
->vfs_inode
);
4052 struct super_block
*sb
= inode
->i_sb
;
4054 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4055 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4056 /* we are using combined 48 bit field */
4057 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4058 le32_to_cpu(raw_inode
->i_blocks_lo
);
4059 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4060 /* i_blocks represent file system block size */
4061 return i_blocks
<< (inode
->i_blkbits
- 9);
4066 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4070 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4071 struct ext4_inode
*raw_inode
,
4072 struct ext4_inode_info
*ei
)
4074 __le32
*magic
= (void *)raw_inode
+
4075 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4076 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4077 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4078 ext4_find_inline_data_nolock(inode
);
4080 EXT4_I(inode
)->i_inline_off
= 0;
4083 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4085 struct ext4_iloc iloc
;
4086 struct ext4_inode
*raw_inode
;
4087 struct ext4_inode_info
*ei
;
4088 struct inode
*inode
;
4089 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4095 inode
= iget_locked(sb
, ino
);
4097 return ERR_PTR(-ENOMEM
);
4098 if (!(inode
->i_state
& I_NEW
))
4104 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4107 raw_inode
= ext4_raw_inode(&iloc
);
4109 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4110 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4111 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4112 EXT4_INODE_SIZE(inode
->i_sb
)) {
4113 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4114 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4115 EXT4_INODE_SIZE(inode
->i_sb
));
4120 ei
->i_extra_isize
= 0;
4122 /* Precompute checksum seed for inode metadata */
4123 if (ext4_has_metadata_csum(sb
)) {
4124 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4126 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4127 __le32 gen
= raw_inode
->i_generation
;
4128 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4130 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4134 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4135 EXT4_ERROR_INODE(inode
, "checksum invalid");
4140 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4141 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4142 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4143 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4144 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4145 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4147 i_uid_write(inode
, i_uid
);
4148 i_gid_write(inode
, i_gid
);
4149 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4151 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4152 ei
->i_inline_off
= 0;
4153 ei
->i_dir_start_lookup
= 0;
4154 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4155 /* We now have enough fields to check if the inode was active or not.
4156 * This is needed because nfsd might try to access dead inodes
4157 * the test is that same one that e2fsck uses
4158 * NeilBrown 1999oct15
4160 if (inode
->i_nlink
== 0) {
4161 if ((inode
->i_mode
== 0 ||
4162 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4163 ino
!= EXT4_BOOT_LOADER_INO
) {
4164 /* this inode is deleted */
4168 /* The only unlinked inodes we let through here have
4169 * valid i_mode and are being read by the orphan
4170 * recovery code: that's fine, we're about to complete
4171 * the process of deleting those.
4172 * OR it is the EXT4_BOOT_LOADER_INO which is
4173 * not initialized on a new filesystem. */
4175 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4176 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4177 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4178 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4180 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4181 inode
->i_size
= ext4_isize(raw_inode
);
4182 ei
->i_disksize
= inode
->i_size
;
4184 ei
->i_reserved_quota
= 0;
4186 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4187 ei
->i_block_group
= iloc
.block_group
;
4188 ei
->i_last_alloc_group
= ~0;
4190 * NOTE! The in-memory inode i_data array is in little-endian order
4191 * even on big-endian machines: we do NOT byteswap the block numbers!
4193 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4194 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4195 INIT_LIST_HEAD(&ei
->i_orphan
);
4198 * Set transaction id's of transactions that have to be committed
4199 * to finish f[data]sync. We set them to currently running transaction
4200 * as we cannot be sure that the inode or some of its metadata isn't
4201 * part of the transaction - the inode could have been reclaimed and
4202 * now it is reread from disk.
