2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
49 DEFINE_IDA(blk_queue_ida
);
52 * For the allocated request tables
54 struct kmem_cache
*request_cachep
= NULL
;
57 * For queue allocation
59 struct kmem_cache
*blk_requestq_cachep
;
62 * Controlling structure to kblockd
64 static struct workqueue_struct
*kblockd_workqueue
;
66 static void blk_clear_congested(struct request_list
*rl
, int sync
)
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
75 if (rl
== &rl
->q
->root_rl
)
76 clear_wb_congested(rl
->q
->backing_dev_info
.wb
.congested
, sync
);
80 static void blk_set_congested(struct request_list
*rl
, int sync
)
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
85 /* see blk_clear_congested() */
86 if (rl
== &rl
->q
->root_rl
)
87 set_wb_congested(rl
->q
->backing_dev_info
.wb
.congested
, sync
);
91 void blk_queue_congestion_threshold(struct request_queue
*q
)
95 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
96 if (nr
> q
->nr_requests
)
98 q
->nr_congestion_on
= nr
;
100 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
103 q
->nr_congestion_off
= nr
;
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
114 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
116 struct request_queue
*q
= bdev_get_queue(bdev
);
118 return &q
->backing_dev_info
;
120 EXPORT_SYMBOL(blk_get_backing_dev_info
);
122 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
124 memset(rq
, 0, sizeof(*rq
));
126 INIT_LIST_HEAD(&rq
->queuelist
);
127 INIT_LIST_HEAD(&rq
->timeout_list
);
130 rq
->__sector
= (sector_t
) -1;
131 INIT_HLIST_NODE(&rq
->hash
);
132 RB_CLEAR_NODE(&rq
->rb_node
);
134 rq
->cmd_len
= BLK_MAX_CDB
;
136 rq
->start_time
= jiffies
;
137 set_start_time_ns(rq
);
140 EXPORT_SYMBOL(blk_rq_init
);
142 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
143 unsigned int nbytes
, int error
)
146 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
147 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
150 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
151 set_bit(BIO_QUIET
, &bio
->bi_flags
);
153 bio_advance(bio
, nbytes
);
155 /* don't actually finish bio if it's part of flush sequence */
156 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
157 bio_endio(bio
, error
);
160 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
164 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%llx\n", msg
,
165 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
166 (unsigned long long) rq
->cmd_flags
);
168 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
169 (unsigned long long)blk_rq_pos(rq
),
170 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
171 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
172 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
174 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
175 printk(KERN_INFO
" cdb: ");
176 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
177 printk("%02x ", rq
->cmd
[bit
]);
181 EXPORT_SYMBOL(blk_dump_rq_flags
);
183 static void blk_delay_work(struct work_struct
*work
)
185 struct request_queue
*q
;
187 q
= container_of(work
, struct request_queue
, delay_work
.work
);
188 spin_lock_irq(q
->queue_lock
);
190 spin_unlock_irq(q
->queue_lock
);
194 * blk_delay_queue - restart queueing after defined interval
195 * @q: The &struct request_queue in question
196 * @msecs: Delay in msecs
199 * Sometimes queueing needs to be postponed for a little while, to allow
200 * resources to come back. This function will make sure that queueing is
201 * restarted around the specified time. Queue lock must be held.
203 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
205 if (likely(!blk_queue_dead(q
)))
206 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
207 msecs_to_jiffies(msecs
));
209 EXPORT_SYMBOL(blk_delay_queue
);
212 * blk_start_queue - restart a previously stopped queue
213 * @q: The &struct request_queue in question
216 * blk_start_queue() will clear the stop flag on the queue, and call
217 * the request_fn for the queue if it was in a stopped state when
218 * entered. Also see blk_stop_queue(). Queue lock must be held.
220 void blk_start_queue(struct request_queue
*q
)
222 WARN_ON(!irqs_disabled());
224 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
227 EXPORT_SYMBOL(blk_start_queue
);
230 * blk_stop_queue - stop a queue
231 * @q: The &struct request_queue in question
234 * The Linux block layer assumes that a block driver will consume all
235 * entries on the request queue when the request_fn strategy is called.
236 * Often this will not happen, because of hardware limitations (queue
237 * depth settings). If a device driver gets a 'queue full' response,
238 * or if it simply chooses not to queue more I/O at one point, it can
239 * call this function to prevent the request_fn from being called until
240 * the driver has signalled it's ready to go again. This happens by calling
241 * blk_start_queue() to restart queue operations. Queue lock must be held.
243 void blk_stop_queue(struct request_queue
*q
)
245 cancel_delayed_work(&q
->delay_work
);
246 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
248 EXPORT_SYMBOL(blk_stop_queue
);
251 * blk_sync_queue - cancel any pending callbacks on a queue
255 * The block layer may perform asynchronous callback activity
256 * on a queue, such as calling the unplug function after a timeout.
257 * A block device may call blk_sync_queue to ensure that any
258 * such activity is cancelled, thus allowing it to release resources
259 * that the callbacks might use. The caller must already have made sure
260 * that its ->make_request_fn will not re-add plugging prior to calling
263 * This function does not cancel any asynchronous activity arising
264 * out of elevator or throttling code. That would require elevator_exit()
265 * and blkcg_exit_queue() to be called with queue lock initialized.
268 void blk_sync_queue(struct request_queue
*q
)
270 del_timer_sync(&q
->timeout
);
273 struct blk_mq_hw_ctx
*hctx
;
276 queue_for_each_hw_ctx(q
, hctx
, i
) {
277 cancel_delayed_work_sync(&hctx
->run_work
);
278 cancel_delayed_work_sync(&hctx
->delay_work
);
281 cancel_delayed_work_sync(&q
->delay_work
);
284 EXPORT_SYMBOL(blk_sync_queue
);
287 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
288 * @q: The queue to run
291 * Invoke request handling on a queue if there are any pending requests.
292 * May be used to restart request handling after a request has completed.
293 * This variant runs the queue whether or not the queue has been
294 * stopped. Must be called with the queue lock held and interrupts
295 * disabled. See also @blk_run_queue.
297 inline void __blk_run_queue_uncond(struct request_queue
*q
)
299 if (unlikely(blk_queue_dead(q
)))
303 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
304 * the queue lock internally. As a result multiple threads may be
305 * running such a request function concurrently. Keep track of the
306 * number of active request_fn invocations such that blk_drain_queue()
307 * can wait until all these request_fn calls have finished.
309 q
->request_fn_active
++;
311 q
->request_fn_active
--;
313 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
316 * __blk_run_queue - run a single device queue
317 * @q: The queue to run
320 * See @blk_run_queue. This variant must be called with the queue lock
321 * held and interrupts disabled.
323 void __blk_run_queue(struct request_queue
*q
)
325 if (unlikely(blk_queue_stopped(q
)))
328 __blk_run_queue_uncond(q
);
330 EXPORT_SYMBOL(__blk_run_queue
);
333 * blk_run_queue_async - run a single device queue in workqueue context
334 * @q: The queue to run
337 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
338 * of us. The caller must hold the queue lock.
340 void blk_run_queue_async(struct request_queue
*q
)
342 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
343 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
345 EXPORT_SYMBOL(blk_run_queue_async
);
348 * blk_run_queue - run a single device queue
349 * @q: The queue to run
352 * Invoke request handling on this queue, if it has pending work to do.
353 * May be used to restart queueing when a request has completed.
355 void blk_run_queue(struct request_queue
*q
)
359 spin_lock_irqsave(q
->queue_lock
, flags
);
361 spin_unlock_irqrestore(q
->queue_lock
, flags
);
363 EXPORT_SYMBOL(blk_run_queue
);
365 void blk_put_queue(struct request_queue
*q
)
367 kobject_put(&q
->kobj
);
369 EXPORT_SYMBOL(blk_put_queue
);
372 * __blk_drain_queue - drain requests from request_queue
374 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 * Drain requests from @q. If @drain_all is set, all requests are drained.
377 * If not, only ELVPRIV requests are drained. The caller is responsible
378 * for ensuring that no new requests which need to be drained are queued.
380 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
381 __releases(q
->queue_lock
)
382 __acquires(q
->queue_lock
)
386 lockdep_assert_held(q
->queue_lock
);
392 * The caller might be trying to drain @q before its
393 * elevator is initialized.
396 elv_drain_elevator(q
);
398 blkcg_drain_queue(q
);
401 * This function might be called on a queue which failed
402 * driver init after queue creation or is not yet fully
403 * active yet. Some drivers (e.g. fd and loop) get unhappy
404 * in such cases. Kick queue iff dispatch queue has
405 * something on it and @q has request_fn set.
407 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
410 drain
|= q
->nr_rqs_elvpriv
;
411 drain
|= q
->request_fn_active
;
414 * Unfortunately, requests are queued at and tracked from
415 * multiple places and there's no single counter which can
416 * be drained. Check all the queues and counters.
419 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
420 drain
|= !list_empty(&q
->queue_head
);
421 for (i
= 0; i
< 2; i
++) {
422 drain
|= q
->nr_rqs
[i
];
423 drain
|= q
->in_flight
[i
];
425 drain
|= !list_empty(&fq
->flush_queue
[i
]);
432 spin_unlock_irq(q
->queue_lock
);
436 spin_lock_irq(q
->queue_lock
);
440 * With queue marked dead, any woken up waiter will fail the
441 * allocation path, so the wakeup chaining is lost and we're
442 * left with hung waiters. We need to wake up those waiters.
445 struct request_list
*rl
;
447 blk_queue_for_each_rl(rl
, q
)
448 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
449 wake_up_all(&rl
->wait
[i
]);
454 * blk_queue_bypass_start - enter queue bypass mode
455 * @q: queue of interest
457 * In bypass mode, only the dispatch FIFO queue of @q is used. This
458 * function makes @q enter bypass mode and drains all requests which were
459 * throttled or issued before. On return, it's guaranteed that no request
460 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
461 * inside queue or RCU read lock.
