Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / drivers / macintosh / therm_pm72.c
blob97cfc5ac9fd042aa074d80836b50a21dab5301cd
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slowing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * better... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retrieve pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/init.h>
118 #include <linux/spinlock.h>
119 #include <linux/wait.h>
120 #include <linux/reboot.h>
121 #include <linux/kmod.h>
122 #include <linux/i2c.h>
123 #include <linux/kthread.h>
124 #include <linux/mutex.h>
125 #include <linux/of_device.h>
126 #include <linux/of_platform.h>
127 #include <asm/prom.h>
128 #include <asm/machdep.h>
129 #include <asm/io.h>
130 #include <asm/sections.h>
131 #include <asm/macio.h>
133 #include "therm_pm72.h"
135 #define VERSION "1.3"
137 #undef DEBUG
139 #ifdef DEBUG
140 #define DBG(args...) printk(args)
141 #else
142 #define DBG(args...) do { } while(0)
143 #endif
147 * Driver statics
150 static struct platform_device * of_dev;
151 static struct i2c_adapter * u3_0;
152 static struct i2c_adapter * u3_1;
153 static struct i2c_adapter * k2;
154 static struct i2c_client * fcu;
155 static struct cpu_pid_state processor_state[2];
156 static struct basckside_pid_params backside_params;
157 static struct backside_pid_state backside_state;
158 static struct drives_pid_state drives_state;
159 static struct dimm_pid_state dimms_state;
160 static struct slots_pid_state slots_state;
161 static int state;
162 static int cpu_count;
163 static int cpu_pid_type;
164 static struct task_struct *ctrl_task;
165 static struct completion ctrl_complete;
166 static int critical_state;
167 static int rackmac;
168 static s32 dimm_output_clamp;
169 static int fcu_rpm_shift;
170 static int fcu_tickle_ticks;
171 static DEFINE_MUTEX(driver_lock);
174 * We have 3 types of CPU PID control. One is "split" old style control
175 * for intake & exhaust fans, the other is "combined" control for both
176 * CPUs that also deals with the pumps when present. To be "compatible"
177 * with OS X at this point, we only use "COMBINED" on the machines that
178 * are identified as having the pumps (though that identification is at
179 * least dodgy). Ultimately, we could probably switch completely to this
180 * algorithm provided we hack it to deal with the UP case
182 #define CPU_PID_TYPE_SPLIT 0
183 #define CPU_PID_TYPE_COMBINED 1
184 #define CPU_PID_TYPE_RACKMAC 2
187 * This table describes all fans in the FCU. The "id" and "type" values
188 * are defaults valid for all earlier machines. Newer machines will
189 * eventually override the table content based on the device-tree
191 struct fcu_fan_table
193 char* loc; /* location code */
194 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
195 int id; /* id or -1 */
198 #define FCU_FAN_RPM 0
199 #define FCU_FAN_PWM 1
201 #define FCU_FAN_ABSENT_ID -1
203 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
205 struct fcu_fan_table fcu_fans[] = {
206 [BACKSIDE_FAN_PWM_INDEX] = {
207 .loc = "BACKSIDE,SYS CTRLR FAN",
208 .type = FCU_FAN_PWM,
209 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
211 [DRIVES_FAN_RPM_INDEX] = {
212 .loc = "DRIVE BAY",
213 .type = FCU_FAN_RPM,
214 .id = DRIVES_FAN_RPM_DEFAULT_ID,
216 [SLOTS_FAN_PWM_INDEX] = {
217 .loc = "SLOT,PCI FAN",
218 .type = FCU_FAN_PWM,
219 .id = SLOTS_FAN_PWM_DEFAULT_ID,
221 [CPUA_INTAKE_FAN_RPM_INDEX] = {
222 .loc = "CPU A INTAKE",
223 .type = FCU_FAN_RPM,
224 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
226 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227 .loc = "CPU A EXHAUST",
228 .type = FCU_FAN_RPM,
229 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
231 [CPUB_INTAKE_FAN_RPM_INDEX] = {
232 .loc = "CPU B INTAKE",
233 .type = FCU_FAN_RPM,
234 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
236 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237 .loc = "CPU B EXHAUST",
238 .type = FCU_FAN_RPM,
239 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
241 /* pumps aren't present by default, have to be looked up in the
242 * device-tree
244 [CPUA_PUMP_RPM_INDEX] = {
245 .loc = "CPU A PUMP",
246 .type = FCU_FAN_RPM,
247 .id = FCU_FAN_ABSENT_ID,
249 [CPUB_PUMP_RPM_INDEX] = {
250 .loc = "CPU B PUMP",
251 .type = FCU_FAN_RPM,
252 .id = FCU_FAN_ABSENT_ID,
254 /* Xserve fans */
255 [CPU_A1_FAN_RPM_INDEX] = {
256 .loc = "CPU A 1",
257 .type = FCU_FAN_RPM,
258 .id = FCU_FAN_ABSENT_ID,
260 [CPU_A2_FAN_RPM_INDEX] = {
261 .loc = "CPU A 2",
262 .type = FCU_FAN_RPM,
263 .id = FCU_FAN_ABSENT_ID,
265 [CPU_A3_FAN_RPM_INDEX] = {
266 .loc = "CPU A 3",
267 .type = FCU_FAN_RPM,
268 .id = FCU_FAN_ABSENT_ID,
270 [CPU_B1_FAN_RPM_INDEX] = {
271 .loc = "CPU B 1",
272 .type = FCU_FAN_RPM,
273 .id = FCU_FAN_ABSENT_ID,
275 [CPU_B2_FAN_RPM_INDEX] = {
276 .loc = "CPU B 2",
277 .type = FCU_FAN_RPM,
278 .id = FCU_FAN_ABSENT_ID,
280 [CPU_B3_FAN_RPM_INDEX] = {
281 .loc = "CPU B 3",
282 .type = FCU_FAN_RPM,
283 .id = FCU_FAN_ABSENT_ID,
287 static struct i2c_driver therm_pm72_driver;
290 * Utility function to create an i2c_client structure and
291 * attach it to one of u3 adapters
293 static struct i2c_client *attach_i2c_chip(int id, const char *name)
295 struct i2c_client *clt;
296 struct i2c_adapter *adap;
297 struct i2c_board_info info;
299 if (id & 0x200)
300 adap = k2;
301 else if (id & 0x100)
302 adap = u3_1;
303 else
304 adap = u3_0;
305 if (adap == NULL)
306 return NULL;
308 memset(&info, 0, sizeof(struct i2c_board_info));
309 info.addr = (id >> 1) & 0x7f;
310 strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
311 clt = i2c_new_device(adap, &info);
312 if (!clt) {
313 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
314 return NULL;
318 * Let i2c-core delete that device on driver removal.
319 * This is safe because i2c-core holds the core_lock mutex for us.