4205 transaction_t
*transaction
;
4208 read_lock(&journal
->j_state_lock
);
4209 if (journal
->j_running_transaction
)
4210 transaction
= journal
->j_running_transaction
;
4212 transaction
= journal
->j_committing_transaction
;
4214 tid
= transaction
->t_tid
;
4216 tid
= journal
->j_commit_sequence
;
4217 read_unlock(&journal
->j_state_lock
);
4218 ei
->i_sync_tid
= tid
;
4219 ei
->i_datasync_tid
= tid
;
4222 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4223 if (ei
->i_extra_isize
== 0) {
4224 /* The extra space is currently unused. Use it. */
4225 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4226 EXT4_GOOD_OLD_INODE_SIZE
;
4228 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4232 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4233 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4234 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4235 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4237 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4238 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4239 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4240 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4242 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4247 if (ei
->i_file_acl
&&
4248 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4249 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4253 } else if (!ext4_has_inline_data(inode
)) {
4254 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4255 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4256 (S_ISLNK(inode
->i_mode
) &&
4257 !ext4_inode_is_fast_symlink(inode
))))
4258 /* Validate extent which is part of inode */
4259 ret
= ext4_ext_check_inode(inode
);
4260 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4261 (S_ISLNK(inode
->i_mode
) &&
4262 !ext4_inode_is_fast_symlink(inode
))) {
4263 /* Validate block references which are part of inode */
4264 ret
= ext4_ind_check_inode(inode
);
4270 if (S_ISREG(inode
->i_mode
)) {
4271 inode
->i_op
= &ext4_file_inode_operations
;
4272 inode
->i_fop
= &ext4_file_operations
;
4273 ext4_set_aops(inode
);
4274 } else if (S_ISDIR(inode
->i_mode
)) {
4275 inode
->i_op
= &ext4_dir_inode_operations
;
4276 inode
->i_fop
= &ext4_dir_operations
;
4277 } else if (S_ISLNK(inode
->i_mode
)) {
4278 if (ext4_inode_is_fast_symlink(inode
)) {
4279 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4280 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4281 sizeof(ei
->i_data
) - 1);
4283 inode
->i_op
= &ext4_symlink_inode_operations
;
4284 ext4_set_aops(inode
);
4286 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4287 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4288 inode
->i_op
= &ext4_special_inode_operations
;
4289 if (raw_inode
->i_block
[0])
4290 init_special_inode(inode
, inode
->i_mode
,
4291 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4293 init_special_inode(inode
, inode
->i_mode
,
4294 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4295 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4296 make_bad_inode(inode
);
4299 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4303 ext4_set_inode_flags(inode
);
4304 unlock_new_inode(inode
);
4310 return ERR_PTR(ret
);
4313 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4315 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4316 return ERR_PTR(-EIO
);
4317 return ext4_iget(sb
, ino
);
4320 static int ext4_inode_blocks_set(handle_t
*handle
,
4321 struct ext4_inode
*raw_inode
,
4322 struct ext4_inode_info
*ei
)
4324 struct inode
*inode
= &(ei
->vfs_inode
);
4325 u64 i_blocks
= inode
->i_blocks
;
4326 struct super_block
*sb
= inode
->i_sb
;
4328 if (i_blocks
<= ~0U) {
4330 * i_blocks can be represented in a 32 bit variable
4331 * as multiple of 512 bytes
4333 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4334 raw_inode
->i_blocks_high
= 0;
4335 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4338 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4341 if (i_blocks
<= 0xffffffffffffULL
) {
4343 * i_blocks can be represented in a 48 bit variable
4344 * as multiple of 512 bytes
4346 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4347 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4348 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4350 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4351 /* i_block is stored in file system block size */
4352 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4353 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4354 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4360 * Post the struct inode info into an on-disk inode location in the
4361 * buffer-cache. This gobbles the caller's reference to the
4362 * buffer_head in the inode location struct.
4364 * The caller must have write access to iloc->bh.