463 void blk_queue_bypass_start(struct request_queue
*q
)
465 spin_lock_irq(q
->queue_lock
);
467 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
468 spin_unlock_irq(q
->queue_lock
);
471 * Queues start drained. Skip actual draining till init is
472 * complete. This avoids lenghty delays during queue init which
473 * can happen many times during boot.
475 if (blk_queue_init_done(q
)) {
476 spin_lock_irq(q
->queue_lock
);
477 __blk_drain_queue(q
, false);
478 spin_unlock_irq(q
->queue_lock
);
480 /* ensure blk_queue_bypass() is %true inside RCU read lock */
484 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
487 * blk_queue_bypass_end - leave queue bypass mode
488 * @q: queue of interest
490 * Leave bypass mode and restore the normal queueing behavior.
492 void blk_queue_bypass_end(struct request_queue
*q
)
494 spin_lock_irq(q
->queue_lock
);
495 if (!--q
->bypass_depth
)
496 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
497 WARN_ON_ONCE(q
->bypass_depth
< 0);
498 spin_unlock_irq(q
->queue_lock
);
500 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
502 void blk_set_queue_dying(struct request_queue
*q
)
504 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
507 blk_mq_wake_waiters(q
);
509 struct request_list
*rl
;
511 blk_queue_for_each_rl(rl
, q
) {
513 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
514 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
519 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
522 * blk_cleanup_queue - shutdown a request queue
523 * @q: request queue to shutdown
525 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
526 * put it. All future requests will be failed immediately with -ENODEV.
528 void blk_cleanup_queue(struct request_queue
*q
)
530 spinlock_t
*lock
= q
->queue_lock
;
532 /* mark @q DYING, no new request or merges will be allowed afterwards */
533 mutex_lock(&q
->sysfs_lock
);
534 blk_set_queue_dying(q
);
538 * A dying queue is permanently in bypass mode till released. Note
539 * that, unlike blk_queue_bypass_start(), we aren't performing
540 * synchronize_rcu() after entering bypass mode to avoid the delay
541 * as some drivers create and destroy a lot of queues while
542 * probing. This is still safe because blk_release_queue() will be
543 * called only after the queue refcnt drops to zero and nothing,
544 * RCU or not, would be traversing the queue by then.
547 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
549 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
550 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
551 queue_flag_set(QUEUE_FLAG_DYING
, q
);
552 spin_unlock_irq(lock
);
553 mutex_unlock(&q
->sysfs_lock
);
556 * Drain all requests queued before DYING marking. Set DEAD flag to
557 * prevent that q->request_fn() gets invoked after draining finished.
560 blk_mq_freeze_queue(q
);
564 __blk_drain_queue(q
, true);
566 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
567 spin_unlock_irq(lock
);
569 /* @q won't process any more request, flush async actions */
570 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
574 blk_mq_free_queue(q
);
577 if (q
->queue_lock
!= &q
->__queue_lock
)
578 q
->queue_lock
= &q
->__queue_lock
;
579 spin_unlock_irq(lock
);
581 bdi_destroy(&q
->backing_dev_info
);
583 /* @q is and will stay empty, shutdown and put */
586 EXPORT_SYMBOL(blk_cleanup_queue
);
588 /* Allocate memory local to the request queue */
589 static void *alloc_request_struct(gfp_t gfp_mask
, void *data
)
591 int nid
= (int)(long)data
;
592 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, nid
);
595 static void free_request_struct(void *element
, void *unused
)
597 kmem_cache_free(request_cachep
, element
);
600 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
603 if (unlikely(rl
->rq_pool
))
607 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
608 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
609 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
610 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
612 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, alloc_request_struct
,
614 (void *)(long)q
->node
, gfp_mask
,
622 void blk_exit_rl(struct request_list
*rl
)
625 mempool_destroy(rl
->rq_pool
);
628 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
630 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
632 EXPORT_SYMBOL(blk_alloc_queue
);
634 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
636 struct request_queue
*q
;
639 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
640 gfp_mask
| __GFP_ZERO
, node_id
);
644 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
648 q
->backing_dev_info
.ra_pages
=
649 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
650 q
->backing_dev_info
.capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
651 q
->backing_dev_info
.name
= "block";
654 err
= bdi_init(&q
->backing_dev_info
);
658 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
659 laptop_mode_timer_fn
, (unsigned long) q
);
660 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
661 INIT_LIST_HEAD(&q
->queue_head
);
662 INIT_LIST_HEAD(&q
->timeout_list
);
663 INIT_LIST_HEAD(&q
->icq_list
);
664 #ifdef CONFIG_BLK_CGROUP
665 INIT_LIST_HEAD(&q
->blkg_list
);
667 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
669 kobject_init(&q
->kobj
, &blk_queue_ktype
);
671 mutex_init(&q
->sysfs_lock
);
672 spin_lock_init(&q
->__queue_lock
);
675 * By default initialize queue_lock to internal lock and driver can
676 * override it later if need be.
678 q
->queue_lock
= &q
->__queue_lock
;
681 * A queue starts its life with bypass turned on to avoid
682 * unnecessary bypass on/off overhead and nasty surprises during
683 * init. The initial bypass will be finished when the queue is
684 * registered by blk_register_queue().
687 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
689 init_waitqueue_head(&q
->mq_freeze_wq
);
691 if (blkcg_init_queue(q
))
697 bdi_destroy(&q
->backing_dev_info
);
699 ida_simple_remove(&blk_queue_ida
, q
->id
);
701 kmem_cache_free(blk_requestq_cachep
, q
);
704 EXPORT_SYMBOL(blk_alloc_queue_node
);
707 * blk_init_queue - prepare a request queue for use with a block device
708 * @rfn: The function to be called to process requests that have been
709 * placed on the queue.
710 * @lock: Request queue spin lock
713 * If a block device wishes to use the standard request handling procedures,
714 * which sorts requests and coalesces adjacent requests, then it must
715 * call blk_init_queue(). The function @rfn will be called when there
716 * are requests on the queue that need to be processed. If the device
717 * supports plugging, then @rfn may not be called immediately when requests
718 * are available on the queue, but may be called at some time later instead.
719 * Plugged queues are generally unplugged when a buffer belonging to one
720 * of the requests on the queue is needed, or due to memory pressure.
722 * @rfn is not required, or even expected, to remove all requests off the
723 * queue, but only as many as it can handle at a time. If it does leave
724 * requests on the queue, it is responsible for arranging that the requests
725 * get dealt with eventually.
727 * The queue spin lock must be held while manipulating the requests on the
728 * request queue; this lock will be taken also from interrupt context, so irq
729 * disabling is needed for it.
731 * Function returns a pointer to the initialized request queue, or %NULL if
735 * blk_init_queue() must be paired with a blk_cleanup_queue() call
736 * when the block device is deactivated (such as at module unload).
739 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
741 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
743 EXPORT_SYMBOL(blk_init_queue
);
745 struct request_queue
*
746 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
748 struct request_queue
*uninit_q
, *q
;
750 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
754 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
756 blk_cleanup_queue(uninit_q
);
760 EXPORT_SYMBOL(blk_init_queue_node
);
762 static void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
764 struct request_queue
*
765 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
771 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, 0);
775 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
779 q
->prep_rq_fn
= NULL
;
780 q
->unprep_rq_fn
= NULL
;
781 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
783 /* Override internal queue lock with supplied lock pointer */
785 q
->queue_lock
= lock
;
788 * This also sets hw/phys segments, boundary and size
790 blk_queue_make_request(q
, blk_queue_bio
);
792 q
->sg_reserved_size
= INT_MAX
;
794 /* Protect q->elevator from elevator_change */
795 mutex_lock(&q
->sysfs_lock
);
798 if (elevator_init(q
, NULL
)) {
799 mutex_unlock(&q
->sysfs_lock
);
803 mutex_unlock(&q
->sysfs_lock
);
808 blk_free_flush_queue(q
->fq
);
811 EXPORT_SYMBOL(blk_init_allocated_queue
);
813 bool blk_get_queue(struct request_queue
*q
)
815 if (likely(!blk_queue_dying(q
))) {
822 EXPORT_SYMBOL(blk_get_queue
);
824 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
826 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
827 elv_put_request(rl
->q
, rq
);
829 put_io_context(rq
->elv
.icq
->ioc
);
832 mempool_free(rq
, rl
->rq_pool
);
836 * ioc_batching returns true if the ioc is a valid batching request and
837 * should be given priority access to a request.
839 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
845 * Make sure the process is able to allocate at least 1 request
846 * even if the batch times out, otherwise we could theoretically
849 return ioc
->nr_batch_requests
== q
->nr_batching
||
850 (ioc
->nr_batch_requests
> 0
851 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
855 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
856 * will cause the process to be a "batcher" on all queues in the system. This
857 * is the behaviour we want though - once it gets a wakeup it should be given
860 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
862 if (!ioc
|| ioc_batching(q
, ioc
))
865 ioc
->nr_batch_requests
= q
->nr_batching
;
866 ioc
->last_waited
= jiffies
;
869 static void __freed_request(struct request_list
*rl
, int sync
)
871 struct request_queue
*q
= rl
->q
;
873 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
874 blk_clear_congested(rl
, sync
);
876 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
877 if (waitqueue_active(&rl
->wait
[sync
]))
878 wake_up(&rl
->wait
[sync
]);
880 blk_clear_rl_full(rl
, sync
);
885 * A request has just been released. Account for it, update the full and
886 * congestion status, wake up any waiters. Called under q->queue_lock.