321 list_add_tail(&clt->detected, &therm_pm72_driver.clients);
322 return clt;
326 * Here are the i2c chip access wrappers
329 static void initialize_adc(struct cpu_pid_state *state)
331 int rc;
332 u8 buf[2];
334 /* Read ADC the configuration register and cache it. We
335 * also make sure Config2 contains proper values, I've seen
336 * cases where we got stale grabage in there, thus preventing
337 * proper reading of conv. values
340 /* Clear Config2 */
341 buf[0] = 5;
342 buf[1] = 0;
343 i2c_master_send(state->monitor, buf, 2);
345 /* Read & cache Config1 */
346 buf[0] = 1;
347 rc = i2c_master_send(state->monitor, buf, 1);
348 if (rc > 0) {
349 rc = i2c_master_recv(state->monitor, buf, 1);
350 if (rc > 0) {
351 state->adc_config = buf[0];
352 DBG("ADC config reg: %02x\n", state->adc_config);
353 /* Disable shutdown mode */
354 state->adc_config &= 0xfe;
355 buf[0] = 1;
356 buf[1] = state->adc_config;
357 rc = i2c_master_send(state->monitor, buf, 2);
360 if (rc <= 0)
361 printk(KERN_ERR "therm_pm72: Error reading ADC config"
362 " register !\n");
365 static int read_smon_adc(struct cpu_pid_state *state, int chan)
367 int rc, data, tries = 0;
368 u8 buf[2];
370 for (;;) {
371 /* Set channel */
372 buf[0] = 1;
373 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
374 rc = i2c_master_send(state->monitor, buf, 2);
375 if (rc <= 0)
376 goto error;
377 /* Wait for conversion */
378 msleep(1);
379 /* Switch to data register */
380 buf[0] = 4;
381 rc = i2c_master_send(state->monitor, buf, 1);
382 if (rc <= 0)
383 goto error;
384 /* Read result */
385 rc = i2c_master_recv(state->monitor, buf, 2);
386 if (rc < 0)
387 goto error;
388 data = ((u16)buf[0]) << 8 | (u16)buf[1];
389 return data >> 6;
390 error:
391 DBG("Error reading ADC, retrying...\n");
392 if (++tries > 10) {
393 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
394 return -1;
396 msleep(10);
400 static int read_lm87_reg(struct i2c_client * chip, int reg)
402 int rc, tries = 0;
403 u8 buf;
405 for (;;) {
406 /* Set address */
407 buf = (u8)reg;
408 rc = i2c_master_send(chip, &buf, 1);
409 if (rc <= 0)
410 goto error;
411 rc = i2c_master_recv(chip, &buf, 1);
412 if (rc <= 0)
413 goto error;
414 return (int)buf;
415 error:
416 DBG("Error reading LM87, retrying...\n");
417 if (++tries > 10) {
418 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
419 return -1;
421 msleep(10);
425 static int fan_read_reg(int reg, unsigned char *buf, int nb)
427 int tries, nr, nw;
429 buf[0] = reg;
430 tries = 0;
431 for (;;) {
432 nw = i2c_master_send(fcu, buf, 1);
433 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
434 break;
435 msleep(10);
436 ++tries;
438 if (nw <= 0) {
439 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
440 return -EIO;
442 tries = 0;
443 for (;;) {
444 nr = i2c_master_recv(fcu, buf, nb);
445 if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
446 break;
447 msleep(10);
448 ++tries;
450 if (nr <= 0)
451 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
452 return nr;
455 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
457 int tries, nw;
458 unsigned char buf[16];
460 buf[0] = reg;
461 memcpy(buf+1, ptr, nb);
462 ++nb;
463 tries = 0;
464 for (;;) {
465 nw = i2c_master_send(fcu, buf, nb);
466 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
467 break;
468 msleep(10);
469 ++tries;
471 if (nw < 0)
472 printk(KERN_ERR "Failure writing to FCU: %d", nw);
473 return nw;
476 static int start_fcu(void)
478 unsigned char buf = 0xff;
479 int rc;
481 rc = fan_write_reg(0xe, &buf, 1);
482 if (rc < 0)
483 return -EIO;
484 rc = fan_write_reg(0x2e, &buf, 1);
485 if (rc < 0)
486 return -EIO;
487 rc = fan_read_reg(0, &buf, 1);
488 if (rc < 0)
489 return -EIO;
490 fcu_rpm_shift = (buf == 1) ? 2 : 3;
491 printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
492 fcu_rpm_shift);
494 return 0;
497 static int set_rpm_fan(int fan_index, int rpm)
499 unsigned char buf[2];
500 int rc, id, min, max;
502 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
503 return -EINVAL;
504 id = fcu_fans[fan_index].id;
505 if (id == FCU_FAN_ABSENT_ID)
506 return -EINVAL;
508 min = 2400 >> fcu_rpm_shift;
509 max = 56000 >> fcu_rpm_shift;
511 if (rpm < min)
512 rpm = min;
513 else if (rpm > max)
514 rpm = max;
515 buf[0] = rpm >> (8 - fcu_rpm_shift);
516 buf[1] = rpm << fcu_rpm_shift;
517 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
518 if (rc < 0)
519 return -EIO;
520 return 0;
523 static int get_rpm_fan(int fan_index, int programmed)
525 unsigned char failure;
526 unsigned char active;
527 unsigned char buf[2];
528 int rc, id, reg_base;
530 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
531 return -EINVAL;
532 id = fcu_fans[fan_index].id;
533 if (id == FCU_FAN_ABSENT_ID)
534 return -EINVAL;
536 rc = fan_read_reg(0xb, &failure, 1);
537 if (rc != 1)
538 return -EIO;
539 if ((failure & (1 << id)) != 0)
540 return -EFAULT;
541 rc = fan_read_reg(0xd, &active, 1);
542 if (rc != 1)
543 return -EIO;
544 if ((active & (1 << id)) == 0)
545 return -ENXIO;
547 /* Programmed value or real current speed */
548 reg_base = programmed ? 0x10 : 0x11;
549 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
550 if (rc != 2)
551 return -EIO;
553 return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
556 static int set_pwm_fan(int fan_index, int pwm)
558 unsigned char buf[2];
559 int rc, id;
561 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
562 return -EINVAL;
563 id = fcu_fans[fan_index].id;
564 if (id == FCU_FAN_ABSENT_ID)
565 return -EINVAL;
567 if (pwm < 10)
568 pwm = 10;
569 else if (pwm > 100)
570 pwm = 100;
571 pwm = (pwm * 2559) / 1000;
572 buf[0] = pwm;
573 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
574 if (rc < 0)
575 return rc;
576 return 0;
579 static int get_pwm_fan(int fan_index)
581 unsigned char failure;
582 unsigned char active;
583 unsigned char buf[2];
584 int rc, id;
586 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587 return -EINVAL;
588 id = fcu_fans[fan_index].id;
589 if (id == FCU_FAN_ABSENT_ID)
590 return -EINVAL;
592 rc = fan_read_reg(0x2b, &failure, 1);
593 if (rc != 1)
594 return -EIO;
595 if ((failure & (1 << id)) != 0)
596 return -EFAULT;
597 rc = fan_read_reg(0x2d, &active, 1);
598 if (rc != 1)
599 return -EIO;
600 if ((active & (1 << id)) == 0)
601 return -ENXIO;
603 /* Programmed value or real current speed */
604 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
605 if (rc != 1)
606 return -EIO;
608 return (buf[0] * 1000) / 2559;
611 static void tickle_fcu(void)
613 int pwm;
615 pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
617 DBG("FCU Tickle, slots fan is: %d\n", pwm);
618 if (pwm < 0)
619 pwm = 100;
621 if (!rackmac) {
622 pwm = SLOTS_FAN_DEFAULT_PWM;
623 } else if (pwm < SLOTS_PID_OUTPUT_MIN)
624 pwm = SLOTS_PID_OUTPUT_MIN;
626 /* That is hopefully enough to make the FCU happy */
627 set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
632 * Utility routine to read the CPU calibration EEPROM data
633 * from the device-tree
635 static int read_eeprom(int cpu, struct mpu_data *out)
637 struct device_node *np;
638 char nodename[64];
639 const u8 *data;
640 int len;
642 /* prom.c routine for finding a node by path is a bit brain dead
643 * and requires exact @xxx unit numbers. This is a bit ugly but
644 * will work for these machines
646 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
647 np = of_find_node_by_path(nodename);
648 if (np == NULL) {
649 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
650 return -ENODEV;
652 data = of_get_property(np, "cpuid", &len);