4366 static int ext4_do_update_inode(handle_t
*handle
,
4367 struct inode
*inode
,
4368 struct ext4_iloc
*iloc
)
4370 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4371 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4372 struct buffer_head
*bh
= iloc
->bh
;
4373 struct super_block
*sb
= inode
->i_sb
;
4374 int err
= 0, rc
, block
;
4375 int need_datasync
= 0, set_large_file
= 0;
4379 spin_lock(&ei
->i_raw_lock
);
4381 /* For fields not tracked in the in-memory inode,
4382 * initialise them to zero for new inodes. */
4383 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4384 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4386 ext4_get_inode_flags(ei
);
4387 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4388 i_uid
= i_uid_read(inode
);
4389 i_gid
= i_gid_read(inode
);
4390 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4391 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4392 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4394 * Fix up interoperability with old kernels. Otherwise, old inodes get
4395 * re-used with the upper 16 bits of the uid/gid intact
4398 raw_inode
->i_uid_high
=
4399 cpu_to_le16(high_16_bits(i_uid
));
4400 raw_inode
->i_gid_high
=
4401 cpu_to_le16(high_16_bits(i_gid
));
4403 raw_inode
->i_uid_high
= 0;
4404 raw_inode
->i_gid_high
= 0;
4407 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4408 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4409 raw_inode
->i_uid_high
= 0;
4410 raw_inode
->i_gid_high
= 0;
4412 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4414 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4415 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4416 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4417 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4419 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
)) {
4420 spin_unlock(&ei
->i_raw_lock
);
4423 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4424 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4425 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4426 raw_inode
->i_file_acl_high
=
4427 cpu_to_le16(ei
->i_file_acl
>> 32);
4428 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4429 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4430 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4433 if (ei
->i_disksize
> 0x7fffffffULL
) {
4434 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4435 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4436 EXT4_SB(sb
)->s_es
->s_rev_level
==
4437 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4440 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4441 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4442 if (old_valid_dev(inode
->i_rdev
)) {
4443 raw_inode
->i_block
[0] =
4444 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4445 raw_inode
->i_block
[1] = 0;
4447 raw_inode
->i_block
[0] = 0;
4448 raw_inode
->i_block
[1] =
4449 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4450 raw_inode
->i_block
[2] = 0;
4452 } else if (!ext4_has_inline_data(inode
)) {
4453 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4454 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4457 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4458 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4459 if (ei
->i_extra_isize
) {
4460 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4461 raw_inode
->i_version_hi
=
4462 cpu_to_le32(inode
->i_version
>> 32);
4463 raw_inode
->i_extra_isize
=
4464 cpu_to_le16(ei
->i_extra_isize
);
4468 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4470 spin_unlock(&ei
->i_raw_lock
);
4472 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4473 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4476 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4477 if (set_large_file
) {
4478 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4479 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4482 ext4_update_dynamic_rev(sb
);
4483 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4484 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4485 ext4_handle_sync(handle
);
4486 err
= ext4_handle_dirty_super(handle
, sb
);
4488 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4491 ext4_std_error(inode
->i_sb
, err
);
4496 * ext4_write_inode()
4498 * We are called from a few places:
4500 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4501 * Here, there will be no transaction running. We wait for any running
4502 * transaction to commit.
4504 * - Within flush work (sys_sync(), kupdate and such).
4505 * We wait on commit, if told to.
4507 * - Within iput_final() -> write_inode_now()
4508 * We wait on commit, if told to.
4510 * In all cases it is actually safe for us to return without doing anything,
4511 * because the inode has been copied into a raw inode buffer in
4512 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4515 * Note that we are absolutely dependent upon all inode dirtiers doing the
4516 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4517 * which we are interested.
4519 * It would be a bug for them to not do this. The code:
4521 * mark_inode_dirty(inode)
4523 * inode->i_size = expr;
4525 * is in error because write_inode() could occur while `stuff()' is running,
4526 * and the new i_size will be lost. Plus the inode will no longer be on the
4527 * superblock's dirty inode list.
4529 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4533 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4536 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4537 if (ext4_journal_current_handle()) {
4538 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4544 * No need to force transaction in WB_SYNC_NONE mode. Also
4545 * ext4_sync_fs() will force the commit after everything is
4548 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4551 err
= ext4_force_commit(inode
->i_sb
);
4553 struct ext4_iloc iloc
;
4555 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4559 * sync(2) will flush the whole buffer cache. No need to do
4560 * it here separately for each inode.
4562 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4563 sync_dirty_buffer(iloc
.bh
);
4564 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4565 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4566 "IO error syncing inode");
4575 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4576 * buffers that are attached to a page stradding i_size and are undergoing
4577 * commit. In that case we have to wait for commit to finish and try again.