888 static void freed_request(struct request_list
*rl
, unsigned int flags
)
890 struct request_queue
*q
= rl
->q
;
891 int sync
= rw_is_sync(flags
);
895 if (flags
& REQ_ELVPRIV
)
898 __freed_request(rl
, sync
);
900 if (unlikely(rl
->starved
[sync
^ 1]))
901 __freed_request(rl
, sync
^ 1);
904 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
906 struct request_list
*rl
;
907 int on_thresh
, off_thresh
;
909 spin_lock_irq(q
->queue_lock
);
911 blk_queue_congestion_threshold(q
);
912 on_thresh
= queue_congestion_on_threshold(q
);
913 off_thresh
= queue_congestion_off_threshold(q
);
915 blk_queue_for_each_rl(rl
, q
) {
916 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
917 blk_set_congested(rl
, BLK_RW_SYNC
);
918 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
919 blk_clear_congested(rl
, BLK_RW_SYNC
);
921 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
922 blk_set_congested(rl
, BLK_RW_ASYNC
);
923 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
924 blk_clear_congested(rl
, BLK_RW_ASYNC
);
926 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
927 blk_set_rl_full(rl
, BLK_RW_SYNC
);
929 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
930 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
933 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
934 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
936 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
937 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
941 spin_unlock_irq(q
->queue_lock
);
946 * Determine if elevator data should be initialized when allocating the
947 * request associated with @bio.
949 static bool blk_rq_should_init_elevator(struct bio
*bio
)
955 * Flush requests do not use the elevator so skip initialization.
956 * This allows a request to share the flush and elevator data.
958 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
965 * rq_ioc - determine io_context for request allocation
966 * @bio: request being allocated is for this bio (can be %NULL)
968 * Determine io_context to use for request allocation for @bio. May return
969 * %NULL if %current->io_context doesn't exist.
971 static struct io_context
*rq_ioc(struct bio
*bio
)
973 #ifdef CONFIG_BLK_CGROUP
974 if (bio
&& bio
->bi_ioc
)
977 return current
->io_context
;
981 * __get_request - get a free request
982 * @rl: request list to allocate from
983 * @rw_flags: RW and SYNC flags
984 * @bio: bio to allocate request for (can be %NULL)
985 * @gfp_mask: allocation mask
987 * Get a free request from @q. This function may fail under memory
988 * pressure or if @q is dead.
990 * Must be called with @q->queue_lock held and,
991 * Returns ERR_PTR on failure, with @q->queue_lock held.
992 * Returns request pointer on success, with @q->queue_lock *not held*.
994 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
995 struct bio
*bio
, gfp_t gfp_mask
)
997 struct request_queue
*q
= rl
->q
;
999 struct elevator_type
*et
= q
->elevator
->type
;
1000 struct io_context
*ioc
= rq_ioc(bio
);
1001 struct io_cq
*icq
= NULL
;
1002 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1005 if (unlikely(blk_queue_dying(q
)))
1006 return ERR_PTR(-ENODEV
);
1008 may_queue
= elv_may_queue(q
, rw_flags
);
1009 if (may_queue
== ELV_MQUEUE_NO
)
1012 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1013 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1015 * The queue will fill after this allocation, so set
1016 * it as full, and mark this process as "batching".
1017 * This process will be allowed to complete a batch of
1018 * requests, others will be blocked.
1020 if (!blk_rl_full(rl
, is_sync
)) {
1021 ioc_set_batching(q
, ioc
);
1022 blk_set_rl_full(rl
, is_sync
);
1024 if (may_queue
!= ELV_MQUEUE_MUST
1025 && !ioc_batching(q
, ioc
)) {
1027 * The queue is full and the allocating
1028 * process is not a "batcher", and not
1029 * exempted by the IO scheduler
1031 return ERR_PTR(-ENOMEM
);
1035 blk_set_congested(rl
, is_sync
);
1039 * Only allow batching queuers to allocate up to 50% over the defined
1040 * limit of requests, otherwise we could have thousands of requests
1041 * allocated with any setting of ->nr_requests
1043 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1044 return ERR_PTR(-ENOMEM
);
1046 q
->nr_rqs
[is_sync
]++;
1047 rl
->count
[is_sync
]++;
1048 rl
->starved
[is_sync
] = 0;
1051 * Decide whether the new request will be managed by elevator. If
1052 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1053 * prevent the current elevator from being destroyed until the new
1054 * request is freed. This guarantees icq's won't be destroyed and
1055 * makes creating new ones safe.
1057 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1058 * it will be created after releasing queue_lock.
1060 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
1061 rw_flags
|= REQ_ELVPRIV
;
1062 q
->nr_rqs_elvpriv
++;
1063 if (et
->icq_cache
&& ioc
)
1064 icq
= ioc_lookup_icq(ioc
, q
);
1067 if (blk_queue_io_stat(q
))
1068 rw_flags
|= REQ_IO_STAT
;
1069 spin_unlock_irq(q
->queue_lock
);
1071 /* allocate and init request */
1072 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1077 blk_rq_set_rl(rq
, rl
);
1078 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
1081 if (rw_flags
& REQ_ELVPRIV
) {
1082 if (unlikely(et
->icq_cache
&& !icq
)) {
1084 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1090 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1093 /* @rq->elv.icq holds io_context until @rq is freed */
1095 get_io_context(icq
->ioc
);
1099 * ioc may be NULL here, and ioc_batching will be false. That's
1100 * OK, if the queue is under the request limit then requests need
1101 * not count toward the nr_batch_requests limit. There will always
1102 * be some limit enforced by BLK_BATCH_TIME.
1104 if (ioc_batching(q
, ioc
))
1105 ioc
->nr_batch_requests
--;
1107 trace_block_getrq(q
, bio
, rw_flags
& 1);
1112 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1113 * and may fail indefinitely under memory pressure and thus
1114 * shouldn't stall IO. Treat this request as !elvpriv. This will
1115 * disturb iosched and blkcg but weird is bettern than dead.
1117 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1118 __func__
, dev_name(q
->backing_dev_info
.dev
));
1120 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1123 spin_lock_irq(q
->queue_lock
);
1124 q
->nr_rqs_elvpriv
--;
1125 spin_unlock_irq(q
->queue_lock
);
1130 * Allocation failed presumably due to memory. Undo anything we
1131 * might have messed up.
1133 * Allocating task should really be put onto the front of the wait
1134 * queue, but this is pretty rare.
1136 spin_lock_irq(q
->queue_lock
);
1137 freed_request(rl
, rw_flags
);
1140 * in the very unlikely event that allocation failed and no
1141 * requests for this direction was pending, mark us starved so that
1142 * freeing of a request in the other direction will notice
1143 * us. another possible fix would be to split the rq mempool into
1147 if (unlikely(rl
->count
[is_sync
] == 0))
1148 rl
->starved
[is_sync
] = 1;
1149 return ERR_PTR(-ENOMEM
);
1153 * get_request - get a free request
1154 * @q: request_queue to allocate request from
1155 * @rw_flags: RW and SYNC flags
1156 * @bio: bio to allocate request for (can be %NULL)
1157 * @gfp_mask: allocation mask
1159 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1160 * function keeps retrying under memory pressure and fails iff @q is dead.
1162 * Must be called with @q->queue_lock held and,
1163 * Returns ERR_PTR on failure, with @q->queue_lock held.
1164 * Returns request pointer on success, with @q->queue_lock *not held*.
1166 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1167 struct bio
*bio
, gfp_t gfp_mask
)
1169 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1171 struct request_list
*rl
;
1174 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1176 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1180 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1185 /* wait on @rl and retry */
1186 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1187 TASK_UNINTERRUPTIBLE
);
1189 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1191 spin_unlock_irq(q
->queue_lock
);
1195 * After sleeping, we become a "batching" process and will be able
1196 * to allocate at least one request, and up to a big batch of them
1197 * for a small period time. See ioc_batching, ioc_set_batching
1199 ioc_set_batching(q
, current
->io_context
);
1201 spin_lock_irq(q
->queue_lock
);
1202 finish_wait(&rl
->wait
[is_sync
], &wait
);
1207 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1212 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1214 /* create ioc upfront */
1215 create_io_context(gfp_mask
, q
->node
);
1217 spin_lock_irq(q
->queue_lock
);
1218 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1220 spin_unlock_irq(q
->queue_lock
);
1221 /* q->queue_lock is unlocked at this point */
1226 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1229 return blk_mq_alloc_request(q
, rw
, gfp_mask
, false);
1231 return blk_old_get_request(q
, rw
, gfp_mask
);
1233 EXPORT_SYMBOL(blk_get_request
);
1236 * blk_make_request - given a bio, allocate a corresponding struct request.
1237 * @q: target request queue
1238 * @bio: The bio describing the memory mappings that will be submitted for IO.
1239 * It may be a chained-bio properly constructed by block/bio layer.
1240 * @gfp_mask: gfp flags to be used for memory allocation
1242 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1243 * type commands. Where the struct request needs to be farther initialized by
1244 * the caller. It is passed a &struct bio, which describes the memory info of
1247 * The caller of blk_make_request must make sure that bi_io_vec
1248 * are set to describe the memory buffers. That bio_data_dir() will return
1249 * the needed direction of the request. (And all bio's in the passed bio-chain
1250 * are properly set accordingly)
1252 * If called under none-sleepable conditions, mapped bio buffers must not
1253 * need bouncing, by calling the appropriate masked or flagged allocator,
1254 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1257 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1258 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1259 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1260 * completion of a bio that hasn't been submitted yet, thus resulting in a
1261 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1262 * of bio_alloc(), as that avoids the mempool deadlock.