653 if (data == NULL) {
654 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
655 of_node_put(np);
656 return -ENODEV;
658 memcpy(out, data, sizeof(struct mpu_data));
659 of_node_put(np);
661 return 0;
664 static void fetch_cpu_pumps_minmax(void)
666 struct cpu_pid_state *state0 = &processor_state[0];
667 struct cpu_pid_state *state1 = &processor_state[1];
668 u16 pump_min = 0, pump_max = 0xffff;
669 u16 tmp[4];
671 /* Try to fetch pumps min/max infos from eeprom */
673 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
674 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
675 pump_min = max(pump_min, tmp[0]);
676 pump_max = min(pump_max, tmp[1]);
678 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
679 pump_min = max(pump_min, tmp[2]);
680 pump_max = min(pump_max, tmp[3]);
683 /* Double check the values, this _IS_ needed as the EEPROM on
684 * some dual 2.5Ghz G5s seem, at least, to have both min & max
685 * same to the same value ... (grrrr)
687 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
688 pump_min = CPU_PUMP_OUTPUT_MIN;
689 pump_max = CPU_PUMP_OUTPUT_MAX;
692 state0->pump_min = state1->pump_min = pump_min;
693 state0->pump_max = state1->pump_max = pump_max;
697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
698 * pass around to the attribute functions, so we don't really have
699 * choice but implement a bunch of them...
701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702 * the input twice... I accept patches :)
704 #define BUILD_SHOW_FUNC_FIX(name, data) \
705 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
707 ssize_t r; \
708 mutex_lock(&driver_lock); \
709 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
710 mutex_unlock(&driver_lock); \
711 return r; \
713 #define BUILD_SHOW_FUNC_INT(name, data) \
714 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
716 return sprintf(buf, "%d", data); \
719 BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
720 BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
721 BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
722 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
723 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
725 BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
726 BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
727 BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
728 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
729 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
731 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
732 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
734 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
735 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
737 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
738 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
740 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
742 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
743 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
744 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
745 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
746 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
748 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
749 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
750 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
751 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
752 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
754 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
755 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
757 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
758 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
760 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
761 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
763 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
766 * CPUs fans control loop
769 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
771 s32 ltemp, volts, amps;
772 int index, rc = 0;
774 /* Default (in case of error) */
775 *temp = state->cur_temp;
776 *power = state->cur_power;
778 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
779 index = (state->index == 0) ?
780 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
781 else
782 index = (state->index == 0) ?
783 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
785 /* Read current fan status */
786 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
787 if (rc < 0) {
788 /* XXX What do we do now ? Nothing for now, keep old value, but
789 * return error upstream
791 DBG(" cpu %d, fan reading error !\n", state->index);
792 } else {
793 state->rpm = rc;
794 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
797 /* Get some sensor readings and scale it */
798 ltemp = read_smon_adc(state, 1);
799 if (ltemp == -1) {
800 /* XXX What do we do now ? */
801 state->overtemp++;
802 if (rc == 0)
803 rc = -EIO;
804 DBG(" cpu %d, temp reading error !\n", state->index);
805 } else {
806 /* Fixup temperature according to diode calibration
808 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
809 state->index,
810 ltemp, state->mpu.mdiode, state->mpu.bdiode);
811 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
812 state->last_temp = *temp;
813 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
817 * Read voltage & current and calculate power
819 volts = read_smon_adc(state, 3);
820 amps = read_smon_adc(state, 4);
822 /* Scale voltage and current raw sensor values according to fixed scales
823 * obtained in Darwin and calculate power from I and V
825 volts *= ADC_CPU_VOLTAGE_SCALE;
826 amps *= ADC_CPU_CURRENT_SCALE;
827 *power = (((u64)volts) * ((u64)amps)) >> 16;
828 state->voltage = volts;
829 state->current_a = amps;
830 state->last_power = *power;
832 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833 state->index, FIX32TOPRINT(state->current_a),
834 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
836 return 0;
839 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
841 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
842 s64 integ_p, deriv_p, prop_p, sum;
843 int i;
845 /* Calculate power target value (could be done once for all)
846 * and convert to a 16.16 fp number
848 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
849 DBG(" power target: %d.%03d, error: %d.%03d\n",
850 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
852 /* Store temperature and power in history array */
853 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
854 state->temp_history[state->cur_temp] = temp;
855 state->cur_power = (state->cur_power + 1) % state->count_power;
856 state->power_history[state->cur_power] = power;
857 state->error_history[state->cur_power] = power_target - power;
859 /* If first loop, fill the history table */
860 if (state->first) {
861 for (i = 0; i < (state->count_power - 1); i++) {
862 state->cur_power = (state->cur_power + 1) % state->count_power;
863 state->power_history[state->cur_power] = power;
864 state->error_history[state->cur_power] = power_target - power;
866 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
867 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
868 state->temp_history[state->cur_temp] = temp;
870 state->first = 0;
873 /* Calculate the integral term normally based on the "power" values */
874 sum = 0;
875 integral = 0;
876 for (i = 0; i < state->count_power; i++)
877 integral += state->error_history[i];
878 integral *= CPU_PID_INTERVAL;
879 DBG(" integral: %08x\n", integral);
881 /* Calculate the adjusted input (sense value).