4579 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4583 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4584 tid_t commit_tid
= 0;
4587 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4589 * All buffers in the last page remain valid? Then there's nothing to
4590 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4593 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4596 page
= find_lock_page(inode
->i_mapping
,
4597 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4600 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4601 PAGE_CACHE_SIZE
- offset
);
4603 page_cache_release(page
);
4607 read_lock(&journal
->j_state_lock
);
4608 if (journal
->j_committing_transaction
)
4609 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4610 read_unlock(&journal
->j_state_lock
);
4612 jbd2_log_wait_commit(journal
, commit_tid
);
4619 * Called from notify_change.
4621 * We want to trap VFS attempts to truncate the file as soon as
4622 * possible. In particular, we want to make sure that when the VFS
4623 * shrinks i_size, we put the inode on the orphan list and modify
4624 * i_disksize immediately, so that during the subsequent flushing of
4625 * dirty pages and freeing of disk blocks, we can guarantee that any
4626 * commit will leave the blocks being flushed in an unused state on
4627 * disk. (On recovery, the inode will get truncated and the blocks will
4628 * be freed, so we have a strong guarantee that no future commit will
4629 * leave these blocks visible to the user.)
4631 * Another thing we have to assure is that if we are in ordered mode
4632 * and inode is still attached to the committing transaction, we must
4633 * we start writeout of all the dirty pages which are being truncated.
4634 * This way we are sure that all the data written in the previous
4635 * transaction are already on disk (truncate waits for pages under
4638 * Called with inode->i_mutex down.
4640 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4642 struct inode
*inode
= dentry
->d_inode
;
4645 const unsigned int ia_valid
= attr
->ia_valid
;
4647 error
= inode_change_ok(inode
, attr
);
4651 if (is_quota_modification(inode
, attr
))
4652 dquot_initialize(inode
);
4653 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4654 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4657 /* (user+group)*(old+new) structure, inode write (sb,
4658 * inode block, ? - but truncate inode update has it) */
4659 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4660 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4661 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4662 if (IS_ERR(handle
)) {
4663 error
= PTR_ERR(handle
);
4666 error
= dquot_transfer(inode
, attr
);
4668 ext4_journal_stop(handle
);
4671 /* Update corresponding info in inode so that everything is in
4672 * one transaction */
4673 if (attr
->ia_valid
& ATTR_UID
)
4674 inode
->i_uid
= attr
->ia_uid
;
4675 if (attr
->ia_valid
& ATTR_GID
)
4676 inode
->i_gid
= attr
->ia_gid
;
4677 error
= ext4_mark_inode_dirty(handle
, inode
);
4678 ext4_journal_stop(handle
);
4681 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4684 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4685 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4687 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4691 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4692 inode_inc_iversion(inode
);
4694 if (S_ISREG(inode
->i_mode
) &&
4695 (attr
->ia_size
< inode
->i_size
)) {
4696 if (ext4_should_order_data(inode
)) {
4697 error
= ext4_begin_ordered_truncate(inode
,
4702 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4703 if (IS_ERR(handle
)) {
4704 error
= PTR_ERR(handle
);
4707 if (ext4_handle_valid(handle
)) {
4708 error
= ext4_orphan_add(handle
, inode
);
4711 down_write(&EXT4_I(inode
)->i_data_sem
);
4712 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4713 rc
= ext4_mark_inode_dirty(handle
, inode
);
4717 * We have to update i_size under i_data_sem together
4718 * with i_disksize to avoid races with writeback code
4719 * running ext4_wb_update_i_disksize().
4722 i_size_write(inode
, attr
->ia_size
);
4723 up_write(&EXT4_I(inode
)->i_data_sem
);
4724 ext4_journal_stop(handle
);
4726 ext4_orphan_del(NULL
, inode
);
4730 loff_t oldsize
= inode
->i_size
;
4732 i_size_write(inode
, attr
->ia_size
);
4733 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
4737 * Blocks are going to be removed from the inode. Wait
4738 * for dio in flight. Temporarily disable
4739 * dioread_nolock to prevent livelock.