1263 * If possible a big IO should be split into smaller parts when allocation
1264 * fails. Partial allocation should not be an error, or you risk a live-lock.
1266 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1269 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1274 blk_rq_set_block_pc(rq
);
1277 struct bio
*bounce_bio
= bio
;
1280 blk_queue_bounce(q
, &bounce_bio
);
1281 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1282 if (unlikely(ret
)) {
1283 blk_put_request(rq
);
1284 return ERR_PTR(ret
);
1290 EXPORT_SYMBOL(blk_make_request
);
1293 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1294 * @rq: request to be initialized
1297 void blk_rq_set_block_pc(struct request
*rq
)
1299 rq
->cmd_type
= REQ_TYPE_BLOCK_PC
;
1301 rq
->__sector
= (sector_t
) -1;
1302 rq
->bio
= rq
->biotail
= NULL
;
1303 memset(rq
->__cmd
, 0, sizeof(rq
->__cmd
));
1305 EXPORT_SYMBOL(blk_rq_set_block_pc
);
1308 * blk_requeue_request - put a request back on queue
1309 * @q: request queue where request should be inserted
1310 * @rq: request to be inserted
1313 * Drivers often keep queueing requests until the hardware cannot accept
1314 * more, when that condition happens we need to put the request back
1315 * on the queue. Must be called with queue lock held.
1317 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1319 blk_delete_timer(rq
);
1320 blk_clear_rq_complete(rq
);
1321 trace_block_rq_requeue(q
, rq
);
1323 if (rq
->cmd_flags
& REQ_QUEUED
)
1324 blk_queue_end_tag(q
, rq
);
1326 BUG_ON(blk_queued_rq(rq
));
1328 elv_requeue_request(q
, rq
);
1330 EXPORT_SYMBOL(blk_requeue_request
);
1332 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1335 blk_account_io_start(rq
, true);
1336 __elv_add_request(q
, rq
, where
);
1339 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1344 if (now
== part
->stamp
)
1347 inflight
= part_in_flight(part
);
1349 __part_stat_add(cpu
, part
, time_in_queue
,
1350 inflight
* (now
- part
->stamp
));
1351 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1357 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1358 * @cpu: cpu number for stats access
1359 * @part: target partition
1361 * The average IO queue length and utilisation statistics are maintained
1362 * by observing the current state of the queue length and the amount of
1363 * time it has been in this state for.
1365 * Normally, that accounting is done on IO completion, but that can result
1366 * in more than a second's worth of IO being accounted for within any one
1367 * second, leading to >100% utilisation. To deal with that, we call this
1368 * function to do a round-off before returning the results when reading
1369 * /proc/diskstats. This accounts immediately for all queue usage up to
1370 * the current jiffies and restarts the counters again.
1372 void part_round_stats(int cpu
, struct hd_struct
*part
)
1374 unsigned long now
= jiffies
;
1377 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1378 part_round_stats_single(cpu
, part
, now
);
1380 EXPORT_SYMBOL_GPL(part_round_stats
);
1383 static void blk_pm_put_request(struct request
*rq
)
1385 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1386 pm_runtime_mark_last_busy(rq
->q
->dev
);
1389 static inline void blk_pm_put_request(struct request
*rq
) {}
1393 * queue lock must be held
1395 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1401 blk_mq_free_request(req
);
1405 blk_pm_put_request(req
);
1407 elv_completed_request(q
, req
);
1409 /* this is a bio leak */
1410 WARN_ON(req
->bio
!= NULL
);
1413 * Request may not have originated from ll_rw_blk. if not,
1414 * it didn't come out of our reserved rq pools
1416 if (req
->cmd_flags
& REQ_ALLOCED
) {
1417 unsigned int flags
= req
->cmd_flags
;
1418 struct request_list
*rl
= blk_rq_rl(req
);
1420 BUG_ON(!list_empty(&req
->queuelist
));
1421 BUG_ON(ELV_ON_HASH(req
));
1423 blk_free_request(rl
, req
);
1424 freed_request(rl
, flags
);
1428 EXPORT_SYMBOL_GPL(__blk_put_request
);
1430 void blk_put_request(struct request
*req
)
1432 struct request_queue
*q
= req
->q
;
1435 blk_mq_free_request(req
);
1437 unsigned long flags
;
1439 spin_lock_irqsave(q
->queue_lock
, flags
);
1440 __blk_put_request(q
, req
);
1441 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1444 EXPORT_SYMBOL(blk_put_request
);
1447 * blk_add_request_payload - add a payload to a request
1448 * @rq: request to update
1449 * @page: page backing the payload
1450 * @len: length of the payload.
1452 * This allows to later add a payload to an already submitted request by
1453 * a block driver. The driver needs to take care of freeing the payload
1456 * Note that this is a quite horrible hack and nothing but handling of
1457 * discard requests should ever use it.
1459 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1462 struct bio
*bio
= rq
->bio
;
1464 bio
->bi_io_vec
->bv_page
= page
;
1465 bio
->bi_io_vec
->bv_offset
= 0;
1466 bio
->bi_io_vec
->bv_len
= len
;
1468 bio
->bi_iter
.bi_size
= len
;
1470 bio
->bi_phys_segments
= 1;
1472 rq
->__data_len
= rq
->resid_len
= len
;
1473 rq
->nr_phys_segments
= 1;
1475 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1477 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1480 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1482 if (!ll_back_merge_fn(q
, req
, bio
))
1485 trace_block_bio_backmerge(q
, req
, bio
);
1487 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1488 blk_rq_set_mixed_merge(req
);
1490 req
->biotail
->bi_next
= bio
;
1492 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1493 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1495 blk_account_io_start(req
, false);
1499 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1502 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1504 if (!ll_front_merge_fn(q
, req
, bio
))
1507 trace_block_bio_frontmerge(q
, req
, bio
);
1509 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1510 blk_rq_set_mixed_merge(req
);
1512 bio
->bi_next
= req
->bio
;
1515 req
->__sector
= bio
->bi_iter
.bi_sector
;
1516 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1517 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1519 blk_account_io_start(req
, false);
1524 * blk_attempt_plug_merge - try to merge with %current's plugged list
1525 * @q: request_queue new bio is being queued at
1526 * @bio: new bio being queued
1527 * @request_count: out parameter for number of traversed plugged requests
1529 * Determine whether @bio being queued on @q can be merged with a request
1530 * on %current's plugged list. Returns %true if merge was successful,
1533 * Plugging coalesces IOs from the same issuer for the same purpose without
1534 * going through @q->queue_lock. As such it's more of an issuing mechanism
1535 * than scheduling, and the request, while may have elvpriv data, is not
1536 * added on the elevator at this point. In addition, we don't have
1537 * reliable access to the elevator outside queue lock. Only check basic
1538 * merging parameters without querying the elevator.
1540 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1542 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1543 unsigned int *request_count
,
1544 struct request
**same_queue_rq
)
1546 struct blk_plug
*plug
;
1549 struct list_head
*plug_list
;
1551 plug
= current
->plug
;
1557 plug_list
= &plug
->mq_list
;
1559 plug_list
= &plug
->list
;
1561 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1567 * Only blk-mq multiple hardware queues case checks the
1568 * rq in the same queue, there should be only one such
1572 *same_queue_rq
= rq
;
1575 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1578 el_ret
= blk_try_merge(rq
, bio
);
1579 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1580 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1583 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1584 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1593 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1595 req
->cmd_type
= REQ_TYPE_FS
;
1597 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1598 if (bio
->bi_rw
& REQ_RAHEAD
)
1599 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1602 req
->__sector
= bio
->bi_iter
.bi_sector
;
1603 req
->ioprio
= bio_prio(bio
);
1604 blk_rq_bio_prep(req
->q
, req
, bio
);
1607 static void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1609 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1610 struct blk_plug
*plug
;
1611 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1612 struct request
*req
;
1613 unsigned int request_count
= 0;
1616 * low level driver can indicate that it wants pages above a
1617 * certain limit bounced to low memory (ie for highmem, or even
1618 * ISA dma in theory)
1620 blk_queue_bounce(q
, &bio
);
1622 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1623 bio_endio(bio
, -EIO
);
1627 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1628 spin_lock_irq(q
->queue_lock
);
1629 where
= ELEVATOR_INSERT_FLUSH
;
1634 * Check if we can merge with the plugged list before grabbing
1637 if (!blk_queue_nomerges(q
) &&
1638 blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1641 spin_lock_irq(q
->queue_lock
);
1643 el_ret
= elv_merge(q
, &req
, bio
);
1644 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1645 if (bio_attempt_back_merge(q
, req
, bio
)) {
1646 elv_bio_merged(q
, req
, bio
);
1647 if (!attempt_back_merge(q
, req
))
1648 elv_merged_request(q
, req
, el_ret
);
1651 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1652 if (bio_attempt_front_merge(q
, req
, bio
)) {
1653 elv_bio_merged(q
, req
, bio
);
1654 if (!attempt_front_merge(q
, req
))
1655 elv_merged_request(q
, req
, el_ret
);
1662 * This sync check and mask will be re-done in init_request_from_bio(),
1663 * but we need to set it earlier to expose the sync flag to the
1664 * rq allocator and io schedulers.
1666 rw_flags
= bio_data_dir(bio
);
1668 rw_flags
|= REQ_SYNC
;
1671 * Grab a free request. This is might sleep but can not fail.
1672 * Returns with the queue unlocked.
1674 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1676 bio_endio(bio
, PTR_ERR(req
)); /* @q is dead */
1681 * After dropping the lock and possibly sleeping here, our request
1682 * may now be mergeable after it had proven unmergeable (above).
1683 * We don't worry about that case for efficiency. It won't happen
1684 * often, and the elevators are able to handle it.