882 * G_r is 12.20
883 * integ is 16.16
884 * so the result is 28.36
886 * input target is mpu.ttarget, input max is mpu.tmax
888 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
889 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
890 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
891 adj_in_target = (state->mpu.ttarget << 16);
892 if (adj_in_target > sval)
893 adj_in_target = sval;
894 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
895 state->mpu.ttarget);
897 /* Calculate the derivative term */
898 derivative = state->temp_history[state->cur_temp] -
899 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
900 % CPU_TEMP_HISTORY_SIZE];
901 derivative /= CPU_PID_INTERVAL;
902 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
903 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
904 sum += deriv_p;
906 /* Calculate the proportional term */
907 proportional = temp - adj_in_target;
908 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
909 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
910 sum += prop_p;
912 /* Scale sum */
913 sum >>= 36;
915 DBG(" sum: %d\n", (int)sum);
916 state->rpm += (s32)sum;
919 static void do_monitor_cpu_combined(void)
921 struct cpu_pid_state *state0 = &processor_state[0];
922 struct cpu_pid_state *state1 = &processor_state[1];
923 s32 temp0, power0, temp1, power1;
924 s32 temp_combi, power_combi;
925 int rc, intake, pump;
927 rc = do_read_one_cpu_values(state0, &temp0, &power0);
928 if (rc < 0) {
929 /* XXX What do we do now ? */
931 state1->overtemp = 0;
932 rc = do_read_one_cpu_values(state1, &temp1, &power1);
933 if (rc < 0) {
934 /* XXX What do we do now ? */
936 if (state1->overtemp)
937 state0->overtemp++;
939 temp_combi = max(temp0, temp1);
940 power_combi = max(power0, power1);
942 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943 * full blown immediately and try to trigger a shutdown
945 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
946 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
947 temp_combi >> 16);
948 state0->overtemp += CPU_MAX_OVERTEMP / 4;
949 } else if (temp_combi > (state0->mpu.tmax << 16)) {
950 state0->overtemp++;
951 printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
952 temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
953 } else {
954 if (state0->overtemp)
955 printk(KERN_WARNING "Temperature back down to %d\n",
956 temp_combi >> 16);
957 state0->overtemp = 0;
959 if (state0->overtemp >= CPU_MAX_OVERTEMP)
960 critical_state = 1;
961 if (state0->overtemp > 0) {
962 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
963 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
964 pump = state0->pump_max;
965 goto do_set_fans;
968 /* Do the PID */
969 do_cpu_pid(state0, temp_combi, power_combi);
971 /* Range check */
972 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
973 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
975 /* Calculate intake fan speed */
976 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
977 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
978 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
979 state0->intake_rpm = intake;
981 /* Calculate pump speed */
982 pump = (state0->rpm * state0->pump_max) /
983 state0->mpu.rmaxn_exhaust_fan;
984 pump = min(pump, state0->pump_max);
985 pump = max(pump, state0->pump_min);
987 do_set_fans:
988 /* We copy values from state 0 to state 1 for /sysfs */
989 state1->rpm = state0->rpm;
990 state1->intake_rpm = state0->intake_rpm;
992 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
993 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
995 /* We should check for errors, shouldn't we ? But then, what
996 * do we do once the error occurs ? For FCU notified fan
997 * failures (-EFAULT) we probably want to notify userland
998 * some way...
1000 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1001 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1002 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1003 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1005 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1006 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1007 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1011 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1013 s32 temp, power;
1014 int rc, intake;
1016 /* Read current fan status */
1017 rc = do_read_one_cpu_values(state, &temp, &power);
1018 if (rc < 0) {
1019 /* XXX What do we do now ? */
1022 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1023 * full blown immediately and try to trigger a shutdown
1025 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1026 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1027 " (%d) !\n",
1028 state->index, temp >> 16);
1029 state->overtemp += CPU_MAX_OVERTEMP / 4;
1030 } else if (temp > (state->mpu.tmax << 16)) {
1031 state->overtemp++;
1032 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1033 state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1034 } else {
1035 if (state->overtemp)
1036 printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1037 state->index, temp >> 16);
1038 state->overtemp = 0;
1040 if (state->overtemp >= CPU_MAX_OVERTEMP)
1041 critical_state = 1;
1042 if (state->overtemp > 0) {
1043 state->rpm = state->mpu.rmaxn_exhaust_fan;
1044 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1045 goto do_set_fans;
1048 /* Do the PID */
1049 do_cpu_pid(state, temp, power);
1051 /* Range check */
1052 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1053 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1055 /* Calculate intake fan */
1056 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1057 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1058 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1059 state->intake_rpm = intake;
1061 do_set_fans:
1062 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1063 state->index, (int)state->rpm, intake, state->overtemp);
1065 /* We should check for errors, shouldn't we ? But then, what
1066 * do we do once the error occurs ? For FCU notified fan
1067 * failures (-EFAULT) we probably want to notify userland
1068 * some way...
1070 if (state->index == 0) {
1071 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1072 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1073 } else {
1074 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1075 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1079 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1081 s32 temp, power, fan_min;
1082 int rc;
1084 /* Read current fan status */
1085 rc = do_read_one_cpu_values(state, &temp, &power);
1086 if (rc < 0) {
1087 /* XXX What do we do now ? */
1090 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1091 * full blown immediately and try to trigger a shutdown
1093 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1094 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1095 " (%d) !\n",
1096 state->index, temp >> 16);
1097 state->overtemp = CPU_MAX_OVERTEMP / 4;
1098 } else if (temp > (state->mpu.tmax << 16)) {
1099 state->overtemp++;
1100 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1101 state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1102 } else {
1103 if (state->overtemp)
1104 printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1105 state->index, temp >> 16);
1106 state->overtemp = 0;
1108 if (state->overtemp >= CPU_MAX_OVERTEMP)
1109 critical_state = 1;
1110 if (state->overtemp > 0) {
1111 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1112 goto do_set_fans;
1115 /* Do the PID */
1116 do_cpu_pid(state, temp, power);
1118 /* Check clamp from dimms */
1119 fan_min = dimm_output_clamp;
1120 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1122 DBG(" CPU min mpu = %d, min dimm = %d\n",
1123 state->mpu.rminn_intake_fan, dimm_output_clamp);
1125 state->rpm = max(state->rpm, (int)fan_min);
1126 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1127 state->intake_rpm = state->rpm;
1129 do_set_fans:
1130 DBG("** CPU %d RPM: %d overtemp: %d\n",
1131 state->index, (int)state->rpm, state->overtemp);
1133 /* We should check for errors, shouldn't we ? But then, what
1134 * do we do once the error occurs ? For FCU notified fan
1135 * failures (-EFAULT) we probably want to notify userland
1136 * some way...