4742 if (!ext4_should_journal_data(inode
)) {
4743 ext4_inode_block_unlocked_dio(inode
);
4744 inode_dio_wait(inode
);
4745 ext4_inode_resume_unlocked_dio(inode
);
4747 ext4_wait_for_tail_page_commit(inode
);
4750 * Truncate pagecache after we've waited for commit
4751 * in data=journal mode to make pages freeable.
4753 truncate_pagecache(inode
, inode
->i_size
);
4756 * We want to call ext4_truncate() even if attr->ia_size ==
4757 * inode->i_size for cases like truncation of fallocated space
4759 if (attr
->ia_valid
& ATTR_SIZE
)
4760 ext4_truncate(inode
);
4763 setattr_copy(inode
, attr
);
4764 mark_inode_dirty(inode
);
4768 * If the call to ext4_truncate failed to get a transaction handle at
4769 * all, we need to clean up the in-core orphan list manually.
4771 if (orphan
&& inode
->i_nlink
)
4772 ext4_orphan_del(NULL
, inode
);
4774 if (!rc
&& (ia_valid
& ATTR_MODE
))
4775 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
4778 ext4_std_error(inode
->i_sb
, error
);
4784 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4787 struct inode
*inode
;
4788 unsigned long long delalloc_blocks
;
4790 inode
= dentry
->d_inode
;
4791 generic_fillattr(inode
, stat
);
4794 * If there is inline data in the inode, the inode will normally not
4795 * have data blocks allocated (it may have an external xattr block).
4796 * Report at least one sector for such files, so tools like tar, rsync,
4797 * others doen't incorrectly think the file is completely sparse.
4799 if (unlikely(ext4_has_inline_data(inode
)))
4800 stat
->blocks
+= (stat
->size
+ 511) >> 9;
4803 * We can't update i_blocks if the block allocation is delayed
4804 * otherwise in the case of system crash before the real block
4805 * allocation is done, we will have i_blocks inconsistent with
4806 * on-disk file blocks.
4807 * We always keep i_blocks updated together with real
4808 * allocation. But to not confuse with user, stat
4809 * will return the blocks that include the delayed allocation
4810 * blocks for this file.
4812 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4813 EXT4_I(inode
)->i_reserved_data_blocks
);
4814 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
4818 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4821 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4822 return ext4_ind_trans_blocks(inode
, lblocks
);
4823 return ext4_ext_index_trans_blocks(inode
, pextents
);
4827 * Account for index blocks, block groups bitmaps and block group
4828 * descriptor blocks if modify datablocks and index blocks
4829 * worse case, the indexs blocks spread over different block groups
4831 * If datablocks are discontiguous, they are possible to spread over
4832 * different block groups too. If they are contiguous, with flexbg,
4833 * they could still across block group boundary.
4835 * Also account for superblock, inode, quota and xattr blocks
4837 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4840 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4846 * How many index blocks need to touch to map @lblocks logical blocks
4847 * to @pextents physical extents?
4849 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4854 * Now let's see how many group bitmaps and group descriptors need
4857 groups
= idxblocks
+ pextents
;
4859 if (groups
> ngroups
)
4861 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4862 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4864 /* bitmaps and block group descriptor blocks */
4865 ret
+= groups
+ gdpblocks
;
4867 /* Blocks for super block, inode, quota and xattr blocks */
4868 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4874 * Calculate the total number of credits to reserve to fit
4875 * the modification of a single pages into a single transaction,
4876 * which may include multiple chunks of block allocations.
4878 * This could be called via ext4_write_begin()
4880 * We need to consider the worse case, when
4881 * one new block per extent.
4883 int ext4_writepage_trans_blocks(struct inode
*inode
)
4885 int bpp
= ext4_journal_blocks_per_page(inode
);
4888 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4890 /* Account for data blocks for journalled mode */
4891 if (ext4_should_journal_data(inode
))
4897 * Calculate the journal credits for a chunk of data modification.
4899 * This is called from DIO, fallocate or whoever calling
4900 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4902 * journal buffers for data blocks are not included here, as DIO
4903 * and fallocate do no need to journal data buffers.
4905 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4907 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4911 * The caller must have previously called ext4_reserve_inode_write().
4912 * Give this, we know that the caller already has write access to iloc->bh.