1686 init_request_from_bio(req
, bio
);
1688 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1689 req
->cpu
= raw_smp_processor_id();
1691 plug
= current
->plug
;
1694 * If this is the first request added after a plug, fire
1698 trace_block_plug(q
);
1700 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1701 blk_flush_plug_list(plug
, false);
1702 trace_block_plug(q
);
1705 list_add_tail(&req
->queuelist
, &plug
->list
);
1706 blk_account_io_start(req
, true);
1708 spin_lock_irq(q
->queue_lock
);
1709 add_acct_request(q
, req
, where
);
1712 spin_unlock_irq(q
->queue_lock
);
1717 * If bio->bi_dev is a partition, remap the location
1719 static inline void blk_partition_remap(struct bio
*bio
)
1721 struct block_device
*bdev
= bio
->bi_bdev
;
1723 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1724 struct hd_struct
*p
= bdev
->bd_part
;
1726 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1727 bio
->bi_bdev
= bdev
->bd_contains
;
1729 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1731 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1735 static void handle_bad_sector(struct bio
*bio
)
1737 char b
[BDEVNAME_SIZE
];
1739 printk(KERN_INFO
"attempt to access beyond end of device\n");
1740 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1741 bdevname(bio
->bi_bdev
, b
),
1743 (unsigned long long)bio_end_sector(bio
),
1744 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1747 #ifdef CONFIG_FAIL_MAKE_REQUEST
1749 static DECLARE_FAULT_ATTR(fail_make_request
);
1751 static int __init
setup_fail_make_request(char *str
)
1753 return setup_fault_attr(&fail_make_request
, str
);
1755 __setup("fail_make_request=", setup_fail_make_request
);
1757 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1759 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1762 static int __init
fail_make_request_debugfs(void)
1764 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1765 NULL
, &fail_make_request
);
1767 return PTR_ERR_OR_ZERO(dir
);
1770 late_initcall(fail_make_request_debugfs
);
1772 #else /* CONFIG_FAIL_MAKE_REQUEST */
1774 static inline bool should_fail_request(struct hd_struct
*part
,
1780 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1783 * Check whether this bio extends beyond the end of the device.
1785 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1792 /* Test device or partition size, when known. */
1793 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1795 sector_t sector
= bio
->bi_iter
.bi_sector
;
1797 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1799 * This may well happen - the kernel calls bread()
1800 * without checking the size of the device, e.g., when
1801 * mounting a device.
1803 handle_bad_sector(bio
);
1811 static noinline_for_stack
bool
1812 generic_make_request_checks(struct bio
*bio
)
1814 struct request_queue
*q
;
1815 int nr_sectors
= bio_sectors(bio
);
1817 char b
[BDEVNAME_SIZE
];
1818 struct hd_struct
*part
;
1822 if (bio_check_eod(bio
, nr_sectors
))
1825 q
= bdev_get_queue(bio
->bi_bdev
);
1828 "generic_make_request: Trying to access "
1829 "nonexistent block-device %s (%Lu)\n",
1830 bdevname(bio
->bi_bdev
, b
),
1831 (long long) bio
->bi_iter
.bi_sector
);
1835 if (likely(bio_is_rw(bio
) &&
1836 nr_sectors
> queue_max_hw_sectors(q
))) {
1837 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1838 bdevname(bio
->bi_bdev
, b
),
1840 queue_max_hw_sectors(q
));
1844 part
= bio
->bi_bdev
->bd_part
;
1845 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1846 should_fail_request(&part_to_disk(part
)->part0
,
1847 bio
->bi_iter
.bi_size
))
1851 * If this device has partitions, remap block n
1852 * of partition p to block n+start(p) of the disk.
1854 blk_partition_remap(bio
);
1856 if (bio_check_eod(bio
, nr_sectors
))
1860 * Filter flush bio's early so that make_request based
1861 * drivers without flush support don't have to worry
1864 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1865 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1872 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1873 (!blk_queue_discard(q
) ||
1874 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1879 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1885 * Various block parts want %current->io_context and lazy ioc
1886 * allocation ends up trading a lot of pain for a small amount of
1887 * memory. Just allocate it upfront. This may fail and block
1888 * layer knows how to live with it.
1890 create_io_context(GFP_ATOMIC
, q
->node
);
1892 if (blk_throtl_bio(q
, bio
))
1893 return false; /* throttled, will be resubmitted later */
1895 trace_block_bio_queue(q
, bio
);
1899 bio_endio(bio
, err
);
1904 * generic_make_request - hand a buffer to its device driver for I/O
1905 * @bio: The bio describing the location in memory and on the device.
1907 * generic_make_request() is used to make I/O requests of block
1908 * devices. It is passed a &struct bio, which describes the I/O that needs
1911 * generic_make_request() does not return any status. The
1912 * success/failure status of the request, along with notification of
1913 * completion, is delivered asynchronously through the bio->bi_end_io
1914 * function described (one day) else where.
1916 * The caller of generic_make_request must make sure that bi_io_vec
1917 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1918 * set to describe the device address, and the
1919 * bi_end_io and optionally bi_private are set to describe how
1920 * completion notification should be signaled.
1922 * generic_make_request and the drivers it calls may use bi_next if this
1923 * bio happens to be merged with someone else, and may resubmit the bio to
1924 * a lower device by calling into generic_make_request recursively, which
1925 * means the bio should NOT be touched after the call to ->make_request_fn.
1927 void generic_make_request(struct bio
*bio
)
1929 struct bio_list bio_list_on_stack
;
1931 if (!generic_make_request_checks(bio
))
1935 * We only want one ->make_request_fn to be active at a time, else
1936 * stack usage with stacked devices could be a problem. So use
1937 * current->bio_list to keep a list of requests submited by a
1938 * make_request_fn function. current->bio_list is also used as a
1939 * flag to say if generic_make_request is currently active in this
1940 * task or not. If it is NULL, then no make_request is active. If
1941 * it is non-NULL, then a make_request is active, and new requests
1942 * should be added at the tail
1944 if (current
->bio_list
) {
1945 bio_list_add(current
->bio_list
, bio
);
1949 /* following loop may be a bit non-obvious, and so deserves some
1951 * Before entering the loop, bio->bi_next is NULL (as all callers
1952 * ensure that) so we have a list with a single bio.
1953 * We pretend that we have just taken it off a longer list, so
1954 * we assign bio_list to a pointer to the bio_list_on_stack,
1955 * thus initialising the bio_list of new bios to be
1956 * added. ->make_request() may indeed add some more bios
1957 * through a recursive call to generic_make_request. If it
1958 * did, we find a non-NULL value in bio_list and re-enter the loop
1959 * from the top. In this case we really did just take the bio
1960 * of the top of the list (no pretending) and so remove it from
1961 * bio_list, and call into ->make_request() again.
1963 BUG_ON(bio
->bi_next
);
1964 bio_list_init(&bio_list_on_stack
);
1965 current
->bio_list
= &bio_list_on_stack
;
1967 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1969 q
->make_request_fn(q
, bio
);
1971 bio
= bio_list_pop(current
->bio_list
);
1973 current
->bio_list
= NULL
; /* deactivate */
1975 EXPORT_SYMBOL(generic_make_request
);
1978 * submit_bio - submit a bio to the block device layer for I/O
1979 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1980 * @bio: The &struct bio which describes the I/O
1982 * submit_bio() is very similar in purpose to generic_make_request(), and
1983 * uses that function to do most of the work. Both are fairly rough
1984 * interfaces; @bio must be presetup and ready for I/O.
1987 void submit_bio(int rw
, struct bio
*bio
)
1992 * If it's a regular read/write or a barrier with data attached,
1993 * go through the normal accounting stuff before submission.
1995 if (bio_has_data(bio
)) {
1998 if (unlikely(rw
& REQ_WRITE_SAME
))
1999 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
2001 count
= bio_sectors(bio
);
2004 count_vm_events(PGPGOUT
, count
);
2006 task_io_account_read(bio
->bi_iter
.bi_size
);
2007 count_vm_events(PGPGIN
, count
);
2010 if (unlikely(block_dump
)) {
2011 char b
[BDEVNAME_SIZE
];
2012 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2013 current
->comm
, task_pid_nr(current
),
2014 (rw
& WRITE
) ? "WRITE" : "READ",
2015 (unsigned long long)bio
->bi_iter
.bi_sector
,
2016 bdevname(bio
->bi_bdev
, b
),
2021 generic_make_request(bio
);
2023 EXPORT_SYMBOL(submit_bio
);
2026 * blk_rq_check_limits - Helper function to check a request for the queue limit
2028 * @rq: the request being checked
2031 * @rq may have been made based on weaker limitations of upper-level queues
2032 * in request stacking drivers, and it may violate the limitation of @q.
2033 * Since the block layer and the underlying device driver trust @rq
2034 * after it is inserted to @q, it should be checked against @q before
2035 * the insertion using this generic function.
2037 * This function should also be useful for request stacking drivers
2038 * in some cases below, so export this function.
2039 * Request stacking drivers like request-based dm may change the queue
2040 * limits while requests are in the queue (e.g. dm's table swapping).
2041 * Such request stacking drivers should check those requests against
2042 * the new queue limits again when they dispatch those requests,
2043 * although such checkings are also done against the old queue limits
2044 * when submitting requests.
2046 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
2048 if (!rq_mergeable(rq
))
2051 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
2052 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2057 * queue's settings related to segment counting like q->bounce_pfn
2058 * may differ from that of other stacking queues.