1138 if (state->index == 0) {
1139 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1140 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1141 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1142 } else {
1143 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1144 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1145 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1150 * Initialize the state structure for one CPU control loop
1152 static int init_processor_state(struct cpu_pid_state *state, int index)
1154 int err;
1156 state->index = index;
1157 state->first = 1;
1158 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1159 state->overtemp = 0;
1160 state->adc_config = 0x00;
1163 if (index == 0)
1164 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1165 else if (index == 1)
1166 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1167 if (state->monitor == NULL)
1168 goto fail;
1170 if (read_eeprom(index, &state->mpu))
1171 goto fail;
1173 state->count_power = state->mpu.tguardband;
1174 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1175 printk(KERN_WARNING "Warning ! too many power history slots\n");
1176 state->count_power = CPU_POWER_HISTORY_SIZE;
1178 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1180 if (index == 0) {
1181 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1182 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1183 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1184 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1185 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1186 } else {
1187 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1188 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1189 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1190 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1191 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1193 if (err)
1194 printk(KERN_WARNING "Failed to create some of the attribute"
1195 "files for CPU %d\n", index);
1197 return 0;
1198 fail:
1199 state->monitor = NULL;
1201 return -ENODEV;
1205 * Dispose of the state data for one CPU control loop
1207 static void dispose_processor_state(struct cpu_pid_state *state)
1209 if (state->monitor == NULL)
1210 return;
1212 if (state->index == 0) {
1213 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1214 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1215 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1216 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1217 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1218 } else {
1219 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1220 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1221 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1222 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1223 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1226 state->monitor = NULL;
1230 * Motherboard backside & U3 heatsink fan control loop
1232 static void do_monitor_backside(struct backside_pid_state *state)
1234 s32 temp, integral, derivative, fan_min;
1235 s64 integ_p, deriv_p, prop_p, sum;
1236 int i, rc;
1238 if (--state->ticks != 0)
1239 return;
1240 state->ticks = backside_params.interval;
1242 DBG("backside:\n");
1244 /* Check fan status */
1245 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1246 if (rc < 0) {
1247 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1248 /* XXX What do we do now ? */
1249 } else
1250 state->pwm = rc;
1251 DBG(" current pwm: %d\n", state->pwm);
1253 /* Get some sensor readings */
1254 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1255 state->last_temp = temp;
1256 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1257 FIX32TOPRINT(backside_params.input_target));
1259 /* Store temperature and error in history array */
1260 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1261 state->sample_history[state->cur_sample] = temp;
1262 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1264 /* If first loop, fill the history table */
1265 if (state->first) {
1266 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1267 state->cur_sample = (state->cur_sample + 1) %
1268 BACKSIDE_PID_HISTORY_SIZE;
1269 state->sample_history[state->cur_sample] = temp;
1270 state->error_history[state->cur_sample] =
1271 temp - backside_params.input_target;
1273 state->first = 0;
1276 /* Calculate the integral term */
1277 sum = 0;
1278 integral = 0;
1279 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1280 integral += state->error_history[i];
1281 integral *= backside_params.interval;
1282 DBG(" integral: %08x\n", integral);
1283 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1284 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1285 sum += integ_p;
1287 /* Calculate the derivative term */
1288 derivative = state->error_history[state->cur_sample] -
1289 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1290 % BACKSIDE_PID_HISTORY_SIZE];
1291 derivative /= backside_params.interval;
1292 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1293 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1294 sum += deriv_p;
1296 /* Calculate the proportional term */
1297 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1298 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1299 sum += prop_p;
1301 /* Scale sum */
1302 sum >>= 36;
1304 DBG(" sum: %d\n", (int)sum);
1305 if (backside_params.additive)
1306 state->pwm += (s32)sum;
1307 else
1308 state->pwm = sum;
1310 /* Check for clamp */
1311 fan_min = (dimm_output_clamp * 100) / 14000;
1312 fan_min = max(fan_min, backside_params.output_min);
1314 state->pwm = max(state->pwm, fan_min);
1315 state->pwm = min(state->pwm, backside_params.output_max);
1317 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1318 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1322 * Initialize the state structure for the backside fan control loop
1324 static int init_backside_state(struct backside_pid_state *state)
1326 struct device_node *u3;
1327 int u3h = 1; /* conservative by default */
1328 int err;
1331 * There are different PID params for machines with U3 and machines
1332 * with U3H, pick the right ones now
1334 u3 = of_find_node_by_path("/u3@0,f8000000");
1335 if (u3 != NULL) {
1336 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1337 if (vers)
1338 if (((*vers) & 0x3f) < 0x34)
1339 u3h = 0;
1340 of_node_put(u3);
1343 if (rackmac) {
1344 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1345 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1346 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1347 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1348 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1349 backside_params.G_r = BACKSIDE_PID_G_r;
1350 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351 backside_params.additive = 0;
1352 } else if (u3h) {
1353 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1354 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1355 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1356 backside_params.interval = BACKSIDE_PID_INTERVAL;
1357 backside_params.G_p = BACKSIDE_PID_G_p;
1358 backside_params.G_r = BACKSIDE_PID_G_r;
1359 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1360 backside_params.additive = 1;
1361 } else {
1362 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1363 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1364 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1365 backside_params.interval = BACKSIDE_PID_INTERVAL;
1366 backside_params.G_p = BACKSIDE_PID_G_p;
1367 backside_params.G_r = BACKSIDE_PID_G_r;
1368 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1369 backside_params.additive = 1;
1372 state->ticks = 1;
1373 state->first = 1;
1374 state->pwm = 50;
1376 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1377 if (state->monitor == NULL)
1378 return -ENODEV;
1380 err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1381 err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1382 if (err)
1383 printk(KERN_WARNING "Failed to create attribute file(s)"
1384 " for backside fan\n");
1386 return 0;
1390 * Dispose of the state data for the backside control loop
1392 static void dispose_backside_state(struct backside_pid_state *state)
1394 if (state->monitor == NULL)
1395 return;
1397 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400 state->monitor = NULL;
1404 * Drives bay fan control loop
1406 static void do_monitor_drives(struct drives_pid_state *state)
1408 s32 temp, integral, derivative;
1409 s64 integ_p, deriv_p, prop_p, sum;
1410 int i, rc;
1412 if (--state->ticks != 0)
1413 return;
1414 state->ticks = DRIVES_PID_INTERVAL;
1416 DBG("drives:\n");