4914 int ext4_mark_iloc_dirty(handle_t
*handle
,
4915 struct inode
*inode
, struct ext4_iloc
*iloc
)
4919 if (IS_I_VERSION(inode
))
4920 inode_inc_iversion(inode
);
4922 /* the do_update_inode consumes one bh->b_count */
4925 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4926 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4932 * On success, We end up with an outstanding reference count against
4933 * iloc->bh. This _must_ be cleaned up later.
4937 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4938 struct ext4_iloc
*iloc
)
4942 err
= ext4_get_inode_loc(inode
, iloc
);
4944 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4945 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4951 ext4_std_error(inode
->i_sb
, err
);
4956 * Expand an inode by new_extra_isize bytes.
4957 * Returns 0 on success or negative error number on failure.
4959 static int ext4_expand_extra_isize(struct inode
*inode
,
4960 unsigned int new_extra_isize
,
4961 struct ext4_iloc iloc
,
4964 struct ext4_inode
*raw_inode
;
4965 struct ext4_xattr_ibody_header
*header
;
4967 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4970 raw_inode
= ext4_raw_inode(&iloc
);
4972 header
= IHDR(inode
, raw_inode
);
4974 /* No extended attributes present */
4975 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4976 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4977 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4979 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4983 /* try to expand with EAs present */
4984 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4989 * What we do here is to mark the in-core inode as clean with respect to inode
4990 * dirtiness (it may still be data-dirty).
4991 * This means that the in-core inode may be reaped by prune_icache
4992 * without having to perform any I/O. This is a very good thing,
4993 * because *any* task may call prune_icache - even ones which
4994 * have a transaction open against a different journal.
4996 * Is this cheating? Not really. Sure, we haven't written the
4997 * inode out, but prune_icache isn't a user-visible syncing function.
4998 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4999 * we start and wait on commits.
5001 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5003 struct ext4_iloc iloc
;
5004 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5005 static unsigned int mnt_count
;
5009 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5010 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5013 if (ext4_handle_valid(handle
) &&
5014 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5015 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5017 * We need extra buffer credits since we may write into EA block
5018 * with this same handle. If journal_extend fails, then it will
5019 * only result in a minor loss of functionality for that inode.
5020 * If this is felt to be critical, then e2fsck should be run to
5021 * force a large enough s_min_extra_isize.
5023 if ((jbd2_journal_extend(handle
,
5024 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5025 ret
= ext4_expand_extra_isize(inode
,
5026 sbi
->s_want_extra_isize
,
5029 ext4_set_inode_state(inode
,
5030 EXT4_STATE_NO_EXPAND
);
5032 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5033 ext4_warning(inode
->i_sb
,
5034 "Unable to expand inode %lu. Delete"
5035 " some EAs or run e2fsck.",
5038 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5043 return ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5047 * ext4_dirty_inode() is called from __mark_inode_dirty()
5049 * We're really interested in the case where a file is being extended.
5050 * i_size has been changed by generic_commit_write() and we thus need
5051 * to include the updated inode in the current transaction.
5053 * Also, dquot_alloc_block() will always dirty the inode when blocks
5054 * are allocated to the file.
5056 * If the inode is marked synchronous, we don't honour that here - doing
5057 * so would cause a commit on atime updates, which we don't bother doing.
5058 * We handle synchronous inodes at the highest possible level.
5060 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5064 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5068 ext4_mark_inode_dirty(handle
, inode
);
5070 ext4_journal_stop(handle
);
5077 * Bind an inode's backing buffer_head into this transaction, to prevent
5078 * it from being flushed to disk early. Unlike
5079 * ext4_reserve_inode_write, this leaves behind no bh reference and
5080 * returns no iloc structure, so the caller needs to repeat the iloc
5081 * lookup to mark the inode dirty later.
5083 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5085 struct ext4_iloc iloc
;
5089 err
= ext4_get_inode_loc(inode
, &iloc
);
5091 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5092 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5094 err
= ext4_handle_dirty_metadata(handle
,
5100 ext4_std_error(inode
->i_sb
, err
);
5105 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5112 * We have to be very careful here: changing a data block's
5113 * journaling status dynamically is dangerous. If we write a
5114 * data block to the journal, change the status and then delete
5115 * that block, we risk forgetting to revoke the old log record
5116 * from the journal and so a subsequent replay can corrupt data.