2059 * Recalculate it to check the request correctly on this queue's
2062 blk_recalc_rq_segments(rq
);
2063 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2064 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2070 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
2073 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2074 * @q: the queue to submit the request
2075 * @rq: the request being queued
2077 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2079 unsigned long flags
;
2080 int where
= ELEVATOR_INSERT_BACK
;
2082 if (blk_rq_check_limits(q
, rq
))
2086 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2090 if (blk_queue_io_stat(q
))
2091 blk_account_io_start(rq
, true);
2092 blk_mq_insert_request(rq
, false, true, true);
2096 spin_lock_irqsave(q
->queue_lock
, flags
);
2097 if (unlikely(blk_queue_dying(q
))) {
2098 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2103 * Submitting request must be dequeued before calling this function
2104 * because it will be linked to another request_queue
2106 BUG_ON(blk_queued_rq(rq
));
2108 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
2109 where
= ELEVATOR_INSERT_FLUSH
;
2111 add_acct_request(q
, rq
, where
);
2112 if (where
== ELEVATOR_INSERT_FLUSH
)
2114 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2118 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2121 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2122 * @rq: request to examine
2125 * A request could be merge of IOs which require different failure
2126 * handling. This function determines the number of bytes which
2127 * can be failed from the beginning of the request without
2128 * crossing into area which need to be retried further.
2131 * The number of bytes to fail.
2134 * queue_lock must be held.
2136 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2138 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2139 unsigned int bytes
= 0;
2142 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2143 return blk_rq_bytes(rq
);
2146 * Currently the only 'mixing' which can happen is between
2147 * different fastfail types. We can safely fail portions
2148 * which have all the failfast bits that the first one has -
2149 * the ones which are at least as eager to fail as the first
2152 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2153 if ((bio
->bi_rw
& ff
) != ff
)
2155 bytes
+= bio
->bi_iter
.bi_size
;
2158 /* this could lead to infinite loop */
2159 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2162 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2164 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2166 if (blk_do_io_stat(req
)) {
2167 const int rw
= rq_data_dir(req
);
2168 struct hd_struct
*part
;
2171 cpu
= part_stat_lock();
2173 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2178 void blk_account_io_done(struct request
*req
)
2181 * Account IO completion. flush_rq isn't accounted as a
2182 * normal IO on queueing nor completion. Accounting the
2183 * containing request is enough.
2185 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2186 unsigned long duration
= jiffies
- req
->start_time
;
2187 const int rw
= rq_data_dir(req
);
2188 struct hd_struct
*part
;
2191 cpu
= part_stat_lock();
2194 part_stat_inc(cpu
, part
, ios
[rw
]);
2195 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2196 part_round_stats(cpu
, part
);
2197 part_dec_in_flight(part
, rw
);
2199 hd_struct_put(part
);
2206 * Don't process normal requests when queue is suspended
2207 * or in the process of suspending/resuming
2209 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2212 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2213 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2219 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2226 void blk_account_io_start(struct request
*rq
, bool new_io
)
2228 struct hd_struct
*part
;
2229 int rw
= rq_data_dir(rq
);
2232 if (!blk_do_io_stat(rq
))
2235 cpu
= part_stat_lock();
2239 part_stat_inc(cpu
, part
, merges
[rw
]);
2241 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2242 if (!hd_struct_try_get(part
)) {
2244 * The partition is already being removed,
2245 * the request will be accounted on the disk only
2247 * We take a reference on disk->part0 although that
2248 * partition will never be deleted, so we can treat
2249 * it as any other partition.
2251 part
= &rq
->rq_disk
->part0
;
2252 hd_struct_get(part
);
2254 part_round_stats(cpu
, part
);
2255 part_inc_in_flight(part
, rw
);
2263 * blk_peek_request - peek at the top of a request queue
2264 * @q: request queue to peek at
2267 * Return the request at the top of @q. The returned request
2268 * should be started using blk_start_request() before LLD starts
2272 * Pointer to the request at the top of @q if available. Null
2276 * queue_lock must be held.
2278 struct request
*blk_peek_request(struct request_queue
*q
)
2283 while ((rq
= __elv_next_request(q
)) != NULL
) {
2285 rq
= blk_pm_peek_request(q
, rq
);
2289 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2291 * This is the first time the device driver
2292 * sees this request (possibly after
2293 * requeueing). Notify IO scheduler.
2295 if (rq
->cmd_flags
& REQ_SORTED
)
2296 elv_activate_rq(q
, rq
);
2299 * just mark as started even if we don't start
2300 * it, a request that has been delayed should
2301 * not be passed by new incoming requests
2303 rq
->cmd_flags
|= REQ_STARTED
;
2304 trace_block_rq_issue(q
, rq
);
2307 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2308 q
->end_sector
= rq_end_sector(rq
);
2309 q
->boundary_rq
= NULL
;
2312 if (rq
->cmd_flags
& REQ_DONTPREP
)
2315 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2317 * make sure space for the drain appears we
2318 * know we can do this because max_hw_segments
2319 * has been adjusted to be one fewer than the
2322 rq
->nr_phys_segments
++;
2328 ret
= q
->prep_rq_fn(q
, rq
);
2329 if (ret
== BLKPREP_OK
) {
2331 } else if (ret
== BLKPREP_DEFER
) {
2333 * the request may have been (partially) prepped.
2334 * we need to keep this request in the front to
2335 * avoid resource deadlock. REQ_STARTED will
2336 * prevent other fs requests from passing this one.
2338 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2339 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2341 * remove the space for the drain we added
2342 * so that we don't add it again
2344 --rq
->nr_phys_segments
;
2349 } else if (ret
== BLKPREP_KILL
) {
2350 rq
->cmd_flags
|= REQ_QUIET
;
2352 * Mark this request as started so we don't trigger
2353 * any debug logic in the end I/O path.
2355 blk_start_request(rq
);
2356 __blk_end_request_all(rq
, -EIO
);
2358 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2365 EXPORT_SYMBOL(blk_peek_request
);
2367 void blk_dequeue_request(struct request
*rq
)
2369 struct request_queue
*q
= rq
->q
;
2371 BUG_ON(list_empty(&rq
->queuelist
));
2372 BUG_ON(ELV_ON_HASH(rq
));
2374 list_del_init(&rq
->queuelist
);
2377 * the time frame between a request being removed from the lists
2378 * and to it is freed is accounted as io that is in progress at
2381 if (blk_account_rq(rq
)) {
2382 q
->in_flight
[rq_is_sync(rq
)]++;
2383 set_io_start_time_ns(rq
);
2388 * blk_start_request - start request processing on the driver
2389 * @req: request to dequeue
2392 * Dequeue @req and start timeout timer on it. This hands off the
2393 * request to the driver.
2395 * Block internal functions which don't want to start timer should
2396 * call blk_dequeue_request().
2399 * queue_lock must be held.
2401 void blk_start_request(struct request
*req
)
2403 blk_dequeue_request(req
);
2406 * We are now handing the request to the hardware, initialize
2407 * resid_len to full count and add the timeout handler.
2409 req
->resid_len
= blk_rq_bytes(req
);
2410 if (unlikely(blk_bidi_rq(req
)))
2411 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2413 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2416 EXPORT_SYMBOL(blk_start_request
);
2419 * blk_fetch_request - fetch a request from a request queue
2420 * @q: request queue to fetch a request from
2423 * Return the request at the top of @q. The request is started on
2424 * return and LLD can start processing it immediately.
2427 * Pointer to the request at the top of @q if available. Null
2431 * queue_lock must be held.
2433 struct request
*blk_fetch_request(struct request_queue
*q
)
2437 rq
= blk_peek_request(q
);
2439 blk_start_request(rq
);
2442 EXPORT_SYMBOL(blk_fetch_request
);
2445 * blk_update_request - Special helper function for request stacking drivers
2446 * @req: the request being processed
2447 * @error: %0 for success, < %0 for error
2448 * @nr_bytes: number of bytes to complete @req
2451 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2452 * the request structure even if @req doesn't have leftover.
2453 * If @req has leftover, sets it up for the next range of segments.
2455 * This special helper function is only for request stacking drivers
2456 * (e.g. request-based dm) so that they can handle partial completion.
2457 * Actual device drivers should use blk_end_request instead.
2459 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2460 * %false return from this function.
2463 * %false - this request doesn't have any more data
2464 * %true - this request has more data
2466 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2470 trace_block_rq_complete(req
->q
, req
, nr_bytes
);
2476 * For fs requests, rq is just carrier of independent bio's
2477 * and each partial completion should be handled separately.
2478 * Reset per-request error on each partial completion.
2480 * TODO: tj: This is too subtle. It would be better to let
2481 * low level drivers do what they see fit.
2483 if (req
->cmd_type
== REQ_TYPE_FS
)
2486 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2487 !(req
->cmd_flags
& REQ_QUIET
)) {
2492 error_type
= "recoverable transport";
2495 error_type
= "critical target";
2498 error_type
= "critical nexus";
2501 error_type
= "timeout";
2504 error_type
= "critical space allocation";
2507 error_type
= "critical medium";
2514 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
2515 __func__
, error_type
, req
->rq_disk
?
2516 req
->rq_disk
->disk_name
: "?",
2517 (unsigned long long)blk_rq_pos(req
));
2521 blk_account_io_completion(req
, nr_bytes
);
2525 struct bio
*bio
= req
->bio
;
2526 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2528 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2529 req
->bio
= bio
->bi_next
;
2531 req_bio_endio(req
, bio
, bio_bytes
, error
);
2533 total_bytes
+= bio_bytes
;
2534 nr_bytes
-= bio_bytes
;
2545 * Reset counters so that the request stacking driver
2546 * can find how many bytes remain in the request
2549 req
->__data_len
= 0;
2553 req
->__data_len
-= total_bytes
;
2555 /* update sector only for requests with clear definition of sector */
2556 if (req
->cmd_type
== REQ_TYPE_FS
)
2557 req
->__sector
+= total_bytes
>> 9;
2559 /* mixed attributes always follow the first bio */
2560 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2561 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2562 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2566 * If total number of sectors is less than the first segment
2567 * size, something has gone terribly wrong.