1418 /* Check fan status */
1419 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420 if (rc < 0) {
1421 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422 /* XXX What do we do now ? */
1423 } else
1424 state->rpm = rc;
1425 DBG(" current rpm: %d\n", state->rpm);
1427 /* Get some sensor readings */
1428 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429 DS1775_TEMP)) << 8;
1430 state->last_temp = temp;
1431 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434 /* Store temperature and error in history array */
1435 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436 state->sample_history[state->cur_sample] = temp;
1437 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439 /* If first loop, fill the history table */
1440 if (state->first) {
1441 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442 state->cur_sample = (state->cur_sample + 1) %
1443 DRIVES_PID_HISTORY_SIZE;
1444 state->sample_history[state->cur_sample] = temp;
1445 state->error_history[state->cur_sample] =
1446 temp - DRIVES_PID_INPUT_TARGET;
1448 state->first = 0;
1451 /* Calculate the integral term */
1452 sum = 0;
1453 integral = 0;
1454 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455 integral += state->error_history[i];
1456 integral *= DRIVES_PID_INTERVAL;
1457 DBG(" integral: %08x\n", integral);
1458 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1460 sum += integ_p;
1462 /* Calculate the derivative term */
1463 derivative = state->error_history[state->cur_sample] -
1464 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465 % DRIVES_PID_HISTORY_SIZE];
1466 derivative /= DRIVES_PID_INTERVAL;
1467 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1469 sum += deriv_p;
1471 /* Calculate the proportional term */
1472 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1474 sum += prop_p;
1476 /* Scale sum */
1477 sum >>= 36;
1479 DBG(" sum: %d\n", (int)sum);
1480 state->rpm += (s32)sum;
1482 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1490 * Initialize the state structure for the drives bay fan control loop
1492 static int init_drives_state(struct drives_pid_state *state)
1494 int err;
1496 state->ticks = 1;
1497 state->first = 1;
1498 state->rpm = 1000;
1500 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501 if (state->monitor == NULL)
1502 return -ENODEV;
1504 err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505 err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506 if (err)
1507 printk(KERN_WARNING "Failed to create attribute file(s)"
1508 " for drives bay fan\n");
1510 return 0;
1514 * Dispose of the state data for the drives control loop
1516 static void dispose_drives_state(struct drives_pid_state *state)
1518 if (state->monitor == NULL)
1519 return;
1521 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1522 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1524 state->monitor = NULL;
1528 * DIMMs temp control loop
1530 static void do_monitor_dimms(struct dimm_pid_state *state)
1532 s32 temp, integral, derivative, fan_min;
1533 s64 integ_p, deriv_p, prop_p, sum;
1534 int i;
1536 if (--state->ticks != 0)
1537 return;
1538 state->ticks = DIMM_PID_INTERVAL;
1540 DBG("DIMM:\n");
1542 DBG(" current value: %d\n", state->output);
1544 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1545 if (temp < 0)
1546 return;
1547 temp <<= 16;
1548 state->last_temp = temp;
1549 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1550 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1552 /* Store temperature and error in history array */
1553 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1554 state->sample_history[state->cur_sample] = temp;
1555 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1557 /* If first loop, fill the history table */
1558 if (state->first) {
1559 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1560 state->cur_sample = (state->cur_sample + 1) %
1561 DIMM_PID_HISTORY_SIZE;
1562 state->sample_history[state->cur_sample] = temp;
1563 state->error_history[state->cur_sample] =
1564 temp - DIMM_PID_INPUT_TARGET;
1566 state->first = 0;
1569 /* Calculate the integral term */
1570 sum = 0;
1571 integral = 0;
1572 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1573 integral += state->error_history[i];
1574 integral *= DIMM_PID_INTERVAL;
1575 DBG(" integral: %08x\n", integral);
1576 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1577 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1578 sum += integ_p;
1580 /* Calculate the derivative term */
1581 derivative = state->error_history[state->cur_sample] -
1582 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1583 % DIMM_PID_HISTORY_SIZE];
1584 derivative /= DIMM_PID_INTERVAL;
1585 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1586 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1587 sum += deriv_p;
1589 /* Calculate the proportional term */
1590 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1591 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1592 sum += prop_p;
1594 /* Scale sum */
1595 sum >>= 36;
1597 DBG(" sum: %d\n", (int)sum);
1598 state->output = (s32)sum;
1599 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1600 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1601 dimm_output_clamp = state->output;
1603 DBG("** DIMM clamp value: %d\n", (int)state->output);
1605 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1606 fan_min = (dimm_output_clamp * 100) / 14000;
1607 fan_min = max(fan_min, backside_params.output_min);
1608 if (backside_state.pwm < fan_min) {
1609 backside_state.pwm = fan_min;
1610 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1611 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1616 * Initialize the state structure for the DIMM temp control loop
1618 static int init_dimms_state(struct dimm_pid_state *state)
1620 state->ticks = 1;
1621 state->first = 1;
1622 state->output = 4000;
1624 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1625 if (state->monitor == NULL)
1626 return -ENODEV;
1628 if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1629 printk(KERN_WARNING "Failed to create attribute file"
1630 " for DIMM temperature\n");
1632 return 0;
1636 * Dispose of the state data for the DIMM control loop
1638 static void dispose_dimms_state(struct dimm_pid_state *state)
1640 if (state->monitor == NULL)
1641 return;
1643 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1645 state->monitor = NULL;
1649 * Slots fan control loop
1651 static void do_monitor_slots(struct slots_pid_state *state)
1653 s32 temp, integral, derivative;
1654 s64 integ_p, deriv_p, prop_p, sum;
1655 int i, rc;
1657 if (--state->ticks != 0)
1658 return;
1659 state->ticks = SLOTS_PID_INTERVAL;
1661 DBG("slots:\n");
1663 /* Check fan status */
1664 rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1665 if (rc < 0) {
1666 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1667 /* XXX What do we do now ? */
1668 } else
1669 state->pwm = rc;
1670 DBG(" current pwm: %d\n", state->pwm);
1672 /* Get some sensor readings */
1673 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1674 DS1775_TEMP)) << 8;
1675 state->last_temp = temp;
1676 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1677 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1679 /* Store temperature and error in history array */
1680 state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1681 state->sample_history[state->cur_sample] = temp;
1682 state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1684 /* If first loop, fill the history table */
1685 if (state->first) {
1686 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1687 state->cur_sample = (state->cur_sample + 1) %
1688 SLOTS_PID_HISTORY_SIZE;
1689 state->sample_history[state->cur_sample] = temp;
1690 state->error_history[state->cur_sample] =
1691 temp - SLOTS_PID_INPUT_TARGET;
1693 state->first = 0;
1696 /* Calculate the integral term */
1697 sum = 0;
1698 integral = 0;
1699 for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1700 integral += state->error_history[i];
1701 integral *= SLOTS_PID_INTERVAL;
1702 DBG(" integral: %08x\n", integral);
1703 integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1704 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1705 sum += integ_p;
1707 /* Calculate the derivative term */
1708 derivative = state->error_history[state->cur_sample] -
1709 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1710 % SLOTS_PID_HISTORY_SIZE];
1711 derivative /= SLOTS_PID_INTERVAL;
1712 deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1713 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1714 sum += deriv_p;
1716 /* Calculate the proportional term */
