2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #ifndef _ASM_TILE_PAGE_H
16 #define _ASM_TILE_PAGE_H
18 #include <linux/const.h>
19 #include <hv/hypervisor.h>
20 #include <arch/chip.h>
22 /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
23 #if defined(CONFIG_PAGE_SIZE_16KB)
25 #define CTX_PAGE_FLAG HV_CTX_PG_SM_16K
26 #elif defined(CONFIG_PAGE_SIZE_64KB)
28 #define CTX_PAGE_FLAG HV_CTX_PG_SM_64K
30 #define PAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_SMALL
31 #define CTX_PAGE_FLAG 0
33 #define HPAGE_SHIFT HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
35 #define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT)
36 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
38 #define PAGE_MASK (~(PAGE_SIZE - 1))
39 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
42 * If the Kconfig doesn't specify, set a maximum zone order that
43 * is enough so that we can create huge pages from small pages given
44 * the respective sizes of the two page types. See <linux/mmzone.h>.
46 #ifndef CONFIG_FORCE_MAX_ZONEORDER
47 #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
52 #include <linux/types.h>
53 #include <linux/string.h>
57 static inline void clear_page(void *page
)
59 memset(page
, 0, PAGE_SIZE
);
62 static inline void copy_page(void *to
, void *from
)
64 memcpy(to
, from
, PAGE_SIZE
);
67 static inline void clear_user_page(void *page
, unsigned long vaddr
,
73 static inline void copy_user_page(void *to
, void *from
, unsigned long vaddr
,
80 * Hypervisor page tables are made of the same basic structure.
85 typedef HV_PTE pgprot_t
;
88 * User L2 page tables are managed as one L2 page table per page,
89 * because we use the page allocator for them. This keeps the allocation
90 * simple, but it's also inefficient, since L2 page tables are much smaller
91 * than pages (currently 2KB vs 64KB). So we should revisit this.
93 typedef struct page
*pgtable_t
;
95 /* Must be a macro since it is used to create constants. */
96 #define __pgprot(val) hv_pte(val)
98 /* Rarely-used initializers, typically with a "zero" value. */
99 #define __pte(x) hv_pte(x)
100 #define __pgd(x) hv_pte(x)
102 static inline u64
pgprot_val(pgprot_t pgprot
)
104 return hv_pte_val(pgprot
);
107 static inline u64
pte_val(pte_t pte
)
109 return hv_pte_val(pte
);
112 static inline u64
pgd_val(pgd_t pgd
)
114 return hv_pte_val(pgd
);
119 typedef HV_PTE pmd_t
;
121 #define __pmd(x) hv_pte(x)
123 static inline u64
pmd_val(pmd_t pmd
)
125 return hv_pte_val(pmd
);
130 static inline __attribute_const__
int get_order(unsigned long size
)
132 return BITS_PER_LONG
- __builtin_clzl((size
- 1) >> PAGE_SHIFT
);
135 #endif /* !__ASSEMBLY__ */
137 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
139 #define HUGE_MAX_HSTATE 6
141 #ifdef CONFIG_HUGETLB_PAGE
142 #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
145 /* Allow overriding how much VA or PA the kernel will use. */
146 #define MAX_PA_WIDTH CHIP_PA_WIDTH()
147 #define MAX_VA_WIDTH CHIP_VA_WIDTH()
149 /* Each memory controller has PAs distinct in their high bits. */
150 #define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
151 #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
152 #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
153 #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
158 * We reserve the lower half of memory for user-space programs, and the
159 * upper half for system code. We re-map all of physical memory in the
160 * upper half, which takes a quarter of our VA space. Then we have
161 * the vmalloc regions. The supervisor code lives at the highest address,
162 * with the hypervisor above that.
164 * Loadable kernel modules are placed immediately after the static
165 * supervisor code, with each being allocated a 256MB region of
166 * address space, so we don't have to worry about the range of "jal"
167 * and other branch instructions.
169 * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
170 * Similarly, for now we don't play any struct page mapping games.
173 #if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
174 # error Too much PA to map with the VA available!
177 #define PAGE_OFFSET (-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
178 #define KERNEL_HIGH_VADDR _AC(0xfffffff800000000, UL) /* high 32GB */
179 #define FIXADDR_BASE (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
180 #define FIXADDR_TOP (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
181 #define _VMALLOC_START FIXADDR_TOP
182 #define MEM_SV_START (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
183 #define MEM_MODULE_START (MEM_SV_START + (256*1024*1024)) /* 256 MB */
184 #define MEM_MODULE_END (MEM_MODULE_START + (256*1024*1024))
186 #else /* !__tilegx__ */
189 * A PAGE_OFFSET of 0xC0000000 means that the kernel has
190 * a virtual address space of one gigabyte, which limits the
191 * amount of physical memory you can use to about 768MB.
192 * If you want more physical memory than this then see the CONFIG_HIGHMEM
193 * option in the kernel configuration.