5117 * So, first we make sure that the journal is empty and that
5118 * nobody is changing anything.
5121 journal
= EXT4_JOURNAL(inode
);
5124 if (is_journal_aborted(journal
))
5126 /* We have to allocate physical blocks for delalloc blocks
5127 * before flushing journal. otherwise delalloc blocks can not
5128 * be allocated any more. even more truncate on delalloc blocks
5129 * could trigger BUG by flushing delalloc blocks in journal.
5130 * There is no delalloc block in non-journal data mode.
5132 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5133 err
= ext4_alloc_da_blocks(inode
);
5138 /* Wait for all existing dio workers */
5139 ext4_inode_block_unlocked_dio(inode
);
5140 inode_dio_wait(inode
);
5142 jbd2_journal_lock_updates(journal
);
5145 * OK, there are no updates running now, and all cached data is
5146 * synced to disk. We are now in a completely consistent state
5147 * which doesn't have anything in the journal, and we know that
5148 * no filesystem updates are running, so it is safe to modify
5149 * the inode's in-core data-journaling state flag now.
5153 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5155 jbd2_journal_flush(journal
);
5156 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5158 ext4_set_aops(inode
);
5160 jbd2_journal_unlock_updates(journal
);
5161 ext4_inode_resume_unlocked_dio(inode
);
5163 /* Finally we can mark the inode as dirty. */
5165 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5167 return PTR_ERR(handle
);
5169 err
= ext4_mark_inode_dirty(handle
, inode
);
5170 ext4_handle_sync(handle
);
5171 ext4_journal_stop(handle
);
5172 ext4_std_error(inode
->i_sb
, err
);
5177 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5179 return !buffer_mapped(bh
);
5182 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5184 struct page
*page
= vmf
->page
;
5188 struct file
*file
= vma
->vm_file
;
5189 struct inode
*inode
= file_inode(file
);
5190 struct address_space
*mapping
= inode
->i_mapping
;
5192 get_block_t
*get_block
;
5195 sb_start_pagefault(inode
->i_sb
);
5196 file_update_time(vma
->vm_file
);
5197 /* Delalloc case is easy... */
5198 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5199 !ext4_should_journal_data(inode
) &&
5200 !ext4_nonda_switch(inode
->i_sb
)) {
5202 ret
= __block_page_mkwrite(vma
, vmf
,
5203 ext4_da_get_block_prep
);
5204 } while (ret
== -ENOSPC
&&
5205 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5210 size
= i_size_read(inode
);
5211 /* Page got truncated from under us? */
5212 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5214 ret
= VM_FAULT_NOPAGE
;
5218 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5219 len
= size
& ~PAGE_CACHE_MASK
;
5221 len
= PAGE_CACHE_SIZE
;
5223 * Return if we have all the buffers mapped. This avoids the need to do
5224 * journal_start/journal_stop which can block and take a long time
5226 if (page_has_buffers(page
)) {
5227 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5229 ext4_bh_unmapped
)) {
5230 /* Wait so that we don't change page under IO */
5231 wait_for_stable_page(page
);
5232 ret
= VM_FAULT_LOCKED
;
5237 /* OK, we need to fill the hole... */
5238 if (ext4_should_dioread_nolock(inode
))
5239 get_block
= ext4_get_block_write
;
5241 get_block
= ext4_get_block
;
5243 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5244 ext4_writepage_trans_blocks(inode
));
5245 if (IS_ERR(handle
)) {
5246 ret
= VM_FAULT_SIGBUS
;
5249 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5250 if (!ret
&& ext4_should_journal_data(inode
)) {
5251 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5252 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5254 ret
= VM_FAULT_SIGBUS
;
5255 ext4_journal_stop(handle
);
5258 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5260 ext4_journal_stop(handle
);
5261 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5264 ret
= block_page_mkwrite_return(ret
);
5266 sb_end_pagefault(inode
->i_sb
);