1717 prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1718 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1719 sum += prop_p;
1721 /* Scale sum */
1722 sum >>= 36;
1724 DBG(" sum: %d\n", (int)sum);
1725 state->pwm = (s32)sum;
1727 state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1728 state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1730 DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1731 set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1735 * Initialize the state structure for the slots bay fan control loop
1737 static int init_slots_state(struct slots_pid_state *state)
1739 int err;
1741 state->ticks = 1;
1742 state->first = 1;
1743 state->pwm = 50;
1745 state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1746 if (state->monitor == NULL)
1747 return -ENODEV;
1749 err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1750 err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1751 if (err)
1752 printk(KERN_WARNING "Failed to create attribute file(s)"
1753 " for slots bay fan\n");
1755 return 0;
1759 * Dispose of the state data for the slots control loop
1761 static void dispose_slots_state(struct slots_pid_state *state)
1763 if (state->monitor == NULL)
1764 return;
1766 device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1767 device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1769 state->monitor = NULL;
1773 static int call_critical_overtemp(void)
1775 char *argv[] = { critical_overtemp_path, NULL };
1776 static char *envp[] = { "HOME=/",
1777 "TERM=linux",
1778 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1779 NULL };
1781 return call_usermodehelper(critical_overtemp_path,
1782 argv, envp, UMH_WAIT_EXEC);
1787 * Here's the kernel thread that calls the various control loops
1789 static int main_control_loop(void *x)
1791 DBG("main_control_loop started\n");
1793 mutex_lock(&driver_lock);
1795 if (start_fcu() < 0) {
1796 printk(KERN_ERR "kfand: failed to start FCU\n");
1797 mutex_unlock(&driver_lock);
1798 goto out;
1801 /* Set the PCI fan once for now on non-RackMac */
1802 if (!rackmac)
1803 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1805 /* Initialize ADCs */
1806 initialize_adc(&processor_state[0]);
1807 if (processor_state[1].monitor != NULL)
1808 initialize_adc(&processor_state[1]);
1810 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1812 mutex_unlock(&driver_lock);
1814 while (state == state_attached) {
1815 unsigned long elapsed, start;
1817 start = jiffies;
1819 mutex_lock(&driver_lock);
1821 /* Tickle the FCU just in case */
1822 if (--fcu_tickle_ticks < 0) {
1823 fcu_tickle_ticks = FCU_TICKLE_TICKS;
1824 tickle_fcu();
1827 /* First, we always calculate the new DIMMs state on an Xserve */
1828 if (rackmac)
1829 do_monitor_dimms(&dimms_state);
1831 /* Then, the CPUs */
1832 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1833 do_monitor_cpu_combined();
1834 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1835 do_monitor_cpu_rack(&processor_state[0]);
1836 if (processor_state[1].monitor != NULL)
1837 do_monitor_cpu_rack(&processor_state[1]);
1838 // better deal with UP
1839 } else {
1840 do_monitor_cpu_split(&processor_state[0]);
1841 if (processor_state[1].monitor != NULL)
1842 do_monitor_cpu_split(&processor_state[1]);
1843 // better deal with UP
1845 /* Then, the rest */
1846 do_monitor_backside(&backside_state);
1847 if (rackmac)
1848 do_monitor_slots(&slots_state);
1849 else
1850 do_monitor_drives(&drives_state);
1851 mutex_unlock(&driver_lock);
1853 if (critical_state == 1) {
1854 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1855 printk(KERN_WARNING "Attempting to shut down...\n");
1856 if (call_critical_overtemp()) {
1857 printk(KERN_WARNING "Can't call %s, power off now!\n",
1858 critical_overtemp_path);
1859 machine_power_off();
1862 if (critical_state > 0)
1863 critical_state++;
1864 if (critical_state > MAX_CRITICAL_STATE) {
1865 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1866 machine_power_off();
1869 // FIXME: Deal with signals
1870 elapsed = jiffies - start;
1871 if (elapsed < HZ)
1872 schedule_timeout_interruptible(HZ - elapsed);
1875 out:
1876 DBG("main_control_loop ended\n");
1878 ctrl_task = 0;
1879 complete_and_exit(&ctrl_complete, 0);
1883 * Dispose the control loops when tearing down
1885 static void dispose_control_loops(void)
1887 dispose_processor_state(&processor_state[0]);
1888 dispose_processor_state(&processor_state[1]);
1889 dispose_backside_state(&backside_state);
1890 dispose_drives_state(&drives_state);
1891 dispose_slots_state(&slots_state);
1892 dispose_dimms_state(&dimms_state);
1896 * Create the control loops. U3-0 i2c bus is up, so we can now
1897 * get to the various sensors
1899 static int create_control_loops(void)
1901 struct device_node *np;
1903 /* Count CPUs from the device-tree, we don't care how many are
1904 * actually used by Linux
1906 cpu_count = 0;
1907 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1908 cpu_count++;
1910 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1912 /* Decide the type of PID algorithm to use based on the presence of
1913 * the pumps, though that may not be the best way, that is good enough
1914 * for now
1916 if (rackmac)
1917 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1918 else if (of_machine_is_compatible("PowerMac7,3")
1919 && (cpu_count > 1)
1920 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1921 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1922 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1923 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1924 } else
1925 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1927 /* Create control loops for everything. If any fail, everything
1928 * fails
1930 if (init_processor_state(&processor_state[0], 0))
1931 goto fail;
1932 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1933 fetch_cpu_pumps_minmax();
1935 if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1936 goto fail;
1937 if (init_backside_state(&backside_state))
1938 goto fail;
1939 if (rackmac && init_dimms_state(&dimms_state))
1940 goto fail;
1941 if (rackmac && init_slots_state(&slots_state))
1942 goto fail;
1943 if (!rackmac && init_drives_state(&drives_state))
1944 goto fail;
1946 DBG("all control loops up !\n");
1948 return 0;
1950 fail:
1951 DBG("failure creating control loops, disposing\n");
1953 dispose_control_loops();
1955 return -ENODEV;
1959 * Start the control loops after everything is up, that is create
1960 * the thread that will make them run
1962 static void start_control_loops(void)
1964 init_completion(&ctrl_complete);
1966 ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1970 * Stop the control loops when tearing down
1972 static void stop_control_loops(void)
1974 if (ctrl_task)
1975 wait_for_completion(&ctrl_complete);
1979 * Attach to the i2c FCU after detecting U3-1 bus
1981 static int attach_fcu(void)
1983 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1984 if (fcu == NULL)
1985 return -ENODEV;
1987 DBG("FCU attached\n");
1989 return 0;
1993 * Detach from the i2c FCU when tearing down
1995 static void detach_fcu(void)
1997 fcu = NULL;
2001 * Attach to the i2c controller. We probe the various chips based
2002 * on the device-tree nodes and build everything for the driver to
2003 * run, we then kick the driver monitoring thread
2005 static int therm_pm72_attach(struct i2c_adapter *adapter)
2007 mutex_lock(&driver_lock);
2009 /* Check state */
2010 if (state == state_detached)
2011 state = state_attaching;
2012 if (state != state_attaching) {
2013 mutex_unlock(&driver_lock);
2014 return 0;
2017 /* Check if we are looking for one of these */
2018 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2019 u3_0 = adapter;
2020 DBG("found U3-0\n");
2021 if (k2 || !rackmac)
2022 if (create_control_loops())
2023 u3_0 = NULL;
2024 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2025 u3_1 = adapter;
2026 DBG("found U3-1, attaching FCU\n");
2027 if (attach_fcu())
2028 u3_1 = NULL;
2029 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2030 k2 = adapter;
2031 DBG("Found K2\n");
2032 if (u3_0 && rackmac)
2033 if (create_control_loops())
2034 k2 = NULL;
2036 /* We got all we need, start control loops */
2037 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2038 DBG("everything up, starting control loops\n");
2039 state = state_attached;
2040 start_control_loops();
2042 mutex_unlock(&driver_lock);
2044 return 0;
2047 static int therm_pm72_probe(struct i2c_client *client,
2048 const struct i2c_device_id *id)
2050 /* Always succeed, the real work was done in therm_pm72_attach() */
2051 return 0;
2055 * Called when any of the devices which participates into thermal management
2056 * is going away.