2569 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2570 blk_dump_rq_flags(req
, "request botched");
2571 req
->__data_len
= blk_rq_cur_bytes(req
);
2574 /* recalculate the number of segments */
2575 blk_recalc_rq_segments(req
);
2579 EXPORT_SYMBOL_GPL(blk_update_request
);
2581 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2582 unsigned int nr_bytes
,
2583 unsigned int bidi_bytes
)
2585 if (blk_update_request(rq
, error
, nr_bytes
))
2588 /* Bidi request must be completed as a whole */
2589 if (unlikely(blk_bidi_rq(rq
)) &&
2590 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2593 if (blk_queue_add_random(rq
->q
))
2594 add_disk_randomness(rq
->rq_disk
);
2600 * blk_unprep_request - unprepare a request
2603 * This function makes a request ready for complete resubmission (or
2604 * completion). It happens only after all error handling is complete,
2605 * so represents the appropriate moment to deallocate any resources
2606 * that were allocated to the request in the prep_rq_fn. The queue
2607 * lock is held when calling this.
2609 void blk_unprep_request(struct request
*req
)
2611 struct request_queue
*q
= req
->q
;
2613 req
->cmd_flags
&= ~REQ_DONTPREP
;
2614 if (q
->unprep_rq_fn
)
2615 q
->unprep_rq_fn(q
, req
);
2617 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2620 * queue lock must be held
2622 void blk_finish_request(struct request
*req
, int error
)
2624 if (req
->cmd_flags
& REQ_QUEUED
)
2625 blk_queue_end_tag(req
->q
, req
);
2627 BUG_ON(blk_queued_rq(req
));
2629 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2630 laptop_io_completion(&req
->q
->backing_dev_info
);
2632 blk_delete_timer(req
);
2634 if (req
->cmd_flags
& REQ_DONTPREP
)
2635 blk_unprep_request(req
);
2637 blk_account_io_done(req
);
2640 req
->end_io(req
, error
);
2642 if (blk_bidi_rq(req
))
2643 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2645 __blk_put_request(req
->q
, req
);
2648 EXPORT_SYMBOL(blk_finish_request
);
2651 * blk_end_bidi_request - Complete a bidi request
2652 * @rq: the request to complete
2653 * @error: %0 for success, < %0 for error
2654 * @nr_bytes: number of bytes to complete @rq
2655 * @bidi_bytes: number of bytes to complete @rq->next_rq
2658 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2659 * Drivers that supports bidi can safely call this member for any
2660 * type of request, bidi or uni. In the later case @bidi_bytes is
2664 * %false - we are done with this request
2665 * %true - still buffers pending for this request
2667 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2668 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2670 struct request_queue
*q
= rq
->q
;
2671 unsigned long flags
;
2673 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2676 spin_lock_irqsave(q
->queue_lock
, flags
);
2677 blk_finish_request(rq
, error
);
2678 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2684 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2685 * @rq: the request to complete
2686 * @error: %0 for success, < %0 for error
2687 * @nr_bytes: number of bytes to complete @rq
2688 * @bidi_bytes: number of bytes to complete @rq->next_rq
2691 * Identical to blk_end_bidi_request() except that queue lock is
2692 * assumed to be locked on entry and remains so on return.
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2698 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2699 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2701 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2704 blk_finish_request(rq
, error
);
2710 * blk_end_request - Helper function for drivers to complete the request.
2711 * @rq: the request being processed
2712 * @error: %0 for success, < %0 for error
2713 * @nr_bytes: number of bytes to complete
2716 * Ends I/O on a number of bytes attached to @rq.
2717 * If @rq has leftover, sets it up for the next range of segments.
2720 * %false - we are done with this request
2721 * %true - still buffers pending for this request
2723 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2725 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2727 EXPORT_SYMBOL(blk_end_request
);
2730 * blk_end_request_all - Helper function for drives to finish the request.
2731 * @rq: the request to finish
2732 * @error: %0 for success, < %0 for error
2735 * Completely finish @rq.
2737 void blk_end_request_all(struct request
*rq
, int error
)
2740 unsigned int bidi_bytes
= 0;
2742 if (unlikely(blk_bidi_rq(rq
)))
2743 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2745 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2748 EXPORT_SYMBOL(blk_end_request_all
);
2751 * blk_end_request_cur - Helper function to finish the current request chunk.
2752 * @rq: the request to finish the current chunk for
2753 * @error: %0 for success, < %0 for error
2756 * Complete the current consecutively mapped chunk from @rq.
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
2762 bool blk_end_request_cur(struct request
*rq
, int error
)
2764 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2766 EXPORT_SYMBOL(blk_end_request_cur
);
2769 * blk_end_request_err - Finish a request till the next failure boundary.
2770 * @rq: the request to finish till the next failure boundary for
2771 * @error: must be negative errno
2774 * Complete @rq till the next failure boundary.
2777 * %false - we are done with this request
2778 * %true - still buffers pending for this request
2780 bool blk_end_request_err(struct request
*rq
, int error
)
2782 WARN_ON(error
>= 0);
2783 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2785 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2788 * __blk_end_request - Helper function for drivers to complete the request.
2789 * @rq: the request being processed
2790 * @error: %0 for success, < %0 for error
2791 * @nr_bytes: number of bytes to complete
2794 * Must be called with queue lock held unlike blk_end_request().
2797 * %false - we are done with this request
2798 * %true - still buffers pending for this request
2800 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2802 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2804 EXPORT_SYMBOL(__blk_end_request
);
2807 * __blk_end_request_all - Helper function for drives to finish the request.
2808 * @rq: the request to finish
2809 * @error: %0 for success, < %0 for error
2812 * Completely finish @rq. Must be called with queue lock held.
2814 void __blk_end_request_all(struct request
*rq
, int error
)
2817 unsigned int bidi_bytes
= 0;
2819 if (unlikely(blk_bidi_rq(rq
)))
2820 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2822 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2825 EXPORT_SYMBOL(__blk_end_request_all
);
2828 * __blk_end_request_cur - Helper function to finish the current request chunk.
2829 * @rq: the request to finish the current chunk for
2830 * @error: %0 for success, < %0 for error
2833 * Complete the current consecutively mapped chunk from @rq. Must
2834 * be called with queue lock held.
2837 * %false - we are done with this request
2838 * %true - still buffers pending for this request
2840 bool __blk_end_request_cur(struct request
*rq
, int error
)
2842 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2844 EXPORT_SYMBOL(__blk_end_request_cur
);
2847 * __blk_end_request_err - Finish a request till the next failure boundary.
2848 * @rq: the request to finish till the next failure boundary for
2849 * @error: must be negative errno
2852 * Complete @rq till the next failure boundary. Must be called
2853 * with queue lock held.
2856 * %false - we are done with this request
2857 * %true - still buffers pending for this request
2859 bool __blk_end_request_err(struct request
*rq
, int error
)
2861 WARN_ON(error
>= 0);
2862 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2864 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2866 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2869 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2870 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2872 if (bio_has_data(bio
))
2873 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2875 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2876 rq
->bio
= rq
->biotail
= bio
;
2879 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2882 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2884 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2885 * @rq: the request to be flushed
2888 * Flush all pages in @rq.
2890 void rq_flush_dcache_pages(struct request
*rq
)
2892 struct req_iterator iter
;
2893 struct bio_vec bvec
;
2895 rq_for_each_segment(bvec
, rq
, iter
)
2896 flush_dcache_page(bvec
.bv_page
);
2898 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2902 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2903 * @q : the queue of the device being checked
2906 * Check if underlying low-level drivers of a device are busy.
2907 * If the drivers want to export their busy state, they must set own
2908 * exporting function using blk_queue_lld_busy() first.
2910 * Basically, this function is used only by request stacking drivers
2911 * to stop dispatching requests to underlying devices when underlying
2912 * devices are busy. This behavior helps more I/O merging on the queue
2913 * of the request stacking driver and prevents I/O throughput regression
2914 * on burst I/O load.
2917 * 0 - Not busy (The request stacking driver should dispatch request)
2918 * 1 - Busy (The request stacking driver should stop dispatching request)
2920 int blk_lld_busy(struct request_queue
*q
)
2923 return q
->lld_busy_fn(q
);
2927 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2930 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2931 * @rq: the clone request to be cleaned up
2934 * Free all bios in @rq for a cloned request.
2936 void blk_rq_unprep_clone(struct request
*rq
)
2940 while ((bio
= rq
->bio
) != NULL
) {
2941 rq
->bio
= bio
->bi_next
;
2946 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2949 * Copy attributes of the original request to the clone request.
2950 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2952 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2954 dst
->cpu
= src
->cpu
;
2955 dst
->cmd_flags
|= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2956 dst
->cmd_type
= src
->cmd_type
;
2957 dst
->__sector
= blk_rq_pos(src
);
2958 dst
->__data_len
= blk_rq_bytes(src
);
2959 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2960 dst
->ioprio
= src
->ioprio
;
2961 dst
->extra_len
= src
->extra_len
;
2965 * blk_rq_prep_clone - Helper function to setup clone request
2966 * @rq: the request to be setup
2967 * @rq_src: original request to be cloned
2968 * @bs: bio_set that bios for clone are allocated from
2969 * @gfp_mask: memory allocation mask for bio
2970 * @bio_ctr: setup function to be called for each clone bio.
2971 * Returns %0 for success, non %0 for failure.
2972 * @data: private data to be passed to @bio_ctr
2975 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2976 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2977 * are not copied, and copying such parts is the caller's responsibility.