195 * The top 16MB chunk in the table below is unavailable to Linux. Since
196 * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
197 * (depending on whether the kernel is at PL2 or Pl1), we map all of the
198 * bottom of RAM at this address with a huge page table entry to minimize
199 * its ITLB footprint (as well as at PAGE_OFFSET). The last architected
200 * requirement is that user interrupt vectors live at 0xfc000000, so we
201 * make that range of memory available to user processes. The remaining
202 * regions are sized as shown; the first four addresses use the PL 1
203 * values, and after that, we show "typical" values, since the actual
204 * addresses depend on kernel #defines.
206 * MEM_HV_START 0xfe000000
207 * MEM_SV_START (kernel code) 0xfd000000
208 * MEM_USER_INTRPT (user vector) 0xfc000000
209 * FIX_KMAP_xxx 0xfa000000 (via NR_CPUS * KM_TYPE_NR)
210 * PKMAP_BASE 0xf9000000 (via LAST_PKMAP)
211 * VMALLOC_START 0xf7000000 (via VMALLOC_RESERVE)
212 * mapped LOWMEM 0xc0000000
215 #define MEM_USER_INTRPT _AC(0xfc000000, UL)
216 #define MEM_SV_START _AC(0xfd000000, UL)
217 #define MEM_HV_START _AC(0xfe000000, UL)
219 #define INTRPT_SIZE 0x4000
221 /* Tolerate page size larger than the architecture interrupt region size. */
222 #if PAGE_SIZE > INTRPT_SIZE
224 #define INTRPT_SIZE PAGE_SIZE
227 #define KERNEL_HIGH_VADDR MEM_USER_INTRPT
228 #define FIXADDR_TOP (KERNEL_HIGH_VADDR - PAGE_SIZE)
230 #define PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL)
232 /* On 32-bit architectures we mix kernel modules in with other vmaps. */
233 #define MEM_MODULE_START VMALLOC_START
234 #define MEM_MODULE_END VMALLOC_END
236 #endif /* __tilegx__ */
238 #if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
240 #ifdef CONFIG_HIGHMEM
242 /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
243 extern unsigned long pbase_map
[];
244 extern void *vbase_map
[];
246 static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr
)
248 unsigned long kaddr
= (unsigned long)_kaddr
;
249 return pbase_map
[kaddr
>> HPAGE_SHIFT
] +
250 ((kaddr
& (HPAGE_SIZE
- 1)) >> PAGE_SHIFT
);
253 static inline void *pfn_to_kaddr(unsigned long pfn
)
255 return vbase_map
[__pfn_to_highbits(pfn
)] + (pfn
<< PAGE_SHIFT
);
258 static inline phys_addr_t
virt_to_phys(const volatile void *kaddr
)
260 unsigned long pfn
= kaddr_to_pfn(kaddr
);
261 return ((phys_addr_t
)pfn
<< PAGE_SHIFT
) +
262 ((unsigned long)kaddr
& (PAGE_SIZE
-1));
265 static inline void *phys_to_virt(phys_addr_t paddr
)
267 return pfn_to_kaddr(paddr
>> PAGE_SHIFT
) + (paddr
& (PAGE_SIZE
-1));
270 /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
271 static inline int virt_addr_valid(const volatile void *kaddr
)
273 extern void *high_memory
; /* copied from <linux/mm.h> */
274 return ((unsigned long)kaddr
>= PAGE_OFFSET
&& kaddr
< high_memory
);
277 #else /* !CONFIG_HIGHMEM */
279 static inline unsigned long kaddr_to_pfn(const volatile void *kaddr
)
281 return ((unsigned long)kaddr
- PAGE_OFFSET
) >> PAGE_SHIFT
;
284 static inline void *pfn_to_kaddr(unsigned long pfn
)
286 return (void *)((pfn
<< PAGE_SHIFT
) + PAGE_OFFSET
);
289 static inline phys_addr_t
virt_to_phys(const volatile void *kaddr
)
291 return (phys_addr_t
)((unsigned long)kaddr
- PAGE_OFFSET
);
294 static inline void *phys_to_virt(phys_addr_t paddr
)
296 return (void *)((unsigned long)paddr
+ PAGE_OFFSET
);
299 /* Check that the given address is within some mapped range of PAs. */
300 #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
302 #endif /* !CONFIG_HIGHMEM */
304 /* All callers are not consistent in how they call these functions. */
305 #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
306 #define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
308 extern int devmem_is_allowed(unsigned long pagenr
);
310 #ifdef CONFIG_FLATMEM
311 static inline int pfn_valid(unsigned long pfn
)
313 return pfn
< max_mapnr
;
317 /* Provide as macros since these require some other headers included. */
318 #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
319 #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
320 #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
323 extern pte_t
*virt_to_pte(struct mm_struct
*mm
, unsigned long addr
);
324 extern pte_t
*virt_to_kpte(unsigned long kaddr
);
326 #endif /* !__ASSEMBLY__ */
328 #define VM_DATA_DEFAULT_FLAGS \
329 (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
331 #include <asm-generic/memory_model.h>
333 #endif /* _ASM_TILE_PAGE_H */