2058 static int therm_pm72_remove(struct i2c_client *client)
2060 struct i2c_adapter *adapter = client->adapter;
2062 mutex_lock(&driver_lock);
2064 if (state != state_detached)
2065 state = state_detaching;
2067 /* Stop control loops if any */
2068 DBG("stopping control loops\n");
2069 mutex_unlock(&driver_lock);
2070 stop_control_loops();
2071 mutex_lock(&driver_lock);
2073 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2074 DBG("lost U3-0, disposing control loops\n");
2075 dispose_control_loops();
2076 u3_0 = NULL;
2079 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2080 DBG("lost U3-1, detaching FCU\n");
2081 detach_fcu();
2082 u3_1 = NULL;
2084 if (u3_0 == NULL && u3_1 == NULL)
2085 state = state_detached;
2087 mutex_unlock(&driver_lock);
2089 return 0;
2093 * i2c_driver structure to attach to the host i2c controller
2096 static const struct i2c_device_id therm_pm72_id[] = {
2098 * Fake device name, thermal management is done by several
2099 * chips but we don't need to differentiate between them at
2100 * this point.
2102 { "therm_pm72", 0 },
2106 static struct i2c_driver therm_pm72_driver = {
2107 .driver = {
2108 .name = "therm_pm72",
2110 .attach_adapter = therm_pm72_attach,
2111 .probe = therm_pm72_probe,
2112 .remove = therm_pm72_remove,
2113 .id_table = therm_pm72_id,
2116 static int fan_check_loc_match(const char *loc, int fan)
2118 char tmp[64];
2119 char *c, *e;
2121 strlcpy(tmp, fcu_fans[fan].loc, 64);
2123 c = tmp;
2124 for (;;) {
2125 e = strchr(c, ',');
2126 if (e)
2127 *e = 0;
2128 if (strcmp(loc, c) == 0)
2129 return 1;
2130 if (e == NULL)
2131 break;
2132 c = e + 1;
2134 return 0;
2137 static void fcu_lookup_fans(struct device_node *fcu_node)
2139 struct device_node *np = NULL;
2140 int i;
2142 /* The table is filled by default with values that are suitable
2143 * for the old machines without device-tree informations. We scan
2144 * the device-tree and override those values with whatever is
2145 * there
2148 DBG("Looking up FCU controls in device-tree...\n");
2150 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2151 int type = -1;
2152 const char *loc;
2153 const u32 *reg;
2155 DBG(" control: %s, type: %s\n", np->name, np->type);
2157 /* Detect control type */
2158 if (!strcmp(np->type, "fan-rpm-control") ||
2159 !strcmp(np->type, "fan-rpm"))
2160 type = FCU_FAN_RPM;
2161 if (!strcmp(np->type, "fan-pwm-control") ||
2162 !strcmp(np->type, "fan-pwm"))
2163 type = FCU_FAN_PWM;
2164 /* Only care about fans for now */
2165 if (type == -1)
2166 continue;
2168 /* Lookup for a matching location */
2169 loc = of_get_property(np, "location", NULL);
2170 reg = of_get_property(np, "reg", NULL);
2171 if (loc == NULL || reg == NULL)
2172 continue;
2173 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2175 for (i = 0; i < FCU_FAN_COUNT; i++) {
2176 int fan_id;
2178 if (!fan_check_loc_match(loc, i))
2179 continue;
2180 DBG(" location match, index: %d\n", i);
2181 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2182 if (type != fcu_fans[i].type) {
2183 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2184 "in device-tree for %s\n", np->full_name);
2185 break;
2187 if (type == FCU_FAN_RPM)
2188 fan_id = ((*reg) - 0x10) / 2;
2189 else
2190 fan_id = ((*reg) - 0x30) / 2;
2191 if (fan_id > 7) {
2192 printk(KERN_WARNING "therm_pm72: Can't parse "
2193 "fan ID in device-tree for %s\n", np->full_name);
2194 break;
2196 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2197 fcu_fans[i].id = fan_id;
2201 /* Now dump the array */
2202 printk(KERN_INFO "Detected fan controls:\n");
2203 for (i = 0; i < FCU_FAN_COUNT; i++) {
2204 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2205 continue;
2206 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
2207 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2208 fcu_fans[i].id, fcu_fans[i].loc);
2212 static int fcu_of_probe(struct platform_device* dev)
2214 state = state_detached;
2215 of_dev = dev;
2217 dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2219 /* Lookup the fans in the device tree */
2220 fcu_lookup_fans(dev->dev.of_node);
2222 /* Add the driver */
2223 return i2c_add_driver(&therm_pm72_driver);
2226 static int fcu_of_remove(struct platform_device* dev)
2228 i2c_del_driver(&therm_pm72_driver);
2230 return 0;
2233 static const struct of_device_id fcu_match[] =
2236 .type = "fcu",
2240 MODULE_DEVICE_TABLE(of, fcu_match);
2242 static struct platform_driver fcu_of_platform_driver =
2244 .driver = {
2245 .name = "temperature",
2246 .owner = THIS_MODULE,
2247 .of_match_table = fcu_match,
2249 .probe = fcu_of_probe,
2250 .remove = fcu_of_remove
2254 * Check machine type, attach to i2c controller
2256 static int __init therm_pm72_init(void)
2258 rackmac = of_machine_is_compatible("RackMac3,1");
2260 if (!of_machine_is_compatible("PowerMac7,2") &&
2261 !of_machine_is_compatible("PowerMac7,3") &&
2262 !rackmac)
2263 return -ENODEV;
2265 return platform_driver_register(&fcu_of_platform_driver);
2268 static void __exit therm_pm72_exit(void)
2270 platform_driver_unregister(&fcu_of_platform_driver);
2273 module_init(therm_pm72_init);
2274 module_exit(therm_pm72_exit);
2276 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278 MODULE_LICENSE("GPL");