2978 * Also, pages which the original bios are pointing to are not copied
2979 * and the cloned bios just point same pages.
2980 * So cloned bios must be completed before original bios, which means
2981 * the caller must complete @rq before @rq_src.
2983 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2984 struct bio_set
*bs
, gfp_t gfp_mask
,
2985 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2988 struct bio
*bio
, *bio_src
;
2993 __rq_for_each_bio(bio_src
, rq_src
) {
2994 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
2998 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3002 rq
->biotail
->bi_next
= bio
;
3005 rq
->bio
= rq
->biotail
= bio
;
3008 __blk_rq_prep_clone(rq
, rq_src
);
3015 blk_rq_unprep_clone(rq
);
3019 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3021 int kblockd_schedule_work(struct work_struct
*work
)
3023 return queue_work(kblockd_workqueue
, work
);
3025 EXPORT_SYMBOL(kblockd_schedule_work
);
3027 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
3028 unsigned long delay
)
3030 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
3032 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
3034 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3035 unsigned long delay
)
3037 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3039 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
3042 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3043 * @plug: The &struct blk_plug that needs to be initialized
3046 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3047 * pending I/O should the task end up blocking between blk_start_plug() and
3048 * blk_finish_plug(). This is important from a performance perspective, but
3049 * also ensures that we don't deadlock. For instance, if the task is blocking
3050 * for a memory allocation, memory reclaim could end up wanting to free a
3051 * page belonging to that request that is currently residing in our private
3052 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3053 * this kind of deadlock.
3055 void blk_start_plug(struct blk_plug
*plug
)
3057 struct task_struct
*tsk
= current
;
3060 * If this is a nested plug, don't actually assign it.
3065 INIT_LIST_HEAD(&plug
->list
);
3066 INIT_LIST_HEAD(&plug
->mq_list
);
3067 INIT_LIST_HEAD(&plug
->cb_list
);
3069 * Store ordering should not be needed here, since a potential
3070 * preempt will imply a full memory barrier
3074 EXPORT_SYMBOL(blk_start_plug
);
3076 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3078 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3079 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3081 return !(rqa
->q
< rqb
->q
||
3082 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3086 * If 'from_schedule' is true, then postpone the dispatch of requests
3087 * until a safe kblockd context. We due this to avoid accidental big
3088 * additional stack usage in driver dispatch, in places where the originally
3089 * plugger did not intend it.
3091 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3093 __releases(q
->queue_lock
)
3095 trace_block_unplug(q
, depth
, !from_schedule
);
3098 blk_run_queue_async(q
);
3101 spin_unlock(q
->queue_lock
);
3104 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3106 LIST_HEAD(callbacks
);
3108 while (!list_empty(&plug
->cb_list
)) {
3109 list_splice_init(&plug
->cb_list
, &callbacks
);
3111 while (!list_empty(&callbacks
)) {
3112 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3115 list_del(&cb
->list
);
3116 cb
->callback(cb
, from_schedule
);
3121 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3124 struct blk_plug
*plug
= current
->plug
;
3125 struct blk_plug_cb
*cb
;
3130 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3131 if (cb
->callback
== unplug
&& cb
->data
== data
)
3134 /* Not currently on the callback list */
3135 BUG_ON(size
< sizeof(*cb
));
3136 cb
= kzalloc(size
, GFP_ATOMIC
);
3139 cb
->callback
= unplug
;
3140 list_add(&cb
->list
, &plug
->cb_list
);
3144 EXPORT_SYMBOL(blk_check_plugged
);
3146 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3148 struct request_queue
*q
;
3149 unsigned long flags
;
3154 flush_plug_callbacks(plug
, from_schedule
);
3156 if (!list_empty(&plug
->mq_list
))
3157 blk_mq_flush_plug_list(plug
, from_schedule
);
3159 if (list_empty(&plug
->list
))
3162 list_splice_init(&plug
->list
, &list
);
3164 list_sort(NULL
, &list
, plug_rq_cmp
);
3170 * Save and disable interrupts here, to avoid doing it for every
3171 * queue lock we have to take.
3173 local_irq_save(flags
);
3174 while (!list_empty(&list
)) {
3175 rq
= list_entry_rq(list
.next
);
3176 list_del_init(&rq
->queuelist
);
3180 * This drops the queue lock
3183 queue_unplugged(q
, depth
, from_schedule
);
3186 spin_lock(q
->queue_lock
);
3190 * Short-circuit if @q is dead
3192 if (unlikely(blk_queue_dying(q
))) {
3193 __blk_end_request_all(rq
, -ENODEV
);
3198 * rq is already accounted, so use raw insert
3200 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3201 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3203 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3209 * This drops the queue lock
3212 queue_unplugged(q
, depth
, from_schedule
);
3214 local_irq_restore(flags
);
3217 void blk_finish_plug(struct blk_plug
*plug
)
3219 if (plug
!= current
->plug
)
3221 blk_flush_plug_list(plug
, false);
3223 current
->plug
= NULL
;
3225 EXPORT_SYMBOL(blk_finish_plug
);
3229 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3230 * @q: the queue of the device
3231 * @dev: the device the queue belongs to
3234 * Initialize runtime-PM-related fields for @q and start auto suspend for
3235 * @dev. Drivers that want to take advantage of request-based runtime PM
3236 * should call this function after @dev has been initialized, and its
3237 * request queue @q has been allocated, and runtime PM for it can not happen
3238 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3239 * cases, driver should call this function before any I/O has taken place.
3241 * This function takes care of setting up using auto suspend for the device,
3242 * the autosuspend delay is set to -1 to make runtime suspend impossible
3243 * until an updated value is either set by user or by driver. Drivers do
3244 * not need to touch other autosuspend settings.
3246 * The block layer runtime PM is request based, so only works for drivers
3247 * that use request as their IO unit instead of those directly use bio's.
3249 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3252 q
->rpm_status
= RPM_ACTIVE
;
3253 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3254 pm_runtime_use_autosuspend(q
->dev
);
3256 EXPORT_SYMBOL(blk_pm_runtime_init
);
3259 * blk_pre_runtime_suspend - Pre runtime suspend check
3260 * @q: the queue of the device
3263 * This function will check if runtime suspend is allowed for the device
3264 * by examining if there are any requests pending in the queue. If there
3265 * are requests pending, the device can not be runtime suspended; otherwise,
3266 * the queue's status will be updated to SUSPENDING and the driver can
3267 * proceed to suspend the device.
3269 * For the not allowed case, we mark last busy for the device so that
3270 * runtime PM core will try to autosuspend it some time later.
3272 * This function should be called near the start of the device's
3273 * runtime_suspend callback.
3276 * 0 - OK to runtime suspend the device
3277 * -EBUSY - Device should not be runtime suspended
3279 int blk_pre_runtime_suspend(struct request_queue
*q
)
3283 spin_lock_irq(q
->queue_lock
);
3284 if (q
->nr_pending
) {
3286 pm_runtime_mark_last_busy(q
->dev
);
3288 q
->rpm_status
= RPM_SUSPENDING
;
3290 spin_unlock_irq(q
->queue_lock
);
3293 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3296 * blk_post_runtime_suspend - Post runtime suspend processing
3297 * @q: the queue of the device
3298 * @err: return value of the device's runtime_suspend function
3301 * Update the queue's runtime status according to the return value of the
3302 * device's runtime suspend function and mark last busy for the device so
3303 * that PM core will try to auto suspend the device at a later time.
3305 * This function should be called near the end of the device's
3306 * runtime_suspend callback.
3308 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3310 spin_lock_irq(q
->queue_lock
);
3312 q
->rpm_status
= RPM_SUSPENDED
;
3314 q
->rpm_status
= RPM_ACTIVE
;
3315 pm_runtime_mark_last_busy(q
->dev
);
3317 spin_unlock_irq(q
->queue_lock
);
3319 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3322 * blk_pre_runtime_resume - Pre runtime resume processing
3323 * @q: the queue of the device
3326 * Update the queue's runtime status to RESUMING in preparation for the
3327 * runtime resume of the device.
3329 * This function should be called near the start of the device's
3330 * runtime_resume callback.
3332 void blk_pre_runtime_resume(struct request_queue
*q
)
3334 spin_lock_irq(q
->queue_lock
);
3335 q
->rpm_status
= RPM_RESUMING
;
3336 spin_unlock_irq(q
->queue_lock
);
3338 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3341 * blk_post_runtime_resume - Post runtime resume processing
3342 * @q: the queue of the device
3343 * @err: return value of the device's runtime_resume function
3346 * Update the queue's runtime status according to the return value of the
3347 * device's runtime_resume function. If it is successfully resumed, process
3348 * the requests that are queued into the device's queue when it is resuming
3349 * and then mark last busy and initiate autosuspend for it.
3351 * This function should be called near the end of the device's
3352 * runtime_resume callback.
3354 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3356 spin_lock_irq(q
->queue_lock
);
3358 q
->rpm_status
= RPM_ACTIVE
;
3360 pm_runtime_mark_last_busy(q
->dev
);
3361 pm_request_autosuspend(q
->dev
);
3363 q
->rpm_status
= RPM_SUSPENDED
;
3365 spin_unlock_irq(q
->queue_lock
);
3367 EXPORT_SYMBOL(blk_post_runtime_resume
);
3370 int __init
blk_dev_init(void)
3372 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3373 FIELD_SIZEOF(struct request
, cmd_flags
));
3375 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3376 kblockd_workqueue
= alloc_workqueue("kblockd",
3377 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3378 if (!kblockd_workqueue
)
3379 panic("Failed to create kblockd\n");
3381 request_cachep
= kmem_cache_create("blkdev_requests",
3382 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3384 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3385 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);